1 /*
2 * Copyright 2017, The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 //#define LOG_NDEBUG 0
18 #define LOG_TAG "CCodecBufferChannel"
19 #include <utils/Log.h>
20
21 #include <algorithm>
22 #include <list>
23 #include <numeric>
24
25 #include <C2AllocatorGralloc.h>
26 #include <C2PlatformSupport.h>
27 #include <C2BlockInternal.h>
28 #include <C2Config.h>
29 #include <C2Debug.h>
30
31 #include <android/hardware/cas/native/1.0/IDescrambler.h>
32 #include <android/hardware/drm/1.0/types.h>
33 #include <android-base/stringprintf.h>
34 #include <binder/MemoryBase.h>
35 #include <binder/MemoryDealer.h>
36 #include <cutils/properties.h>
37 #include <gui/Surface.h>
38 #include <hidlmemory/FrameworkUtils.h>
39 #include <media/openmax/OMX_Core.h>
40 #include <media/stagefright/foundation/ABuffer.h>
41 #include <media/stagefright/foundation/ALookup.h>
42 #include <media/stagefright/foundation/AMessage.h>
43 #include <media/stagefright/foundation/AUtils.h>
44 #include <media/stagefright/foundation/hexdump.h>
45 #include <media/stagefright/MediaCodec.h>
46 #include <media/stagefright/MediaCodecConstants.h>
47 #include <media/stagefright/SkipCutBuffer.h>
48 #include <media/MediaCodecBuffer.h>
49 #include <mediadrm/ICrypto.h>
50 #include <system/window.h>
51
52 #include "CCodecBufferChannel.h"
53 #include "Codec2Buffer.h"
54
55 namespace android {
56
57 using android::base::StringPrintf;
58 using hardware::hidl_handle;
59 using hardware::hidl_string;
60 using hardware::hidl_vec;
61 using hardware::fromHeap;
62 using hardware::HidlMemory;
63
64 using namespace hardware::cas::V1_0;
65 using namespace hardware::cas::native::V1_0;
66
67 using CasStatus = hardware::cas::V1_0::Status;
68 using DrmBufferType = hardware::drm::V1_0::BufferType;
69
70 namespace {
71
72 constexpr size_t kSmoothnessFactor = 4;
73 constexpr size_t kRenderingDepth = 3;
74
75 // This is for keeping IGBP's buffer dropping logic in legacy mode other
76 // than making it non-blocking. Do not change this value.
77 const static size_t kDequeueTimeoutNs = 0;
78
79 } // namespace
80
QueueGuard(CCodecBufferChannel::QueueSync & sync)81 CCodecBufferChannel::QueueGuard::QueueGuard(
82 CCodecBufferChannel::QueueSync &sync) : mSync(sync) {
83 Mutex::Autolock l(mSync.mGuardLock);
84 // At this point it's guaranteed that mSync is not under state transition,
85 // as we are holding its mutex.
86
87 Mutexed<CCodecBufferChannel::QueueSync::Counter>::Locked count(mSync.mCount);
88 if (count->value == -1) {
89 mRunning = false;
90 } else {
91 ++count->value;
92 mRunning = true;
93 }
94 }
95
~QueueGuard()96 CCodecBufferChannel::QueueGuard::~QueueGuard() {
97 if (mRunning) {
98 // We are not holding mGuardLock at this point so that QueueSync::stop() can
99 // keep holding the lock until mCount reaches zero.
100 Mutexed<CCodecBufferChannel::QueueSync::Counter>::Locked count(mSync.mCount);
101 --count->value;
102 count->cond.broadcast();
103 }
104 }
105
start()106 void CCodecBufferChannel::QueueSync::start() {
107 Mutex::Autolock l(mGuardLock);
108 // If stopped, it goes to running state; otherwise no-op.
109 Mutexed<Counter>::Locked count(mCount);
110 if (count->value == -1) {
111 count->value = 0;
112 }
113 }
114
stop()115 void CCodecBufferChannel::QueueSync::stop() {
116 Mutex::Autolock l(mGuardLock);
117 Mutexed<Counter>::Locked count(mCount);
118 if (count->value == -1) {
119 // no-op
120 return;
121 }
122 // Holding mGuardLock here blocks creation of additional QueueGuard objects, so
123 // mCount can only decrement. In other words, threads that acquired the lock
124 // are allowed to finish execution but additional threads trying to acquire
125 // the lock at this point will block, and then get QueueGuard at STOPPED
126 // state.
127 while (count->value != 0) {
128 count.waitForCondition(count->cond);
129 }
130 count->value = -1;
131 }
132
133 // Input
134
Input()135 CCodecBufferChannel::Input::Input() : extraBuffers("extra") {}
136
137 // CCodecBufferChannel
138
CCodecBufferChannel(const std::shared_ptr<CCodecCallback> & callback)139 CCodecBufferChannel::CCodecBufferChannel(
140 const std::shared_ptr<CCodecCallback> &callback)
141 : mHeapSeqNum(-1),
142 mCCodecCallback(callback),
143 mFrameIndex(0u),
144 mFirstValidFrameIndex(0u),
145 mMetaMode(MODE_NONE),
146 mInputMetEos(false) {
147 mOutputSurface.lock()->maxDequeueBuffers = kSmoothnessFactor + kRenderingDepth;
148 {
149 Mutexed<Input>::Locked input(mInput);
150 input->buffers.reset(new DummyInputBuffers(""));
151 input->extraBuffers.flush();
152 input->inputDelay = 0u;
153 input->pipelineDelay = 0u;
154 input->numSlots = kSmoothnessFactor;
155 input->numExtraSlots = 0u;
156 }
157 {
158 Mutexed<Output>::Locked output(mOutput);
159 output->outputDelay = 0u;
160 output->numSlots = kSmoothnessFactor;
161 }
162 }
163
~CCodecBufferChannel()164 CCodecBufferChannel::~CCodecBufferChannel() {
165 if (mCrypto != nullptr && mHeapSeqNum >= 0) {
166 mCrypto->unsetHeap(mHeapSeqNum);
167 }
168 }
169
setComponent(const std::shared_ptr<Codec2Client::Component> & component)170 void CCodecBufferChannel::setComponent(
171 const std::shared_ptr<Codec2Client::Component> &component) {
172 mComponent = component;
173 mComponentName = component->getName() + StringPrintf("#%d", int(uintptr_t(component.get()) % 997));
174 mName = mComponentName.c_str();
175 }
176
setInputSurface(const std::shared_ptr<InputSurfaceWrapper> & surface)177 status_t CCodecBufferChannel::setInputSurface(
178 const std::shared_ptr<InputSurfaceWrapper> &surface) {
179 ALOGV("[%s] setInputSurface", mName);
180 mInputSurface = surface;
181 return mInputSurface->connect(mComponent);
182 }
183
signalEndOfInputStream()184 status_t CCodecBufferChannel::signalEndOfInputStream() {
185 if (mInputSurface == nullptr) {
186 return INVALID_OPERATION;
187 }
188 return mInputSurface->signalEndOfInputStream();
189 }
190
queueInputBufferInternal(sp<MediaCodecBuffer> buffer)191 status_t CCodecBufferChannel::queueInputBufferInternal(sp<MediaCodecBuffer> buffer) {
192 int64_t timeUs;
193 CHECK(buffer->meta()->findInt64("timeUs", &timeUs));
194
195 if (mInputMetEos) {
196 ALOGD("[%s] buffers after EOS ignored (%lld us)", mName, (long long)timeUs);
197 return OK;
198 }
199
200 int32_t flags = 0;
201 int32_t tmp = 0;
202 bool eos = false;
203 if (buffer->meta()->findInt32("eos", &tmp) && tmp) {
204 eos = true;
205 mInputMetEos = true;
206 ALOGV("[%s] input EOS", mName);
207 }
208 if (buffer->meta()->findInt32("csd", &tmp) && tmp) {
209 flags |= C2FrameData::FLAG_CODEC_CONFIG;
210 }
211 ALOGV("[%s] queueInputBuffer: buffer->size() = %zu", mName, buffer->size());
212 std::unique_ptr<C2Work> work(new C2Work);
213 work->input.ordinal.timestamp = timeUs;
214 work->input.ordinal.frameIndex = mFrameIndex++;
215 // WORKAROUND: until codecs support handling work after EOS and max output sizing, use timestamp
216 // manipulation to achieve image encoding via video codec, and to constrain encoded output.
217 // Keep client timestamp in customOrdinal
218 work->input.ordinal.customOrdinal = timeUs;
219 work->input.buffers.clear();
220
221 uint64_t queuedFrameIndex = work->input.ordinal.frameIndex.peeku();
222 std::vector<std::shared_ptr<C2Buffer>> queuedBuffers;
223 sp<Codec2Buffer> copy;
224
225 if (buffer->size() > 0u) {
226 Mutexed<Input>::Locked input(mInput);
227 std::shared_ptr<C2Buffer> c2buffer;
228 if (!input->buffers->releaseBuffer(buffer, &c2buffer, false)) {
229 return -ENOENT;
230 }
231 // TODO: we want to delay copying buffers.
232 if (input->extraBuffers.numComponentBuffers() < input->numExtraSlots) {
233 copy = input->buffers->cloneAndReleaseBuffer(buffer);
234 if (copy != nullptr) {
235 (void)input->extraBuffers.assignSlot(copy);
236 if (!input->extraBuffers.releaseSlot(copy, &c2buffer, false)) {
237 return UNKNOWN_ERROR;
238 }
239 bool released = input->buffers->releaseBuffer(buffer, nullptr, true);
240 ALOGV("[%s] queueInputBuffer: buffer copied; %sreleased",
241 mName, released ? "" : "not ");
242 buffer.clear();
243 } else {
244 ALOGW("[%s] queueInputBuffer: failed to copy a buffer; this may cause input "
245 "buffer starvation on component.", mName);
246 }
247 }
248 work->input.buffers.push_back(c2buffer);
249 queuedBuffers.push_back(c2buffer);
250 } else if (eos) {
251 flags |= C2FrameData::FLAG_END_OF_STREAM;
252 }
253 work->input.flags = (C2FrameData::flags_t)flags;
254 // TODO: fill info's
255
256 work->input.configUpdate = std::move(mParamsToBeSet);
257 work->worklets.clear();
258 work->worklets.emplace_back(new C2Worklet);
259
260 std::list<std::unique_ptr<C2Work>> items;
261 items.push_back(std::move(work));
262 mPipelineWatcher.lock()->onWorkQueued(
263 queuedFrameIndex,
264 std::move(queuedBuffers),
265 PipelineWatcher::Clock::now());
266 c2_status_t err = mComponent->queue(&items);
267 if (err != C2_OK) {
268 mPipelineWatcher.lock()->onWorkDone(queuedFrameIndex);
269 }
270
271 if (err == C2_OK && eos && buffer->size() > 0u) {
272 work.reset(new C2Work);
273 work->input.ordinal.timestamp = timeUs;
274 work->input.ordinal.frameIndex = mFrameIndex++;
275 // WORKAROUND: keep client timestamp in customOrdinal
276 work->input.ordinal.customOrdinal = timeUs;
277 work->input.buffers.clear();
278 work->input.flags = C2FrameData::FLAG_END_OF_STREAM;
279 work->worklets.emplace_back(new C2Worklet);
280
281 queuedFrameIndex = work->input.ordinal.frameIndex.peeku();
282 queuedBuffers.clear();
283
284 items.clear();
285 items.push_back(std::move(work));
286
287 mPipelineWatcher.lock()->onWorkQueued(
288 queuedFrameIndex,
289 std::move(queuedBuffers),
290 PipelineWatcher::Clock::now());
291 err = mComponent->queue(&items);
292 if (err != C2_OK) {
293 mPipelineWatcher.lock()->onWorkDone(queuedFrameIndex);
294 }
295 }
296 if (err == C2_OK) {
297 Mutexed<Input>::Locked input(mInput);
298 bool released = false;
299 if (buffer) {
300 released = input->buffers->releaseBuffer(buffer, nullptr, true);
301 } else if (copy) {
302 released = input->extraBuffers.releaseSlot(copy, nullptr, true);
303 }
304 ALOGV("[%s] queueInputBuffer: buffer%s %sreleased",
305 mName, (buffer == nullptr) ? "(copy)" : "", released ? "" : "not ");
306 }
307
308 feedInputBufferIfAvailableInternal();
309 return err;
310 }
311
setParameters(std::vector<std::unique_ptr<C2Param>> & params)312 status_t CCodecBufferChannel::setParameters(std::vector<std::unique_ptr<C2Param>> ¶ms) {
313 QueueGuard guard(mSync);
314 if (!guard.isRunning()) {
315 ALOGD("[%s] setParameters is only supported in the running state.", mName);
316 return -ENOSYS;
317 }
318 mParamsToBeSet.insert(mParamsToBeSet.end(),
319 std::make_move_iterator(params.begin()),
320 std::make_move_iterator(params.end()));
321 params.clear();
322 return OK;
323 }
324
attachBuffer(const std::shared_ptr<C2Buffer> & c2Buffer,const sp<MediaCodecBuffer> & buffer)325 status_t CCodecBufferChannel::attachBuffer(
326 const std::shared_ptr<C2Buffer> &c2Buffer,
327 const sp<MediaCodecBuffer> &buffer) {
328 if (!buffer->copy(c2Buffer)) {
329 return -ENOSYS;
330 }
331 return OK;
332 }
333
ensureDecryptDestination(size_t size)334 void CCodecBufferChannel::ensureDecryptDestination(size_t size) {
335 if (!mDecryptDestination || mDecryptDestination->size() < size) {
336 sp<IMemoryHeap> heap{new MemoryHeapBase(size * 2)};
337 if (mDecryptDestination && mCrypto && mHeapSeqNum >= 0) {
338 mCrypto->unsetHeap(mHeapSeqNum);
339 }
340 mDecryptDestination = new MemoryBase(heap, 0, size * 2);
341 if (mCrypto) {
342 mHeapSeqNum = mCrypto->setHeap(hardware::fromHeap(heap));
343 }
344 }
345 }
346
getHeapSeqNum(const sp<HidlMemory> & memory)347 int32_t CCodecBufferChannel::getHeapSeqNum(const sp<HidlMemory> &memory) {
348 CHECK(mCrypto);
349 auto it = mHeapSeqNumMap.find(memory);
350 int32_t heapSeqNum = -1;
351 if (it == mHeapSeqNumMap.end()) {
352 heapSeqNum = mCrypto->setHeap(memory);
353 mHeapSeqNumMap.emplace(memory, heapSeqNum);
354 } else {
355 heapSeqNum = it->second;
356 }
357 return heapSeqNum;
358 }
359
attachEncryptedBuffer(const sp<hardware::HidlMemory> & memory,bool secure,const uint8_t * key,const uint8_t * iv,CryptoPlugin::Mode mode,CryptoPlugin::Pattern pattern,size_t offset,const CryptoPlugin::SubSample * subSamples,size_t numSubSamples,const sp<MediaCodecBuffer> & buffer)360 status_t CCodecBufferChannel::attachEncryptedBuffer(
361 const sp<hardware::HidlMemory> &memory,
362 bool secure,
363 const uint8_t *key,
364 const uint8_t *iv,
365 CryptoPlugin::Mode mode,
366 CryptoPlugin::Pattern pattern,
367 size_t offset,
368 const CryptoPlugin::SubSample *subSamples,
369 size_t numSubSamples,
370 const sp<MediaCodecBuffer> &buffer) {
371 static const C2MemoryUsage kSecureUsage{C2MemoryUsage::READ_PROTECTED, 0};
372 static const C2MemoryUsage kDefaultReadWriteUsage{
373 C2MemoryUsage::CPU_READ, C2MemoryUsage::CPU_WRITE};
374
375 size_t size = 0;
376 for (size_t i = 0; i < numSubSamples; ++i) {
377 size += subSamples[i].mNumBytesOfClearData + subSamples[i].mNumBytesOfEncryptedData;
378 }
379 std::shared_ptr<C2BlockPool> pool = mBlockPools.lock()->inputPool;
380 std::shared_ptr<C2LinearBlock> block;
381 c2_status_t err = pool->fetchLinearBlock(
382 size,
383 secure ? kSecureUsage : kDefaultReadWriteUsage,
384 &block);
385 if (err != C2_OK) {
386 return NO_MEMORY;
387 }
388 if (!secure) {
389 ensureDecryptDestination(size);
390 }
391 ssize_t result = -1;
392 ssize_t codecDataOffset = 0;
393 if (mCrypto) {
394 AString errorDetailMsg;
395 int32_t heapSeqNum = getHeapSeqNum(memory);
396 hardware::drm::V1_0::SharedBuffer src{(uint32_t)heapSeqNum, offset, size};
397 hardware::drm::V1_0::DestinationBuffer dst;
398 if (secure) {
399 dst.type = DrmBufferType::NATIVE_HANDLE;
400 dst.secureMemory = hardware::hidl_handle(block->handle());
401 } else {
402 dst.type = DrmBufferType::SHARED_MEMORY;
403 IMemoryToSharedBuffer(
404 mDecryptDestination, mHeapSeqNum, &dst.nonsecureMemory);
405 }
406 result = mCrypto->decrypt(
407 key, iv, mode, pattern, src, 0, subSamples, numSubSamples,
408 dst, &errorDetailMsg);
409 if (result < 0) {
410 return result;
411 }
412 if (dst.type == DrmBufferType::SHARED_MEMORY) {
413 C2WriteView view = block->map().get();
414 if (view.error() != C2_OK) {
415 return false;
416 }
417 if (view.size() < result) {
418 return false;
419 }
420 memcpy(view.data(), mDecryptDestination->unsecurePointer(), result);
421 }
422 } else {
423 // Here we cast CryptoPlugin::SubSample to hardware::cas::native::V1_0::SubSample
424 // directly, the structure definitions should match as checked in DescramblerImpl.cpp.
425 hidl_vec<SubSample> hidlSubSamples;
426 hidlSubSamples.setToExternal((SubSample *)subSamples, numSubSamples, false /*own*/);
427
428 hardware::cas::native::V1_0::SharedBuffer src{*memory, offset, size};
429 hardware::cas::native::V1_0::DestinationBuffer dst;
430 if (secure) {
431 dst.type = BufferType::NATIVE_HANDLE;
432 dst.secureMemory = hardware::hidl_handle(block->handle());
433 } else {
434 dst.type = BufferType::SHARED_MEMORY;
435 dst.nonsecureMemory = src;
436 }
437
438 CasStatus status = CasStatus::OK;
439 hidl_string detailedError;
440 ScramblingControl sctrl = ScramblingControl::UNSCRAMBLED;
441
442 if (key != nullptr) {
443 sctrl = (ScramblingControl)key[0];
444 // Adjust for the PES offset
445 codecDataOffset = key[2] | (key[3] << 8);
446 }
447
448 auto returnVoid = mDescrambler->descramble(
449 sctrl,
450 hidlSubSamples,
451 src,
452 0,
453 dst,
454 0,
455 [&status, &result, &detailedError] (
456 CasStatus _status, uint32_t _bytesWritten,
457 const hidl_string& _detailedError) {
458 status = _status;
459 result = (ssize_t)_bytesWritten;
460 detailedError = _detailedError;
461 });
462
463 if (!returnVoid.isOk() || status != CasStatus::OK || result < 0) {
464 ALOGI("[%s] descramble failed, trans=%s, status=%d, result=%zd",
465 mName, returnVoid.description().c_str(), status, result);
466 return UNKNOWN_ERROR;
467 }
468
469 if (result < codecDataOffset) {
470 ALOGD("invalid codec data offset: %zd, result %zd", codecDataOffset, result);
471 return BAD_VALUE;
472 }
473 }
474 if (!secure) {
475 C2WriteView view = block->map().get();
476 if (view.error() != C2_OK) {
477 return UNKNOWN_ERROR;
478 }
479 if (view.size() < result) {
480 return UNKNOWN_ERROR;
481 }
482 memcpy(view.data(), mDecryptDestination->unsecurePointer(), result);
483 }
484 std::shared_ptr<C2Buffer> c2Buffer{C2Buffer::CreateLinearBuffer(
485 block->share(codecDataOffset, result - codecDataOffset, C2Fence{}))};
486 if (!buffer->copy(c2Buffer)) {
487 return -ENOSYS;
488 }
489 return OK;
490 }
491
queueInputBuffer(const sp<MediaCodecBuffer> & buffer)492 status_t CCodecBufferChannel::queueInputBuffer(const sp<MediaCodecBuffer> &buffer) {
493 QueueGuard guard(mSync);
494 if (!guard.isRunning()) {
495 ALOGD("[%s] No more buffers should be queued at current state.", mName);
496 return -ENOSYS;
497 }
498 return queueInputBufferInternal(buffer);
499 }
500
queueSecureInputBuffer(const sp<MediaCodecBuffer> & buffer,bool secure,const uint8_t * key,const uint8_t * iv,CryptoPlugin::Mode mode,CryptoPlugin::Pattern pattern,const CryptoPlugin::SubSample * subSamples,size_t numSubSamples,AString * errorDetailMsg)501 status_t CCodecBufferChannel::queueSecureInputBuffer(
502 const sp<MediaCodecBuffer> &buffer, bool secure, const uint8_t *key,
503 const uint8_t *iv, CryptoPlugin::Mode mode, CryptoPlugin::Pattern pattern,
504 const CryptoPlugin::SubSample *subSamples, size_t numSubSamples,
505 AString *errorDetailMsg) {
506 QueueGuard guard(mSync);
507 if (!guard.isRunning()) {
508 ALOGD("[%s] No more buffers should be queued at current state.", mName);
509 return -ENOSYS;
510 }
511
512 if (!hasCryptoOrDescrambler()) {
513 return -ENOSYS;
514 }
515 sp<EncryptedLinearBlockBuffer> encryptedBuffer((EncryptedLinearBlockBuffer *)buffer.get());
516
517 ssize_t result = -1;
518 ssize_t codecDataOffset = 0;
519 if (numSubSamples == 1
520 && subSamples[0].mNumBytesOfClearData == 0
521 && subSamples[0].mNumBytesOfEncryptedData == 0) {
522 // We don't need to go through crypto or descrambler if the input is empty.
523 result = 0;
524 } else if (mCrypto != nullptr) {
525 hardware::drm::V1_0::DestinationBuffer destination;
526 if (secure) {
527 destination.type = DrmBufferType::NATIVE_HANDLE;
528 destination.secureMemory = hidl_handle(encryptedBuffer->handle());
529 } else {
530 destination.type = DrmBufferType::SHARED_MEMORY;
531 IMemoryToSharedBuffer(
532 mDecryptDestination, mHeapSeqNum, &destination.nonsecureMemory);
533 }
534 hardware::drm::V1_0::SharedBuffer source;
535 encryptedBuffer->fillSourceBuffer(&source);
536 result = mCrypto->decrypt(
537 key, iv, mode, pattern, source, buffer->offset(),
538 subSamples, numSubSamples, destination, errorDetailMsg);
539 if (result < 0) {
540 ALOGI("[%s] decrypt failed: result=%zd", mName, result);
541 return result;
542 }
543 if (destination.type == DrmBufferType::SHARED_MEMORY) {
544 encryptedBuffer->copyDecryptedContent(mDecryptDestination, result);
545 }
546 } else {
547 // Here we cast CryptoPlugin::SubSample to hardware::cas::native::V1_0::SubSample
548 // directly, the structure definitions should match as checked in DescramblerImpl.cpp.
549 hidl_vec<SubSample> hidlSubSamples;
550 hidlSubSamples.setToExternal((SubSample *)subSamples, numSubSamples, false /*own*/);
551
552 hardware::cas::native::V1_0::SharedBuffer srcBuffer;
553 encryptedBuffer->fillSourceBuffer(&srcBuffer);
554
555 DestinationBuffer dstBuffer;
556 if (secure) {
557 dstBuffer.type = BufferType::NATIVE_HANDLE;
558 dstBuffer.secureMemory = hidl_handle(encryptedBuffer->handle());
559 } else {
560 dstBuffer.type = BufferType::SHARED_MEMORY;
561 dstBuffer.nonsecureMemory = srcBuffer;
562 }
563
564 CasStatus status = CasStatus::OK;
565 hidl_string detailedError;
566 ScramblingControl sctrl = ScramblingControl::UNSCRAMBLED;
567
568 if (key != nullptr) {
569 sctrl = (ScramblingControl)key[0];
570 // Adjust for the PES offset
571 codecDataOffset = key[2] | (key[3] << 8);
572 }
573
574 auto returnVoid = mDescrambler->descramble(
575 sctrl,
576 hidlSubSamples,
577 srcBuffer,
578 0,
579 dstBuffer,
580 0,
581 [&status, &result, &detailedError] (
582 CasStatus _status, uint32_t _bytesWritten,
583 const hidl_string& _detailedError) {
584 status = _status;
585 result = (ssize_t)_bytesWritten;
586 detailedError = _detailedError;
587 });
588
589 if (!returnVoid.isOk() || status != CasStatus::OK || result < 0) {
590 ALOGI("[%s] descramble failed, trans=%s, status=%d, result=%zd",
591 mName, returnVoid.description().c_str(), status, result);
592 return UNKNOWN_ERROR;
593 }
594
595 if (result < codecDataOffset) {
596 ALOGD("invalid codec data offset: %zd, result %zd", codecDataOffset, result);
597 return BAD_VALUE;
598 }
599
600 ALOGV("[%s] descramble succeeded, %zd bytes", mName, result);
601
602 if (dstBuffer.type == BufferType::SHARED_MEMORY) {
603 encryptedBuffer->copyDecryptedContentFromMemory(result);
604 }
605 }
606
607 buffer->setRange(codecDataOffset, result - codecDataOffset);
608 return queueInputBufferInternal(buffer);
609 }
610
feedInputBufferIfAvailable()611 void CCodecBufferChannel::feedInputBufferIfAvailable() {
612 QueueGuard guard(mSync);
613 if (!guard.isRunning()) {
614 ALOGV("[%s] We're not running --- no input buffer reported", mName);
615 return;
616 }
617 feedInputBufferIfAvailableInternal();
618 }
619
feedInputBufferIfAvailableInternal()620 void CCodecBufferChannel::feedInputBufferIfAvailableInternal() {
621 if (mInputMetEos || mPipelineWatcher.lock()->pipelineFull()) {
622 return;
623 }
624 {
625 Mutexed<Output>::Locked output(mOutput);
626 if (!output->buffers ||
627 output->buffers->hasPending() ||
628 output->buffers->numClientBuffers() >= output->numSlots) {
629 return;
630 }
631 }
632 size_t numInputSlots = mInput.lock()->numSlots;
633 for (size_t i = 0; i < numInputSlots; ++i) {
634 sp<MediaCodecBuffer> inBuffer;
635 size_t index;
636 {
637 Mutexed<Input>::Locked input(mInput);
638 if (input->buffers->numClientBuffers() >= input->numSlots) {
639 return;
640 }
641 if (!input->buffers->requestNewBuffer(&index, &inBuffer)) {
642 ALOGV("[%s] no new buffer available", mName);
643 break;
644 }
645 }
646 ALOGV("[%s] new input index = %zu [%p]", mName, index, inBuffer.get());
647 mCallback->onInputBufferAvailable(index, inBuffer);
648 }
649 }
650
renderOutputBuffer(const sp<MediaCodecBuffer> & buffer,int64_t timestampNs)651 status_t CCodecBufferChannel::renderOutputBuffer(
652 const sp<MediaCodecBuffer> &buffer, int64_t timestampNs) {
653 ALOGV("[%s] renderOutputBuffer: %p", mName, buffer.get());
654 std::shared_ptr<C2Buffer> c2Buffer;
655 bool released = false;
656 {
657 Mutexed<Output>::Locked output(mOutput);
658 if (output->buffers) {
659 released = output->buffers->releaseBuffer(buffer, &c2Buffer);
660 }
661 }
662 // NOTE: some apps try to releaseOutputBuffer() with timestamp and/or render
663 // set to true.
664 sendOutputBuffers();
665 // input buffer feeding may have been gated by pending output buffers
666 feedInputBufferIfAvailable();
667 if (!c2Buffer) {
668 if (released) {
669 std::call_once(mRenderWarningFlag, [this] {
670 ALOGW("[%s] The app is calling releaseOutputBuffer() with "
671 "timestamp or render=true with non-video buffers. Apps should "
672 "call releaseOutputBuffer() with render=false for those.",
673 mName);
674 });
675 }
676 return INVALID_OPERATION;
677 }
678
679 #if 0
680 const std::vector<std::shared_ptr<const C2Info>> infoParams = c2Buffer->info();
681 ALOGV("[%s] queuing gfx buffer with %zu infos", mName, infoParams.size());
682 for (const std::shared_ptr<const C2Info> &info : infoParams) {
683 AString res;
684 for (size_t ix = 0; ix + 3 < info->size(); ix += 4) {
685 if (ix) res.append(", ");
686 res.append(*((int32_t*)info.get() + (ix / 4)));
687 }
688 ALOGV(" [%s]", res.c_str());
689 }
690 #endif
691 std::shared_ptr<const C2StreamRotationInfo::output> rotation =
692 std::static_pointer_cast<const C2StreamRotationInfo::output>(
693 c2Buffer->getInfo(C2StreamRotationInfo::output::PARAM_TYPE));
694 bool flip = rotation && (rotation->flip & 1);
695 uint32_t quarters = ((rotation ? rotation->value : 0) / 90) & 3;
696 uint32_t transform = 0;
697 switch (quarters) {
698 case 0: // no rotation
699 transform = flip ? HAL_TRANSFORM_FLIP_H : 0;
700 break;
701 case 1: // 90 degrees counter-clockwise
702 transform = flip ? (HAL_TRANSFORM_FLIP_V | HAL_TRANSFORM_ROT_90)
703 : HAL_TRANSFORM_ROT_270;
704 break;
705 case 2: // 180 degrees
706 transform = flip ? HAL_TRANSFORM_FLIP_V : HAL_TRANSFORM_ROT_180;
707 break;
708 case 3: // 90 degrees clockwise
709 transform = flip ? (HAL_TRANSFORM_FLIP_H | HAL_TRANSFORM_ROT_90)
710 : HAL_TRANSFORM_ROT_90;
711 break;
712 }
713
714 std::shared_ptr<const C2StreamSurfaceScalingInfo::output> surfaceScaling =
715 std::static_pointer_cast<const C2StreamSurfaceScalingInfo::output>(
716 c2Buffer->getInfo(C2StreamSurfaceScalingInfo::output::PARAM_TYPE));
717 uint32_t videoScalingMode = NATIVE_WINDOW_SCALING_MODE_SCALE_TO_WINDOW;
718 if (surfaceScaling) {
719 videoScalingMode = surfaceScaling->value;
720 }
721
722 // Use dataspace from format as it has the default aspects already applied
723 android_dataspace_t dataSpace = HAL_DATASPACE_UNKNOWN; // this is 0
724 (void)buffer->format()->findInt32("android._dataspace", (int32_t *)&dataSpace);
725
726 // HDR static info
727 std::shared_ptr<const C2StreamHdrStaticInfo::output> hdrStaticInfo =
728 std::static_pointer_cast<const C2StreamHdrStaticInfo::output>(
729 c2Buffer->getInfo(C2StreamHdrStaticInfo::output::PARAM_TYPE));
730
731 // HDR10 plus info
732 std::shared_ptr<const C2StreamHdr10PlusInfo::output> hdr10PlusInfo =
733 std::static_pointer_cast<const C2StreamHdr10PlusInfo::output>(
734 c2Buffer->getInfo(C2StreamHdr10PlusInfo::output::PARAM_TYPE));
735 if (hdr10PlusInfo && hdr10PlusInfo->flexCount() == 0) {
736 hdr10PlusInfo.reset();
737 }
738
739 {
740 Mutexed<OutputSurface>::Locked output(mOutputSurface);
741 if (output->surface == nullptr) {
742 ALOGI("[%s] cannot render buffer without surface", mName);
743 return OK;
744 }
745 }
746
747 std::vector<C2ConstGraphicBlock> blocks = c2Buffer->data().graphicBlocks();
748 if (blocks.size() != 1u) {
749 ALOGD("[%s] expected 1 graphic block, but got %zu", mName, blocks.size());
750 return UNKNOWN_ERROR;
751 }
752 const C2ConstGraphicBlock &block = blocks.front();
753
754 // TODO: revisit this after C2Fence implementation.
755 android::IGraphicBufferProducer::QueueBufferInput qbi(
756 timestampNs,
757 false, // droppable
758 dataSpace,
759 Rect(blocks.front().crop().left,
760 blocks.front().crop().top,
761 blocks.front().crop().right(),
762 blocks.front().crop().bottom()),
763 videoScalingMode,
764 transform,
765 Fence::NO_FENCE, 0);
766 if (hdrStaticInfo || hdr10PlusInfo) {
767 HdrMetadata hdr;
768 if (hdrStaticInfo) {
769 // If mastering max and min luminance fields are 0, do not use them.
770 // It indicates the value may not be present in the stream.
771 if (hdrStaticInfo->mastering.maxLuminance > 0.0f &&
772 hdrStaticInfo->mastering.minLuminance > 0.0f) {
773 struct android_smpte2086_metadata smpte2086_meta = {
774 .displayPrimaryRed = {
775 hdrStaticInfo->mastering.red.x, hdrStaticInfo->mastering.red.y
776 },
777 .displayPrimaryGreen = {
778 hdrStaticInfo->mastering.green.x, hdrStaticInfo->mastering.green.y
779 },
780 .displayPrimaryBlue = {
781 hdrStaticInfo->mastering.blue.x, hdrStaticInfo->mastering.blue.y
782 },
783 .whitePoint = {
784 hdrStaticInfo->mastering.white.x, hdrStaticInfo->mastering.white.y
785 },
786 .maxLuminance = hdrStaticInfo->mastering.maxLuminance,
787 .minLuminance = hdrStaticInfo->mastering.minLuminance,
788 };
789 hdr.validTypes |= HdrMetadata::SMPTE2086;
790 hdr.smpte2086 = smpte2086_meta;
791 }
792 // If the content light level fields are 0, do not use them, it
793 // indicates the value may not be present in the stream.
794 if (hdrStaticInfo->maxCll > 0.0f && hdrStaticInfo->maxFall > 0.0f) {
795 struct android_cta861_3_metadata cta861_meta = {
796 .maxContentLightLevel = hdrStaticInfo->maxCll,
797 .maxFrameAverageLightLevel = hdrStaticInfo->maxFall,
798 };
799 hdr.validTypes |= HdrMetadata::CTA861_3;
800 hdr.cta8613 = cta861_meta;
801 }
802 }
803 if (hdr10PlusInfo) {
804 hdr.validTypes |= HdrMetadata::HDR10PLUS;
805 hdr.hdr10plus.assign(
806 hdr10PlusInfo->m.value,
807 hdr10PlusInfo->m.value + hdr10PlusInfo->flexCount());
808 }
809 qbi.setHdrMetadata(hdr);
810 }
811 // we don't have dirty regions
812 qbi.setSurfaceDamage(Region::INVALID_REGION);
813 android::IGraphicBufferProducer::QueueBufferOutput qbo;
814 status_t result = mComponent->queueToOutputSurface(block, qbi, &qbo);
815 if (result != OK) {
816 ALOGI("[%s] queueBuffer failed: %d", mName, result);
817 return result;
818 }
819 ALOGV("[%s] queue buffer successful", mName);
820
821 int64_t mediaTimeUs = 0;
822 (void)buffer->meta()->findInt64("timeUs", &mediaTimeUs);
823 mCCodecCallback->onOutputFramesRendered(mediaTimeUs, timestampNs);
824
825 return OK;
826 }
827
discardBuffer(const sp<MediaCodecBuffer> & buffer)828 status_t CCodecBufferChannel::discardBuffer(const sp<MediaCodecBuffer> &buffer) {
829 ALOGV("[%s] discardBuffer: %p", mName, buffer.get());
830 bool released = false;
831 {
832 Mutexed<Input>::Locked input(mInput);
833 if (input->buffers && input->buffers->releaseBuffer(buffer, nullptr, true)) {
834 released = true;
835 }
836 }
837 {
838 Mutexed<Output>::Locked output(mOutput);
839 if (output->buffers && output->buffers->releaseBuffer(buffer, nullptr)) {
840 released = true;
841 }
842 }
843 if (released) {
844 sendOutputBuffers();
845 feedInputBufferIfAvailable();
846 } else {
847 ALOGD("[%s] MediaCodec discarded an unknown buffer", mName);
848 }
849 return OK;
850 }
851
getInputBufferArray(Vector<sp<MediaCodecBuffer>> * array)852 void CCodecBufferChannel::getInputBufferArray(Vector<sp<MediaCodecBuffer>> *array) {
853 array->clear();
854 Mutexed<Input>::Locked input(mInput);
855
856 if (!input->buffers->isArrayMode()) {
857 input->buffers = input->buffers->toArrayMode(input->numSlots);
858 }
859
860 input->buffers->getArray(array);
861 }
862
getOutputBufferArray(Vector<sp<MediaCodecBuffer>> * array)863 void CCodecBufferChannel::getOutputBufferArray(Vector<sp<MediaCodecBuffer>> *array) {
864 array->clear();
865 Mutexed<Output>::Locked output(mOutput);
866
867 if (!output->buffers->isArrayMode()) {
868 output->buffers = output->buffers->toArrayMode(output->numSlots);
869 }
870
871 output->buffers->getArray(array);
872 }
873
start(const sp<AMessage> & inputFormat,const sp<AMessage> & outputFormat,bool buffersBoundToCodec)874 status_t CCodecBufferChannel::start(
875 const sp<AMessage> &inputFormat,
876 const sp<AMessage> &outputFormat,
877 bool buffersBoundToCodec) {
878 C2StreamBufferTypeSetting::input iStreamFormat(0u);
879 C2StreamBufferTypeSetting::output oStreamFormat(0u);
880 C2PortReorderBufferDepthTuning::output reorderDepth;
881 C2PortReorderKeySetting::output reorderKey;
882 C2PortActualDelayTuning::input inputDelay(0);
883 C2PortActualDelayTuning::output outputDelay(0);
884 C2ActualPipelineDelayTuning pipelineDelay(0);
885
886 c2_status_t err = mComponent->query(
887 {
888 &iStreamFormat,
889 &oStreamFormat,
890 &reorderDepth,
891 &reorderKey,
892 &inputDelay,
893 &pipelineDelay,
894 &outputDelay,
895 },
896 {},
897 C2_DONT_BLOCK,
898 nullptr);
899 if (err == C2_BAD_INDEX) {
900 if (!iStreamFormat || !oStreamFormat) {
901 return UNKNOWN_ERROR;
902 }
903 } else if (err != C2_OK) {
904 return UNKNOWN_ERROR;
905 }
906
907 uint32_t inputDelayValue = inputDelay ? inputDelay.value : 0;
908 uint32_t pipelineDelayValue = pipelineDelay ? pipelineDelay.value : 0;
909 uint32_t outputDelayValue = outputDelay ? outputDelay.value : 0;
910
911 size_t numInputSlots = inputDelayValue + pipelineDelayValue + kSmoothnessFactor;
912 size_t numOutputSlots = outputDelayValue + kSmoothnessFactor;
913
914 // TODO: get this from input format
915 bool secure = mComponent->getName().find(".secure") != std::string::npos;
916
917 std::shared_ptr<C2AllocatorStore> allocatorStore = GetCodec2PlatformAllocatorStore();
918 int poolMask = GetCodec2PoolMask();
919 C2PlatformAllocatorStore::id_t preferredLinearId = GetPreferredLinearAllocatorId(poolMask);
920
921 if (inputFormat != nullptr) {
922 bool graphic = (iStreamFormat.value == C2BufferData::GRAPHIC);
923 C2Config::api_feature_t apiFeatures = C2Config::api_feature_t(
924 API_REFLECTION |
925 API_VALUES |
926 API_CURRENT_VALUES |
927 API_DEPENDENCY |
928 API_SAME_INPUT_BUFFER);
929 std::shared_ptr<C2BlockPool> pool;
930 {
931 Mutexed<BlockPools>::Locked pools(mBlockPools);
932
933 // set default allocator ID.
934 pools->inputAllocatorId = (graphic) ? C2PlatformAllocatorStore::GRALLOC
935 : preferredLinearId;
936
937 // query C2PortAllocatorsTuning::input from component. If an allocator ID is obtained
938 // from component, create the input block pool with given ID. Otherwise, use default IDs.
939 std::vector<std::unique_ptr<C2Param>> params;
940 C2ApiFeaturesSetting featuresSetting{apiFeatures};
941 err = mComponent->query({ &featuresSetting },
942 { C2PortAllocatorsTuning::input::PARAM_TYPE },
943 C2_DONT_BLOCK,
944 ¶ms);
945 if ((err != C2_OK && err != C2_BAD_INDEX) || params.size() != 1) {
946 ALOGD("[%s] Query input allocators returned %zu params => %s (%u)",
947 mName, params.size(), asString(err), err);
948 } else if (params.size() == 1) {
949 C2PortAllocatorsTuning::input *inputAllocators =
950 C2PortAllocatorsTuning::input::From(params[0].get());
951 if (inputAllocators && inputAllocators->flexCount() > 0) {
952 std::shared_ptr<C2Allocator> allocator;
953 // verify allocator IDs and resolve default allocator
954 allocatorStore->fetchAllocator(inputAllocators->m.values[0], &allocator);
955 if (allocator) {
956 pools->inputAllocatorId = allocator->getId();
957 } else {
958 ALOGD("[%s] component requested invalid input allocator ID %u",
959 mName, inputAllocators->m.values[0]);
960 }
961 }
962 }
963 if (featuresSetting) {
964 apiFeatures = featuresSetting.value;
965 }
966
967 // TODO: use C2Component wrapper to associate this pool with ourselves
968 if ((poolMask >> pools->inputAllocatorId) & 1) {
969 err = CreateCodec2BlockPool(pools->inputAllocatorId, nullptr, &pool);
970 ALOGD("[%s] Created input block pool with allocatorID %u => poolID %llu - %s (%d)",
971 mName, pools->inputAllocatorId,
972 (unsigned long long)(pool ? pool->getLocalId() : 111000111),
973 asString(err), err);
974 } else {
975 err = C2_NOT_FOUND;
976 }
977 if (err != C2_OK) {
978 C2BlockPool::local_id_t inputPoolId =
979 graphic ? C2BlockPool::BASIC_GRAPHIC : C2BlockPool::BASIC_LINEAR;
980 err = GetCodec2BlockPool(inputPoolId, nullptr, &pool);
981 ALOGD("[%s] Using basic input block pool with poolID %llu => got %llu - %s (%d)",
982 mName, (unsigned long long)inputPoolId,
983 (unsigned long long)(pool ? pool->getLocalId() : 111000111),
984 asString(err), err);
985 if (err != C2_OK) {
986 return NO_MEMORY;
987 }
988 }
989 pools->inputPool = pool;
990 }
991
992 bool forceArrayMode = false;
993 Mutexed<Input>::Locked input(mInput);
994 input->inputDelay = inputDelayValue;
995 input->pipelineDelay = pipelineDelayValue;
996 input->numSlots = numInputSlots;
997 input->extraBuffers.flush();
998 input->numExtraSlots = 0u;
999 bool conforming = (apiFeatures & API_SAME_INPUT_BUFFER);
1000 // For encrypted content, framework decrypts source buffer (ashmem) into
1001 // C2Buffers. Thus non-conforming codecs can process these.
1002 if (!buffersBoundToCodec && (hasCryptoOrDescrambler() || conforming)) {
1003 input->buffers.reset(new SlotInputBuffers(mName));
1004 } else if (graphic) {
1005 if (mInputSurface) {
1006 input->buffers.reset(new DummyInputBuffers(mName));
1007 } else if (mMetaMode == MODE_ANW) {
1008 input->buffers.reset(new GraphicMetadataInputBuffers(mName));
1009 // This is to ensure buffers do not get released prematurely.
1010 // TODO: handle this without going into array mode
1011 forceArrayMode = true;
1012 } else {
1013 input->buffers.reset(new GraphicInputBuffers(mName));
1014 }
1015 } else {
1016 if (hasCryptoOrDescrambler()) {
1017 int32_t capacity = kLinearBufferSize;
1018 (void)inputFormat->findInt32(KEY_MAX_INPUT_SIZE, &capacity);
1019 if ((size_t)capacity > kMaxLinearBufferSize) {
1020 ALOGD("client requested %d, capped to %zu", capacity, kMaxLinearBufferSize);
1021 capacity = kMaxLinearBufferSize;
1022 }
1023 if (mDealer == nullptr) {
1024 mDealer = new MemoryDealer(
1025 align(capacity, MemoryDealer::getAllocationAlignment())
1026 * (numInputSlots + 1),
1027 "EncryptedLinearInputBuffers");
1028 mDecryptDestination = mDealer->allocate((size_t)capacity);
1029 }
1030 if (mCrypto != nullptr && mHeapSeqNum < 0) {
1031 sp<HidlMemory> heap = fromHeap(mDealer->getMemoryHeap());
1032 mHeapSeqNum = mCrypto->setHeap(heap);
1033 } else {
1034 mHeapSeqNum = -1;
1035 }
1036 input->buffers.reset(new EncryptedLinearInputBuffers(
1037 secure, mDealer, mCrypto, mHeapSeqNum, (size_t)capacity,
1038 numInputSlots, mName));
1039 forceArrayMode = true;
1040 } else {
1041 input->buffers.reset(new LinearInputBuffers(mName));
1042 }
1043 }
1044 input->buffers->setFormat(inputFormat);
1045
1046 if (err == C2_OK) {
1047 input->buffers->setPool(pool);
1048 } else {
1049 // TODO: error
1050 }
1051
1052 if (forceArrayMode) {
1053 input->buffers = input->buffers->toArrayMode(numInputSlots);
1054 }
1055 }
1056
1057 if (outputFormat != nullptr) {
1058 sp<IGraphicBufferProducer> outputSurface;
1059 uint32_t outputGeneration;
1060 {
1061 Mutexed<OutputSurface>::Locked output(mOutputSurface);
1062 output->maxDequeueBuffers = numOutputSlots +
1063 reorderDepth.value + kRenderingDepth;
1064 if (!secure) {
1065 output->maxDequeueBuffers += numInputSlots;
1066 }
1067 outputSurface = output->surface ?
1068 output->surface->getIGraphicBufferProducer() : nullptr;
1069 if (outputSurface) {
1070 output->surface->setMaxDequeuedBufferCount(output->maxDequeueBuffers);
1071 }
1072 outputGeneration = output->generation;
1073 }
1074
1075 bool graphic = (oStreamFormat.value == C2BufferData::GRAPHIC);
1076 C2BlockPool::local_id_t outputPoolId_;
1077
1078 {
1079 Mutexed<BlockPools>::Locked pools(mBlockPools);
1080
1081 // set default allocator ID.
1082 pools->outputAllocatorId = (graphic) ? C2PlatformAllocatorStore::GRALLOC
1083 : preferredLinearId;
1084
1085 // query C2PortAllocatorsTuning::output from component, or use default allocator if
1086 // unsuccessful.
1087 std::vector<std::unique_ptr<C2Param>> params;
1088 err = mComponent->query({ },
1089 { C2PortAllocatorsTuning::output::PARAM_TYPE },
1090 C2_DONT_BLOCK,
1091 ¶ms);
1092 if ((err != C2_OK && err != C2_BAD_INDEX) || params.size() != 1) {
1093 ALOGD("[%s] Query output allocators returned %zu params => %s (%u)",
1094 mName, params.size(), asString(err), err);
1095 } else if (err == C2_OK && params.size() == 1) {
1096 C2PortAllocatorsTuning::output *outputAllocators =
1097 C2PortAllocatorsTuning::output::From(params[0].get());
1098 if (outputAllocators && outputAllocators->flexCount() > 0) {
1099 std::shared_ptr<C2Allocator> allocator;
1100 // verify allocator IDs and resolve default allocator
1101 allocatorStore->fetchAllocator(outputAllocators->m.values[0], &allocator);
1102 if (allocator) {
1103 pools->outputAllocatorId = allocator->getId();
1104 } else {
1105 ALOGD("[%s] component requested invalid output allocator ID %u",
1106 mName, outputAllocators->m.values[0]);
1107 }
1108 }
1109 }
1110
1111 // use bufferqueue if outputting to a surface.
1112 // query C2PortSurfaceAllocatorTuning::output from component, or use default allocator
1113 // if unsuccessful.
1114 if (outputSurface) {
1115 params.clear();
1116 err = mComponent->query({ },
1117 { C2PortSurfaceAllocatorTuning::output::PARAM_TYPE },
1118 C2_DONT_BLOCK,
1119 ¶ms);
1120 if ((err != C2_OK && err != C2_BAD_INDEX) || params.size() != 1) {
1121 ALOGD("[%s] Query output surface allocator returned %zu params => %s (%u)",
1122 mName, params.size(), asString(err), err);
1123 } else if (err == C2_OK && params.size() == 1) {
1124 C2PortSurfaceAllocatorTuning::output *surfaceAllocator =
1125 C2PortSurfaceAllocatorTuning::output::From(params[0].get());
1126 if (surfaceAllocator) {
1127 std::shared_ptr<C2Allocator> allocator;
1128 // verify allocator IDs and resolve default allocator
1129 allocatorStore->fetchAllocator(surfaceAllocator->value, &allocator);
1130 if (allocator) {
1131 pools->outputAllocatorId = allocator->getId();
1132 } else {
1133 ALOGD("[%s] component requested invalid surface output allocator ID %u",
1134 mName, surfaceAllocator->value);
1135 err = C2_BAD_VALUE;
1136 }
1137 }
1138 }
1139 if (pools->outputAllocatorId == C2PlatformAllocatorStore::GRALLOC
1140 && err != C2_OK
1141 && ((poolMask >> C2PlatformAllocatorStore::BUFFERQUEUE) & 1)) {
1142 pools->outputAllocatorId = C2PlatformAllocatorStore::BUFFERQUEUE;
1143 }
1144 }
1145
1146 if ((poolMask >> pools->outputAllocatorId) & 1) {
1147 err = mComponent->createBlockPool(
1148 pools->outputAllocatorId, &pools->outputPoolId, &pools->outputPoolIntf);
1149 ALOGI("[%s] Created output block pool with allocatorID %u => poolID %llu - %s",
1150 mName, pools->outputAllocatorId,
1151 (unsigned long long)pools->outputPoolId,
1152 asString(err));
1153 } else {
1154 err = C2_NOT_FOUND;
1155 }
1156 if (err != C2_OK) {
1157 // use basic pool instead
1158 pools->outputPoolId =
1159 graphic ? C2BlockPool::BASIC_GRAPHIC : C2BlockPool::BASIC_LINEAR;
1160 }
1161
1162 // Configure output block pool ID as parameter C2PortBlockPoolsTuning::output to
1163 // component.
1164 std::unique_ptr<C2PortBlockPoolsTuning::output> poolIdsTuning =
1165 C2PortBlockPoolsTuning::output::AllocUnique({ pools->outputPoolId });
1166
1167 std::vector<std::unique_ptr<C2SettingResult>> failures;
1168 err = mComponent->config({ poolIdsTuning.get() }, C2_MAY_BLOCK, &failures);
1169 ALOGD("[%s] Configured output block pool ids %llu => %s",
1170 mName, (unsigned long long)poolIdsTuning->m.values[0], asString(err));
1171 outputPoolId_ = pools->outputPoolId;
1172 }
1173
1174 Mutexed<Output>::Locked output(mOutput);
1175 output->outputDelay = outputDelayValue;
1176 output->numSlots = numOutputSlots;
1177 if (graphic) {
1178 if (outputSurface || !buffersBoundToCodec) {
1179 output->buffers.reset(new GraphicOutputBuffers(mName));
1180 } else {
1181 output->buffers.reset(new RawGraphicOutputBuffers(mName));
1182 }
1183 } else {
1184 output->buffers.reset(new LinearOutputBuffers(mName));
1185 }
1186 output->buffers->setFormat(outputFormat);
1187
1188 output->buffers->clearStash();
1189 if (reorderDepth) {
1190 output->buffers->setReorderDepth(reorderDepth.value);
1191 }
1192 if (reorderKey) {
1193 output->buffers->setReorderKey(reorderKey.value);
1194 }
1195
1196 // Try to set output surface to created block pool if given.
1197 if (outputSurface) {
1198 mComponent->setOutputSurface(
1199 outputPoolId_,
1200 outputSurface,
1201 outputGeneration);
1202 }
1203
1204 if (oStreamFormat.value == C2BufferData::LINEAR) {
1205 if (buffersBoundToCodec) {
1206 // WORKAROUND: if we're using early CSD workaround we convert to
1207 // array mode, to appease apps assuming the output
1208 // buffers to be of the same size.
1209 output->buffers = output->buffers->toArrayMode(numOutputSlots);
1210 }
1211
1212 int32_t channelCount;
1213 int32_t sampleRate;
1214 if (outputFormat->findInt32(KEY_CHANNEL_COUNT, &channelCount)
1215 && outputFormat->findInt32(KEY_SAMPLE_RATE, &sampleRate)) {
1216 int32_t delay = 0;
1217 int32_t padding = 0;;
1218 if (!outputFormat->findInt32("encoder-delay", &delay)) {
1219 delay = 0;
1220 }
1221 if (!outputFormat->findInt32("encoder-padding", &padding)) {
1222 padding = 0;
1223 }
1224 if (delay || padding) {
1225 // We need write access to the buffers, and we're already in
1226 // array mode.
1227 output->buffers->initSkipCutBuffer(delay, padding, sampleRate, channelCount);
1228 }
1229 }
1230 }
1231 }
1232
1233 // Set up pipeline control. This has to be done after mInputBuffers and
1234 // mOutputBuffers are initialized to make sure that lingering callbacks
1235 // about buffers from the previous generation do not interfere with the
1236 // newly initialized pipeline capacity.
1237
1238 {
1239 Mutexed<PipelineWatcher>::Locked watcher(mPipelineWatcher);
1240 watcher->inputDelay(inputDelayValue)
1241 .pipelineDelay(pipelineDelayValue)
1242 .outputDelay(outputDelayValue)
1243 .smoothnessFactor(kSmoothnessFactor);
1244 watcher->flush();
1245 }
1246
1247 mInputMetEos = false;
1248 mSync.start();
1249 return OK;
1250 }
1251
requestInitialInputBuffers()1252 status_t CCodecBufferChannel::requestInitialInputBuffers() {
1253 if (mInputSurface) {
1254 return OK;
1255 }
1256
1257 C2StreamBufferTypeSetting::output oStreamFormat(0u);
1258 C2PrependHeaderModeSetting prepend(PREPEND_HEADER_TO_NONE);
1259 c2_status_t err = mComponent->query({ &oStreamFormat, &prepend }, {}, C2_DONT_BLOCK, nullptr);
1260 if (err != C2_OK && err != C2_BAD_INDEX) {
1261 return UNKNOWN_ERROR;
1262 }
1263 size_t numInputSlots = mInput.lock()->numSlots;
1264
1265 struct ClientInputBuffer {
1266 size_t index;
1267 sp<MediaCodecBuffer> buffer;
1268 size_t capacity;
1269 };
1270 std::list<ClientInputBuffer> clientInputBuffers;
1271
1272 {
1273 Mutexed<Input>::Locked input(mInput);
1274 while (clientInputBuffers.size() < numInputSlots) {
1275 ClientInputBuffer clientInputBuffer;
1276 if (!input->buffers->requestNewBuffer(&clientInputBuffer.index,
1277 &clientInputBuffer.buffer)) {
1278 break;
1279 }
1280 clientInputBuffer.capacity = clientInputBuffer.buffer->capacity();
1281 clientInputBuffers.emplace_back(std::move(clientInputBuffer));
1282 }
1283 }
1284 if (clientInputBuffers.empty()) {
1285 ALOGW("[%s] start: cannot allocate memory at all", mName);
1286 return NO_MEMORY;
1287 } else if (clientInputBuffers.size() < numInputSlots) {
1288 ALOGD("[%s] start: cannot allocate memory for all slots, "
1289 "only %zu buffers allocated",
1290 mName, clientInputBuffers.size());
1291 } else {
1292 ALOGV("[%s] %zu initial input buffers available",
1293 mName, clientInputBuffers.size());
1294 }
1295 // Sort input buffers by their capacities in increasing order.
1296 clientInputBuffers.sort(
1297 [](const ClientInputBuffer& a, const ClientInputBuffer& b) {
1298 return a.capacity < b.capacity;
1299 });
1300
1301 {
1302 Mutexed<std::list<sp<ABuffer>>>::Locked configs(mFlushedConfigs);
1303 if (!configs->empty()) {
1304 while (!configs->empty()) {
1305 sp<ABuffer> config = configs->front();
1306 configs->pop_front();
1307 // Find the smallest input buffer that can fit the config.
1308 auto i = std::find_if(
1309 clientInputBuffers.begin(),
1310 clientInputBuffers.end(),
1311 [cfgSize = config->size()](const ClientInputBuffer& b) {
1312 return b.capacity >= cfgSize;
1313 });
1314 if (i == clientInputBuffers.end()) {
1315 ALOGW("[%s] no input buffer large enough for the config "
1316 "(%zu bytes)",
1317 mName, config->size());
1318 return NO_MEMORY;
1319 }
1320 sp<MediaCodecBuffer> buffer = i->buffer;
1321 memcpy(buffer->base(), config->data(), config->size());
1322 buffer->setRange(0, config->size());
1323 buffer->meta()->clear();
1324 buffer->meta()->setInt64("timeUs", 0);
1325 buffer->meta()->setInt32("csd", 1);
1326 if (queueInputBufferInternal(buffer) != OK) {
1327 ALOGW("[%s] Error while queueing a flushed config",
1328 mName);
1329 return UNKNOWN_ERROR;
1330 }
1331 clientInputBuffers.erase(i);
1332 }
1333 } else if (oStreamFormat.value == C2BufferData::LINEAR &&
1334 (!prepend || prepend.value == PREPEND_HEADER_TO_NONE)) {
1335 sp<MediaCodecBuffer> buffer = clientInputBuffers.front().buffer;
1336 // WORKAROUND: Some apps expect CSD available without queueing
1337 // any input. Queue an empty buffer to get the CSD.
1338 buffer->setRange(0, 0);
1339 buffer->meta()->clear();
1340 buffer->meta()->setInt64("timeUs", 0);
1341 if (queueInputBufferInternal(buffer) != OK) {
1342 ALOGW("[%s] Error while queueing an empty buffer to get CSD",
1343 mName);
1344 return UNKNOWN_ERROR;
1345 }
1346 clientInputBuffers.pop_front();
1347 }
1348 }
1349
1350 for (const ClientInputBuffer& clientInputBuffer: clientInputBuffers) {
1351 mCallback->onInputBufferAvailable(
1352 clientInputBuffer.index,
1353 clientInputBuffer.buffer);
1354 }
1355
1356 return OK;
1357 }
1358
stop()1359 void CCodecBufferChannel::stop() {
1360 mSync.stop();
1361 mFirstValidFrameIndex = mFrameIndex.load(std::memory_order_relaxed);
1362 if (mInputSurface != nullptr) {
1363 mInputSurface.reset();
1364 }
1365 mPipelineWatcher.lock()->flush();
1366 }
1367
reset()1368 void CCodecBufferChannel::reset() {
1369 stop();
1370 {
1371 Mutexed<Input>::Locked input(mInput);
1372 input->buffers.reset(new DummyInputBuffers(""));
1373 input->extraBuffers.flush();
1374 }
1375 {
1376 Mutexed<Output>::Locked output(mOutput);
1377 output->buffers.reset();
1378 }
1379 }
1380
release()1381 void CCodecBufferChannel::release() {
1382 mComponent.reset();
1383 mInputAllocator.reset();
1384 mOutputSurface.lock()->surface.clear();
1385 {
1386 Mutexed<BlockPools>::Locked blockPools{mBlockPools};
1387 blockPools->inputPool.reset();
1388 blockPools->outputPoolIntf.reset();
1389 }
1390 setCrypto(nullptr);
1391 setDescrambler(nullptr);
1392 }
1393
1394
flush(const std::list<std::unique_ptr<C2Work>> & flushedWork)1395 void CCodecBufferChannel::flush(const std::list<std::unique_ptr<C2Work>> &flushedWork) {
1396 ALOGV("[%s] flush", mName);
1397 {
1398 Mutexed<std::list<sp<ABuffer>>>::Locked configs(mFlushedConfigs);
1399 for (const std::unique_ptr<C2Work> &work : flushedWork) {
1400 if (!(work->input.flags & C2FrameData::FLAG_CODEC_CONFIG)) {
1401 continue;
1402 }
1403 if (work->input.buffers.empty()
1404 || work->input.buffers.front()->data().linearBlocks().empty()) {
1405 ALOGD("[%s] no linear codec config data found", mName);
1406 continue;
1407 }
1408 C2ReadView view =
1409 work->input.buffers.front()->data().linearBlocks().front().map().get();
1410 if (view.error() != C2_OK) {
1411 ALOGD("[%s] failed to map flushed codec config data: %d", mName, view.error());
1412 continue;
1413 }
1414 configs->push_back(ABuffer::CreateAsCopy(view.data(), view.capacity()));
1415 ALOGV("[%s] stashed flushed codec config data (size=%u)", mName, view.capacity());
1416 }
1417 }
1418 {
1419 Mutexed<Input>::Locked input(mInput);
1420 input->buffers->flush();
1421 input->extraBuffers.flush();
1422 }
1423 {
1424 Mutexed<Output>::Locked output(mOutput);
1425 if (output->buffers) {
1426 output->buffers->flush(flushedWork);
1427 output->buffers->flushStash();
1428 }
1429 }
1430 mPipelineWatcher.lock()->flush();
1431 }
1432
onWorkDone(std::unique_ptr<C2Work> work,const sp<AMessage> & outputFormat,const C2StreamInitDataInfo::output * initData)1433 void CCodecBufferChannel::onWorkDone(
1434 std::unique_ptr<C2Work> work, const sp<AMessage> &outputFormat,
1435 const C2StreamInitDataInfo::output *initData) {
1436 if (handleWork(std::move(work), outputFormat, initData)) {
1437 feedInputBufferIfAvailable();
1438 }
1439 }
1440
onInputBufferDone(uint64_t frameIndex,size_t arrayIndex)1441 void CCodecBufferChannel::onInputBufferDone(
1442 uint64_t frameIndex, size_t arrayIndex) {
1443 if (mInputSurface) {
1444 return;
1445 }
1446 std::shared_ptr<C2Buffer> buffer =
1447 mPipelineWatcher.lock()->onInputBufferReleased(frameIndex, arrayIndex);
1448 bool newInputSlotAvailable;
1449 {
1450 Mutexed<Input>::Locked input(mInput);
1451 newInputSlotAvailable = input->buffers->expireComponentBuffer(buffer);
1452 if (!newInputSlotAvailable) {
1453 (void)input->extraBuffers.expireComponentBuffer(buffer);
1454 }
1455 }
1456 if (newInputSlotAvailable) {
1457 feedInputBufferIfAvailable();
1458 }
1459 }
1460
handleWork(std::unique_ptr<C2Work> work,const sp<AMessage> & outputFormat,const C2StreamInitDataInfo::output * initData)1461 bool CCodecBufferChannel::handleWork(
1462 std::unique_ptr<C2Work> work,
1463 const sp<AMessage> &outputFormat,
1464 const C2StreamInitDataInfo::output *initData) {
1465 {
1466 Mutexed<Output>::Locked output(mOutput);
1467 if (!output->buffers) {
1468 return false;
1469 }
1470 }
1471
1472 // Whether the output buffer should be reported to the client or not.
1473 bool notifyClient = false;
1474
1475 if (work->result == C2_OK){
1476 notifyClient = true;
1477 } else if (work->result == C2_NOT_FOUND) {
1478 ALOGD("[%s] flushed work; ignored.", mName);
1479 } else {
1480 // C2_OK and C2_NOT_FOUND are the only results that we accept for processing
1481 // the config update.
1482 ALOGD("[%s] work failed to complete: %d", mName, work->result);
1483 mCCodecCallback->onError(work->result, ACTION_CODE_FATAL);
1484 return false;
1485 }
1486
1487 if ((work->input.ordinal.frameIndex -
1488 mFirstValidFrameIndex.load()).peek() < 0) {
1489 // Discard frames from previous generation.
1490 ALOGD("[%s] Discard frames from previous generation.", mName);
1491 notifyClient = false;
1492 }
1493
1494 if (mInputSurface == nullptr && (work->worklets.size() != 1u
1495 || !work->worklets.front()
1496 || !(work->worklets.front()->output.flags &
1497 C2FrameData::FLAG_INCOMPLETE))) {
1498 mPipelineWatcher.lock()->onWorkDone(
1499 work->input.ordinal.frameIndex.peeku());
1500 }
1501
1502 // NOTE: MediaCodec usage supposedly have only one worklet
1503 if (work->worklets.size() != 1u) {
1504 ALOGI("[%s] onWorkDone: incorrect number of worklets: %zu",
1505 mName, work->worklets.size());
1506 mCCodecCallback->onError(UNKNOWN_ERROR, ACTION_CODE_FATAL);
1507 return false;
1508 }
1509
1510 const std::unique_ptr<C2Worklet> &worklet = work->worklets.front();
1511
1512 std::shared_ptr<C2Buffer> buffer;
1513 // NOTE: MediaCodec usage supposedly have only one output stream.
1514 if (worklet->output.buffers.size() > 1u) {
1515 ALOGI("[%s] onWorkDone: incorrect number of output buffers: %zu",
1516 mName, worklet->output.buffers.size());
1517 mCCodecCallback->onError(UNKNOWN_ERROR, ACTION_CODE_FATAL);
1518 return false;
1519 } else if (worklet->output.buffers.size() == 1u) {
1520 buffer = worklet->output.buffers[0];
1521 if (!buffer) {
1522 ALOGD("[%s] onWorkDone: nullptr found in buffers; ignored.", mName);
1523 }
1524 }
1525
1526 std::optional<uint32_t> newInputDelay, newPipelineDelay;
1527 while (!worklet->output.configUpdate.empty()) {
1528 std::unique_ptr<C2Param> param;
1529 worklet->output.configUpdate.back().swap(param);
1530 worklet->output.configUpdate.pop_back();
1531 switch (param->coreIndex().coreIndex()) {
1532 case C2PortReorderBufferDepthTuning::CORE_INDEX: {
1533 C2PortReorderBufferDepthTuning::output reorderDepth;
1534 if (reorderDepth.updateFrom(*param)) {
1535 bool secure = mComponent->getName().find(".secure") !=
1536 std::string::npos;
1537 mOutput.lock()->buffers->setReorderDepth(
1538 reorderDepth.value);
1539 ALOGV("[%s] onWorkDone: updated reorder depth to %u",
1540 mName, reorderDepth.value);
1541 size_t numOutputSlots = mOutput.lock()->numSlots;
1542 size_t numInputSlots = mInput.lock()->numSlots;
1543 Mutexed<OutputSurface>::Locked output(mOutputSurface);
1544 output->maxDequeueBuffers = numOutputSlots +
1545 reorderDepth.value + kRenderingDepth;
1546 if (!secure) {
1547 output->maxDequeueBuffers += numInputSlots;
1548 }
1549 if (output->surface) {
1550 output->surface->setMaxDequeuedBufferCount(
1551 output->maxDequeueBuffers);
1552 }
1553 } else {
1554 ALOGD("[%s] onWorkDone: failed to read reorder depth",
1555 mName);
1556 }
1557 break;
1558 }
1559 case C2PortReorderKeySetting::CORE_INDEX: {
1560 C2PortReorderKeySetting::output reorderKey;
1561 if (reorderKey.updateFrom(*param)) {
1562 mOutput.lock()->buffers->setReorderKey(reorderKey.value);
1563 ALOGV("[%s] onWorkDone: updated reorder key to %u",
1564 mName, reorderKey.value);
1565 } else {
1566 ALOGD("[%s] onWorkDone: failed to read reorder key", mName);
1567 }
1568 break;
1569 }
1570 case C2PortActualDelayTuning::CORE_INDEX: {
1571 if (param->isGlobal()) {
1572 C2ActualPipelineDelayTuning pipelineDelay;
1573 if (pipelineDelay.updateFrom(*param)) {
1574 ALOGV("[%s] onWorkDone: updating pipeline delay %u",
1575 mName, pipelineDelay.value);
1576 newPipelineDelay = pipelineDelay.value;
1577 (void)mPipelineWatcher.lock()->pipelineDelay(
1578 pipelineDelay.value);
1579 }
1580 }
1581 if (param->forInput()) {
1582 C2PortActualDelayTuning::input inputDelay;
1583 if (inputDelay.updateFrom(*param)) {
1584 ALOGV("[%s] onWorkDone: updating input delay %u",
1585 mName, inputDelay.value);
1586 newInputDelay = inputDelay.value;
1587 (void)mPipelineWatcher.lock()->inputDelay(
1588 inputDelay.value);
1589 }
1590 }
1591 if (param->forOutput()) {
1592 C2PortActualDelayTuning::output outputDelay;
1593 if (outputDelay.updateFrom(*param)) {
1594 ALOGV("[%s] onWorkDone: updating output delay %u",
1595 mName, outputDelay.value);
1596 bool secure = mComponent->getName().find(".secure") !=
1597 std::string::npos;
1598 (void)mPipelineWatcher.lock()->outputDelay(
1599 outputDelay.value);
1600
1601 bool outputBuffersChanged = false;
1602 size_t numOutputSlots = 0;
1603 size_t numInputSlots = mInput.lock()->numSlots;
1604 {
1605 Mutexed<Output>::Locked output(mOutput);
1606 if (!output->buffers) {
1607 return false;
1608 }
1609 output->outputDelay = outputDelay.value;
1610 numOutputSlots = outputDelay.value +
1611 kSmoothnessFactor;
1612 if (output->numSlots < numOutputSlots) {
1613 output->numSlots = numOutputSlots;
1614 if (output->buffers->isArrayMode()) {
1615 OutputBuffersArray *array =
1616 (OutputBuffersArray *)output->buffers.get();
1617 ALOGV("[%s] onWorkDone: growing output buffer array to %zu",
1618 mName, numOutputSlots);
1619 array->grow(numOutputSlots);
1620 outputBuffersChanged = true;
1621 }
1622 }
1623 numOutputSlots = output->numSlots;
1624 }
1625
1626 if (outputBuffersChanged) {
1627 mCCodecCallback->onOutputBuffersChanged();
1628 }
1629
1630 uint32_t depth = mOutput.lock()->buffers->getReorderDepth();
1631 Mutexed<OutputSurface>::Locked output(mOutputSurface);
1632 output->maxDequeueBuffers = numOutputSlots + depth + kRenderingDepth;
1633 if (!secure) {
1634 output->maxDequeueBuffers += numInputSlots;
1635 }
1636 if (output->surface) {
1637 output->surface->setMaxDequeuedBufferCount(output->maxDequeueBuffers);
1638 }
1639 }
1640 }
1641 break;
1642 }
1643 default:
1644 ALOGV("[%s] onWorkDone: unrecognized config update (%08X)",
1645 mName, param->index());
1646 break;
1647 }
1648 }
1649 if (newInputDelay || newPipelineDelay) {
1650 Mutexed<Input>::Locked input(mInput);
1651 size_t newNumSlots =
1652 newInputDelay.value_or(input->inputDelay) +
1653 newPipelineDelay.value_or(input->pipelineDelay) +
1654 kSmoothnessFactor;
1655 if (input->buffers->isArrayMode()) {
1656 if (input->numSlots >= newNumSlots) {
1657 input->numExtraSlots = 0;
1658 } else {
1659 input->numExtraSlots = newNumSlots - input->numSlots;
1660 }
1661 ALOGV("[%s] onWorkDone: updated number of extra slots to %zu (input array mode)",
1662 mName, input->numExtraSlots);
1663 } else {
1664 input->numSlots = newNumSlots;
1665 }
1666 }
1667
1668 int32_t flags = 0;
1669 if (worklet->output.flags & C2FrameData::FLAG_END_OF_STREAM) {
1670 flags |= MediaCodec::BUFFER_FLAG_EOS;
1671 ALOGV("[%s] onWorkDone: output EOS", mName);
1672 }
1673
1674 // WORKAROUND: adjust output timestamp based on client input timestamp and codec
1675 // input timestamp. Codec output timestamp (in the timestamp field) shall correspond to
1676 // the codec input timestamp, but client output timestamp should (reported in timeUs)
1677 // shall correspond to the client input timesamp (in customOrdinal). By using the
1678 // delta between the two, this allows for some timestamp deviation - e.g. if one input
1679 // produces multiple output.
1680 c2_cntr64_t timestamp =
1681 worklet->output.ordinal.timestamp + work->input.ordinal.customOrdinal
1682 - work->input.ordinal.timestamp;
1683 if (mInputSurface != nullptr) {
1684 // When using input surface we need to restore the original input timestamp.
1685 timestamp = work->input.ordinal.customOrdinal;
1686 }
1687 ALOGV("[%s] onWorkDone: input %lld, codec %lld => output %lld => %lld",
1688 mName,
1689 work->input.ordinal.customOrdinal.peekll(),
1690 work->input.ordinal.timestamp.peekll(),
1691 worklet->output.ordinal.timestamp.peekll(),
1692 timestamp.peekll());
1693
1694 // csd cannot be re-ordered and will always arrive first.
1695 if (initData != nullptr) {
1696 Mutexed<Output>::Locked output(mOutput);
1697 if (output->buffers && outputFormat) {
1698 output->buffers->updateSkipCutBuffer(outputFormat);
1699 output->buffers->setFormat(outputFormat);
1700 }
1701 if (!notifyClient) {
1702 return false;
1703 }
1704 size_t index;
1705 sp<MediaCodecBuffer> outBuffer;
1706 if (output->buffers && output->buffers->registerCsd(initData, &index, &outBuffer) == OK) {
1707 outBuffer->meta()->setInt64("timeUs", timestamp.peek());
1708 outBuffer->meta()->setInt32("flags", MediaCodec::BUFFER_FLAG_CODECCONFIG);
1709 ALOGV("[%s] onWorkDone: csd index = %zu [%p]", mName, index, outBuffer.get());
1710
1711 output.unlock();
1712 mCallback->onOutputBufferAvailable(index, outBuffer);
1713 } else {
1714 ALOGD("[%s] onWorkDone: unable to register csd", mName);
1715 output.unlock();
1716 mCCodecCallback->onError(UNKNOWN_ERROR, ACTION_CODE_FATAL);
1717 return false;
1718 }
1719 }
1720
1721 if (notifyClient && !buffer && !flags) {
1722 ALOGV("[%s] onWorkDone: Not reporting output buffer (%lld)",
1723 mName, work->input.ordinal.frameIndex.peekull());
1724 notifyClient = false;
1725 }
1726
1727 if (buffer) {
1728 for (const std::shared_ptr<const C2Info> &info : buffer->info()) {
1729 // TODO: properly translate these to metadata
1730 switch (info->coreIndex().coreIndex()) {
1731 case C2StreamPictureTypeMaskInfo::CORE_INDEX:
1732 if (((C2StreamPictureTypeMaskInfo *)info.get())->value & C2Config::SYNC_FRAME) {
1733 flags |= MediaCodec::BUFFER_FLAG_SYNCFRAME;
1734 }
1735 break;
1736 default:
1737 break;
1738 }
1739 }
1740 }
1741
1742 {
1743 Mutexed<Output>::Locked output(mOutput);
1744 if (!output->buffers) {
1745 return false;
1746 }
1747 output->buffers->pushToStash(
1748 buffer,
1749 notifyClient,
1750 timestamp.peek(),
1751 flags,
1752 outputFormat,
1753 worklet->output.ordinal);
1754 }
1755 sendOutputBuffers();
1756 return true;
1757 }
1758
sendOutputBuffers()1759 void CCodecBufferChannel::sendOutputBuffers() {
1760 OutputBuffers::BufferAction action;
1761 size_t index;
1762 sp<MediaCodecBuffer> outBuffer;
1763 std::shared_ptr<C2Buffer> c2Buffer;
1764
1765 while (true) {
1766 Mutexed<Output>::Locked output(mOutput);
1767 if (!output->buffers) {
1768 return;
1769 }
1770 action = output->buffers->popFromStashAndRegister(
1771 &c2Buffer, &index, &outBuffer);
1772 switch (action) {
1773 case OutputBuffers::SKIP:
1774 return;
1775 case OutputBuffers::DISCARD:
1776 break;
1777 case OutputBuffers::NOTIFY_CLIENT:
1778 output.unlock();
1779 mCallback->onOutputBufferAvailable(index, outBuffer);
1780 break;
1781 case OutputBuffers::REALLOCATE:
1782 if (!output->buffers->isArrayMode()) {
1783 output->buffers =
1784 output->buffers->toArrayMode(output->numSlots);
1785 }
1786 static_cast<OutputBuffersArray*>(output->buffers.get())->
1787 realloc(c2Buffer);
1788 output.unlock();
1789 mCCodecCallback->onOutputBuffersChanged();
1790 break;
1791 case OutputBuffers::RETRY:
1792 ALOGV("[%s] sendOutputBuffers: unable to register output buffer",
1793 mName);
1794 return;
1795 default:
1796 LOG_ALWAYS_FATAL("[%s] sendOutputBuffers: "
1797 "corrupted BufferAction value (%d) "
1798 "returned from popFromStashAndRegister.",
1799 mName, int(action));
1800 return;
1801 }
1802 }
1803 }
1804
setSurface(const sp<Surface> & newSurface)1805 status_t CCodecBufferChannel::setSurface(const sp<Surface> &newSurface) {
1806 static std::atomic_uint32_t surfaceGeneration{0};
1807 uint32_t generation = (getpid() << 10) |
1808 ((surfaceGeneration.fetch_add(1, std::memory_order_relaxed) + 1)
1809 & ((1 << 10) - 1));
1810
1811 sp<IGraphicBufferProducer> producer;
1812 if (newSurface) {
1813 newSurface->setScalingMode(NATIVE_WINDOW_SCALING_MODE_SCALE_TO_WINDOW);
1814 newSurface->setDequeueTimeout(kDequeueTimeoutNs);
1815 newSurface->setMaxDequeuedBufferCount(mOutputSurface.lock()->maxDequeueBuffers);
1816 producer = newSurface->getIGraphicBufferProducer();
1817 producer->setGenerationNumber(generation);
1818 } else {
1819 ALOGE("[%s] setting output surface to null", mName);
1820 return INVALID_OPERATION;
1821 }
1822
1823 std::shared_ptr<Codec2Client::Configurable> outputPoolIntf;
1824 C2BlockPool::local_id_t outputPoolId;
1825 {
1826 Mutexed<BlockPools>::Locked pools(mBlockPools);
1827 outputPoolId = pools->outputPoolId;
1828 outputPoolIntf = pools->outputPoolIntf;
1829 }
1830
1831 if (outputPoolIntf) {
1832 if (mComponent->setOutputSurface(
1833 outputPoolId,
1834 producer,
1835 generation) != C2_OK) {
1836 ALOGI("[%s] setSurface: component setOutputSurface failed", mName);
1837 return INVALID_OPERATION;
1838 }
1839 }
1840
1841 {
1842 Mutexed<OutputSurface>::Locked output(mOutputSurface);
1843 output->surface = newSurface;
1844 output->generation = generation;
1845 }
1846
1847 return OK;
1848 }
1849
elapsed()1850 PipelineWatcher::Clock::duration CCodecBufferChannel::elapsed() {
1851 // When client pushed EOS, we want all the work to be done quickly.
1852 // Otherwise, component may have stalled work due to input starvation up to
1853 // the sum of the delay in the pipeline.
1854 size_t n = 0;
1855 if (!mInputMetEos) {
1856 size_t outputDelay = mOutput.lock()->outputDelay;
1857 Mutexed<Input>::Locked input(mInput);
1858 n = input->inputDelay + input->pipelineDelay + outputDelay;
1859 }
1860 return mPipelineWatcher.lock()->elapsed(PipelineWatcher::Clock::now(), n);
1861 }
1862
setMetaMode(MetaMode mode)1863 void CCodecBufferChannel::setMetaMode(MetaMode mode) {
1864 mMetaMode = mode;
1865 }
1866
setCrypto(const sp<ICrypto> & crypto)1867 void CCodecBufferChannel::setCrypto(const sp<ICrypto> &crypto) {
1868 if (mCrypto != nullptr) {
1869 for (std::pair<wp<HidlMemory>, int32_t> entry : mHeapSeqNumMap) {
1870 mCrypto->unsetHeap(entry.second);
1871 }
1872 mHeapSeqNumMap.clear();
1873 if (mHeapSeqNum >= 0) {
1874 mCrypto->unsetHeap(mHeapSeqNum);
1875 mHeapSeqNum = -1;
1876 }
1877 }
1878 mCrypto = crypto;
1879 }
1880
setDescrambler(const sp<IDescrambler> & descrambler)1881 void CCodecBufferChannel::setDescrambler(const sp<IDescrambler> &descrambler) {
1882 mDescrambler = descrambler;
1883 }
1884
toStatusT(c2_status_t c2s,c2_operation_t c2op)1885 status_t toStatusT(c2_status_t c2s, c2_operation_t c2op) {
1886 // C2_OK is always translated to OK.
1887 if (c2s == C2_OK) {
1888 return OK;
1889 }
1890
1891 // Operation-dependent translation
1892 // TODO: Add as necessary
1893 switch (c2op) {
1894 case C2_OPERATION_Component_start:
1895 switch (c2s) {
1896 case C2_NO_MEMORY:
1897 return NO_MEMORY;
1898 default:
1899 return UNKNOWN_ERROR;
1900 }
1901 default:
1902 break;
1903 }
1904
1905 // Backup operation-agnostic translation
1906 switch (c2s) {
1907 case C2_BAD_INDEX:
1908 return BAD_INDEX;
1909 case C2_BAD_VALUE:
1910 return BAD_VALUE;
1911 case C2_BLOCKING:
1912 return WOULD_BLOCK;
1913 case C2_DUPLICATE:
1914 return ALREADY_EXISTS;
1915 case C2_NO_INIT:
1916 return NO_INIT;
1917 case C2_NO_MEMORY:
1918 return NO_MEMORY;
1919 case C2_NOT_FOUND:
1920 return NAME_NOT_FOUND;
1921 case C2_TIMED_OUT:
1922 return TIMED_OUT;
1923 case C2_BAD_STATE:
1924 case C2_CANCELED:
1925 case C2_CANNOT_DO:
1926 case C2_CORRUPTED:
1927 case C2_OMITTED:
1928 case C2_REFUSED:
1929 return UNKNOWN_ERROR;
1930 default:
1931 return -static_cast<status_t>(c2s);
1932 }
1933 }
1934
1935 } // namespace android
1936