1 /* 2 * Copyright (C) 2008 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #ifndef ART_RUNTIME_GC_HEAP_H_ 18 #define ART_RUNTIME_GC_HEAP_H_ 19 20 #include <iosfwd> 21 #include <string> 22 #include <unordered_set> 23 #include <vector> 24 25 #include <android-base/logging.h> 26 27 #include "allocator_type.h" 28 #include "base/atomic.h" 29 #include "base/macros.h" 30 #include "base/mutex.h" 31 #include "base/runtime_debug.h" 32 #include "base/safe_map.h" 33 #include "base/time_utils.h" 34 #include "gc/collector/gc_type.h" 35 #include "gc/collector/iteration.h" 36 #include "gc/collector_type.h" 37 #include "gc/gc_cause.h" 38 #include "gc/space/image_space_loading_order.h" 39 #include "gc/space/large_object_space.h" 40 #include "handle.h" 41 #include "obj_ptr.h" 42 #include "offsets.h" 43 #include "process_state.h" 44 #include "read_barrier_config.h" 45 #include "runtime_globals.h" 46 #include "verify_object.h" 47 48 namespace art { 49 50 class ConditionVariable; 51 enum class InstructionSet; 52 class IsMarkedVisitor; 53 class Mutex; 54 class ReflectiveValueVisitor; 55 class RootVisitor; 56 class StackVisitor; 57 class Thread; 58 class ThreadPool; 59 class TimingLogger; 60 class VariableSizedHandleScope; 61 62 namespace mirror { 63 class Class; 64 class Object; 65 } // namespace mirror 66 67 namespace gc { 68 69 class AllocationListener; 70 class AllocRecordObjectMap; 71 class GcPauseListener; 72 class HeapTask; 73 class ReferenceProcessor; 74 class TaskProcessor; 75 class Verification; 76 77 namespace accounting { 78 template <typename T> class AtomicStack; 79 typedef AtomicStack<mirror::Object> ObjectStack; 80 class CardTable; 81 class HeapBitmap; 82 class ModUnionTable; 83 class ReadBarrierTable; 84 class RememberedSet; 85 } // namespace accounting 86 87 namespace collector { 88 class ConcurrentCopying; 89 class GarbageCollector; 90 class MarkSweep; 91 class SemiSpace; 92 } // namespace collector 93 94 namespace allocator { 95 class RosAlloc; 96 } // namespace allocator 97 98 namespace space { 99 class AllocSpace; 100 class BumpPointerSpace; 101 class ContinuousMemMapAllocSpace; 102 class DiscontinuousSpace; 103 class DlMallocSpace; 104 class ImageSpace; 105 class LargeObjectSpace; 106 class MallocSpace; 107 class RegionSpace; 108 class RosAllocSpace; 109 class Space; 110 class ZygoteSpace; 111 } // namespace space 112 113 enum HomogeneousSpaceCompactResult { 114 // Success. 115 kSuccess, 116 // Reject due to disabled moving GC. 117 kErrorReject, 118 // Unsupported due to the current configuration. 119 kErrorUnsupported, 120 // System is shutting down. 121 kErrorVMShuttingDown, 122 }; 123 124 // If true, use rosalloc/RosAllocSpace instead of dlmalloc/DlMallocSpace 125 static constexpr bool kUseRosAlloc = true; 126 127 // If true, use thread-local allocation stack. 128 static constexpr bool kUseThreadLocalAllocationStack = true; 129 130 class Heap { 131 public: 132 // How much we grow the TLAB if we can do it. 133 static constexpr size_t kPartialTlabSize = 16 * KB; 134 static constexpr bool kUsePartialTlabs = true; 135 136 static constexpr size_t kDefaultStartingSize = kPageSize; 137 static constexpr size_t kDefaultInitialSize = 2 * MB; 138 static constexpr size_t kDefaultMaximumSize = 256 * MB; 139 static constexpr size_t kDefaultNonMovingSpaceCapacity = 64 * MB; 140 static constexpr size_t kDefaultMaxFree = 2 * MB; 141 static constexpr size_t kDefaultMinFree = kDefaultMaxFree / 4; 142 static constexpr size_t kDefaultLongPauseLogThreshold = MsToNs(5); 143 static constexpr size_t kDefaultLongGCLogThreshold = MsToNs(100); 144 static constexpr size_t kDefaultTLABSize = 32 * KB; 145 static constexpr double kDefaultTargetUtilization = 0.75; 146 static constexpr double kDefaultHeapGrowthMultiplier = 2.0; 147 // Primitive arrays larger than this size are put in the large object space. 148 static constexpr size_t kMinLargeObjectThreshold = 3 * kPageSize; 149 static constexpr size_t kDefaultLargeObjectThreshold = kMinLargeObjectThreshold; 150 // Whether or not parallel GC is enabled. If not, then we never create the thread pool. 151 static constexpr bool kDefaultEnableParallelGC = false; 152 static uint8_t* const kPreferredAllocSpaceBegin; 153 154 // Whether or not we use the free list large object space. Only use it if USE_ART_LOW_4G_ALLOCATOR 155 // since this means that we have to use the slow msync loop in MemMap::MapAnonymous. 156 static constexpr space::LargeObjectSpaceType kDefaultLargeObjectSpaceType = 157 USE_ART_LOW_4G_ALLOCATOR ? 158 space::LargeObjectSpaceType::kFreeList 159 : space::LargeObjectSpaceType::kMap; 160 161 // Used so that we don't overflow the allocation time atomic integer. 162 static constexpr size_t kTimeAdjust = 1024; 163 164 // Client should call NotifyNativeAllocation every kNotifyNativeInterval allocations. 165 // Should be chosen so that time_to_call_mallinfo / kNotifyNativeInterval is on the same order 166 // as object allocation time. time_to_call_mallinfo seems to be on the order of 1 usec. 167 #ifdef __ANDROID__ 168 static constexpr uint32_t kNotifyNativeInterval = 32; 169 #else 170 // Some host mallinfo() implementations are slow. And memory is less scarce. 171 static constexpr uint32_t kNotifyNativeInterval = 512; 172 #endif 173 174 // RegisterNativeAllocation checks immediately whether GC is needed if size exceeds the 175 // following. kCheckImmediatelyThreshold * kNotifyNativeInterval should be small enough to 176 // make it safe to allocate that many bytes between checks. 177 static constexpr size_t kCheckImmediatelyThreshold = 300000; 178 179 // How often we allow heap trimming to happen (nanoseconds). 180 static constexpr uint64_t kHeapTrimWait = MsToNs(5000); 181 // How long we wait after a transition request to perform a collector transition (nanoseconds). 182 static constexpr uint64_t kCollectorTransitionWait = MsToNs(5000); 183 // Whether the transition-wait applies or not. Zero wait will stress the 184 // transition code and collector, but increases jank probability. 185 DECLARE_RUNTIME_DEBUG_FLAG(kStressCollectorTransition); 186 187 // Create a heap with the requested sizes. The possible empty 188 // image_file_names names specify Spaces to load based on 189 // ImageWriter output. 190 Heap(size_t initial_size, 191 size_t growth_limit, 192 size_t min_free, 193 size_t max_free, 194 double target_utilization, 195 double foreground_heap_growth_multiplier, 196 size_t stop_for_native_allocs, 197 size_t capacity, 198 size_t non_moving_space_capacity, 199 const std::vector<std::string>& boot_class_path, 200 const std::vector<std::string>& boot_class_path_locations, 201 const std::string& image_file_name, 202 InstructionSet image_instruction_set, 203 CollectorType foreground_collector_type, 204 CollectorType background_collector_type, 205 space::LargeObjectSpaceType large_object_space_type, 206 size_t large_object_threshold, 207 size_t parallel_gc_threads, 208 size_t conc_gc_threads, 209 bool low_memory_mode, 210 size_t long_pause_threshold, 211 size_t long_gc_threshold, 212 bool ignore_target_footprint, 213 bool use_tlab, 214 bool verify_pre_gc_heap, 215 bool verify_pre_sweeping_heap, 216 bool verify_post_gc_heap, 217 bool verify_pre_gc_rosalloc, 218 bool verify_pre_sweeping_rosalloc, 219 bool verify_post_gc_rosalloc, 220 bool gc_stress_mode, 221 bool measure_gc_performance, 222 bool use_homogeneous_space_compaction, 223 bool use_generational_cc, 224 uint64_t min_interval_homogeneous_space_compaction_by_oom, 225 bool dump_region_info_before_gc, 226 bool dump_region_info_after_gc, 227 space::ImageSpaceLoadingOrder image_space_loading_order); 228 229 ~Heap(); 230 231 // Allocates and initializes storage for an object instance. 232 template <bool kInstrumented = true, typename PreFenceVisitor> AllocObject(Thread * self,ObjPtr<mirror::Class> klass,size_t num_bytes,const PreFenceVisitor & pre_fence_visitor)233 mirror::Object* AllocObject(Thread* self, 234 ObjPtr<mirror::Class> klass, 235 size_t num_bytes, 236 const PreFenceVisitor& pre_fence_visitor) 237 REQUIRES_SHARED(Locks::mutator_lock_) 238 REQUIRES(!*gc_complete_lock_, 239 !*pending_task_lock_, 240 !*backtrace_lock_, 241 !process_state_update_lock_, 242 !Roles::uninterruptible_) { 243 return AllocObjectWithAllocator<kInstrumented>(self, 244 klass, 245 num_bytes, 246 GetCurrentAllocator(), 247 pre_fence_visitor); 248 } 249 250 template <bool kInstrumented = true, typename PreFenceVisitor> AllocNonMovableObject(Thread * self,ObjPtr<mirror::Class> klass,size_t num_bytes,const PreFenceVisitor & pre_fence_visitor)251 mirror::Object* AllocNonMovableObject(Thread* self, 252 ObjPtr<mirror::Class> klass, 253 size_t num_bytes, 254 const PreFenceVisitor& pre_fence_visitor) 255 REQUIRES_SHARED(Locks::mutator_lock_) 256 REQUIRES(!*gc_complete_lock_, 257 !*pending_task_lock_, 258 !*backtrace_lock_, 259 !process_state_update_lock_, 260 !Roles::uninterruptible_) { 261 return AllocObjectWithAllocator<kInstrumented>(self, 262 klass, 263 num_bytes, 264 GetCurrentNonMovingAllocator(), 265 pre_fence_visitor); 266 } 267 268 template <bool kInstrumented = true, bool kCheckLargeObject = true, typename PreFenceVisitor> 269 ALWAYS_INLINE mirror::Object* AllocObjectWithAllocator(Thread* self, 270 ObjPtr<mirror::Class> klass, 271 size_t byte_count, 272 AllocatorType allocator, 273 const PreFenceVisitor& pre_fence_visitor) 274 REQUIRES_SHARED(Locks::mutator_lock_) 275 REQUIRES(!*gc_complete_lock_, 276 !*pending_task_lock_, 277 !*backtrace_lock_, 278 !process_state_update_lock_, 279 !Roles::uninterruptible_); 280 GetCurrentAllocator()281 AllocatorType GetCurrentAllocator() const { 282 return current_allocator_; 283 } 284 GetCurrentNonMovingAllocator()285 AllocatorType GetCurrentNonMovingAllocator() const { 286 return current_non_moving_allocator_; 287 } 288 289 // Visit all of the live objects in the heap. 290 template <typename Visitor> 291 ALWAYS_INLINE void VisitObjects(Visitor&& visitor) 292 REQUIRES_SHARED(Locks::mutator_lock_) 293 REQUIRES(!Locks::heap_bitmap_lock_, !*gc_complete_lock_); 294 template <typename Visitor> 295 ALWAYS_INLINE void VisitObjectsPaused(Visitor&& visitor) 296 REQUIRES(Locks::mutator_lock_, !Locks::heap_bitmap_lock_, !*gc_complete_lock_); 297 298 void VisitReflectiveTargets(ReflectiveValueVisitor* visitor) 299 REQUIRES(Locks::mutator_lock_, !Locks::heap_bitmap_lock_, !*gc_complete_lock_); 300 301 void CheckPreconditionsForAllocObject(ObjPtr<mirror::Class> c, size_t byte_count) 302 REQUIRES_SHARED(Locks::mutator_lock_); 303 304 // Inform the garbage collector of a non-malloc allocated native memory that might become 305 // reclaimable in the future as a result of Java garbage collection. 306 void RegisterNativeAllocation(JNIEnv* env, size_t bytes) 307 REQUIRES(!*gc_complete_lock_, !*pending_task_lock_, !process_state_update_lock_); 308 void RegisterNativeFree(JNIEnv* env, size_t bytes); 309 310 // Notify the garbage collector of malloc allocations that might be reclaimable 311 // as a result of Java garbage collection. Each such call represents approximately 312 // kNotifyNativeInterval such allocations. 313 void NotifyNativeAllocations(JNIEnv* env) 314 REQUIRES(!*gc_complete_lock_, !*pending_task_lock_, !process_state_update_lock_); 315 GetNotifyNativeInterval()316 uint32_t GetNotifyNativeInterval() { 317 return kNotifyNativeInterval; 318 } 319 320 // Change the allocator, updates entrypoints. 321 void ChangeAllocator(AllocatorType allocator) 322 REQUIRES(Locks::mutator_lock_, !Locks::runtime_shutdown_lock_); 323 324 // Change the collector to be one of the possible options (MS, CMS, SS). 325 void ChangeCollector(CollectorType collector_type) 326 REQUIRES(Locks::mutator_lock_); 327 328 // The given reference is believed to be to an object in the Java heap, check the soundness of it. 329 // TODO: NO_THREAD_SAFETY_ANALYSIS since we call this everywhere and it is impossible to find a 330 // proper lock ordering for it. 331 void VerifyObjectBody(ObjPtr<mirror::Object> o) NO_THREAD_SAFETY_ANALYSIS; 332 333 // Check sanity of all live references. 334 void VerifyHeap() REQUIRES(!Locks::heap_bitmap_lock_); 335 // Returns how many failures occured. 336 size_t VerifyHeapReferences(bool verify_referents = true) 337 REQUIRES(Locks::mutator_lock_, !*gc_complete_lock_); 338 bool VerifyMissingCardMarks() 339 REQUIRES(Locks::heap_bitmap_lock_, Locks::mutator_lock_); 340 341 // A weaker test than IsLiveObject or VerifyObject that doesn't require the heap lock, 342 // and doesn't abort on error, allowing the caller to report more 343 // meaningful diagnostics. 344 bool IsValidObjectAddress(const void* obj) const REQUIRES_SHARED(Locks::mutator_lock_); 345 346 // Faster alternative to IsHeapAddress since finding if an object is in the large object space is 347 // very slow. 348 bool IsNonDiscontinuousSpaceHeapAddress(const void* addr) const 349 REQUIRES_SHARED(Locks::mutator_lock_); 350 351 // Returns true if 'obj' is a live heap object, false otherwise (including for invalid addresses). 352 // Requires the heap lock to be held. 353 bool IsLiveObjectLocked(ObjPtr<mirror::Object> obj, 354 bool search_allocation_stack = true, 355 bool search_live_stack = true, 356 bool sorted = false) 357 REQUIRES_SHARED(Locks::heap_bitmap_lock_, Locks::mutator_lock_); 358 359 // Returns true if there is any chance that the object (obj) will move. 360 bool IsMovableObject(ObjPtr<mirror::Object> obj) const REQUIRES_SHARED(Locks::mutator_lock_); 361 362 // Enables us to compacting GC until objects are released. 363 void IncrementDisableMovingGC(Thread* self) REQUIRES(!*gc_complete_lock_); 364 void DecrementDisableMovingGC(Thread* self) REQUIRES(!*gc_complete_lock_); 365 366 // Temporarily disable thread flip for JNI critical calls. 367 void IncrementDisableThreadFlip(Thread* self) REQUIRES(!*thread_flip_lock_); 368 void DecrementDisableThreadFlip(Thread* self) REQUIRES(!*thread_flip_lock_); 369 void ThreadFlipBegin(Thread* self) REQUIRES(!*thread_flip_lock_); 370 void ThreadFlipEnd(Thread* self) REQUIRES(!*thread_flip_lock_); 371 372 // Clear all of the mark bits, doesn't clear bitmaps which have the same live bits as mark bits. 373 // Mutator lock is required for GetContinuousSpaces. 374 void ClearMarkedObjects() 375 REQUIRES(Locks::heap_bitmap_lock_) 376 REQUIRES_SHARED(Locks::mutator_lock_); 377 378 // Initiates an explicit garbage collection. 379 void CollectGarbage(bool clear_soft_references, GcCause cause = kGcCauseExplicit) 380 REQUIRES(!*gc_complete_lock_, !*pending_task_lock_, !process_state_update_lock_); 381 382 // Does a concurrent GC, should only be called by the GC daemon thread 383 // through runtime. 384 void ConcurrentGC(Thread* self, GcCause cause, bool force_full) 385 REQUIRES(!Locks::runtime_shutdown_lock_, !*gc_complete_lock_, 386 !*pending_task_lock_, !process_state_update_lock_); 387 388 // Implements VMDebug.countInstancesOfClass and JDWP VM_InstanceCount. 389 // The boolean decides whether to use IsAssignableFrom or == when comparing classes. 390 void CountInstances(const std::vector<Handle<mirror::Class>>& classes, 391 bool use_is_assignable_from, 392 uint64_t* counts) 393 REQUIRES(!Locks::heap_bitmap_lock_, !*gc_complete_lock_) 394 REQUIRES_SHARED(Locks::mutator_lock_); 395 396 // Implements VMDebug.getInstancesOfClasses and JDWP RT_Instances. 397 void GetInstances(VariableSizedHandleScope& scope, 398 Handle<mirror::Class> c, 399 bool use_is_assignable_from, 400 int32_t max_count, 401 std::vector<Handle<mirror::Object>>& instances) 402 REQUIRES(!Locks::heap_bitmap_lock_, !*gc_complete_lock_) 403 REQUIRES_SHARED(Locks::mutator_lock_); 404 405 // Implements JDWP OR_ReferringObjects. 406 void GetReferringObjects(VariableSizedHandleScope& scope, 407 Handle<mirror::Object> o, 408 int32_t max_count, 409 std::vector<Handle<mirror::Object>>& referring_objects) 410 REQUIRES(!Locks::heap_bitmap_lock_, !*gc_complete_lock_) 411 REQUIRES_SHARED(Locks::mutator_lock_); 412 413 // Removes the growth limit on the alloc space so it may grow to its maximum capacity. Used to 414 // implement dalvik.system.VMRuntime.clearGrowthLimit. 415 void ClearGrowthLimit(); 416 417 // Make the current growth limit the new maximum capacity, unmaps pages at the end of spaces 418 // which will never be used. Used to implement dalvik.system.VMRuntime.clampGrowthLimit. 419 void ClampGrowthLimit() REQUIRES(!Locks::heap_bitmap_lock_); 420 421 // Target ideal heap utilization ratio, implements 422 // dalvik.system.VMRuntime.getTargetHeapUtilization. GetTargetHeapUtilization()423 double GetTargetHeapUtilization() const { 424 return target_utilization_; 425 } 426 427 // Data structure memory usage tracking. 428 void RegisterGCAllocation(size_t bytes); 429 void RegisterGCDeAllocation(size_t bytes); 430 431 // Set the heap's private space pointers to be the same as the space based on it's type. Public 432 // due to usage by tests. 433 void SetSpaceAsDefault(space::ContinuousSpace* continuous_space) 434 REQUIRES(!Locks::heap_bitmap_lock_); 435 void AddSpace(space::Space* space) 436 REQUIRES(!Locks::heap_bitmap_lock_) 437 REQUIRES(Locks::mutator_lock_); 438 void RemoveSpace(space::Space* space) 439 REQUIRES(!Locks::heap_bitmap_lock_) 440 REQUIRES(Locks::mutator_lock_); 441 GetPreGcWeightedAllocatedBytes()442 double GetPreGcWeightedAllocatedBytes() const { 443 return pre_gc_weighted_allocated_bytes_; 444 } 445 GetPostGcWeightedAllocatedBytes()446 double GetPostGcWeightedAllocatedBytes() const { 447 return post_gc_weighted_allocated_bytes_; 448 } 449 450 void CalculatePreGcWeightedAllocatedBytes(); 451 void CalculatePostGcWeightedAllocatedBytes(); 452 uint64_t GetTotalGcCpuTime(); 453 GetProcessCpuStartTime()454 uint64_t GetProcessCpuStartTime() const { 455 return process_cpu_start_time_ns_; 456 } 457 GetPostGCLastProcessCpuTime()458 uint64_t GetPostGCLastProcessCpuTime() const { 459 return post_gc_last_process_cpu_time_ns_; 460 } 461 462 // Set target ideal heap utilization ratio, implements 463 // dalvik.system.VMRuntime.setTargetHeapUtilization. 464 void SetTargetHeapUtilization(float target); 465 466 // For the alloc space, sets the maximum number of bytes that the heap is allowed to allocate 467 // from the system. Doesn't allow the space to exceed its growth limit. 468 void SetIdealFootprint(size_t max_allowed_footprint); 469 470 // Blocks the caller until the garbage collector becomes idle and returns the type of GC we 471 // waited for. 472 collector::GcType WaitForGcToComplete(GcCause cause, Thread* self) REQUIRES(!*gc_complete_lock_); 473 474 // Update the heap's process state to a new value, may cause compaction to occur. 475 void UpdateProcessState(ProcessState old_process_state, ProcessState new_process_state) 476 REQUIRES(!*pending_task_lock_, !*gc_complete_lock_, !process_state_update_lock_); 477 HaveContinuousSpaces()478 bool HaveContinuousSpaces() const NO_THREAD_SAFETY_ANALYSIS { 479 // No lock since vector empty is thread safe. 480 return !continuous_spaces_.empty(); 481 } 482 GetContinuousSpaces()483 const std::vector<space::ContinuousSpace*>& GetContinuousSpaces() const 484 REQUIRES_SHARED(Locks::mutator_lock_) { 485 return continuous_spaces_; 486 } 487 GetDiscontinuousSpaces()488 const std::vector<space::DiscontinuousSpace*>& GetDiscontinuousSpaces() const { 489 return discontinuous_spaces_; 490 } 491 GetCurrentGcIteration()492 const collector::Iteration* GetCurrentGcIteration() const { 493 return ¤t_gc_iteration_; 494 } GetCurrentGcIteration()495 collector::Iteration* GetCurrentGcIteration() { 496 return ¤t_gc_iteration_; 497 } 498 499 // Enable verification of object references when the runtime is sufficiently initialized. EnableObjectValidation()500 void EnableObjectValidation() { 501 verify_object_mode_ = kVerifyObjectSupport; 502 if (verify_object_mode_ > kVerifyObjectModeDisabled) { 503 VerifyHeap(); 504 } 505 } 506 507 // Disable object reference verification for image writing. DisableObjectValidation()508 void DisableObjectValidation() { 509 verify_object_mode_ = kVerifyObjectModeDisabled; 510 } 511 512 // Other checks may be performed if we know the heap should be in a sane state. IsObjectValidationEnabled()513 bool IsObjectValidationEnabled() const { 514 return verify_object_mode_ > kVerifyObjectModeDisabled; 515 } 516 517 // Returns true if low memory mode is enabled. IsLowMemoryMode()518 bool IsLowMemoryMode() const { 519 return low_memory_mode_; 520 } 521 522 // Returns the heap growth multiplier, this affects how much we grow the heap after a GC. 523 // Scales heap growth, min free, and max free. 524 double HeapGrowthMultiplier() const; 525 526 // Freed bytes can be negative in cases where we copy objects from a compacted space to a 527 // free-list backed space. 528 void RecordFree(uint64_t freed_objects, int64_t freed_bytes); 529 530 // Record the bytes freed by thread-local buffer revoke. 531 void RecordFreeRevoke(); 532 GetCardTable()533 accounting::CardTable* GetCardTable() const { 534 return card_table_.get(); 535 } 536 GetReadBarrierTable()537 accounting::ReadBarrierTable* GetReadBarrierTable() const { 538 return rb_table_.get(); 539 } 540 541 void AddFinalizerReference(Thread* self, ObjPtr<mirror::Object>* object); 542 543 // Returns the number of bytes currently allocated. 544 // The result should be treated as an approximation, if it is being concurrently updated. GetBytesAllocated()545 size_t GetBytesAllocated() const { 546 return num_bytes_allocated_.load(std::memory_order_relaxed); 547 } 548 GetUseGenerationalCC()549 bool GetUseGenerationalCC() const { 550 return use_generational_cc_; 551 } 552 553 // Returns the number of objects currently allocated. 554 size_t GetObjectsAllocated() const 555 REQUIRES(!Locks::heap_bitmap_lock_); 556 557 // Returns the total number of objects allocated since the heap was created. 558 uint64_t GetObjectsAllocatedEver() const; 559 560 // Returns the total number of bytes allocated since the heap was created. 561 uint64_t GetBytesAllocatedEver() const; 562 563 // Returns the total number of objects freed since the heap was created. 564 // With default memory order, this should be viewed only as a hint. 565 uint64_t GetObjectsFreedEver(std::memory_order mo = std::memory_order_relaxed) const { 566 return total_objects_freed_ever_.load(mo); 567 } 568 569 // Returns the total number of bytes freed since the heap was created. 570 // With default memory order, this should be viewed only as a hint. 571 uint64_t GetBytesFreedEver(std::memory_order mo = std::memory_order_relaxed) const { 572 return total_bytes_freed_ever_.load(mo); 573 } 574 GetRegionSpace()575 space::RegionSpace* GetRegionSpace() const { 576 return region_space_; 577 } 578 579 // Implements java.lang.Runtime.maxMemory, returning the maximum amount of memory a program can 580 // consume. For a regular VM this would relate to the -Xmx option and would return -1 if no Xmx 581 // were specified. Android apps start with a growth limit (small heap size) which is 582 // cleared/extended for large apps. GetMaxMemory()583 size_t GetMaxMemory() const { 584 // There are some race conditions in the allocation code that can cause bytes allocated to 585 // become larger than growth_limit_ in rare cases. 586 return std::max(GetBytesAllocated(), growth_limit_); 587 } 588 589 // Implements java.lang.Runtime.totalMemory, returning approximate amount of memory currently 590 // consumed by an application. 591 size_t GetTotalMemory() const; 592 593 // Returns approximately how much free memory we have until the next GC happens. GetFreeMemoryUntilGC()594 size_t GetFreeMemoryUntilGC() const { 595 return UnsignedDifference(target_footprint_.load(std::memory_order_relaxed), 596 GetBytesAllocated()); 597 } 598 599 // Returns approximately how much free memory we have until the next OOME happens. GetFreeMemoryUntilOOME()600 size_t GetFreeMemoryUntilOOME() const { 601 return UnsignedDifference(growth_limit_, GetBytesAllocated()); 602 } 603 604 // Returns how much free memory we have until we need to grow the heap to perform an allocation. 605 // Similar to GetFreeMemoryUntilGC. Implements java.lang.Runtime.freeMemory. GetFreeMemory()606 size_t GetFreeMemory() const { 607 return UnsignedDifference(GetTotalMemory(), 608 num_bytes_allocated_.load(std::memory_order_relaxed)); 609 } 610 611 // Get the space that corresponds to an object's address. Current implementation searches all 612 // spaces in turn. If fail_ok is false then failing to find a space will cause an abort. 613 // TODO: consider using faster data structure like binary tree. 614 space::ContinuousSpace* FindContinuousSpaceFromObject(ObjPtr<mirror::Object>, bool fail_ok) const 615 REQUIRES_SHARED(Locks::mutator_lock_); 616 617 space::ContinuousSpace* FindContinuousSpaceFromAddress(const mirror::Object* addr) const 618 REQUIRES_SHARED(Locks::mutator_lock_); 619 620 space::DiscontinuousSpace* FindDiscontinuousSpaceFromObject(ObjPtr<mirror::Object>, 621 bool fail_ok) const 622 REQUIRES_SHARED(Locks::mutator_lock_); 623 624 space::Space* FindSpaceFromObject(ObjPtr<mirror::Object> obj, bool fail_ok) const 625 REQUIRES_SHARED(Locks::mutator_lock_); 626 627 space::Space* FindSpaceFromAddress(const void* ptr) const 628 REQUIRES_SHARED(Locks::mutator_lock_); 629 630 std::string DumpSpaceNameFromAddress(const void* addr) const 631 REQUIRES_SHARED(Locks::mutator_lock_); 632 633 void DumpForSigQuit(std::ostream& os) REQUIRES(!*gc_complete_lock_); 634 635 // Do a pending collector transition. 636 void DoPendingCollectorTransition() 637 REQUIRES(!*gc_complete_lock_, !*pending_task_lock_, !process_state_update_lock_); 638 639 // Deflate monitors, ... and trim the spaces. 640 void Trim(Thread* self) REQUIRES(!*gc_complete_lock_); 641 642 void RevokeThreadLocalBuffers(Thread* thread); 643 void RevokeRosAllocThreadLocalBuffers(Thread* thread); 644 void RevokeAllThreadLocalBuffers(); 645 void AssertThreadLocalBuffersAreRevoked(Thread* thread); 646 void AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked(); 647 void RosAllocVerification(TimingLogger* timings, const char* name) 648 REQUIRES(Locks::mutator_lock_); 649 GetLiveBitmap()650 accounting::HeapBitmap* GetLiveBitmap() REQUIRES_SHARED(Locks::heap_bitmap_lock_) { 651 return live_bitmap_.get(); 652 } 653 GetMarkBitmap()654 accounting::HeapBitmap* GetMarkBitmap() REQUIRES_SHARED(Locks::heap_bitmap_lock_) { 655 return mark_bitmap_.get(); 656 } 657 GetLiveStack()658 accounting::ObjectStack* GetLiveStack() REQUIRES_SHARED(Locks::heap_bitmap_lock_) { 659 return live_stack_.get(); 660 } 661 662 void PreZygoteFork() NO_THREAD_SAFETY_ANALYSIS; 663 664 // Mark and empty stack. 665 void FlushAllocStack() 666 REQUIRES_SHARED(Locks::mutator_lock_) 667 REQUIRES(Locks::heap_bitmap_lock_); 668 669 // Revoke all the thread-local allocation stacks. 670 void RevokeAllThreadLocalAllocationStacks(Thread* self) 671 REQUIRES(Locks::mutator_lock_, !Locks::runtime_shutdown_lock_, !Locks::thread_list_lock_); 672 673 // Mark all the objects in the allocation stack in the specified bitmap. 674 // TODO: Refactor? 675 void MarkAllocStack(accounting::SpaceBitmap<kObjectAlignment>* bitmap1, 676 accounting::SpaceBitmap<kObjectAlignment>* bitmap2, 677 accounting::SpaceBitmap<kLargeObjectAlignment>* large_objects, 678 accounting::ObjectStack* stack) 679 REQUIRES_SHARED(Locks::mutator_lock_) 680 REQUIRES(Locks::heap_bitmap_lock_); 681 682 // Mark the specified allocation stack as live. 683 void MarkAllocStackAsLive(accounting::ObjectStack* stack) 684 REQUIRES_SHARED(Locks::mutator_lock_) 685 REQUIRES(Locks::heap_bitmap_lock_); 686 687 // Unbind any bound bitmaps. 688 void UnBindBitmaps() 689 REQUIRES(Locks::heap_bitmap_lock_) 690 REQUIRES_SHARED(Locks::mutator_lock_); 691 692 // Returns the boot image spaces. There may be multiple boot image spaces. GetBootImageSpaces()693 const std::vector<space::ImageSpace*>& GetBootImageSpaces() const { 694 return boot_image_spaces_; 695 } 696 697 bool ObjectIsInBootImageSpace(ObjPtr<mirror::Object> obj) const 698 REQUIRES_SHARED(Locks::mutator_lock_); 699 700 bool IsInBootImageOatFile(const void* p) const 701 REQUIRES_SHARED(Locks::mutator_lock_); 702 703 // Get the start address of the boot images if any; otherwise returns 0. GetBootImagesStartAddress()704 uint32_t GetBootImagesStartAddress() const { 705 return boot_images_start_address_; 706 } 707 708 // Get the size of all boot images, including the heap and oat areas. GetBootImagesSize()709 uint32_t GetBootImagesSize() const { 710 return boot_images_size_; 711 } 712 713 // Check if a pointer points to a boot image. IsBootImageAddress(const void * p)714 bool IsBootImageAddress(const void* p) const { 715 return reinterpret_cast<uintptr_t>(p) - boot_images_start_address_ < boot_images_size_; 716 } 717 GetDlMallocSpace()718 space::DlMallocSpace* GetDlMallocSpace() const { 719 return dlmalloc_space_; 720 } 721 GetRosAllocSpace()722 space::RosAllocSpace* GetRosAllocSpace() const { 723 return rosalloc_space_; 724 } 725 726 // Return the corresponding rosalloc space. 727 space::RosAllocSpace* GetRosAllocSpace(gc::allocator::RosAlloc* rosalloc) const 728 REQUIRES_SHARED(Locks::mutator_lock_); 729 GetNonMovingSpace()730 space::MallocSpace* GetNonMovingSpace() const { 731 return non_moving_space_; 732 } 733 GetLargeObjectsSpace()734 space::LargeObjectSpace* GetLargeObjectsSpace() const { 735 return large_object_space_; 736 } 737 738 // Returns the free list space that may contain movable objects (the 739 // one that's not the non-moving space), either rosalloc_space_ or 740 // dlmalloc_space_. GetPrimaryFreeListSpace()741 space::MallocSpace* GetPrimaryFreeListSpace() { 742 if (kUseRosAlloc) { 743 DCHECK(rosalloc_space_ != nullptr); 744 // reinterpret_cast is necessary as the space class hierarchy 745 // isn't known (#included) yet here. 746 return reinterpret_cast<space::MallocSpace*>(rosalloc_space_); 747 } else { 748 DCHECK(dlmalloc_space_ != nullptr); 749 return reinterpret_cast<space::MallocSpace*>(dlmalloc_space_); 750 } 751 } 752 753 void DumpSpaces(std::ostream& stream) const REQUIRES_SHARED(Locks::mutator_lock_); 754 std::string DumpSpaces() const REQUIRES_SHARED(Locks::mutator_lock_); 755 756 // GC performance measuring 757 void DumpGcPerformanceInfo(std::ostream& os) 758 REQUIRES(!*gc_complete_lock_); 759 void ResetGcPerformanceInfo() REQUIRES(!*gc_complete_lock_); 760 761 // Thread pool. 762 void CreateThreadPool(); 763 void DeleteThreadPool(); GetThreadPool()764 ThreadPool* GetThreadPool() { 765 return thread_pool_.get(); 766 } GetParallelGCThreadCount()767 size_t GetParallelGCThreadCount() const { 768 return parallel_gc_threads_; 769 } GetConcGCThreadCount()770 size_t GetConcGCThreadCount() const { 771 return conc_gc_threads_; 772 } 773 accounting::ModUnionTable* FindModUnionTableFromSpace(space::Space* space); 774 void AddModUnionTable(accounting::ModUnionTable* mod_union_table); 775 776 accounting::RememberedSet* FindRememberedSetFromSpace(space::Space* space); 777 void AddRememberedSet(accounting::RememberedSet* remembered_set); 778 // Also deletes the remebered set. 779 void RemoveRememberedSet(space::Space* space); 780 781 bool IsCompilingBoot() const; HasBootImageSpace()782 bool HasBootImageSpace() const { 783 return !boot_image_spaces_.empty(); 784 } 785 GetReferenceProcessor()786 ReferenceProcessor* GetReferenceProcessor() { 787 return reference_processor_.get(); 788 } GetTaskProcessor()789 TaskProcessor* GetTaskProcessor() { 790 return task_processor_.get(); 791 } 792 HasZygoteSpace()793 bool HasZygoteSpace() const { 794 return zygote_space_ != nullptr; 795 } 796 797 // Returns the active concurrent copying collector. ConcurrentCopyingCollector()798 collector::ConcurrentCopying* ConcurrentCopyingCollector() { 799 if (use_generational_cc_) { 800 DCHECK((active_concurrent_copying_collector_ == concurrent_copying_collector_) || 801 (active_concurrent_copying_collector_ == young_concurrent_copying_collector_)); 802 } else { 803 DCHECK_EQ(active_concurrent_copying_collector_, concurrent_copying_collector_); 804 } 805 return active_concurrent_copying_collector_; 806 } 807 CurrentCollectorType()808 CollectorType CurrentCollectorType() { 809 return collector_type_; 810 } 811 IsGcConcurrentAndMoving()812 bool IsGcConcurrentAndMoving() const { 813 if (IsGcConcurrent() && IsMovingGc(collector_type_)) { 814 // Assume no transition when a concurrent moving collector is used. 815 DCHECK_EQ(collector_type_, foreground_collector_type_); 816 return true; 817 } 818 return false; 819 } 820 IsMovingGCDisabled(Thread * self)821 bool IsMovingGCDisabled(Thread* self) REQUIRES(!*gc_complete_lock_) { 822 MutexLock mu(self, *gc_complete_lock_); 823 return disable_moving_gc_count_ > 0; 824 } 825 826 // Request an asynchronous trim. 827 void RequestTrim(Thread* self) REQUIRES(!*pending_task_lock_); 828 829 // Request asynchronous GC. 830 void RequestConcurrentGC(Thread* self, GcCause cause, bool force_full) 831 REQUIRES(!*pending_task_lock_); 832 833 // Whether or not we may use a garbage collector, used so that we only create collectors we need. 834 bool MayUseCollector(CollectorType type) const; 835 836 // Used by tests to reduce timinig-dependent flakiness in OOME behavior. SetMinIntervalHomogeneousSpaceCompactionByOom(uint64_t interval)837 void SetMinIntervalHomogeneousSpaceCompactionByOom(uint64_t interval) { 838 min_interval_homogeneous_space_compaction_by_oom_ = interval; 839 } 840 841 // Helpers for android.os.Debug.getRuntimeStat(). 842 uint64_t GetGcCount() const; 843 uint64_t GetGcTime() const; 844 uint64_t GetBlockingGcCount() const; 845 uint64_t GetBlockingGcTime() const; 846 void DumpGcCountRateHistogram(std::ostream& os) const REQUIRES(!*gc_complete_lock_); 847 void DumpBlockingGcCountRateHistogram(std::ostream& os) const REQUIRES(!*gc_complete_lock_); 848 849 // Allocation tracking support 850 // Callers to this function use double-checked locking to ensure safety on allocation_records_ IsAllocTrackingEnabled()851 bool IsAllocTrackingEnabled() const { 852 return alloc_tracking_enabled_.load(std::memory_order_relaxed); 853 } 854 SetAllocTrackingEnabled(bool enabled)855 void SetAllocTrackingEnabled(bool enabled) REQUIRES(Locks::alloc_tracker_lock_) { 856 alloc_tracking_enabled_.store(enabled, std::memory_order_relaxed); 857 } 858 859 // Return the current stack depth of allocation records. GetAllocTrackerStackDepth()860 size_t GetAllocTrackerStackDepth() const { 861 return alloc_record_depth_; 862 } 863 864 // Return the current stack depth of allocation records. SetAllocTrackerStackDepth(size_t alloc_record_depth)865 void SetAllocTrackerStackDepth(size_t alloc_record_depth) { 866 alloc_record_depth_ = alloc_record_depth; 867 } 868 GetAllocationRecords()869 AllocRecordObjectMap* GetAllocationRecords() const REQUIRES(Locks::alloc_tracker_lock_) { 870 return allocation_records_.get(); 871 } 872 873 void SetAllocationRecords(AllocRecordObjectMap* records) 874 REQUIRES(Locks::alloc_tracker_lock_); 875 876 void VisitAllocationRecords(RootVisitor* visitor) const 877 REQUIRES_SHARED(Locks::mutator_lock_) 878 REQUIRES(!Locks::alloc_tracker_lock_); 879 880 void SweepAllocationRecords(IsMarkedVisitor* visitor) const 881 REQUIRES_SHARED(Locks::mutator_lock_) 882 REQUIRES(!Locks::alloc_tracker_lock_); 883 884 void DisallowNewAllocationRecords() const 885 REQUIRES_SHARED(Locks::mutator_lock_) 886 REQUIRES(!Locks::alloc_tracker_lock_); 887 888 void AllowNewAllocationRecords() const 889 REQUIRES_SHARED(Locks::mutator_lock_) 890 REQUIRES(!Locks::alloc_tracker_lock_); 891 892 void BroadcastForNewAllocationRecords() const 893 REQUIRES(!Locks::alloc_tracker_lock_); 894 895 void DisableGCForShutdown() REQUIRES(!*gc_complete_lock_); 896 897 // Create a new alloc space and compact default alloc space to it. 898 HomogeneousSpaceCompactResult PerformHomogeneousSpaceCompact() 899 REQUIRES(!*gc_complete_lock_, !process_state_update_lock_); 900 bool SupportHomogeneousSpaceCompactAndCollectorTransitions() const; 901 902 // Install an allocation listener. 903 void SetAllocationListener(AllocationListener* l); 904 // Remove an allocation listener. Note: the listener must not be deleted, as for performance 905 // reasons, we assume it stays valid when we read it (so that we don't require a lock). 906 void RemoveAllocationListener(); 907 908 // Install a gc pause listener. 909 void SetGcPauseListener(GcPauseListener* l); 910 // Get the currently installed gc pause listener, or null. GetGcPauseListener()911 GcPauseListener* GetGcPauseListener() { 912 return gc_pause_listener_.load(std::memory_order_acquire); 913 } 914 // Remove a gc pause listener. Note: the listener must not be deleted, as for performance 915 // reasons, we assume it stays valid when we read it (so that we don't require a lock). 916 void RemoveGcPauseListener(); 917 918 const Verification* GetVerification() const; 919 920 void PostForkChildAction(Thread* self); 921 922 void TraceHeapSize(size_t heap_size); 923 924 bool AddHeapTask(gc::HeapTask* task); 925 926 private: 927 class ConcurrentGCTask; 928 class CollectorTransitionTask; 929 class HeapTrimTask; 930 class TriggerPostForkCCGcTask; 931 932 // Compact source space to target space. Returns the collector used. 933 collector::GarbageCollector* Compact(space::ContinuousMemMapAllocSpace* target_space, 934 space::ContinuousMemMapAllocSpace* source_space, 935 GcCause gc_cause) 936 REQUIRES(Locks::mutator_lock_); 937 938 void LogGC(GcCause gc_cause, collector::GarbageCollector* collector); 939 void StartGC(Thread* self, GcCause cause, CollectorType collector_type) 940 REQUIRES(!*gc_complete_lock_); 941 void FinishGC(Thread* self, collector::GcType gc_type) REQUIRES(!*gc_complete_lock_); 942 943 double CalculateGcWeightedAllocatedBytes(uint64_t gc_last_process_cpu_time_ns, 944 uint64_t current_process_cpu_time) const; 945 946 // Create a mem map with a preferred base address. 947 static MemMap MapAnonymousPreferredAddress(const char* name, 948 uint8_t* request_begin, 949 size_t capacity, 950 std::string* out_error_str); 951 SupportHSpaceCompaction()952 bool SupportHSpaceCompaction() const { 953 // Returns true if we can do hspace compaction 954 return main_space_backup_ != nullptr; 955 } 956 957 // Size_t saturating arithmetic UnsignedDifference(size_t x,size_t y)958 static ALWAYS_INLINE size_t UnsignedDifference(size_t x, size_t y) { 959 return x > y ? x - y : 0; 960 } UnsignedSum(size_t x,size_t y)961 static ALWAYS_INLINE size_t UnsignedSum(size_t x, size_t y) { 962 return x + y >= x ? x + y : std::numeric_limits<size_t>::max(); 963 } 964 AllocatorHasAllocationStack(AllocatorType allocator_type)965 static ALWAYS_INLINE bool AllocatorHasAllocationStack(AllocatorType allocator_type) { 966 return 967 allocator_type != kAllocatorTypeRegionTLAB && 968 allocator_type != kAllocatorTypeBumpPointer && 969 allocator_type != kAllocatorTypeTLAB && 970 allocator_type != kAllocatorTypeRegion; 971 } AllocatorMayHaveConcurrentGC(AllocatorType allocator_type)972 static ALWAYS_INLINE bool AllocatorMayHaveConcurrentGC(AllocatorType allocator_type) { 973 if (kUseReadBarrier) { 974 // Read barrier may have the TLAB allocator but is always concurrent. TODO: clean this up. 975 return true; 976 } 977 return 978 allocator_type != kAllocatorTypeTLAB && 979 allocator_type != kAllocatorTypeBumpPointer; 980 } IsMovingGc(CollectorType collector_type)981 static bool IsMovingGc(CollectorType collector_type) { 982 return 983 collector_type == kCollectorTypeCC || 984 collector_type == kCollectorTypeSS || 985 collector_type == kCollectorTypeCCBackground || 986 collector_type == kCollectorTypeHomogeneousSpaceCompact; 987 } 988 bool ShouldAllocLargeObject(ObjPtr<mirror::Class> c, size_t byte_count) const 989 REQUIRES_SHARED(Locks::mutator_lock_); 990 991 // Checks whether we should garbage collect: 992 ALWAYS_INLINE bool ShouldConcurrentGCForJava(size_t new_num_bytes_allocated); 993 float NativeMemoryOverTarget(size_t current_native_bytes, bool is_gc_concurrent); 994 ALWAYS_INLINE void CheckConcurrentGCForJava(Thread* self, 995 size_t new_num_bytes_allocated, 996 ObjPtr<mirror::Object>* obj) 997 REQUIRES_SHARED(Locks::mutator_lock_) 998 REQUIRES(!*pending_task_lock_, !*gc_complete_lock_); 999 void CheckGCForNative(Thread* self) 1000 REQUIRES(!*pending_task_lock_, !*gc_complete_lock_, !process_state_update_lock_); 1001 GetMarkStack()1002 accounting::ObjectStack* GetMarkStack() { 1003 return mark_stack_.get(); 1004 } 1005 1006 // We don't force this to be inlined since it is a slow path. 1007 template <bool kInstrumented, typename PreFenceVisitor> 1008 mirror::Object* AllocLargeObject(Thread* self, 1009 ObjPtr<mirror::Class>* klass, 1010 size_t byte_count, 1011 const PreFenceVisitor& pre_fence_visitor) 1012 REQUIRES_SHARED(Locks::mutator_lock_) 1013 REQUIRES(!*gc_complete_lock_, !*pending_task_lock_, 1014 !*backtrace_lock_, !process_state_update_lock_); 1015 1016 // Handles Allocate()'s slow allocation path with GC involved after 1017 // an initial allocation attempt failed. 1018 mirror::Object* AllocateInternalWithGc(Thread* self, 1019 AllocatorType allocator, 1020 bool instrumented, 1021 size_t num_bytes, 1022 size_t* bytes_allocated, 1023 size_t* usable_size, 1024 size_t* bytes_tl_bulk_allocated, 1025 ObjPtr<mirror::Class>* klass) 1026 REQUIRES(!Locks::thread_suspend_count_lock_, !*gc_complete_lock_, !*pending_task_lock_) 1027 REQUIRES(Roles::uninterruptible_) 1028 REQUIRES_SHARED(Locks::mutator_lock_); 1029 1030 // Allocate into a specific space. 1031 mirror::Object* AllocateInto(Thread* self, 1032 space::AllocSpace* space, 1033 ObjPtr<mirror::Class> c, 1034 size_t bytes) 1035 REQUIRES_SHARED(Locks::mutator_lock_); 1036 1037 // Need to do this with mutators paused so that somebody doesn't accidentally allocate into the 1038 // wrong space. 1039 void SwapSemiSpaces() REQUIRES(Locks::mutator_lock_); 1040 1041 // Try to allocate a number of bytes, this function never does any GCs. Needs to be inlined so 1042 // that the switch statement is constant optimized in the entrypoints. 1043 template <const bool kInstrumented, const bool kGrow> 1044 ALWAYS_INLINE mirror::Object* TryToAllocate(Thread* self, 1045 AllocatorType allocator_type, 1046 size_t alloc_size, 1047 size_t* bytes_allocated, 1048 size_t* usable_size, 1049 size_t* bytes_tl_bulk_allocated) 1050 REQUIRES_SHARED(Locks::mutator_lock_); 1051 1052 mirror::Object* AllocWithNewTLAB(Thread* self, 1053 size_t alloc_size, 1054 bool grow, 1055 size_t* bytes_allocated, 1056 size_t* usable_size, 1057 size_t* bytes_tl_bulk_allocated) 1058 REQUIRES_SHARED(Locks::mutator_lock_); 1059 1060 void ThrowOutOfMemoryError(Thread* self, size_t byte_count, AllocatorType allocator_type) 1061 REQUIRES_SHARED(Locks::mutator_lock_); 1062 1063 // Are we out of memory, and thus should force a GC or fail? 1064 // For concurrent collectors, out of memory is defined by growth_limit_. 1065 // For nonconcurrent collectors it is defined by target_footprint_ unless grow is 1066 // set. If grow is set, the limit is growth_limit_ and we adjust target_footprint_ 1067 // to accomodate the allocation. 1068 ALWAYS_INLINE bool IsOutOfMemoryOnAllocation(AllocatorType allocator_type, 1069 size_t alloc_size, 1070 bool grow); 1071 1072 // Run the finalizers. If timeout is non zero, then we use the VMRuntime version. 1073 void RunFinalization(JNIEnv* env, uint64_t timeout); 1074 1075 // Blocks the caller until the garbage collector becomes idle and returns the type of GC we 1076 // waited for. 1077 collector::GcType WaitForGcToCompleteLocked(GcCause cause, Thread* self) 1078 REQUIRES(gc_complete_lock_); 1079 1080 void RequestCollectorTransition(CollectorType desired_collector_type, uint64_t delta_time) 1081 REQUIRES(!*pending_task_lock_); 1082 1083 void RequestConcurrentGCAndSaveObject(Thread* self, bool force_full, ObjPtr<mirror::Object>* obj) 1084 REQUIRES_SHARED(Locks::mutator_lock_) 1085 REQUIRES(!*pending_task_lock_); 1086 bool IsGCRequestPending() const; 1087 1088 // Sometimes CollectGarbageInternal decides to run a different Gc than you requested. Returns 1089 // which type of Gc was actually ran. 1090 collector::GcType CollectGarbageInternal(collector::GcType gc_plan, 1091 GcCause gc_cause, 1092 bool clear_soft_references) 1093 REQUIRES(!*gc_complete_lock_, !Locks::heap_bitmap_lock_, !Locks::thread_suspend_count_lock_, 1094 !*pending_task_lock_, !process_state_update_lock_); 1095 1096 void PreGcVerification(collector::GarbageCollector* gc) 1097 REQUIRES(!Locks::mutator_lock_, !*gc_complete_lock_); 1098 void PreGcVerificationPaused(collector::GarbageCollector* gc) 1099 REQUIRES(Locks::mutator_lock_, !*gc_complete_lock_); 1100 void PrePauseRosAllocVerification(collector::GarbageCollector* gc) 1101 REQUIRES(Locks::mutator_lock_); 1102 void PreSweepingGcVerification(collector::GarbageCollector* gc) 1103 REQUIRES(Locks::mutator_lock_, !Locks::heap_bitmap_lock_, !*gc_complete_lock_); 1104 void PostGcVerification(collector::GarbageCollector* gc) 1105 REQUIRES(!Locks::mutator_lock_, !*gc_complete_lock_); 1106 void PostGcVerificationPaused(collector::GarbageCollector* gc) 1107 REQUIRES(Locks::mutator_lock_, !*gc_complete_lock_); 1108 1109 // Find a collector based on GC type. 1110 collector::GarbageCollector* FindCollectorByGcType(collector::GcType gc_type); 1111 1112 // Create the main free list malloc space, either a RosAlloc space or DlMalloc space. 1113 void CreateMainMallocSpace(MemMap&& mem_map, 1114 size_t initial_size, 1115 size_t growth_limit, 1116 size_t capacity); 1117 1118 // Create a malloc space based on a mem map. Does not set the space as default. 1119 space::MallocSpace* CreateMallocSpaceFromMemMap(MemMap&& mem_map, 1120 size_t initial_size, 1121 size_t growth_limit, 1122 size_t capacity, 1123 const char* name, 1124 bool can_move_objects); 1125 1126 // Given the current contents of the alloc space, increase the allowed heap footprint to match 1127 // the target utilization ratio. This should only be called immediately after a full garbage 1128 // collection. bytes_allocated_before_gc is used to measure bytes / second for the period which 1129 // the GC was run. 1130 void GrowForUtilization(collector::GarbageCollector* collector_ran, 1131 size_t bytes_allocated_before_gc = 0) 1132 REQUIRES(!process_state_update_lock_); 1133 1134 size_t GetPercentFree(); 1135 1136 // Swap the allocation stack with the live stack. 1137 void SwapStacks() REQUIRES_SHARED(Locks::mutator_lock_); 1138 1139 // Clear cards and update the mod union table. When process_alloc_space_cards is true, 1140 // if clear_alloc_space_cards is true, then we clear cards instead of ageing them. We do 1141 // not process the alloc space if process_alloc_space_cards is false. 1142 void ProcessCards(TimingLogger* timings, 1143 bool use_rem_sets, 1144 bool process_alloc_space_cards, 1145 bool clear_alloc_space_cards) 1146 REQUIRES_SHARED(Locks::mutator_lock_); 1147 1148 // Push an object onto the allocation stack. 1149 void PushOnAllocationStack(Thread* self, ObjPtr<mirror::Object>* obj) 1150 REQUIRES_SHARED(Locks::mutator_lock_) 1151 REQUIRES(!*gc_complete_lock_, !*pending_task_lock_, !process_state_update_lock_); 1152 void PushOnAllocationStackWithInternalGC(Thread* self, ObjPtr<mirror::Object>* obj) 1153 REQUIRES_SHARED(Locks::mutator_lock_) 1154 REQUIRES(!*gc_complete_lock_, !*pending_task_lock_, !process_state_update_lock_); 1155 void PushOnThreadLocalAllocationStackWithInternalGC(Thread* thread, ObjPtr<mirror::Object>* obj) 1156 REQUIRES_SHARED(Locks::mutator_lock_) 1157 REQUIRES(!*gc_complete_lock_, !*pending_task_lock_, !process_state_update_lock_); 1158 1159 void ClearConcurrentGCRequest(); 1160 void ClearPendingTrim(Thread* self) REQUIRES(!*pending_task_lock_); 1161 void ClearPendingCollectorTransition(Thread* self) REQUIRES(!*pending_task_lock_); 1162 1163 // What kind of concurrency behavior is the runtime after? Currently true for concurrent mark 1164 // sweep GC, false for other GC types. IsGcConcurrent()1165 bool IsGcConcurrent() const ALWAYS_INLINE { 1166 return collector_type_ == kCollectorTypeCC || 1167 collector_type_ == kCollectorTypeCMS || 1168 collector_type_ == kCollectorTypeCCBackground; 1169 } 1170 1171 // Trim the managed and native spaces by releasing unused memory back to the OS. 1172 void TrimSpaces(Thread* self) REQUIRES(!*gc_complete_lock_); 1173 1174 // Trim 0 pages at the end of reference tables. 1175 void TrimIndirectReferenceTables(Thread* self); 1176 1177 template <typename Visitor> 1178 ALWAYS_INLINE void VisitObjectsInternal(Visitor&& visitor) 1179 REQUIRES_SHARED(Locks::mutator_lock_) 1180 REQUIRES(!Locks::heap_bitmap_lock_, !*gc_complete_lock_); 1181 template <typename Visitor> 1182 ALWAYS_INLINE void VisitObjectsInternalRegionSpace(Visitor&& visitor) 1183 REQUIRES(Locks::mutator_lock_, !Locks::heap_bitmap_lock_, !*gc_complete_lock_); 1184 1185 void UpdateGcCountRateHistograms() REQUIRES(gc_complete_lock_); 1186 1187 // GC stress mode attempts to do one GC per unique backtrace. 1188 void CheckGcStressMode(Thread* self, ObjPtr<mirror::Object>* obj) 1189 REQUIRES_SHARED(Locks::mutator_lock_) 1190 REQUIRES(!*gc_complete_lock_, !*pending_task_lock_, 1191 !*backtrace_lock_, !process_state_update_lock_); 1192 NonStickyGcType()1193 collector::GcType NonStickyGcType() const { 1194 return HasZygoteSpace() ? collector::kGcTypePartial : collector::kGcTypeFull; 1195 } 1196 1197 // Return the amount of space we allow for native memory when deciding whether to 1198 // collect. We collect when a weighted sum of Java memory plus native memory exceeds 1199 // the similarly weighted sum of the Java heap size target and this value. NativeAllocationGcWatermark()1200 ALWAYS_INLINE size_t NativeAllocationGcWatermark() const { 1201 // We keep the traditional limit of max_free_ in place for small heaps, 1202 // but allow it to be adjusted upward for large heaps to limit GC overhead. 1203 return target_footprint_.load(std::memory_order_relaxed) / 8 + max_free_; 1204 } 1205 1206 ALWAYS_INLINE void IncrementNumberOfBytesFreedRevoke(size_t freed_bytes_revoke); 1207 1208 // On switching app from background to foreground, grow the heap size 1209 // to incorporate foreground heap growth multiplier. 1210 void GrowHeapOnJankPerceptibleSwitch() REQUIRES(!process_state_update_lock_); 1211 1212 // Update *_freed_ever_ counters to reflect current GC values. 1213 void IncrementFreedEver(); 1214 1215 // Remove a vlog code from heap-inl.h which is transitively included in half the world. 1216 static void VlogHeapGrowth(size_t max_allowed_footprint, size_t new_footprint, size_t alloc_size); 1217 1218 // Return our best approximation of the number of bytes of native memory that 1219 // are currently in use, and could possibly be reclaimed as an indirect result 1220 // of a garbage collection. 1221 size_t GetNativeBytes(); 1222 1223 // All-known continuous spaces, where objects lie within fixed bounds. 1224 std::vector<space::ContinuousSpace*> continuous_spaces_ GUARDED_BY(Locks::mutator_lock_); 1225 1226 // All-known discontinuous spaces, where objects may be placed throughout virtual memory. 1227 std::vector<space::DiscontinuousSpace*> discontinuous_spaces_ GUARDED_BY(Locks::mutator_lock_); 1228 1229 // All-known alloc spaces, where objects may be or have been allocated. 1230 std::vector<space::AllocSpace*> alloc_spaces_; 1231 1232 // A space where non-movable objects are allocated, when compaction is enabled it contains 1233 // Classes, ArtMethods, ArtFields, and non moving objects. 1234 space::MallocSpace* non_moving_space_; 1235 1236 // Space which we use for the kAllocatorTypeROSAlloc. 1237 space::RosAllocSpace* rosalloc_space_; 1238 1239 // Space which we use for the kAllocatorTypeDlMalloc. 1240 space::DlMallocSpace* dlmalloc_space_; 1241 1242 // The main space is the space which the GC copies to and from on process state updates. This 1243 // space is typically either the dlmalloc_space_ or the rosalloc_space_. 1244 space::MallocSpace* main_space_; 1245 1246 // The large object space we are currently allocating into. 1247 space::LargeObjectSpace* large_object_space_; 1248 1249 // The card table, dirtied by the write barrier. 1250 std::unique_ptr<accounting::CardTable> card_table_; 1251 1252 std::unique_ptr<accounting::ReadBarrierTable> rb_table_; 1253 1254 // A mod-union table remembers all of the references from the it's space to other spaces. 1255 AllocationTrackingSafeMap<space::Space*, accounting::ModUnionTable*, kAllocatorTagHeap> 1256 mod_union_tables_; 1257 1258 // A remembered set remembers all of the references from the it's space to the target space. 1259 AllocationTrackingSafeMap<space::Space*, accounting::RememberedSet*, kAllocatorTagHeap> 1260 remembered_sets_; 1261 1262 // The current collector type. 1263 CollectorType collector_type_; 1264 // Which collector we use when the app is in the foreground. 1265 CollectorType foreground_collector_type_; 1266 // Which collector we will use when the app is notified of a transition to background. 1267 CollectorType background_collector_type_; 1268 // Desired collector type, heap trimming daemon transitions the heap if it is != collector_type_. 1269 CollectorType desired_collector_type_; 1270 1271 // Lock which guards pending tasks. 1272 Mutex* pending_task_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER; 1273 1274 // How many GC threads we may use for paused parts of garbage collection. 1275 const size_t parallel_gc_threads_; 1276 1277 // How many GC threads we may use for unpaused parts of garbage collection. 1278 const size_t conc_gc_threads_; 1279 1280 // Boolean for if we are in low memory mode. 1281 const bool low_memory_mode_; 1282 1283 // If we get a pause longer than long pause log threshold, then we print out the GC after it 1284 // finishes. 1285 const size_t long_pause_log_threshold_; 1286 1287 // If we get a GC longer than long GC log threshold, then we print out the GC after it finishes. 1288 const size_t long_gc_log_threshold_; 1289 1290 // Starting time of the new process; meant to be used for measuring total process CPU time. 1291 uint64_t process_cpu_start_time_ns_; 1292 1293 // Last time (before and after) GC started; meant to be used to measure the 1294 // duration between two GCs. 1295 uint64_t pre_gc_last_process_cpu_time_ns_; 1296 uint64_t post_gc_last_process_cpu_time_ns_; 1297 1298 // allocated_bytes * (current_process_cpu_time - [pre|post]_gc_last_process_cpu_time) 1299 double pre_gc_weighted_allocated_bytes_; 1300 double post_gc_weighted_allocated_bytes_; 1301 1302 // If we ignore the target footprint it lets the heap grow until it hits the heap capacity, this 1303 // is useful for benchmarking since it reduces time spent in GC to a low %. 1304 const bool ignore_target_footprint_; 1305 1306 // Lock which guards zygote space creation. 1307 Mutex zygote_creation_lock_; 1308 1309 // Non-null iff we have a zygote space. Doesn't contain the large objects allocated before 1310 // zygote space creation. 1311 space::ZygoteSpace* zygote_space_; 1312 1313 // Minimum allocation size of large object. 1314 size_t large_object_threshold_; 1315 1316 // Guards access to the state of GC, associated conditional variable is used to signal when a GC 1317 // completes. 1318 Mutex* gc_complete_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER; 1319 std::unique_ptr<ConditionVariable> gc_complete_cond_ GUARDED_BY(gc_complete_lock_); 1320 1321 // Used to synchronize between JNI critical calls and the thread flip of the CC collector. 1322 Mutex* thread_flip_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER; 1323 std::unique_ptr<ConditionVariable> thread_flip_cond_ GUARDED_BY(thread_flip_lock_); 1324 // This counter keeps track of how many threads are currently in a JNI critical section. This is 1325 // incremented once per thread even with nested enters. 1326 size_t disable_thread_flip_count_ GUARDED_BY(thread_flip_lock_); 1327 bool thread_flip_running_ GUARDED_BY(thread_flip_lock_); 1328 1329 // Reference processor; 1330 std::unique_ptr<ReferenceProcessor> reference_processor_; 1331 1332 // Task processor, proxies heap trim requests to the daemon threads. 1333 std::unique_ptr<TaskProcessor> task_processor_; 1334 1335 // Collector type of the running GC. 1336 volatile CollectorType collector_type_running_ GUARDED_BY(gc_complete_lock_); 1337 1338 // Cause of the last running GC. 1339 volatile GcCause last_gc_cause_ GUARDED_BY(gc_complete_lock_); 1340 1341 // The thread currently running the GC. 1342 volatile Thread* thread_running_gc_ GUARDED_BY(gc_complete_lock_); 1343 1344 // Last Gc type we ran. Used by WaitForConcurrentGc to know which Gc was waited on. 1345 volatile collector::GcType last_gc_type_ GUARDED_BY(gc_complete_lock_); 1346 collector::GcType next_gc_type_; 1347 1348 // Maximum size that the heap can reach. 1349 size_t capacity_; 1350 1351 // The size the heap is limited to. This is initially smaller than capacity, but for largeHeap 1352 // programs it is "cleared" making it the same as capacity. 1353 // Only weakly enforced for simultaneous allocations. 1354 size_t growth_limit_; 1355 1356 // Target size (as in maximum allocatable bytes) for the heap. Weakly enforced as a limit for 1357 // non-concurrent GC. Used as a guideline for computing concurrent_start_bytes_ in the 1358 // concurrent GC case. 1359 Atomic<size_t> target_footprint_; 1360 1361 // Computed with foreground-multiplier in GrowForUtilization() when run in 1362 // jank non-perceptible state. On update to process state from background to 1363 // foreground we set target_footprint_ to this value. 1364 Mutex process_state_update_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER; 1365 size_t min_foreground_target_footprint_ GUARDED_BY(process_state_update_lock_); 1366 1367 // When num_bytes_allocated_ exceeds this amount then a concurrent GC should be requested so that 1368 // it completes ahead of an allocation failing. 1369 // A multiple of this is also used to determine when to trigger a GC in response to native 1370 // allocation. 1371 size_t concurrent_start_bytes_; 1372 1373 // Since the heap was created, how many bytes have been freed. 1374 std::atomic<uint64_t> total_bytes_freed_ever_; 1375 1376 // Since the heap was created, how many objects have been freed. 1377 std::atomic<uint64_t> total_objects_freed_ever_; 1378 1379 // Number of bytes currently allocated and not yet reclaimed. Includes active 1380 // TLABS in their entirety, even if they have not yet been parceled out. 1381 Atomic<size_t> num_bytes_allocated_; 1382 1383 // Number of registered native bytes allocated. Adjusted after each RegisterNativeAllocation and 1384 // RegisterNativeFree. Used to help determine when to trigger GC for native allocations. Should 1385 // not include bytes allocated through the system malloc, since those are implicitly included. 1386 Atomic<size_t> native_bytes_registered_; 1387 1388 // Approximately the smallest value of GetNativeBytes() we've seen since the last GC. 1389 Atomic<size_t> old_native_bytes_allocated_; 1390 1391 // Total number of native objects of which we were notified since the beginning of time, mod 2^32. 1392 // Allows us to check for GC only roughly every kNotifyNativeInterval allocations. 1393 Atomic<uint32_t> native_objects_notified_; 1394 1395 // Number of bytes freed by thread local buffer revokes. This will 1396 // cancel out the ahead-of-time bulk counting of bytes allocated in 1397 // rosalloc thread-local buffers. It is temporarily accumulated 1398 // here to be subtracted from num_bytes_allocated_ later at the next 1399 // GC. 1400 Atomic<size_t> num_bytes_freed_revoke_; 1401 1402 // Info related to the current or previous GC iteration. 1403 collector::Iteration current_gc_iteration_; 1404 1405 // Heap verification flags. 1406 const bool verify_missing_card_marks_; 1407 const bool verify_system_weaks_; 1408 const bool verify_pre_gc_heap_; 1409 const bool verify_pre_sweeping_heap_; 1410 const bool verify_post_gc_heap_; 1411 const bool verify_mod_union_table_; 1412 bool verify_pre_gc_rosalloc_; 1413 bool verify_pre_sweeping_rosalloc_; 1414 bool verify_post_gc_rosalloc_; 1415 const bool gc_stress_mode_; 1416 1417 // RAII that temporarily disables the rosalloc verification during 1418 // the zygote fork. 1419 class ScopedDisableRosAllocVerification { 1420 private: 1421 Heap* const heap_; 1422 const bool orig_verify_pre_gc_; 1423 const bool orig_verify_pre_sweeping_; 1424 const bool orig_verify_post_gc_; 1425 1426 public: ScopedDisableRosAllocVerification(Heap * heap)1427 explicit ScopedDisableRosAllocVerification(Heap* heap) 1428 : heap_(heap), 1429 orig_verify_pre_gc_(heap_->verify_pre_gc_rosalloc_), 1430 orig_verify_pre_sweeping_(heap_->verify_pre_sweeping_rosalloc_), 1431 orig_verify_post_gc_(heap_->verify_post_gc_rosalloc_) { 1432 heap_->verify_pre_gc_rosalloc_ = false; 1433 heap_->verify_pre_sweeping_rosalloc_ = false; 1434 heap_->verify_post_gc_rosalloc_ = false; 1435 } ~ScopedDisableRosAllocVerification()1436 ~ScopedDisableRosAllocVerification() { 1437 heap_->verify_pre_gc_rosalloc_ = orig_verify_pre_gc_; 1438 heap_->verify_pre_sweeping_rosalloc_ = orig_verify_pre_sweeping_; 1439 heap_->verify_post_gc_rosalloc_ = orig_verify_post_gc_; 1440 } 1441 }; 1442 1443 // Parallel GC data structures. 1444 std::unique_ptr<ThreadPool> thread_pool_; 1445 1446 // A bitmap that is set corresponding to the known live objects since the last GC cycle. 1447 std::unique_ptr<accounting::HeapBitmap> live_bitmap_ GUARDED_BY(Locks::heap_bitmap_lock_); 1448 // A bitmap that is set corresponding to the marked objects in the current GC cycle. 1449 std::unique_ptr<accounting::HeapBitmap> mark_bitmap_ GUARDED_BY(Locks::heap_bitmap_lock_); 1450 1451 // Mark stack that we reuse to avoid re-allocating the mark stack. 1452 std::unique_ptr<accounting::ObjectStack> mark_stack_; 1453 1454 // Allocation stack, new allocations go here so that we can do sticky mark bits. This enables us 1455 // to use the live bitmap as the old mark bitmap. 1456 const size_t max_allocation_stack_size_; 1457 std::unique_ptr<accounting::ObjectStack> allocation_stack_; 1458 1459 // Second allocation stack so that we can process allocation with the heap unlocked. 1460 std::unique_ptr<accounting::ObjectStack> live_stack_; 1461 1462 // Allocator type. 1463 AllocatorType current_allocator_; 1464 const AllocatorType current_non_moving_allocator_; 1465 1466 // Which GCs we run in order when an allocation fails. 1467 std::vector<collector::GcType> gc_plan_; 1468 1469 // Bump pointer spaces. 1470 space::BumpPointerSpace* bump_pointer_space_; 1471 // Temp space is the space which the semispace collector copies to. 1472 space::BumpPointerSpace* temp_space_; 1473 1474 // Region space, used by the concurrent collector. 1475 space::RegionSpace* region_space_; 1476 1477 // Minimum free guarantees that you always have at least min_free_ free bytes after growing for 1478 // utilization, regardless of target utilization ratio. 1479 const size_t min_free_; 1480 1481 // The ideal maximum free size, when we grow the heap for utilization. 1482 const size_t max_free_; 1483 1484 // Target ideal heap utilization ratio. 1485 double target_utilization_; 1486 1487 // How much more we grow the heap when we are a foreground app instead of background. 1488 double foreground_heap_growth_multiplier_; 1489 1490 // The amount of native memory allocation since the last GC required to cause us to wait for a 1491 // collection as a result of native allocation. Very large values can cause the device to run 1492 // out of memory, due to lack of finalization to reclaim native memory. Making it too small can 1493 // cause jank in apps like launcher that intentionally allocate large amounts of memory in rapid 1494 // succession. (b/122099093) 1/4 to 1/3 of physical memory seems to be a good number. 1495 const size_t stop_for_native_allocs_; 1496 1497 // Total time which mutators are paused or waiting for GC to complete. 1498 uint64_t total_wait_time_; 1499 1500 // The current state of heap verification, may be enabled or disabled. 1501 VerifyObjectMode verify_object_mode_; 1502 1503 // Compacting GC disable count, prevents compacting GC from running iff > 0. 1504 size_t disable_moving_gc_count_ GUARDED_BY(gc_complete_lock_); 1505 1506 std::vector<collector::GarbageCollector*> garbage_collectors_; 1507 collector::SemiSpace* semi_space_collector_; 1508 collector::ConcurrentCopying* active_concurrent_copying_collector_; 1509 collector::ConcurrentCopying* young_concurrent_copying_collector_; 1510 collector::ConcurrentCopying* concurrent_copying_collector_; 1511 1512 const bool is_running_on_memory_tool_; 1513 const bool use_tlab_; 1514 1515 // Pointer to the space which becomes the new main space when we do homogeneous space compaction. 1516 // Use unique_ptr since the space is only added during the homogeneous compaction phase. 1517 std::unique_ptr<space::MallocSpace> main_space_backup_; 1518 1519 // Minimal interval allowed between two homogeneous space compactions caused by OOM. 1520 uint64_t min_interval_homogeneous_space_compaction_by_oom_; 1521 1522 // Times of the last homogeneous space compaction caused by OOM. 1523 uint64_t last_time_homogeneous_space_compaction_by_oom_; 1524 1525 // Saved OOMs by homogeneous space compaction. 1526 Atomic<size_t> count_delayed_oom_; 1527 1528 // Count for requested homogeneous space compaction. 1529 Atomic<size_t> count_requested_homogeneous_space_compaction_; 1530 1531 // Count for ignored homogeneous space compaction. 1532 Atomic<size_t> count_ignored_homogeneous_space_compaction_; 1533 1534 // Count for performed homogeneous space compaction. 1535 Atomic<size_t> count_performed_homogeneous_space_compaction_; 1536 1537 // Whether or not a concurrent GC is pending. 1538 Atomic<bool> concurrent_gc_pending_; 1539 1540 // Active tasks which we can modify (change target time, desired collector type, etc..). 1541 CollectorTransitionTask* pending_collector_transition_ GUARDED_BY(pending_task_lock_); 1542 HeapTrimTask* pending_heap_trim_ GUARDED_BY(pending_task_lock_); 1543 1544 // Whether or not we use homogeneous space compaction to avoid OOM errors. 1545 bool use_homogeneous_space_compaction_for_oom_; 1546 1547 // If true, enable generational collection when using the Concurrent Copying 1548 // (CC) collector, i.e. use sticky-bit CC for minor collections and (full) CC 1549 // for major collections. Set in Heap constructor. 1550 const bool use_generational_cc_; 1551 1552 // True if the currently running collection has made some thread wait. 1553 bool running_collection_is_blocking_ GUARDED_BY(gc_complete_lock_); 1554 // The number of blocking GC runs. 1555 uint64_t blocking_gc_count_; 1556 // The total duration of blocking GC runs. 1557 uint64_t blocking_gc_time_; 1558 // The duration of the window for the GC count rate histograms. 1559 static constexpr uint64_t kGcCountRateHistogramWindowDuration = MsToNs(10 * 1000); // 10s. 1560 // Maximum number of missed histogram windows for which statistics will be collected. 1561 static constexpr uint64_t kGcCountRateHistogramMaxNumMissedWindows = 100; 1562 // The last time when the GC count rate histograms were updated. 1563 // This is rounded by kGcCountRateHistogramWindowDuration (a multiple of 10s). 1564 uint64_t last_update_time_gc_count_rate_histograms_; 1565 // The running count of GC runs in the last window. 1566 uint64_t gc_count_last_window_; 1567 // The running count of blocking GC runs in the last window. 1568 uint64_t blocking_gc_count_last_window_; 1569 // The maximum number of buckets in the GC count rate histograms. 1570 static constexpr size_t kGcCountRateMaxBucketCount = 200; 1571 // The histogram of the number of GC invocations per window duration. 1572 Histogram<uint64_t> gc_count_rate_histogram_ GUARDED_BY(gc_complete_lock_); 1573 // The histogram of the number of blocking GC invocations per window duration. 1574 Histogram<uint64_t> blocking_gc_count_rate_histogram_ GUARDED_BY(gc_complete_lock_); 1575 1576 // Allocation tracking support 1577 Atomic<bool> alloc_tracking_enabled_; 1578 std::unique_ptr<AllocRecordObjectMap> allocation_records_; 1579 size_t alloc_record_depth_; 1580 1581 // GC stress related data structures. 1582 Mutex* backtrace_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER; 1583 // Debugging variables, seen backtraces vs unique backtraces. 1584 Atomic<uint64_t> seen_backtrace_count_; 1585 Atomic<uint64_t> unique_backtrace_count_; 1586 // Stack trace hashes that we already saw, 1587 std::unordered_set<uint64_t> seen_backtraces_ GUARDED_BY(backtrace_lock_); 1588 1589 // We disable GC when we are shutting down the runtime in case there are daemon threads still 1590 // allocating. 1591 bool gc_disabled_for_shutdown_ GUARDED_BY(gc_complete_lock_); 1592 1593 // Turned on by -XX:DumpRegionInfoBeforeGC and -XX:DumpRegionInfoAfterGC to 1594 // emit region info before and after each GC cycle. 1595 bool dump_region_info_before_gc_; 1596 bool dump_region_info_after_gc_; 1597 1598 // Boot image spaces. 1599 std::vector<space::ImageSpace*> boot_image_spaces_; 1600 1601 // Boot image address range. Includes images and oat files. 1602 uint32_t boot_images_start_address_; 1603 uint32_t boot_images_size_; 1604 1605 // An installed allocation listener. 1606 Atomic<AllocationListener*> alloc_listener_; 1607 // An installed GC Pause listener. 1608 Atomic<GcPauseListener*> gc_pause_listener_; 1609 1610 std::unique_ptr<Verification> verification_; 1611 1612 friend class CollectorTransitionTask; 1613 friend class collector::GarbageCollector; 1614 friend class collector::ConcurrentCopying; 1615 friend class collector::MarkSweep; 1616 friend class collector::SemiSpace; 1617 friend class GCCriticalSection; 1618 friend class ReferenceQueue; 1619 friend class ScopedGCCriticalSection; 1620 friend class ScopedInterruptibleGCCriticalSection; 1621 friend class VerifyReferenceCardVisitor; 1622 friend class VerifyReferenceVisitor; 1623 friend class VerifyObjectVisitor; 1624 1625 DISALLOW_IMPLICIT_CONSTRUCTORS(Heap); 1626 }; 1627 1628 } // namespace gc 1629 } // namespace art 1630 1631 #endif // ART_RUNTIME_GC_HEAP_H_ 1632