1 /*
2  * Copyright (C) 2014 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef ART_COMPILER_OPTIMIZING_NODES_H_
18 #define ART_COMPILER_OPTIMIZING_NODES_H_
19 
20 #include <algorithm>
21 #include <array>
22 #include <type_traits>
23 
24 #include "base/arena_bit_vector.h"
25 #include "base/arena_containers.h"
26 #include "base/arena_object.h"
27 #include "base/array_ref.h"
28 #include "base/intrusive_forward_list.h"
29 #include "base/iteration_range.h"
30 #include "base/mutex.h"
31 #include "base/quasi_atomic.h"
32 #include "base/stl_util.h"
33 #include "base/transform_array_ref.h"
34 #include "art_method.h"
35 #include "data_type.h"
36 #include "deoptimization_kind.h"
37 #include "dex/dex_file.h"
38 #include "dex/dex_file_types.h"
39 #include "dex/invoke_type.h"
40 #include "dex/method_reference.h"
41 #include "entrypoints/quick/quick_entrypoints_enum.h"
42 #include "handle.h"
43 #include "handle_scope.h"
44 #include "intrinsics_enum.h"
45 #include "locations.h"
46 #include "mirror/class.h"
47 #include "mirror/method_type.h"
48 #include "offsets.h"
49 
50 namespace art {
51 
52 class ArenaStack;
53 class GraphChecker;
54 class HBasicBlock;
55 class HConstructorFence;
56 class HCurrentMethod;
57 class HDoubleConstant;
58 class HEnvironment;
59 class HFloatConstant;
60 class HGraphBuilder;
61 class HGraphVisitor;
62 class HInstruction;
63 class HIntConstant;
64 class HInvoke;
65 class HLongConstant;
66 class HNullConstant;
67 class HParameterValue;
68 class HPhi;
69 class HSuspendCheck;
70 class HTryBoundary;
71 class LiveInterval;
72 class LocationSummary;
73 class SlowPathCode;
74 class SsaBuilder;
75 
76 namespace mirror {
77 class DexCache;
78 }  // namespace mirror
79 
80 static const int kDefaultNumberOfBlocks = 8;
81 static const int kDefaultNumberOfSuccessors = 2;
82 static const int kDefaultNumberOfPredecessors = 2;
83 static const int kDefaultNumberOfExceptionalPredecessors = 0;
84 static const int kDefaultNumberOfDominatedBlocks = 1;
85 static const int kDefaultNumberOfBackEdges = 1;
86 
87 // The maximum (meaningful) distance (31) that can be used in an integer shift/rotate operation.
88 static constexpr int32_t kMaxIntShiftDistance = 0x1f;
89 // The maximum (meaningful) distance (63) that can be used in a long shift/rotate operation.
90 static constexpr int32_t kMaxLongShiftDistance = 0x3f;
91 
92 static constexpr uint32_t kUnknownFieldIndex = static_cast<uint32_t>(-1);
93 static constexpr uint16_t kUnknownClassDefIndex = static_cast<uint16_t>(-1);
94 
95 static constexpr InvokeType kInvalidInvokeType = static_cast<InvokeType>(-1);
96 
97 static constexpr uint32_t kNoDexPc = -1;
98 
IsSameDexFile(const DexFile & lhs,const DexFile & rhs)99 inline bool IsSameDexFile(const DexFile& lhs, const DexFile& rhs) {
100   // For the purposes of the compiler, the dex files must actually be the same object
101   // if we want to safely treat them as the same. This is especially important for JIT
102   // as custom class loaders can open the same underlying file (or memory) multiple
103   // times and provide different class resolution but no two class loaders should ever
104   // use the same DexFile object - doing so is an unsupported hack that can lead to
105   // all sorts of weird failures.
106   return &lhs == &rhs;
107 }
108 
109 enum IfCondition {
110   // All types.
111   kCondEQ,  // ==
112   kCondNE,  // !=
113   // Signed integers and floating-point numbers.
114   kCondLT,  // <
115   kCondLE,  // <=
116   kCondGT,  // >
117   kCondGE,  // >=
118   // Unsigned integers.
119   kCondB,   // <
120   kCondBE,  // <=
121   kCondA,   // >
122   kCondAE,  // >=
123   // First and last aliases.
124   kCondFirst = kCondEQ,
125   kCondLast = kCondAE,
126 };
127 
128 enum GraphAnalysisResult {
129   kAnalysisSkipped,
130   kAnalysisInvalidBytecode,
131   kAnalysisFailThrowCatchLoop,
132   kAnalysisFailAmbiguousArrayOp,
133   kAnalysisFailIrreducibleLoopAndStringInit,
134   kAnalysisFailPhiEquivalentInOsr,
135   kAnalysisSuccess,
136 };
137 
138 template <typename T>
MakeUnsigned(T x)139 static inline typename std::make_unsigned<T>::type MakeUnsigned(T x) {
140   return static_cast<typename std::make_unsigned<T>::type>(x);
141 }
142 
143 class HInstructionList : public ValueObject {
144  public:
HInstructionList()145   HInstructionList() : first_instruction_(nullptr), last_instruction_(nullptr) {}
146 
147   void AddInstruction(HInstruction* instruction);
148   void RemoveInstruction(HInstruction* instruction);
149 
150   // Insert `instruction` before/after an existing instruction `cursor`.
151   void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor);
152   void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor);
153 
154   // Return true if this list contains `instruction`.
155   bool Contains(HInstruction* instruction) const;
156 
157   // Return true if `instruction1` is found before `instruction2` in
158   // this instruction list and false otherwise.  Abort if none
159   // of these instructions is found.
160   bool FoundBefore(const HInstruction* instruction1,
161                    const HInstruction* instruction2) const;
162 
IsEmpty()163   bool IsEmpty() const { return first_instruction_ == nullptr; }
Clear()164   void Clear() { first_instruction_ = last_instruction_ = nullptr; }
165 
166   // Update the block of all instructions to be `block`.
167   void SetBlockOfInstructions(HBasicBlock* block) const;
168 
169   void AddAfter(HInstruction* cursor, const HInstructionList& instruction_list);
170   void AddBefore(HInstruction* cursor, const HInstructionList& instruction_list);
171   void Add(const HInstructionList& instruction_list);
172 
173   // Return the number of instructions in the list. This is an expensive operation.
174   size_t CountSize() const;
175 
176  private:
177   HInstruction* first_instruction_;
178   HInstruction* last_instruction_;
179 
180   friend class HBasicBlock;
181   friend class HGraph;
182   friend class HInstruction;
183   friend class HInstructionIterator;
184   friend class HInstructionIteratorHandleChanges;
185   friend class HBackwardInstructionIterator;
186 
187   DISALLOW_COPY_AND_ASSIGN(HInstructionList);
188 };
189 
190 class ReferenceTypeInfo : ValueObject {
191  public:
192   typedef Handle<mirror::Class> TypeHandle;
193 
194   static ReferenceTypeInfo Create(TypeHandle type_handle, bool is_exact);
195 
Create(TypeHandle type_handle)196   static ReferenceTypeInfo Create(TypeHandle type_handle) REQUIRES_SHARED(Locks::mutator_lock_) {
197     return Create(type_handle, type_handle->CannotBeAssignedFromOtherTypes());
198   }
199 
CreateUnchecked(TypeHandle type_handle,bool is_exact)200   static ReferenceTypeInfo CreateUnchecked(TypeHandle type_handle, bool is_exact) {
201     return ReferenceTypeInfo(type_handle, is_exact);
202   }
203 
CreateInvalid()204   static ReferenceTypeInfo CreateInvalid() { return ReferenceTypeInfo(); }
205 
IsValidHandle(TypeHandle handle)206   static bool IsValidHandle(TypeHandle handle) {
207     return handle.GetReference() != nullptr;
208   }
209 
IsValid()210   bool IsValid() const {
211     return IsValidHandle(type_handle_);
212   }
213 
IsExact()214   bool IsExact() const { return is_exact_; }
215 
IsObjectClass()216   bool IsObjectClass() const REQUIRES_SHARED(Locks::mutator_lock_) {
217     DCHECK(IsValid());
218     return GetTypeHandle()->IsObjectClass();
219   }
220 
IsStringClass()221   bool IsStringClass() const REQUIRES_SHARED(Locks::mutator_lock_) {
222     DCHECK(IsValid());
223     return GetTypeHandle()->IsStringClass();
224   }
225 
IsObjectArray()226   bool IsObjectArray() const REQUIRES_SHARED(Locks::mutator_lock_) {
227     DCHECK(IsValid());
228     return IsArrayClass() && GetTypeHandle()->GetComponentType()->IsObjectClass();
229   }
230 
IsInterface()231   bool IsInterface() const REQUIRES_SHARED(Locks::mutator_lock_) {
232     DCHECK(IsValid());
233     return GetTypeHandle()->IsInterface();
234   }
235 
IsArrayClass()236   bool IsArrayClass() const REQUIRES_SHARED(Locks::mutator_lock_) {
237     DCHECK(IsValid());
238     return GetTypeHandle()->IsArrayClass();
239   }
240 
IsPrimitiveArrayClass()241   bool IsPrimitiveArrayClass() const REQUIRES_SHARED(Locks::mutator_lock_) {
242     DCHECK(IsValid());
243     return GetTypeHandle()->IsPrimitiveArray();
244   }
245 
IsNonPrimitiveArrayClass()246   bool IsNonPrimitiveArrayClass() const REQUIRES_SHARED(Locks::mutator_lock_) {
247     DCHECK(IsValid());
248     return GetTypeHandle()->IsArrayClass() && !GetTypeHandle()->IsPrimitiveArray();
249   }
250 
CanArrayHold(ReferenceTypeInfo rti)251   bool CanArrayHold(ReferenceTypeInfo rti)  const REQUIRES_SHARED(Locks::mutator_lock_) {
252     DCHECK(IsValid());
253     if (!IsExact()) return false;
254     if (!IsArrayClass()) return false;
255     return GetTypeHandle()->GetComponentType()->IsAssignableFrom(rti.GetTypeHandle().Get());
256   }
257 
CanArrayHoldValuesOf(ReferenceTypeInfo rti)258   bool CanArrayHoldValuesOf(ReferenceTypeInfo rti)  const REQUIRES_SHARED(Locks::mutator_lock_) {
259     DCHECK(IsValid());
260     if (!IsExact()) return false;
261     if (!IsArrayClass()) return false;
262     if (!rti.IsArrayClass()) return false;
263     return GetTypeHandle()->GetComponentType()->IsAssignableFrom(
264         rti.GetTypeHandle()->GetComponentType());
265   }
266 
GetTypeHandle()267   Handle<mirror::Class> GetTypeHandle() const { return type_handle_; }
268 
IsSupertypeOf(ReferenceTypeInfo rti)269   bool IsSupertypeOf(ReferenceTypeInfo rti) const REQUIRES_SHARED(Locks::mutator_lock_) {
270     DCHECK(IsValid());
271     DCHECK(rti.IsValid());
272     return GetTypeHandle()->IsAssignableFrom(rti.GetTypeHandle().Get());
273   }
274 
IsStrictSupertypeOf(ReferenceTypeInfo rti)275   bool IsStrictSupertypeOf(ReferenceTypeInfo rti) const REQUIRES_SHARED(Locks::mutator_lock_) {
276     DCHECK(IsValid());
277     DCHECK(rti.IsValid());
278     return GetTypeHandle().Get() != rti.GetTypeHandle().Get() &&
279         GetTypeHandle()->IsAssignableFrom(rti.GetTypeHandle().Get());
280   }
281 
282   // Returns true if the type information provide the same amount of details.
283   // Note that it does not mean that the instructions have the same actual type
284   // (because the type can be the result of a merge).
IsEqual(ReferenceTypeInfo rti)285   bool IsEqual(ReferenceTypeInfo rti) const REQUIRES_SHARED(Locks::mutator_lock_) {
286     if (!IsValid() && !rti.IsValid()) {
287       // Invalid types are equal.
288       return true;
289     }
290     if (!IsValid() || !rti.IsValid()) {
291       // One is valid, the other not.
292       return false;
293     }
294     return IsExact() == rti.IsExact()
295         && GetTypeHandle().Get() == rti.GetTypeHandle().Get();
296   }
297 
298  private:
ReferenceTypeInfo()299   ReferenceTypeInfo() : type_handle_(TypeHandle()), is_exact_(false) {}
ReferenceTypeInfo(TypeHandle type_handle,bool is_exact)300   ReferenceTypeInfo(TypeHandle type_handle, bool is_exact)
301       : type_handle_(type_handle), is_exact_(is_exact) { }
302 
303   // The class of the object.
304   TypeHandle type_handle_;
305   // Whether or not the type is exact or a superclass of the actual type.
306   // Whether or not we have any information about this type.
307   bool is_exact_;
308 };
309 
310 std::ostream& operator<<(std::ostream& os, const ReferenceTypeInfo& rhs);
311 
312 // Control-flow graph of a method. Contains a list of basic blocks.
313 class HGraph : public ArenaObject<kArenaAllocGraph> {
314  public:
315   HGraph(ArenaAllocator* allocator,
316          ArenaStack* arena_stack,
317          const DexFile& dex_file,
318          uint32_t method_idx,
319          InstructionSet instruction_set,
320          InvokeType invoke_type = kInvalidInvokeType,
321          bool dead_reference_safe = false,
322          bool debuggable = false,
323          bool osr = false,
324          bool is_shared_jit_code = false,
325          bool baseline = false,
326          int start_instruction_id = 0)
allocator_(allocator)327       : allocator_(allocator),
328         arena_stack_(arena_stack),
329         blocks_(allocator->Adapter(kArenaAllocBlockList)),
330         reverse_post_order_(allocator->Adapter(kArenaAllocReversePostOrder)),
331         linear_order_(allocator->Adapter(kArenaAllocLinearOrder)),
332         entry_block_(nullptr),
333         exit_block_(nullptr),
334         maximum_number_of_out_vregs_(0),
335         number_of_vregs_(0),
336         number_of_in_vregs_(0),
337         temporaries_vreg_slots_(0),
338         has_bounds_checks_(false),
339         has_try_catch_(false),
340         has_monitor_operations_(false),
341         has_simd_(false),
342         has_loops_(false),
343         has_irreducible_loops_(false),
344         dead_reference_safe_(dead_reference_safe),
345         debuggable_(debuggable),
346         current_instruction_id_(start_instruction_id),
347         dex_file_(dex_file),
348         method_idx_(method_idx),
349         invoke_type_(invoke_type),
350         in_ssa_form_(false),
351         number_of_cha_guards_(0),
352         instruction_set_(instruction_set),
353         cached_null_constant_(nullptr),
354         cached_int_constants_(std::less<int32_t>(), allocator->Adapter(kArenaAllocConstantsMap)),
355         cached_float_constants_(std::less<int32_t>(), allocator->Adapter(kArenaAllocConstantsMap)),
356         cached_long_constants_(std::less<int64_t>(), allocator->Adapter(kArenaAllocConstantsMap)),
357         cached_double_constants_(std::less<int64_t>(), allocator->Adapter(kArenaAllocConstantsMap)),
358         cached_current_method_(nullptr),
359         art_method_(nullptr),
360         inexact_object_rti_(ReferenceTypeInfo::CreateInvalid()),
361         osr_(osr),
362         baseline_(baseline),
363         cha_single_implementation_list_(allocator->Adapter(kArenaAllocCHA)),
364         is_shared_jit_code_(is_shared_jit_code) {
365     blocks_.reserve(kDefaultNumberOfBlocks);
366   }
367 
368   // Acquires and stores RTI of inexact Object to be used when creating HNullConstant.
369   void InitializeInexactObjectRTI(VariableSizedHandleScope* handles);
370 
GetAllocator()371   ArenaAllocator* GetAllocator() const { return allocator_; }
GetArenaStack()372   ArenaStack* GetArenaStack() const { return arena_stack_; }
GetBlocks()373   const ArenaVector<HBasicBlock*>& GetBlocks() const { return blocks_; }
374 
IsInSsaForm()375   bool IsInSsaForm() const { return in_ssa_form_; }
SetInSsaForm()376   void SetInSsaForm() { in_ssa_form_ = true; }
377 
GetEntryBlock()378   HBasicBlock* GetEntryBlock() const { return entry_block_; }
GetExitBlock()379   HBasicBlock* GetExitBlock() const { return exit_block_; }
HasExitBlock()380   bool HasExitBlock() const { return exit_block_ != nullptr; }
381 
SetEntryBlock(HBasicBlock * block)382   void SetEntryBlock(HBasicBlock* block) { entry_block_ = block; }
SetExitBlock(HBasicBlock * block)383   void SetExitBlock(HBasicBlock* block) { exit_block_ = block; }
384 
385   void AddBlock(HBasicBlock* block);
386 
387   void ComputeDominanceInformation();
388   void ClearDominanceInformation();
389   void ClearLoopInformation();
390   void FindBackEdges(ArenaBitVector* visited);
391   GraphAnalysisResult BuildDominatorTree();
392   void SimplifyCFG();
393   void SimplifyCatchBlocks();
394 
395   // Analyze all natural loops in this graph. Returns a code specifying that it
396   // was successful or the reason for failure. The method will fail if a loop
397   // is a throw-catch loop, i.e. the header is a catch block.
398   GraphAnalysisResult AnalyzeLoops() const;
399 
400   // Iterate over blocks to compute try block membership. Needs reverse post
401   // order and loop information.
402   void ComputeTryBlockInformation();
403 
404   // Inline this graph in `outer_graph`, replacing the given `invoke` instruction.
405   // Returns the instruction to replace the invoke expression or null if the
406   // invoke is for a void method. Note that the caller is responsible for replacing
407   // and removing the invoke instruction.
408   HInstruction* InlineInto(HGraph* outer_graph, HInvoke* invoke);
409 
410   // Update the loop and try membership of `block`, which was spawned from `reference`.
411   // In case `reference` is a back edge, `replace_if_back_edge` notifies whether `block`
412   // should be the new back edge.
413   void UpdateLoopAndTryInformationOfNewBlock(HBasicBlock* block,
414                                              HBasicBlock* reference,
415                                              bool replace_if_back_edge);
416 
417   // Need to add a couple of blocks to test if the loop body is entered and
418   // put deoptimization instructions, etc.
419   void TransformLoopHeaderForBCE(HBasicBlock* header);
420 
421   // Adds a new loop directly after the loop with the given header and exit.
422   // Returns the new preheader.
423   HBasicBlock* TransformLoopForVectorization(HBasicBlock* header,
424                                              HBasicBlock* body,
425                                              HBasicBlock* exit);
426 
427   // Removes `block` from the graph. Assumes `block` has been disconnected from
428   // other blocks and has no instructions or phis.
429   void DeleteDeadEmptyBlock(HBasicBlock* block);
430 
431   // Splits the edge between `block` and `successor` while preserving the
432   // indices in the predecessor/successor lists. If there are multiple edges
433   // between the blocks, the lowest indices are used.
434   // Returns the new block which is empty and has the same dex pc as `successor`.
435   HBasicBlock* SplitEdge(HBasicBlock* block, HBasicBlock* successor);
436 
437   void SplitCriticalEdge(HBasicBlock* block, HBasicBlock* successor);
438   void OrderLoopHeaderPredecessors(HBasicBlock* header);
439 
440   // Transform a loop into a format with a single preheader.
441   //
442   // Each phi in the header should be split: original one in the header should only hold
443   // inputs reachable from the back edges and a single input from the preheader. The newly created
444   // phi in the preheader should collate the inputs from the original multiple incoming blocks.
445   //
446   // Loops in the graph typically have a single preheader, so this method is used to "repair" loops
447   // that no longer have this property.
448   void TransformLoopToSinglePreheaderFormat(HBasicBlock* header);
449 
450   void SimplifyLoop(HBasicBlock* header);
451 
GetNextInstructionId()452   int32_t GetNextInstructionId() {
453     CHECK_NE(current_instruction_id_, INT32_MAX);
454     return current_instruction_id_++;
455   }
456 
GetCurrentInstructionId()457   int32_t GetCurrentInstructionId() const {
458     return current_instruction_id_;
459   }
460 
SetCurrentInstructionId(int32_t id)461   void SetCurrentInstructionId(int32_t id) {
462     CHECK_GE(id, current_instruction_id_);
463     current_instruction_id_ = id;
464   }
465 
GetMaximumNumberOfOutVRegs()466   uint16_t GetMaximumNumberOfOutVRegs() const {
467     return maximum_number_of_out_vregs_;
468   }
469 
SetMaximumNumberOfOutVRegs(uint16_t new_value)470   void SetMaximumNumberOfOutVRegs(uint16_t new_value) {
471     maximum_number_of_out_vregs_ = new_value;
472   }
473 
UpdateMaximumNumberOfOutVRegs(uint16_t other_value)474   void UpdateMaximumNumberOfOutVRegs(uint16_t other_value) {
475     maximum_number_of_out_vregs_ = std::max(maximum_number_of_out_vregs_, other_value);
476   }
477 
UpdateTemporariesVRegSlots(size_t slots)478   void UpdateTemporariesVRegSlots(size_t slots) {
479     temporaries_vreg_slots_ = std::max(slots, temporaries_vreg_slots_);
480   }
481 
GetTemporariesVRegSlots()482   size_t GetTemporariesVRegSlots() const {
483     DCHECK(!in_ssa_form_);
484     return temporaries_vreg_slots_;
485   }
486 
SetNumberOfVRegs(uint16_t number_of_vregs)487   void SetNumberOfVRegs(uint16_t number_of_vregs) {
488     number_of_vregs_ = number_of_vregs;
489   }
490 
GetNumberOfVRegs()491   uint16_t GetNumberOfVRegs() const {
492     return number_of_vregs_;
493   }
494 
SetNumberOfInVRegs(uint16_t value)495   void SetNumberOfInVRegs(uint16_t value) {
496     number_of_in_vregs_ = value;
497   }
498 
GetNumberOfInVRegs()499   uint16_t GetNumberOfInVRegs() const {
500     return number_of_in_vregs_;
501   }
502 
GetNumberOfLocalVRegs()503   uint16_t GetNumberOfLocalVRegs() const {
504     DCHECK(!in_ssa_form_);
505     return number_of_vregs_ - number_of_in_vregs_;
506   }
507 
GetReversePostOrder()508   const ArenaVector<HBasicBlock*>& GetReversePostOrder() const {
509     return reverse_post_order_;
510   }
511 
GetReversePostOrderSkipEntryBlock()512   ArrayRef<HBasicBlock* const> GetReversePostOrderSkipEntryBlock() const {
513     DCHECK(GetReversePostOrder()[0] == entry_block_);
514     return ArrayRef<HBasicBlock* const>(GetReversePostOrder()).SubArray(1);
515   }
516 
GetPostOrder()517   IterationRange<ArenaVector<HBasicBlock*>::const_reverse_iterator> GetPostOrder() const {
518     return ReverseRange(GetReversePostOrder());
519   }
520 
GetLinearOrder()521   const ArenaVector<HBasicBlock*>& GetLinearOrder() const {
522     return linear_order_;
523   }
524 
GetLinearPostOrder()525   IterationRange<ArenaVector<HBasicBlock*>::const_reverse_iterator> GetLinearPostOrder() const {
526     return ReverseRange(GetLinearOrder());
527   }
528 
HasBoundsChecks()529   bool HasBoundsChecks() const {
530     return has_bounds_checks_;
531   }
532 
SetHasBoundsChecks(bool value)533   void SetHasBoundsChecks(bool value) {
534     has_bounds_checks_ = value;
535   }
536 
537   // Is the code known to be robust against eliminating dead references
538   // and the effects of early finalization?
IsDeadReferenceSafe()539   bool IsDeadReferenceSafe() const { return dead_reference_safe_; }
540 
MarkDeadReferenceUnsafe()541   void MarkDeadReferenceUnsafe() { dead_reference_safe_ = false; }
542 
IsDebuggable()543   bool IsDebuggable() const { return debuggable_; }
544 
545   // Returns a constant of the given type and value. If it does not exist
546   // already, it is created and inserted into the graph. This method is only for
547   // integral types.
548   HConstant* GetConstant(DataType::Type type, int64_t value, uint32_t dex_pc = kNoDexPc);
549 
550   // TODO: This is problematic for the consistency of reference type propagation
551   // because it can be created anytime after the pass and thus it will be left
552   // with an invalid type.
553   HNullConstant* GetNullConstant(uint32_t dex_pc = kNoDexPc);
554 
555   HIntConstant* GetIntConstant(int32_t value, uint32_t dex_pc = kNoDexPc) {
556     return CreateConstant(value, &cached_int_constants_, dex_pc);
557   }
558   HLongConstant* GetLongConstant(int64_t value, uint32_t dex_pc = kNoDexPc) {
559     return CreateConstant(value, &cached_long_constants_, dex_pc);
560   }
561   HFloatConstant* GetFloatConstant(float value, uint32_t dex_pc = kNoDexPc) {
562     return CreateConstant(bit_cast<int32_t, float>(value), &cached_float_constants_, dex_pc);
563   }
564   HDoubleConstant* GetDoubleConstant(double value, uint32_t dex_pc = kNoDexPc) {
565     return CreateConstant(bit_cast<int64_t, double>(value), &cached_double_constants_, dex_pc);
566   }
567 
568   HCurrentMethod* GetCurrentMethod();
569 
GetDexFile()570   const DexFile& GetDexFile() const {
571     return dex_file_;
572   }
573 
GetMethodIdx()574   uint32_t GetMethodIdx() const {
575     return method_idx_;
576   }
577 
578   // Get the method name (without the signature), e.g. "<init>"
579   const char* GetMethodName() const;
580 
581   // Get the pretty method name (class + name + optionally signature).
582   std::string PrettyMethod(bool with_signature = true) const;
583 
GetInvokeType()584   InvokeType GetInvokeType() const {
585     return invoke_type_;
586   }
587 
GetInstructionSet()588   InstructionSet GetInstructionSet() const {
589     return instruction_set_;
590   }
591 
IsCompilingOsr()592   bool IsCompilingOsr() const { return osr_; }
593 
IsCompilingBaseline()594   bool IsCompilingBaseline() const { return baseline_; }
595 
IsCompilingForSharedJitCode()596   bool IsCompilingForSharedJitCode() const {
597     return is_shared_jit_code_;
598   }
599 
GetCHASingleImplementationList()600   ArenaSet<ArtMethod*>& GetCHASingleImplementationList() {
601     return cha_single_implementation_list_;
602   }
603 
AddCHASingleImplementationDependency(ArtMethod * method)604   void AddCHASingleImplementationDependency(ArtMethod* method) {
605     cha_single_implementation_list_.insert(method);
606   }
607 
HasShouldDeoptimizeFlag()608   bool HasShouldDeoptimizeFlag() const {
609     return number_of_cha_guards_ != 0;
610   }
611 
HasTryCatch()612   bool HasTryCatch() const { return has_try_catch_; }
SetHasTryCatch(bool value)613   void SetHasTryCatch(bool value) { has_try_catch_ = value; }
614 
HasMonitorOperations()615   bool HasMonitorOperations() const { return has_monitor_operations_; }
SetHasMonitorOperations(bool value)616   void SetHasMonitorOperations(bool value) { has_monitor_operations_ = value; }
617 
HasSIMD()618   bool HasSIMD() const { return has_simd_; }
SetHasSIMD(bool value)619   void SetHasSIMD(bool value) { has_simd_ = value; }
620 
HasLoops()621   bool HasLoops() const { return has_loops_; }
SetHasLoops(bool value)622   void SetHasLoops(bool value) { has_loops_ = value; }
623 
HasIrreducibleLoops()624   bool HasIrreducibleLoops() const { return has_irreducible_loops_; }
SetHasIrreducibleLoops(bool value)625   void SetHasIrreducibleLoops(bool value) { has_irreducible_loops_ = value; }
626 
GetArtMethod()627   ArtMethod* GetArtMethod() const { return art_method_; }
SetArtMethod(ArtMethod * method)628   void SetArtMethod(ArtMethod* method) { art_method_ = method; }
629 
630   // Returns an instruction with the opposite Boolean value from 'cond'.
631   // The instruction has been inserted into the graph, either as a constant, or
632   // before cursor.
633   HInstruction* InsertOppositeCondition(HInstruction* cond, HInstruction* cursor);
634 
GetInexactObjectRti()635   ReferenceTypeInfo GetInexactObjectRti() const { return inexact_object_rti_; }
636 
GetNumberOfCHAGuards()637   uint32_t GetNumberOfCHAGuards() { return number_of_cha_guards_; }
SetNumberOfCHAGuards(uint32_t num)638   void SetNumberOfCHAGuards(uint32_t num) { number_of_cha_guards_ = num; }
IncrementNumberOfCHAGuards()639   void IncrementNumberOfCHAGuards() { number_of_cha_guards_++; }
640 
641  private:
642   void RemoveInstructionsAsUsersFromDeadBlocks(const ArenaBitVector& visited) const;
643   void RemoveDeadBlocks(const ArenaBitVector& visited);
644 
645   template <class InstructionType, typename ValueType>
646   InstructionType* CreateConstant(ValueType value,
647                                   ArenaSafeMap<ValueType, InstructionType*>* cache,
648                                   uint32_t dex_pc = kNoDexPc) {
649     // Try to find an existing constant of the given value.
650     InstructionType* constant = nullptr;
651     auto cached_constant = cache->find(value);
652     if (cached_constant != cache->end()) {
653       constant = cached_constant->second;
654     }
655 
656     // If not found or previously deleted, create and cache a new instruction.
657     // Don't bother reviving a previously deleted instruction, for simplicity.
658     if (constant == nullptr || constant->GetBlock() == nullptr) {
659       constant = new (allocator_) InstructionType(value, dex_pc);
660       cache->Overwrite(value, constant);
661       InsertConstant(constant);
662     }
663     return constant;
664   }
665 
666   void InsertConstant(HConstant* instruction);
667 
668   // Cache a float constant into the graph. This method should only be
669   // called by the SsaBuilder when creating "equivalent" instructions.
670   void CacheFloatConstant(HFloatConstant* constant);
671 
672   // See CacheFloatConstant comment.
673   void CacheDoubleConstant(HDoubleConstant* constant);
674 
675   ArenaAllocator* const allocator_;
676   ArenaStack* const arena_stack_;
677 
678   // List of blocks in insertion order.
679   ArenaVector<HBasicBlock*> blocks_;
680 
681   // List of blocks to perform a reverse post order tree traversal.
682   ArenaVector<HBasicBlock*> reverse_post_order_;
683 
684   // List of blocks to perform a linear order tree traversal. Unlike the reverse
685   // post order, this order is not incrementally kept up-to-date.
686   ArenaVector<HBasicBlock*> linear_order_;
687 
688   HBasicBlock* entry_block_;
689   HBasicBlock* exit_block_;
690 
691   // The maximum number of virtual registers arguments passed to a HInvoke in this graph.
692   uint16_t maximum_number_of_out_vregs_;
693 
694   // The number of virtual registers in this method. Contains the parameters.
695   uint16_t number_of_vregs_;
696 
697   // The number of virtual registers used by parameters of this method.
698   uint16_t number_of_in_vregs_;
699 
700   // Number of vreg size slots that the temporaries use (used in baseline compiler).
701   size_t temporaries_vreg_slots_;
702 
703   // Flag whether there are bounds checks in the graph. We can skip
704   // BCE if it's false. It's only best effort to keep it up to date in
705   // the presence of code elimination so there might be false positives.
706   bool has_bounds_checks_;
707 
708   // Flag whether there are try/catch blocks in the graph. We will skip
709   // try/catch-related passes if it's false. It's only best effort to keep
710   // it up to date in the presence of code elimination so there might be
711   // false positives.
712   bool has_try_catch_;
713 
714   // Flag whether there are any HMonitorOperation in the graph. If yes this will mandate
715   // DexRegisterMap to be present to allow deadlock analysis for non-debuggable code.
716   bool has_monitor_operations_;
717 
718   // Flag whether SIMD instructions appear in the graph. If true, the
719   // code generators may have to be more careful spilling the wider
720   // contents of SIMD registers.
721   bool has_simd_;
722 
723   // Flag whether there are any loops in the graph. We can skip loop
724   // optimization if it's false. It's only best effort to keep it up
725   // to date in the presence of code elimination so there might be false
726   // positives.
727   bool has_loops_;
728 
729   // Flag whether there are any irreducible loops in the graph. It's only
730   // best effort to keep it up to date in the presence of code elimination
731   // so there might be false positives.
732   bool has_irreducible_loops_;
733 
734   // Is the code known to be robust against eliminating dead references
735   // and the effects of early finalization? If false, dead reference variables
736   // are kept if they might be visible to the garbage collector.
737   // Currently this means that the class was declared to be dead-reference-safe,
738   // the method accesses no reachability-sensitive fields or data, and the same
739   // is true for any methods that were inlined into the current one.
740   bool dead_reference_safe_;
741 
742   // Indicates whether the graph should be compiled in a way that
743   // ensures full debuggability. If false, we can apply more
744   // aggressive optimizations that may limit the level of debugging.
745   const bool debuggable_;
746 
747   // The current id to assign to a newly added instruction. See HInstruction.id_.
748   int32_t current_instruction_id_;
749 
750   // The dex file from which the method is from.
751   const DexFile& dex_file_;
752 
753   // The method index in the dex file.
754   const uint32_t method_idx_;
755 
756   // If inlined, this encodes how the callee is being invoked.
757   const InvokeType invoke_type_;
758 
759   // Whether the graph has been transformed to SSA form. Only used
760   // in debug mode to ensure we are not using properties only valid
761   // for non-SSA form (like the number of temporaries).
762   bool in_ssa_form_;
763 
764   // Number of CHA guards in the graph. Used to short-circuit the
765   // CHA guard optimization pass when there is no CHA guard left.
766   uint32_t number_of_cha_guards_;
767 
768   const InstructionSet instruction_set_;
769 
770   // Cached constants.
771   HNullConstant* cached_null_constant_;
772   ArenaSafeMap<int32_t, HIntConstant*> cached_int_constants_;
773   ArenaSafeMap<int32_t, HFloatConstant*> cached_float_constants_;
774   ArenaSafeMap<int64_t, HLongConstant*> cached_long_constants_;
775   ArenaSafeMap<int64_t, HDoubleConstant*> cached_double_constants_;
776 
777   HCurrentMethod* cached_current_method_;
778 
779   // The ArtMethod this graph is for. Note that for AOT, it may be null,
780   // for example for methods whose declaring class could not be resolved
781   // (such as when the superclass could not be found).
782   ArtMethod* art_method_;
783 
784   // Keep the RTI of inexact Object to avoid having to pass stack handle
785   // collection pointer to passes which may create NullConstant.
786   ReferenceTypeInfo inexact_object_rti_;
787 
788   // Whether we are compiling this graph for on stack replacement: this will
789   // make all loops seen as irreducible and emit special stack maps to mark
790   // compiled code entries which the interpreter can directly jump to.
791   const bool osr_;
792 
793   // Whether we are compiling baseline (not running optimizations). This affects
794   // the code being generated.
795   const bool baseline_;
796 
797   // List of methods that are assumed to have single implementation.
798   ArenaSet<ArtMethod*> cha_single_implementation_list_;
799 
800   // Whether we are JIT compiling in the shared region area, putting
801   // restrictions on, for example, how literals are being generated.
802   bool is_shared_jit_code_;
803 
804   friend class SsaBuilder;           // For caching constants.
805   friend class SsaLivenessAnalysis;  // For the linear order.
806   friend class HInliner;             // For the reverse post order.
807   ART_FRIEND_TEST(GraphTest, IfSuccessorSimpleJoinBlock1);
808   DISALLOW_COPY_AND_ASSIGN(HGraph);
809 };
810 
811 class HLoopInformation : public ArenaObject<kArenaAllocLoopInfo> {
812  public:
HLoopInformation(HBasicBlock * header,HGraph * graph)813   HLoopInformation(HBasicBlock* header, HGraph* graph)
814       : header_(header),
815         suspend_check_(nullptr),
816         irreducible_(false),
817         contains_irreducible_loop_(false),
818         back_edges_(graph->GetAllocator()->Adapter(kArenaAllocLoopInfoBackEdges)),
819         // Make bit vector growable, as the number of blocks may change.
820         blocks_(graph->GetAllocator(),
821                 graph->GetBlocks().size(),
822                 true,
823                 kArenaAllocLoopInfoBackEdges) {
824     back_edges_.reserve(kDefaultNumberOfBackEdges);
825   }
826 
IsIrreducible()827   bool IsIrreducible() const { return irreducible_; }
ContainsIrreducibleLoop()828   bool ContainsIrreducibleLoop() const { return contains_irreducible_loop_; }
829 
830   void Dump(std::ostream& os);
831 
GetHeader()832   HBasicBlock* GetHeader() const {
833     return header_;
834   }
835 
SetHeader(HBasicBlock * block)836   void SetHeader(HBasicBlock* block) {
837     header_ = block;
838   }
839 
GetSuspendCheck()840   HSuspendCheck* GetSuspendCheck() const { return suspend_check_; }
SetSuspendCheck(HSuspendCheck * check)841   void SetSuspendCheck(HSuspendCheck* check) { suspend_check_ = check; }
HasSuspendCheck()842   bool HasSuspendCheck() const { return suspend_check_ != nullptr; }
843 
AddBackEdge(HBasicBlock * back_edge)844   void AddBackEdge(HBasicBlock* back_edge) {
845     back_edges_.push_back(back_edge);
846   }
847 
RemoveBackEdge(HBasicBlock * back_edge)848   void RemoveBackEdge(HBasicBlock* back_edge) {
849     RemoveElement(back_edges_, back_edge);
850   }
851 
IsBackEdge(const HBasicBlock & block)852   bool IsBackEdge(const HBasicBlock& block) const {
853     return ContainsElement(back_edges_, &block);
854   }
855 
NumberOfBackEdges()856   size_t NumberOfBackEdges() const {
857     return back_edges_.size();
858   }
859 
860   HBasicBlock* GetPreHeader() const;
861 
GetBackEdges()862   const ArenaVector<HBasicBlock*>& GetBackEdges() const {
863     return back_edges_;
864   }
865 
866   // Returns the lifetime position of the back edge that has the
867   // greatest lifetime position.
868   size_t GetLifetimeEnd() const;
869 
ReplaceBackEdge(HBasicBlock * existing,HBasicBlock * new_back_edge)870   void ReplaceBackEdge(HBasicBlock* existing, HBasicBlock* new_back_edge) {
871     ReplaceElement(back_edges_, existing, new_back_edge);
872   }
873 
874   // Finds blocks that are part of this loop.
875   void Populate();
876 
877   // Updates blocks population of the loop and all of its outer' ones recursively after the
878   // population of the inner loop is updated.
879   void PopulateInnerLoopUpwards(HLoopInformation* inner_loop);
880 
881   // Returns whether this loop information contains `block`.
882   // Note that this loop information *must* be populated before entering this function.
883   bool Contains(const HBasicBlock& block) const;
884 
885   // Returns whether this loop information is an inner loop of `other`.
886   // Note that `other` *must* be populated before entering this function.
887   bool IsIn(const HLoopInformation& other) const;
888 
889   // Returns true if instruction is not defined within this loop.
890   bool IsDefinedOutOfTheLoop(HInstruction* instruction) const;
891 
GetBlocks()892   const ArenaBitVector& GetBlocks() const { return blocks_; }
893 
894   void Add(HBasicBlock* block);
895   void Remove(HBasicBlock* block);
896 
ClearAllBlocks()897   void ClearAllBlocks() {
898     blocks_.ClearAllBits();
899   }
900 
901   bool HasBackEdgeNotDominatedByHeader() const;
902 
IsPopulated()903   bool IsPopulated() const {
904     return blocks_.GetHighestBitSet() != -1;
905   }
906 
907   bool DominatesAllBackEdges(HBasicBlock* block);
908 
909   bool HasExitEdge() const;
910 
911   // Resets back edge and blocks-in-loop data.
ResetBasicBlockData()912   void ResetBasicBlockData() {
913     back_edges_.clear();
914     ClearAllBlocks();
915   }
916 
917  private:
918   // Internal recursive implementation of `Populate`.
919   void PopulateRecursive(HBasicBlock* block);
920   void PopulateIrreducibleRecursive(HBasicBlock* block, ArenaBitVector* finalized);
921 
922   HBasicBlock* header_;
923   HSuspendCheck* suspend_check_;
924   bool irreducible_;
925   bool contains_irreducible_loop_;
926   ArenaVector<HBasicBlock*> back_edges_;
927   ArenaBitVector blocks_;
928 
929   DISALLOW_COPY_AND_ASSIGN(HLoopInformation);
930 };
931 
932 // Stores try/catch information for basic blocks.
933 // Note that HGraph is constructed so that catch blocks cannot simultaneously
934 // be try blocks.
935 class TryCatchInformation : public ArenaObject<kArenaAllocTryCatchInfo> {
936  public:
937   // Try block information constructor.
TryCatchInformation(const HTryBoundary & try_entry)938   explicit TryCatchInformation(const HTryBoundary& try_entry)
939       : try_entry_(&try_entry),
940         catch_dex_file_(nullptr),
941         catch_type_index_(dex::TypeIndex::Invalid()) {
942     DCHECK(try_entry_ != nullptr);
943   }
944 
945   // Catch block information constructor.
TryCatchInformation(dex::TypeIndex catch_type_index,const DexFile & dex_file)946   TryCatchInformation(dex::TypeIndex catch_type_index, const DexFile& dex_file)
947       : try_entry_(nullptr),
948         catch_dex_file_(&dex_file),
949         catch_type_index_(catch_type_index) {}
950 
IsTryBlock()951   bool IsTryBlock() const { return try_entry_ != nullptr; }
952 
GetTryEntry()953   const HTryBoundary& GetTryEntry() const {
954     DCHECK(IsTryBlock());
955     return *try_entry_;
956   }
957 
IsCatchBlock()958   bool IsCatchBlock() const { return catch_dex_file_ != nullptr; }
959 
IsValidTypeIndex()960   bool IsValidTypeIndex() const {
961     DCHECK(IsCatchBlock());
962     return catch_type_index_.IsValid();
963   }
964 
GetCatchTypeIndex()965   dex::TypeIndex GetCatchTypeIndex() const {
966     DCHECK(IsCatchBlock());
967     return catch_type_index_;
968   }
969 
GetCatchDexFile()970   const DexFile& GetCatchDexFile() const {
971     DCHECK(IsCatchBlock());
972     return *catch_dex_file_;
973   }
974 
SetInvalidTypeIndex()975   void SetInvalidTypeIndex() {
976     catch_type_index_ = dex::TypeIndex::Invalid();
977   }
978 
979  private:
980   // One of possibly several TryBoundary instructions entering the block's try.
981   // Only set for try blocks.
982   const HTryBoundary* try_entry_;
983 
984   // Exception type information. Only set for catch blocks.
985   const DexFile* catch_dex_file_;
986   dex::TypeIndex catch_type_index_;
987 };
988 
989 static constexpr size_t kNoLifetime = -1;
990 static constexpr uint32_t kInvalidBlockId = static_cast<uint32_t>(-1);
991 
992 // A block in a method. Contains the list of instructions represented
993 // as a double linked list. Each block knows its predecessors and
994 // successors.
995 
996 class HBasicBlock : public ArenaObject<kArenaAllocBasicBlock> {
997  public:
998   explicit HBasicBlock(HGraph* graph, uint32_t dex_pc = kNoDexPc)
graph_(graph)999       : graph_(graph),
1000         predecessors_(graph->GetAllocator()->Adapter(kArenaAllocPredecessors)),
1001         successors_(graph->GetAllocator()->Adapter(kArenaAllocSuccessors)),
1002         loop_information_(nullptr),
1003         dominator_(nullptr),
1004         dominated_blocks_(graph->GetAllocator()->Adapter(kArenaAllocDominated)),
1005         block_id_(kInvalidBlockId),
1006         dex_pc_(dex_pc),
1007         lifetime_start_(kNoLifetime),
1008         lifetime_end_(kNoLifetime),
1009         try_catch_information_(nullptr) {
1010     predecessors_.reserve(kDefaultNumberOfPredecessors);
1011     successors_.reserve(kDefaultNumberOfSuccessors);
1012     dominated_blocks_.reserve(kDefaultNumberOfDominatedBlocks);
1013   }
1014 
GetPredecessors()1015   const ArenaVector<HBasicBlock*>& GetPredecessors() const {
1016     return predecessors_;
1017   }
1018 
GetSuccessors()1019   const ArenaVector<HBasicBlock*>& GetSuccessors() const {
1020     return successors_;
1021   }
1022 
1023   ArrayRef<HBasicBlock* const> GetNormalSuccessors() const;
1024   ArrayRef<HBasicBlock* const> GetExceptionalSuccessors() const;
1025 
1026   bool HasSuccessor(const HBasicBlock* block, size_t start_from = 0u) {
1027     return ContainsElement(successors_, block, start_from);
1028   }
1029 
GetDominatedBlocks()1030   const ArenaVector<HBasicBlock*>& GetDominatedBlocks() const {
1031     return dominated_blocks_;
1032   }
1033 
IsEntryBlock()1034   bool IsEntryBlock() const {
1035     return graph_->GetEntryBlock() == this;
1036   }
1037 
IsExitBlock()1038   bool IsExitBlock() const {
1039     return graph_->GetExitBlock() == this;
1040   }
1041 
1042   bool IsSingleGoto() const;
1043   bool IsSingleReturn() const;
1044   bool IsSingleReturnOrReturnVoidAllowingPhis() const;
1045   bool IsSingleTryBoundary() const;
1046 
1047   // Returns true if this block emits nothing but a jump.
IsSingleJump()1048   bool IsSingleJump() const {
1049     HLoopInformation* loop_info = GetLoopInformation();
1050     return (IsSingleGoto() || IsSingleTryBoundary())
1051            // Back edges generate a suspend check.
1052            && (loop_info == nullptr || !loop_info->IsBackEdge(*this));
1053   }
1054 
AddBackEdge(HBasicBlock * back_edge)1055   void AddBackEdge(HBasicBlock* back_edge) {
1056     if (loop_information_ == nullptr) {
1057       loop_information_ = new (graph_->GetAllocator()) HLoopInformation(this, graph_);
1058     }
1059     DCHECK_EQ(loop_information_->GetHeader(), this);
1060     loop_information_->AddBackEdge(back_edge);
1061   }
1062 
1063   // Registers a back edge; if the block was not a loop header before the call associates a newly
1064   // created loop info with it.
1065   //
1066   // Used in SuperblockCloner to preserve LoopInformation object instead of reseting loop
1067   // info for all blocks during back edges recalculation.
AddBackEdgeWhileUpdating(HBasicBlock * back_edge)1068   void AddBackEdgeWhileUpdating(HBasicBlock* back_edge) {
1069     if (loop_information_ == nullptr || loop_information_->GetHeader() != this) {
1070       loop_information_ = new (graph_->GetAllocator()) HLoopInformation(this, graph_);
1071     }
1072     loop_information_->AddBackEdge(back_edge);
1073   }
1074 
GetGraph()1075   HGraph* GetGraph() const { return graph_; }
SetGraph(HGraph * graph)1076   void SetGraph(HGraph* graph) { graph_ = graph; }
1077 
GetBlockId()1078   uint32_t GetBlockId() const { return block_id_; }
SetBlockId(int id)1079   void SetBlockId(int id) { block_id_ = id; }
GetDexPc()1080   uint32_t GetDexPc() const { return dex_pc_; }
1081 
GetDominator()1082   HBasicBlock* GetDominator() const { return dominator_; }
SetDominator(HBasicBlock * dominator)1083   void SetDominator(HBasicBlock* dominator) { dominator_ = dominator; }
AddDominatedBlock(HBasicBlock * block)1084   void AddDominatedBlock(HBasicBlock* block) { dominated_blocks_.push_back(block); }
1085 
RemoveDominatedBlock(HBasicBlock * block)1086   void RemoveDominatedBlock(HBasicBlock* block) {
1087     RemoveElement(dominated_blocks_, block);
1088   }
1089 
ReplaceDominatedBlock(HBasicBlock * existing,HBasicBlock * new_block)1090   void ReplaceDominatedBlock(HBasicBlock* existing, HBasicBlock* new_block) {
1091     ReplaceElement(dominated_blocks_, existing, new_block);
1092   }
1093 
1094   void ClearDominanceInformation();
1095 
NumberOfBackEdges()1096   int NumberOfBackEdges() const {
1097     return IsLoopHeader() ? loop_information_->NumberOfBackEdges() : 0;
1098   }
1099 
GetFirstInstruction()1100   HInstruction* GetFirstInstruction() const { return instructions_.first_instruction_; }
GetLastInstruction()1101   HInstruction* GetLastInstruction() const { return instructions_.last_instruction_; }
GetInstructions()1102   const HInstructionList& GetInstructions() const { return instructions_; }
GetFirstPhi()1103   HInstruction* GetFirstPhi() const { return phis_.first_instruction_; }
GetLastPhi()1104   HInstruction* GetLastPhi() const { return phis_.last_instruction_; }
GetPhis()1105   const HInstructionList& GetPhis() const { return phis_; }
1106 
1107   HInstruction* GetFirstInstructionDisregardMoves() const;
1108 
AddSuccessor(HBasicBlock * block)1109   void AddSuccessor(HBasicBlock* block) {
1110     successors_.push_back(block);
1111     block->predecessors_.push_back(this);
1112   }
1113 
ReplaceSuccessor(HBasicBlock * existing,HBasicBlock * new_block)1114   void ReplaceSuccessor(HBasicBlock* existing, HBasicBlock* new_block) {
1115     size_t successor_index = GetSuccessorIndexOf(existing);
1116     existing->RemovePredecessor(this);
1117     new_block->predecessors_.push_back(this);
1118     successors_[successor_index] = new_block;
1119   }
1120 
ReplacePredecessor(HBasicBlock * existing,HBasicBlock * new_block)1121   void ReplacePredecessor(HBasicBlock* existing, HBasicBlock* new_block) {
1122     size_t predecessor_index = GetPredecessorIndexOf(existing);
1123     existing->RemoveSuccessor(this);
1124     new_block->successors_.push_back(this);
1125     predecessors_[predecessor_index] = new_block;
1126   }
1127 
1128   // Insert `this` between `predecessor` and `successor. This method
1129   // preserves the indices, and will update the first edge found between
1130   // `predecessor` and `successor`.
InsertBetween(HBasicBlock * predecessor,HBasicBlock * successor)1131   void InsertBetween(HBasicBlock* predecessor, HBasicBlock* successor) {
1132     size_t predecessor_index = successor->GetPredecessorIndexOf(predecessor);
1133     size_t successor_index = predecessor->GetSuccessorIndexOf(successor);
1134     successor->predecessors_[predecessor_index] = this;
1135     predecessor->successors_[successor_index] = this;
1136     successors_.push_back(successor);
1137     predecessors_.push_back(predecessor);
1138   }
1139 
RemovePredecessor(HBasicBlock * block)1140   void RemovePredecessor(HBasicBlock* block) {
1141     predecessors_.erase(predecessors_.begin() + GetPredecessorIndexOf(block));
1142   }
1143 
RemoveSuccessor(HBasicBlock * block)1144   void RemoveSuccessor(HBasicBlock* block) {
1145     successors_.erase(successors_.begin() + GetSuccessorIndexOf(block));
1146   }
1147 
ClearAllPredecessors()1148   void ClearAllPredecessors() {
1149     predecessors_.clear();
1150   }
1151 
AddPredecessor(HBasicBlock * block)1152   void AddPredecessor(HBasicBlock* block) {
1153     predecessors_.push_back(block);
1154     block->successors_.push_back(this);
1155   }
1156 
SwapPredecessors()1157   void SwapPredecessors() {
1158     DCHECK_EQ(predecessors_.size(), 2u);
1159     std::swap(predecessors_[0], predecessors_[1]);
1160   }
1161 
SwapSuccessors()1162   void SwapSuccessors() {
1163     DCHECK_EQ(successors_.size(), 2u);
1164     std::swap(successors_[0], successors_[1]);
1165   }
1166 
GetPredecessorIndexOf(HBasicBlock * predecessor)1167   size_t GetPredecessorIndexOf(HBasicBlock* predecessor) const {
1168     return IndexOfElement(predecessors_, predecessor);
1169   }
1170 
GetSuccessorIndexOf(HBasicBlock * successor)1171   size_t GetSuccessorIndexOf(HBasicBlock* successor) const {
1172     return IndexOfElement(successors_, successor);
1173   }
1174 
GetSinglePredecessor()1175   HBasicBlock* GetSinglePredecessor() const {
1176     DCHECK_EQ(GetPredecessors().size(), 1u);
1177     return GetPredecessors()[0];
1178   }
1179 
GetSingleSuccessor()1180   HBasicBlock* GetSingleSuccessor() const {
1181     DCHECK_EQ(GetSuccessors().size(), 1u);
1182     return GetSuccessors()[0];
1183   }
1184 
1185   // Returns whether the first occurrence of `predecessor` in the list of
1186   // predecessors is at index `idx`.
IsFirstIndexOfPredecessor(HBasicBlock * predecessor,size_t idx)1187   bool IsFirstIndexOfPredecessor(HBasicBlock* predecessor, size_t idx) const {
1188     DCHECK_EQ(GetPredecessors()[idx], predecessor);
1189     return GetPredecessorIndexOf(predecessor) == idx;
1190   }
1191 
1192   // Create a new block between this block and its predecessors. The new block
1193   // is added to the graph, all predecessor edges are relinked to it and an edge
1194   // is created to `this`. Returns the new empty block. Reverse post order or
1195   // loop and try/catch information are not updated.
1196   HBasicBlock* CreateImmediateDominator();
1197 
1198   // Split the block into two blocks just before `cursor`. Returns the newly
1199   // created, latter block. Note that this method will add the block to the
1200   // graph, create a Goto at the end of the former block and will create an edge
1201   // between the blocks. It will not, however, update the reverse post order or
1202   // loop and try/catch information.
1203   HBasicBlock* SplitBefore(HInstruction* cursor);
1204 
1205   // Split the block into two blocks just before `cursor`. Returns the newly
1206   // created block. Note that this method just updates raw block information,
1207   // like predecessors, successors, dominators, and instruction list. It does not
1208   // update the graph, reverse post order, loop information, nor make sure the
1209   // blocks are consistent (for example ending with a control flow instruction).
1210   HBasicBlock* SplitBeforeForInlining(HInstruction* cursor);
1211 
1212   // Similar to `SplitBeforeForInlining` but does it after `cursor`.
1213   HBasicBlock* SplitAfterForInlining(HInstruction* cursor);
1214 
1215   // Merge `other` at the end of `this`. Successors and dominated blocks of
1216   // `other` are changed to be successors and dominated blocks of `this`. Note
1217   // that this method does not update the graph, reverse post order, loop
1218   // information, nor make sure the blocks are consistent (for example ending
1219   // with a control flow instruction).
1220   void MergeWithInlined(HBasicBlock* other);
1221 
1222   // Replace `this` with `other`. Predecessors, successors, and dominated blocks
1223   // of `this` are moved to `other`.
1224   // Note that this method does not update the graph, reverse post order, loop
1225   // information, nor make sure the blocks are consistent (for example ending
1226   // with a control flow instruction).
1227   void ReplaceWith(HBasicBlock* other);
1228 
1229   // Merges the instructions of `other` at the end of `this`.
1230   void MergeInstructionsWith(HBasicBlock* other);
1231 
1232   // Merge `other` at the end of `this`. This method updates loops, reverse post
1233   // order, links to predecessors, successors, dominators and deletes the block
1234   // from the graph. The two blocks must be successive, i.e. `this` the only
1235   // predecessor of `other` and vice versa.
1236   void MergeWith(HBasicBlock* other);
1237 
1238   // Disconnects `this` from all its predecessors, successors and dominator,
1239   // removes it from all loops it is included in and eventually from the graph.
1240   // The block must not dominate any other block. Predecessors and successors
1241   // are safely updated.
1242   void DisconnectAndDelete();
1243 
1244   void AddInstruction(HInstruction* instruction);
1245   // Insert `instruction` before/after an existing instruction `cursor`.
1246   void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor);
1247   void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor);
1248   // Replace phi `initial` with `replacement` within this block.
1249   void ReplaceAndRemovePhiWith(HPhi* initial, HPhi* replacement);
1250   // Replace instruction `initial` with `replacement` within this block.
1251   void ReplaceAndRemoveInstructionWith(HInstruction* initial,
1252                                        HInstruction* replacement);
1253   void AddPhi(HPhi* phi);
1254   void InsertPhiAfter(HPhi* instruction, HPhi* cursor);
1255   // RemoveInstruction and RemovePhi delete a given instruction from the respective
1256   // instruction list. With 'ensure_safety' set to true, it verifies that the
1257   // instruction is not in use and removes it from the use lists of its inputs.
1258   void RemoveInstruction(HInstruction* instruction, bool ensure_safety = true);
1259   void RemovePhi(HPhi* phi, bool ensure_safety = true);
1260   void RemoveInstructionOrPhi(HInstruction* instruction, bool ensure_safety = true);
1261 
IsLoopHeader()1262   bool IsLoopHeader() const {
1263     return IsInLoop() && (loop_information_->GetHeader() == this);
1264   }
1265 
IsLoopPreHeaderFirstPredecessor()1266   bool IsLoopPreHeaderFirstPredecessor() const {
1267     DCHECK(IsLoopHeader());
1268     return GetPredecessors()[0] == GetLoopInformation()->GetPreHeader();
1269   }
1270 
IsFirstPredecessorBackEdge()1271   bool IsFirstPredecessorBackEdge() const {
1272     DCHECK(IsLoopHeader());
1273     return GetLoopInformation()->IsBackEdge(*GetPredecessors()[0]);
1274   }
1275 
GetLoopInformation()1276   HLoopInformation* GetLoopInformation() const {
1277     return loop_information_;
1278   }
1279 
1280   // Set the loop_information_ on this block. Overrides the current
1281   // loop_information if it is an outer loop of the passed loop information.
1282   // Note that this method is called while creating the loop information.
SetInLoop(HLoopInformation * info)1283   void SetInLoop(HLoopInformation* info) {
1284     if (IsLoopHeader()) {
1285       // Nothing to do. This just means `info` is an outer loop.
1286     } else if (!IsInLoop()) {
1287       loop_information_ = info;
1288     } else if (loop_information_->Contains(*info->GetHeader())) {
1289       // Block is currently part of an outer loop. Make it part of this inner loop.
1290       // Note that a non loop header having a loop information means this loop information
1291       // has already been populated
1292       loop_information_ = info;
1293     } else {
1294       // Block is part of an inner loop. Do not update the loop information.
1295       // Note that we cannot do the check `info->Contains(loop_information_)->GetHeader()`
1296       // at this point, because this method is being called while populating `info`.
1297     }
1298   }
1299 
1300   // Raw update of the loop information.
SetLoopInformation(HLoopInformation * info)1301   void SetLoopInformation(HLoopInformation* info) {
1302     loop_information_ = info;
1303   }
1304 
IsInLoop()1305   bool IsInLoop() const { return loop_information_ != nullptr; }
1306 
GetTryCatchInformation()1307   TryCatchInformation* GetTryCatchInformation() const { return try_catch_information_; }
1308 
SetTryCatchInformation(TryCatchInformation * try_catch_information)1309   void SetTryCatchInformation(TryCatchInformation* try_catch_information) {
1310     try_catch_information_ = try_catch_information;
1311   }
1312 
IsTryBlock()1313   bool IsTryBlock() const {
1314     return try_catch_information_ != nullptr && try_catch_information_->IsTryBlock();
1315   }
1316 
IsCatchBlock()1317   bool IsCatchBlock() const {
1318     return try_catch_information_ != nullptr && try_catch_information_->IsCatchBlock();
1319   }
1320 
1321   // Returns the try entry that this block's successors should have. They will
1322   // be in the same try, unless the block ends in a try boundary. In that case,
1323   // the appropriate try entry will be returned.
1324   const HTryBoundary* ComputeTryEntryOfSuccessors() const;
1325 
1326   bool HasThrowingInstructions() const;
1327 
1328   // Returns whether this block dominates the blocked passed as parameter.
1329   bool Dominates(HBasicBlock* block) const;
1330 
GetLifetimeStart()1331   size_t GetLifetimeStart() const { return lifetime_start_; }
GetLifetimeEnd()1332   size_t GetLifetimeEnd() const { return lifetime_end_; }
1333 
SetLifetimeStart(size_t start)1334   void SetLifetimeStart(size_t start) { lifetime_start_ = start; }
SetLifetimeEnd(size_t end)1335   void SetLifetimeEnd(size_t end) { lifetime_end_ = end; }
1336 
1337   bool EndsWithControlFlowInstruction() const;
1338   bool EndsWithReturn() const;
1339   bool EndsWithIf() const;
1340   bool EndsWithTryBoundary() const;
1341   bool HasSinglePhi() const;
1342 
1343  private:
1344   HGraph* graph_;
1345   ArenaVector<HBasicBlock*> predecessors_;
1346   ArenaVector<HBasicBlock*> successors_;
1347   HInstructionList instructions_;
1348   HInstructionList phis_;
1349   HLoopInformation* loop_information_;
1350   HBasicBlock* dominator_;
1351   ArenaVector<HBasicBlock*> dominated_blocks_;
1352   uint32_t block_id_;
1353   // The dex program counter of the first instruction of this block.
1354   const uint32_t dex_pc_;
1355   size_t lifetime_start_;
1356   size_t lifetime_end_;
1357   TryCatchInformation* try_catch_information_;
1358 
1359   friend class HGraph;
1360   friend class HInstruction;
1361 
1362   DISALLOW_COPY_AND_ASSIGN(HBasicBlock);
1363 };
1364 
1365 // Iterates over the LoopInformation of all loops which contain 'block'
1366 // from the innermost to the outermost.
1367 class HLoopInformationOutwardIterator : public ValueObject {
1368  public:
HLoopInformationOutwardIterator(const HBasicBlock & block)1369   explicit HLoopInformationOutwardIterator(const HBasicBlock& block)
1370       : current_(block.GetLoopInformation()) {}
1371 
Done()1372   bool Done() const { return current_ == nullptr; }
1373 
Advance()1374   void Advance() {
1375     DCHECK(!Done());
1376     current_ = current_->GetPreHeader()->GetLoopInformation();
1377   }
1378 
Current()1379   HLoopInformation* Current() const {
1380     DCHECK(!Done());
1381     return current_;
1382   }
1383 
1384  private:
1385   HLoopInformation* current_;
1386 
1387   DISALLOW_COPY_AND_ASSIGN(HLoopInformationOutwardIterator);
1388 };
1389 
1390 #define FOR_EACH_CONCRETE_INSTRUCTION_COMMON(M)                         \
1391   M(Above, Condition)                                                   \
1392   M(AboveOrEqual, Condition)                                            \
1393   M(Abs, UnaryOperation)                                                \
1394   M(Add, BinaryOperation)                                               \
1395   M(And, BinaryOperation)                                               \
1396   M(ArrayGet, Instruction)                                              \
1397   M(ArrayLength, Instruction)                                           \
1398   M(ArraySet, Instruction)                                              \
1399   M(Below, Condition)                                                   \
1400   M(BelowOrEqual, Condition)                                            \
1401   M(BooleanNot, UnaryOperation)                                         \
1402   M(BoundsCheck, Instruction)                                           \
1403   M(BoundType, Instruction)                                             \
1404   M(CheckCast, Instruction)                                             \
1405   M(ClassTableGet, Instruction)                                         \
1406   M(ClearException, Instruction)                                        \
1407   M(ClinitCheck, Instruction)                                           \
1408   M(Compare, BinaryOperation)                                           \
1409   M(ConstructorFence, Instruction)                                      \
1410   M(CurrentMethod, Instruction)                                         \
1411   M(ShouldDeoptimizeFlag, Instruction)                                  \
1412   M(Deoptimize, Instruction)                                            \
1413   M(Div, BinaryOperation)                                               \
1414   M(DivZeroCheck, Instruction)                                          \
1415   M(DoubleConstant, Constant)                                           \
1416   M(Equal, Condition)                                                   \
1417   M(Exit, Instruction)                                                  \
1418   M(FloatConstant, Constant)                                            \
1419   M(Goto, Instruction)                                                  \
1420   M(GreaterThan, Condition)                                             \
1421   M(GreaterThanOrEqual, Condition)                                      \
1422   M(If, Instruction)                                                    \
1423   M(InstanceFieldGet, Instruction)                                      \
1424   M(InstanceFieldSet, Instruction)                                      \
1425   M(InstanceOf, Instruction)                                            \
1426   M(IntConstant, Constant)                                              \
1427   M(IntermediateAddress, Instruction)                                   \
1428   M(InvokeUnresolved, Invoke)                                           \
1429   M(InvokeInterface, Invoke)                                            \
1430   M(InvokeStaticOrDirect, Invoke)                                       \
1431   M(InvokeVirtual, Invoke)                                              \
1432   M(InvokePolymorphic, Invoke)                                          \
1433   M(InvokeCustom, Invoke)                                               \
1434   M(LessThan, Condition)                                                \
1435   M(LessThanOrEqual, Condition)                                         \
1436   M(LoadClass, Instruction)                                             \
1437   M(LoadException, Instruction)                                         \
1438   M(LoadMethodHandle, Instruction)                                      \
1439   M(LoadMethodType, Instruction)                                        \
1440   M(LoadString, Instruction)                                            \
1441   M(LongConstant, Constant)                                             \
1442   M(Max, Instruction)                                                   \
1443   M(MemoryBarrier, Instruction)                                         \
1444   M(Min, BinaryOperation)                                               \
1445   M(MonitorOperation, Instruction)                                      \
1446   M(Mul, BinaryOperation)                                               \
1447   M(NativeDebugInfo, Instruction)                                       \
1448   M(Neg, UnaryOperation)                                                \
1449   M(NewArray, Instruction)                                              \
1450   M(NewInstance, Instruction)                                           \
1451   M(Not, UnaryOperation)                                                \
1452   M(NotEqual, Condition)                                                \
1453   M(NullConstant, Instruction)                                          \
1454   M(NullCheck, Instruction)                                             \
1455   M(Or, BinaryOperation)                                                \
1456   M(PackedSwitch, Instruction)                                          \
1457   M(ParallelMove, Instruction)                                          \
1458   M(ParameterValue, Instruction)                                        \
1459   M(Phi, Instruction)                                                   \
1460   M(Rem, BinaryOperation)                                               \
1461   M(Return, Instruction)                                                \
1462   M(ReturnVoid, Instruction)                                            \
1463   M(Ror, BinaryOperation)                                               \
1464   M(Shl, BinaryOperation)                                               \
1465   M(Shr, BinaryOperation)                                               \
1466   M(StaticFieldGet, Instruction)                                        \
1467   M(StaticFieldSet, Instruction)                                        \
1468   M(StringBuilderAppend, Instruction)                                   \
1469   M(UnresolvedInstanceFieldGet, Instruction)                            \
1470   M(UnresolvedInstanceFieldSet, Instruction)                            \
1471   M(UnresolvedStaticFieldGet, Instruction)                              \
1472   M(UnresolvedStaticFieldSet, Instruction)                              \
1473   M(Select, Instruction)                                                \
1474   M(Sub, BinaryOperation)                                               \
1475   M(SuspendCheck, Instruction)                                          \
1476   M(Throw, Instruction)                                                 \
1477   M(TryBoundary, Instruction)                                           \
1478   M(TypeConversion, Instruction)                                        \
1479   M(UShr, BinaryOperation)                                              \
1480   M(Xor, BinaryOperation)                                               \
1481   M(VecReplicateScalar, VecUnaryOperation)                              \
1482   M(VecExtractScalar, VecUnaryOperation)                                \
1483   M(VecReduce, VecUnaryOperation)                                       \
1484   M(VecCnv, VecUnaryOperation)                                          \
1485   M(VecNeg, VecUnaryOperation)                                          \
1486   M(VecAbs, VecUnaryOperation)                                          \
1487   M(VecNot, VecUnaryOperation)                                          \
1488   M(VecAdd, VecBinaryOperation)                                         \
1489   M(VecHalvingAdd, VecBinaryOperation)                                  \
1490   M(VecSub, VecBinaryOperation)                                         \
1491   M(VecMul, VecBinaryOperation)                                         \
1492   M(VecDiv, VecBinaryOperation)                                         \
1493   M(VecMin, VecBinaryOperation)                                         \
1494   M(VecMax, VecBinaryOperation)                                         \
1495   M(VecAnd, VecBinaryOperation)                                         \
1496   M(VecAndNot, VecBinaryOperation)                                      \
1497   M(VecOr, VecBinaryOperation)                                          \
1498   M(VecXor, VecBinaryOperation)                                         \
1499   M(VecSaturationAdd, VecBinaryOperation)                               \
1500   M(VecSaturationSub, VecBinaryOperation)                               \
1501   M(VecShl, VecBinaryOperation)                                         \
1502   M(VecShr, VecBinaryOperation)                                         \
1503   M(VecUShr, VecBinaryOperation)                                        \
1504   M(VecSetScalars, VecOperation)                                        \
1505   M(VecMultiplyAccumulate, VecOperation)                                \
1506   M(VecSADAccumulate, VecOperation)                                     \
1507   M(VecDotProd, VecOperation)                                           \
1508   M(VecLoad, VecMemoryOperation)                                        \
1509   M(VecStore, VecMemoryOperation)                                       \
1510 
1511 /*
1512  * Instructions, shared across several (not all) architectures.
1513  */
1514 #if !defined(ART_ENABLE_CODEGEN_arm) && !defined(ART_ENABLE_CODEGEN_arm64)
1515 #define FOR_EACH_CONCRETE_INSTRUCTION_SHARED(M)
1516 #else
1517 #define FOR_EACH_CONCRETE_INSTRUCTION_SHARED(M)                         \
1518   M(BitwiseNegatedRight, Instruction)                                   \
1519   M(DataProcWithShifterOp, Instruction)                                 \
1520   M(MultiplyAccumulate, Instruction)                                    \
1521   M(IntermediateAddressIndex, Instruction)
1522 #endif
1523 
1524 #define FOR_EACH_CONCRETE_INSTRUCTION_ARM(M)
1525 
1526 #define FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M)
1527 
1528 #ifndef ART_ENABLE_CODEGEN_x86
1529 #define FOR_EACH_CONCRETE_INSTRUCTION_X86(M)
1530 #else
1531 #define FOR_EACH_CONCRETE_INSTRUCTION_X86(M)                            \
1532   M(X86ComputeBaseMethodAddress, Instruction)                           \
1533   M(X86LoadFromConstantTable, Instruction)                              \
1534   M(X86FPNeg, Instruction)                                              \
1535   M(X86PackedSwitch, Instruction)
1536 #endif
1537 
1538 #if defined(ART_ENABLE_CODEGEN_x86) || defined(ART_ENABLE_CODEGEN_x86_64)
1539 #define FOR_EACH_CONCRETE_INSTRUCTION_X86_COMMON(M)                     \
1540   M(X86AndNot, Instruction)                                             \
1541   M(X86MaskOrResetLeastSetBit, Instruction)
1542 #else
1543 #define FOR_EACH_CONCRETE_INSTRUCTION_X86_COMMON(M)
1544 #endif
1545 
1546 #define FOR_EACH_CONCRETE_INSTRUCTION_X86_64(M)
1547 
1548 #define FOR_EACH_CONCRETE_INSTRUCTION(M)                                \
1549   FOR_EACH_CONCRETE_INSTRUCTION_COMMON(M)                               \
1550   FOR_EACH_CONCRETE_INSTRUCTION_SHARED(M)                               \
1551   FOR_EACH_CONCRETE_INSTRUCTION_ARM(M)                                  \
1552   FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M)                                \
1553   FOR_EACH_CONCRETE_INSTRUCTION_X86(M)                                  \
1554   FOR_EACH_CONCRETE_INSTRUCTION_X86_64(M)                               \
1555   FOR_EACH_CONCRETE_INSTRUCTION_X86_COMMON(M)
1556 
1557 #define FOR_EACH_ABSTRACT_INSTRUCTION(M)                                \
1558   M(Condition, BinaryOperation)                                         \
1559   M(Constant, Instruction)                                              \
1560   M(UnaryOperation, Instruction)                                        \
1561   M(BinaryOperation, Instruction)                                       \
1562   M(Invoke, Instruction)                                                \
1563   M(VecOperation, Instruction)                                          \
1564   M(VecUnaryOperation, VecOperation)                                    \
1565   M(VecBinaryOperation, VecOperation)                                   \
1566   M(VecMemoryOperation, VecOperation)
1567 
1568 #define FOR_EACH_INSTRUCTION(M)                                         \
1569   FOR_EACH_CONCRETE_INSTRUCTION(M)                                      \
1570   FOR_EACH_ABSTRACT_INSTRUCTION(M)
1571 
1572 #define FORWARD_DECLARATION(type, super) class H##type;
FOR_EACH_INSTRUCTION(FORWARD_DECLARATION)1573 FOR_EACH_INSTRUCTION(FORWARD_DECLARATION)
1574 #undef FORWARD_DECLARATION
1575 
1576 #define DECLARE_INSTRUCTION(type)                                         \
1577   private:                                                                \
1578   H##type& operator=(const H##type&) = delete;                            \
1579   public:                                                                 \
1580   const char* DebugName() const override { return #type; }                \
1581   HInstruction* Clone(ArenaAllocator* arena) const override {             \
1582     DCHECK(IsClonable());                                                 \
1583     return new (arena) H##type(*this->As##type());                        \
1584   }                                                                       \
1585   void Accept(HGraphVisitor* visitor) override
1586 
1587 #define DECLARE_ABSTRACT_INSTRUCTION(type)                              \
1588   private:                                                              \
1589   H##type& operator=(const H##type&) = delete;                          \
1590   public:
1591 
1592 #define DEFAULT_COPY_CONSTRUCTOR(type)                                  \
1593   explicit H##type(const H##type& other) = default;
1594 
1595 template <typename T>
1596 class HUseListNode : public ArenaObject<kArenaAllocUseListNode>,
1597                      public IntrusiveForwardListNode<HUseListNode<T>> {
1598  public:
1599   // Get the instruction which has this use as one of the inputs.
1600   T GetUser() const { return user_; }
1601   // Get the position of the input record that this use corresponds to.
1602   size_t GetIndex() const { return index_; }
1603   // Set the position of the input record that this use corresponds to.
1604   void SetIndex(size_t index) { index_ = index; }
1605 
1606  private:
1607   HUseListNode(T user, size_t index)
1608       : user_(user), index_(index) {}
1609 
1610   T const user_;
1611   size_t index_;
1612 
1613   friend class HInstruction;
1614 
1615   DISALLOW_COPY_AND_ASSIGN(HUseListNode);
1616 };
1617 
1618 template <typename T>
1619 using HUseList = IntrusiveForwardList<HUseListNode<T>>;
1620 
1621 // This class is used by HEnvironment and HInstruction classes to record the
1622 // instructions they use and pointers to the corresponding HUseListNodes kept
1623 // by the used instructions.
1624 template <typename T>
1625 class HUserRecord : public ValueObject {
1626  public:
HUserRecord()1627   HUserRecord() : instruction_(nullptr), before_use_node_() {}
HUserRecord(HInstruction * instruction)1628   explicit HUserRecord(HInstruction* instruction) : instruction_(instruction), before_use_node_() {}
1629 
HUserRecord(const HUserRecord<T> & old_record,typename HUseList<T>::iterator before_use_node)1630   HUserRecord(const HUserRecord<T>& old_record, typename HUseList<T>::iterator before_use_node)
1631       : HUserRecord(old_record.instruction_, before_use_node) {}
HUserRecord(HInstruction * instruction,typename HUseList<T>::iterator before_use_node)1632   HUserRecord(HInstruction* instruction, typename HUseList<T>::iterator before_use_node)
1633       : instruction_(instruction), before_use_node_(before_use_node) {
1634     DCHECK(instruction_ != nullptr);
1635   }
1636 
GetInstruction()1637   HInstruction* GetInstruction() const { return instruction_; }
GetBeforeUseNode()1638   typename HUseList<T>::iterator GetBeforeUseNode() const { return before_use_node_; }
GetUseNode()1639   typename HUseList<T>::iterator GetUseNode() const { return ++GetBeforeUseNode(); }
1640 
1641  private:
1642   // Instruction used by the user.
1643   HInstruction* instruction_;
1644 
1645   // Iterator before the corresponding entry in the use list kept by 'instruction_'.
1646   typename HUseList<T>::iterator before_use_node_;
1647 };
1648 
1649 // Helper class that extracts the input instruction from HUserRecord<HInstruction*>.
1650 // This is used for HInstruction::GetInputs() to return a container wrapper providing
1651 // HInstruction* values even though the underlying container has HUserRecord<>s.
1652 struct HInputExtractor {
operatorHInputExtractor1653   HInstruction* operator()(HUserRecord<HInstruction*>& record) const {
1654     return record.GetInstruction();
1655   }
operatorHInputExtractor1656   const HInstruction* operator()(const HUserRecord<HInstruction*>& record) const {
1657     return record.GetInstruction();
1658   }
1659 };
1660 
1661 using HInputsRef = TransformArrayRef<HUserRecord<HInstruction*>, HInputExtractor>;
1662 using HConstInputsRef = TransformArrayRef<const HUserRecord<HInstruction*>, HInputExtractor>;
1663 
1664 /**
1665  * Side-effects representation.
1666  *
1667  * For write/read dependences on fields/arrays, the dependence analysis uses
1668  * type disambiguation (e.g. a float field write cannot modify the value of an
1669  * integer field read) and the access type (e.g.  a reference array write cannot
1670  * modify the value of a reference field read [although it may modify the
1671  * reference fetch prior to reading the field, which is represented by its own
1672  * write/read dependence]). The analysis makes conservative points-to
1673  * assumptions on reference types (e.g. two same typed arrays are assumed to be
1674  * the same, and any reference read depends on any reference read without
1675  * further regard of its type).
1676  *
1677  * kDependsOnGCBit is defined in the following way: instructions with kDependsOnGCBit must not be
1678  * alive across the point where garbage collection might happen.
1679  *
1680  * Note: Instructions with kCanTriggerGCBit do not depend on each other.
1681  *
1682  * kCanTriggerGCBit must be used for instructions for which GC might happen on the path across
1683  * those instructions from the compiler perspective (between this instruction and the next one
1684  * in the IR).
1685  *
1686  * Note: Instructions which can cause GC only on a fatal slow path do not need
1687  *       kCanTriggerGCBit as the execution never returns to the instruction next to the exceptional
1688  *       one. However the execution may return to compiled code if there is a catch block in the
1689  *       current method; for this purpose the TryBoundary exit instruction has kCanTriggerGCBit
1690  *       set.
1691  *
1692  * The internal representation uses 38-bit and is described in the table below.
1693  * The first line indicates the side effect, and for field/array accesses the
1694  * second line indicates the type of the access (in the order of the
1695  * DataType::Type enum).
1696  * The two numbered lines below indicate the bit position in the bitfield (read
1697  * vertically).
1698  *
1699  *   |Depends on GC|ARRAY-R  |FIELD-R  |Can trigger GC|ARRAY-W  |FIELD-W  |
1700  *   +-------------+---------+---------+--------------+---------+---------+
1701  *   |             |DFJISCBZL|DFJISCBZL|              |DFJISCBZL|DFJISCBZL|
1702  *   |      3      |333333322|222222221|       1      |111111110|000000000|
1703  *   |      7      |654321098|765432109|       8      |765432109|876543210|
1704  *
1705  * Note that, to ease the implementation, 'changes' bits are least significant
1706  * bits, while 'dependency' bits are most significant bits.
1707  */
1708 class SideEffects : public ValueObject {
1709  public:
SideEffects()1710   SideEffects() : flags_(0) {}
1711 
None()1712   static SideEffects None() {
1713     return SideEffects(0);
1714   }
1715 
All()1716   static SideEffects All() {
1717     return SideEffects(kAllChangeBits | kAllDependOnBits);
1718   }
1719 
AllChanges()1720   static SideEffects AllChanges() {
1721     return SideEffects(kAllChangeBits);
1722   }
1723 
AllDependencies()1724   static SideEffects AllDependencies() {
1725     return SideEffects(kAllDependOnBits);
1726   }
1727 
AllExceptGCDependency()1728   static SideEffects AllExceptGCDependency() {
1729     return AllWritesAndReads().Union(SideEffects::CanTriggerGC());
1730   }
1731 
AllWritesAndReads()1732   static SideEffects AllWritesAndReads() {
1733     return SideEffects(kAllWrites | kAllReads);
1734   }
1735 
AllWrites()1736   static SideEffects AllWrites() {
1737     return SideEffects(kAllWrites);
1738   }
1739 
AllReads()1740   static SideEffects AllReads() {
1741     return SideEffects(kAllReads);
1742   }
1743 
FieldWriteOfType(DataType::Type type,bool is_volatile)1744   static SideEffects FieldWriteOfType(DataType::Type type, bool is_volatile) {
1745     return is_volatile
1746         ? AllWritesAndReads()
1747         : SideEffects(TypeFlag(type, kFieldWriteOffset));
1748   }
1749 
ArrayWriteOfType(DataType::Type type)1750   static SideEffects ArrayWriteOfType(DataType::Type type) {
1751     return SideEffects(TypeFlag(type, kArrayWriteOffset));
1752   }
1753 
FieldReadOfType(DataType::Type type,bool is_volatile)1754   static SideEffects FieldReadOfType(DataType::Type type, bool is_volatile) {
1755     return is_volatile
1756         ? AllWritesAndReads()
1757         : SideEffects(TypeFlag(type, kFieldReadOffset));
1758   }
1759 
ArrayReadOfType(DataType::Type type)1760   static SideEffects ArrayReadOfType(DataType::Type type) {
1761     return SideEffects(TypeFlag(type, kArrayReadOffset));
1762   }
1763 
1764   // Returns whether GC might happen across this instruction from the compiler perspective so
1765   // the next instruction in the IR would see that.
1766   //
1767   // See the SideEffect class comments.
CanTriggerGC()1768   static SideEffects CanTriggerGC() {
1769     return SideEffects(1ULL << kCanTriggerGCBit);
1770   }
1771 
1772   // Returns whether the instruction must not be alive across a GC point.
1773   //
1774   // See the SideEffect class comments.
DependsOnGC()1775   static SideEffects DependsOnGC() {
1776     return SideEffects(1ULL << kDependsOnGCBit);
1777   }
1778 
1779   // Combines the side-effects of this and the other.
Union(SideEffects other)1780   SideEffects Union(SideEffects other) const {
1781     return SideEffects(flags_ | other.flags_);
1782   }
1783 
Exclusion(SideEffects other)1784   SideEffects Exclusion(SideEffects other) const {
1785     return SideEffects(flags_ & ~other.flags_);
1786   }
1787 
Add(SideEffects other)1788   void Add(SideEffects other) {
1789     flags_ |= other.flags_;
1790   }
1791 
Includes(SideEffects other)1792   bool Includes(SideEffects other) const {
1793     return (other.flags_ & flags_) == other.flags_;
1794   }
1795 
HasSideEffects()1796   bool HasSideEffects() const {
1797     return (flags_ & kAllChangeBits);
1798   }
1799 
HasDependencies()1800   bool HasDependencies() const {
1801     return (flags_ & kAllDependOnBits);
1802   }
1803 
1804   // Returns true if there are no side effects or dependencies.
DoesNothing()1805   bool DoesNothing() const {
1806     return flags_ == 0;
1807   }
1808 
1809   // Returns true if something is written.
DoesAnyWrite()1810   bool DoesAnyWrite() const {
1811     return (flags_ & kAllWrites);
1812   }
1813 
1814   // Returns true if something is read.
DoesAnyRead()1815   bool DoesAnyRead() const {
1816     return (flags_ & kAllReads);
1817   }
1818 
1819   // Returns true if potentially everything is written and read
1820   // (every type and every kind of access).
DoesAllReadWrite()1821   bool DoesAllReadWrite() const {
1822     return (flags_ & (kAllWrites | kAllReads)) == (kAllWrites | kAllReads);
1823   }
1824 
DoesAll()1825   bool DoesAll() const {
1826     return flags_ == (kAllChangeBits | kAllDependOnBits);
1827   }
1828 
1829   // Returns true if `this` may read something written by `other`.
MayDependOn(SideEffects other)1830   bool MayDependOn(SideEffects other) const {
1831     const uint64_t depends_on_flags = (flags_ & kAllDependOnBits) >> kChangeBits;
1832     return (other.flags_ & depends_on_flags);
1833   }
1834 
1835   // Returns string representation of flags (for debugging only).
1836   // Format: |x|DFJISCBZL|DFJISCBZL|y|DFJISCBZL|DFJISCBZL|
ToString()1837   std::string ToString() const {
1838     std::string flags = "|";
1839     for (int s = kLastBit; s >= 0; s--) {
1840       bool current_bit_is_set = ((flags_ >> s) & 1) != 0;
1841       if ((s == kDependsOnGCBit) || (s == kCanTriggerGCBit)) {
1842         // This is a bit for the GC side effect.
1843         if (current_bit_is_set) {
1844           flags += "GC";
1845         }
1846         flags += "|";
1847       } else {
1848         // This is a bit for the array/field analysis.
1849         // The underscore character stands for the 'can trigger GC' bit.
1850         static const char *kDebug = "LZBCSIJFDLZBCSIJFD_LZBCSIJFDLZBCSIJFD";
1851         if (current_bit_is_set) {
1852           flags += kDebug[s];
1853         }
1854         if ((s == kFieldWriteOffset) || (s == kArrayWriteOffset) ||
1855             (s == kFieldReadOffset) || (s == kArrayReadOffset)) {
1856           flags += "|";
1857         }
1858       }
1859     }
1860     return flags;
1861   }
1862 
Equals(const SideEffects & other)1863   bool Equals(const SideEffects& other) const { return flags_ == other.flags_; }
1864 
1865  private:
1866   static constexpr int kFieldArrayAnalysisBits = 9;
1867 
1868   static constexpr int kFieldWriteOffset = 0;
1869   static constexpr int kArrayWriteOffset = kFieldWriteOffset + kFieldArrayAnalysisBits;
1870   static constexpr int kLastBitForWrites = kArrayWriteOffset + kFieldArrayAnalysisBits - 1;
1871   static constexpr int kCanTriggerGCBit = kLastBitForWrites + 1;
1872 
1873   static constexpr int kChangeBits = kCanTriggerGCBit + 1;
1874 
1875   static constexpr int kFieldReadOffset = kCanTriggerGCBit + 1;
1876   static constexpr int kArrayReadOffset = kFieldReadOffset + kFieldArrayAnalysisBits;
1877   static constexpr int kLastBitForReads = kArrayReadOffset + kFieldArrayAnalysisBits - 1;
1878   static constexpr int kDependsOnGCBit = kLastBitForReads + 1;
1879 
1880   static constexpr int kLastBit = kDependsOnGCBit;
1881   static constexpr int kDependOnBits = kLastBit + 1 - kChangeBits;
1882 
1883   // Aliases.
1884 
1885   static_assert(kChangeBits == kDependOnBits,
1886                 "the 'change' bits should match the 'depend on' bits.");
1887 
1888   static constexpr uint64_t kAllChangeBits = ((1ULL << kChangeBits) - 1);
1889   static constexpr uint64_t kAllDependOnBits = ((1ULL << kDependOnBits) - 1) << kChangeBits;
1890   static constexpr uint64_t kAllWrites =
1891       ((1ULL << (kLastBitForWrites + 1 - kFieldWriteOffset)) - 1) << kFieldWriteOffset;
1892   static constexpr uint64_t kAllReads =
1893       ((1ULL << (kLastBitForReads + 1 - kFieldReadOffset)) - 1) << kFieldReadOffset;
1894 
1895   // Translates type to bit flag. The type must correspond to a Java type.
TypeFlag(DataType::Type type,int offset)1896   static uint64_t TypeFlag(DataType::Type type, int offset) {
1897     int shift;
1898     switch (type) {
1899       case DataType::Type::kReference: shift = 0; break;
1900       case DataType::Type::kBool:      shift = 1; break;
1901       case DataType::Type::kInt8:      shift = 2; break;
1902       case DataType::Type::kUint16:    shift = 3; break;
1903       case DataType::Type::kInt16:     shift = 4; break;
1904       case DataType::Type::kInt32:     shift = 5; break;
1905       case DataType::Type::kInt64:     shift = 6; break;
1906       case DataType::Type::kFloat32:   shift = 7; break;
1907       case DataType::Type::kFloat64:   shift = 8; break;
1908       default:
1909         LOG(FATAL) << "Unexpected data type " << type;
1910         UNREACHABLE();
1911     }
1912     DCHECK_LE(kFieldWriteOffset, shift);
1913     DCHECK_LT(shift, kArrayWriteOffset);
1914     return UINT64_C(1) << (shift + offset);
1915   }
1916 
1917   // Private constructor on direct flags value.
SideEffects(uint64_t flags)1918   explicit SideEffects(uint64_t flags) : flags_(flags) {}
1919 
1920   uint64_t flags_;
1921 };
1922 
1923 // A HEnvironment object contains the values of virtual registers at a given location.
1924 class HEnvironment : public ArenaObject<kArenaAllocEnvironment> {
1925  public:
HEnvironment(ArenaAllocator * allocator,size_t number_of_vregs,ArtMethod * method,uint32_t dex_pc,HInstruction * holder)1926   ALWAYS_INLINE HEnvironment(ArenaAllocator* allocator,
1927                              size_t number_of_vregs,
1928                              ArtMethod* method,
1929                              uint32_t dex_pc,
1930                              HInstruction* holder)
1931      : vregs_(number_of_vregs, allocator->Adapter(kArenaAllocEnvironmentVRegs)),
1932        locations_(allocator->Adapter(kArenaAllocEnvironmentLocations)),
1933        parent_(nullptr),
1934        method_(method),
1935        dex_pc_(dex_pc),
1936        holder_(holder) {
1937   }
1938 
HEnvironment(ArenaAllocator * allocator,const HEnvironment & to_copy,HInstruction * holder)1939   ALWAYS_INLINE HEnvironment(ArenaAllocator* allocator,
1940                              const HEnvironment& to_copy,
1941                              HInstruction* holder)
1942       : HEnvironment(allocator,
1943                      to_copy.Size(),
1944                      to_copy.GetMethod(),
1945                      to_copy.GetDexPc(),
1946                      holder) {}
1947 
AllocateLocations()1948   void AllocateLocations() {
1949     DCHECK(locations_.empty());
1950     locations_.resize(vregs_.size());
1951   }
1952 
SetAndCopyParentChain(ArenaAllocator * allocator,HEnvironment * parent)1953   void SetAndCopyParentChain(ArenaAllocator* allocator, HEnvironment* parent) {
1954     if (parent_ != nullptr) {
1955       parent_->SetAndCopyParentChain(allocator, parent);
1956     } else {
1957       parent_ = new (allocator) HEnvironment(allocator, *parent, holder_);
1958       parent_->CopyFrom(parent);
1959       if (parent->GetParent() != nullptr) {
1960         parent_->SetAndCopyParentChain(allocator, parent->GetParent());
1961       }
1962     }
1963   }
1964 
1965   void CopyFrom(ArrayRef<HInstruction* const> locals);
1966   void CopyFrom(HEnvironment* environment);
1967 
1968   // Copy from `env`. If it's a loop phi for `loop_header`, copy the first
1969   // input to the loop phi instead. This is for inserting instructions that
1970   // require an environment (like HDeoptimization) in the loop pre-header.
1971   void CopyFromWithLoopPhiAdjustment(HEnvironment* env, HBasicBlock* loop_header);
1972 
SetRawEnvAt(size_t index,HInstruction * instruction)1973   void SetRawEnvAt(size_t index, HInstruction* instruction) {
1974     vregs_[index] = HUserRecord<HEnvironment*>(instruction);
1975   }
1976 
GetInstructionAt(size_t index)1977   HInstruction* GetInstructionAt(size_t index) const {
1978     return vregs_[index].GetInstruction();
1979   }
1980 
1981   void RemoveAsUserOfInput(size_t index) const;
1982 
1983   // Replaces the input at the position 'index' with the replacement; the replacement and old
1984   // input instructions' env_uses_ lists are adjusted. The function works similar to
1985   // HInstruction::ReplaceInput.
1986   void ReplaceInput(HInstruction* replacement, size_t index);
1987 
Size()1988   size_t Size() const { return vregs_.size(); }
1989 
GetParent()1990   HEnvironment* GetParent() const { return parent_; }
1991 
SetLocationAt(size_t index,Location location)1992   void SetLocationAt(size_t index, Location location) {
1993     locations_[index] = location;
1994   }
1995 
GetLocationAt(size_t index)1996   Location GetLocationAt(size_t index) const {
1997     return locations_[index];
1998   }
1999 
GetDexPc()2000   uint32_t GetDexPc() const {
2001     return dex_pc_;
2002   }
2003 
GetMethod()2004   ArtMethod* GetMethod() const {
2005     return method_;
2006   }
2007 
GetHolder()2008   HInstruction* GetHolder() const {
2009     return holder_;
2010   }
2011 
2012 
IsFromInlinedInvoke()2013   bool IsFromInlinedInvoke() const {
2014     return GetParent() != nullptr;
2015   }
2016 
2017  private:
2018   ArenaVector<HUserRecord<HEnvironment*>> vregs_;
2019   ArenaVector<Location> locations_;
2020   HEnvironment* parent_;
2021   ArtMethod* method_;
2022   const uint32_t dex_pc_;
2023 
2024   // The instruction that holds this environment.
2025   HInstruction* const holder_;
2026 
2027   friend class HInstruction;
2028 
2029   DISALLOW_COPY_AND_ASSIGN(HEnvironment);
2030 };
2031 
2032 class HInstruction : public ArenaObject<kArenaAllocInstruction> {
2033  public:
2034 #define DECLARE_KIND(type, super) k##type,
2035   enum InstructionKind {
2036     FOR_EACH_CONCRETE_INSTRUCTION(DECLARE_KIND)
2037     kLastInstructionKind
2038   };
2039 #undef DECLARE_KIND
2040 
HInstruction(InstructionKind kind,SideEffects side_effects,uint32_t dex_pc)2041   HInstruction(InstructionKind kind, SideEffects side_effects, uint32_t dex_pc)
2042       : HInstruction(kind, DataType::Type::kVoid, side_effects, dex_pc) {}
2043 
HInstruction(InstructionKind kind,DataType::Type type,SideEffects side_effects,uint32_t dex_pc)2044   HInstruction(InstructionKind kind, DataType::Type type, SideEffects side_effects, uint32_t dex_pc)
2045       : previous_(nullptr),
2046         next_(nullptr),
2047         block_(nullptr),
2048         dex_pc_(dex_pc),
2049         id_(-1),
2050         ssa_index_(-1),
2051         packed_fields_(0u),
2052         environment_(nullptr),
2053         locations_(nullptr),
2054         live_interval_(nullptr),
2055         lifetime_position_(kNoLifetime),
2056         side_effects_(side_effects),
2057         reference_type_handle_(ReferenceTypeInfo::CreateInvalid().GetTypeHandle()) {
2058     SetPackedField<InstructionKindField>(kind);
2059     SetPackedField<TypeField>(type);
2060     SetPackedFlag<kFlagReferenceTypeIsExact>(ReferenceTypeInfo::CreateInvalid().IsExact());
2061   }
2062 
~HInstruction()2063   virtual ~HInstruction() {}
2064 
2065 
GetNext()2066   HInstruction* GetNext() const { return next_; }
GetPrevious()2067   HInstruction* GetPrevious() const { return previous_; }
2068 
2069   HInstruction* GetNextDisregardingMoves() const;
2070   HInstruction* GetPreviousDisregardingMoves() const;
2071 
GetBlock()2072   HBasicBlock* GetBlock() const { return block_; }
GetAllocator()2073   ArenaAllocator* GetAllocator() const { return block_->GetGraph()->GetAllocator(); }
SetBlock(HBasicBlock * block)2074   void SetBlock(HBasicBlock* block) { block_ = block; }
IsInBlock()2075   bool IsInBlock() const { return block_ != nullptr; }
IsInLoop()2076   bool IsInLoop() const { return block_->IsInLoop(); }
IsLoopHeaderPhi()2077   bool IsLoopHeaderPhi() const { return IsPhi() && block_->IsLoopHeader(); }
IsIrreducibleLoopHeaderPhi()2078   bool IsIrreducibleLoopHeaderPhi() const {
2079     return IsLoopHeaderPhi() && GetBlock()->GetLoopInformation()->IsIrreducible();
2080   }
2081 
2082   virtual ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() = 0;
2083 
GetInputRecords()2084   ArrayRef<const HUserRecord<HInstruction*>> GetInputRecords() const {
2085     // One virtual method is enough, just const_cast<> and then re-add the const.
2086     return ArrayRef<const HUserRecord<HInstruction*>>(
2087         const_cast<HInstruction*>(this)->GetInputRecords());
2088   }
2089 
GetInputs()2090   HInputsRef GetInputs() {
2091     return MakeTransformArrayRef(GetInputRecords(), HInputExtractor());
2092   }
2093 
GetInputs()2094   HConstInputsRef GetInputs() const {
2095     return MakeTransformArrayRef(GetInputRecords(), HInputExtractor());
2096   }
2097 
InputCount()2098   size_t InputCount() const { return GetInputRecords().size(); }
InputAt(size_t i)2099   HInstruction* InputAt(size_t i) const { return InputRecordAt(i).GetInstruction(); }
2100 
HasInput(HInstruction * input)2101   bool HasInput(HInstruction* input) const {
2102     for (const HInstruction* i : GetInputs()) {
2103       if (i == input) {
2104         return true;
2105       }
2106     }
2107     return false;
2108   }
2109 
SetRawInputAt(size_t index,HInstruction * input)2110   void SetRawInputAt(size_t index, HInstruction* input) {
2111     SetRawInputRecordAt(index, HUserRecord<HInstruction*>(input));
2112   }
2113 
2114   virtual void Accept(HGraphVisitor* visitor) = 0;
2115   virtual const char* DebugName() const = 0;
2116 
GetType()2117   DataType::Type GetType() const {
2118     return TypeField::Decode(GetPackedFields());
2119   }
2120 
NeedsEnvironment()2121   virtual bool NeedsEnvironment() const { return false; }
2122 
GetDexPc()2123   uint32_t GetDexPc() const { return dex_pc_; }
2124 
IsControlFlow()2125   virtual bool IsControlFlow() const { return false; }
2126 
2127   // Can the instruction throw?
2128   // TODO: We should rename to CanVisiblyThrow, as some instructions (like HNewInstance),
2129   // could throw OOME, but it is still OK to remove them if they are unused.
CanThrow()2130   virtual bool CanThrow() const { return false; }
2131 
2132   // Does the instruction always throw an exception unconditionally?
AlwaysThrows()2133   virtual bool AlwaysThrows() const { return false; }
2134 
CanThrowIntoCatchBlock()2135   bool CanThrowIntoCatchBlock() const { return CanThrow() && block_->IsTryBlock(); }
2136 
HasSideEffects()2137   bool HasSideEffects() const { return side_effects_.HasSideEffects(); }
DoesAnyWrite()2138   bool DoesAnyWrite() const { return side_effects_.DoesAnyWrite(); }
2139 
2140   // Does not apply for all instructions, but having this at top level greatly
2141   // simplifies the null check elimination.
2142   // TODO: Consider merging can_be_null into ReferenceTypeInfo.
CanBeNull()2143   virtual bool CanBeNull() const {
2144     DCHECK_EQ(GetType(), DataType::Type::kReference) << "CanBeNull only applies to reference types";
2145     return true;
2146   }
2147 
CanDoImplicitNullCheckOn(HInstruction * obj ATTRIBUTE_UNUSED)2148   virtual bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const {
2149     return false;
2150   }
2151 
2152   // If this instruction will do an implicit null check, return the `HNullCheck` associated
2153   // with it. Otherwise return null.
GetImplicitNullCheck()2154   HNullCheck* GetImplicitNullCheck() const {
2155     // Go over previous non-move instructions that are emitted at use site.
2156     HInstruction* prev_not_move = GetPreviousDisregardingMoves();
2157     while (prev_not_move != nullptr && prev_not_move->IsEmittedAtUseSite()) {
2158       if (prev_not_move->IsNullCheck()) {
2159         return prev_not_move->AsNullCheck();
2160       }
2161       prev_not_move = prev_not_move->GetPreviousDisregardingMoves();
2162     }
2163     return nullptr;
2164   }
2165 
IsActualObject()2166   virtual bool IsActualObject() const {
2167     return GetType() == DataType::Type::kReference;
2168   }
2169 
2170   void SetReferenceTypeInfo(ReferenceTypeInfo rti);
2171 
GetReferenceTypeInfo()2172   ReferenceTypeInfo GetReferenceTypeInfo() const {
2173     DCHECK_EQ(GetType(), DataType::Type::kReference);
2174     return ReferenceTypeInfo::CreateUnchecked(reference_type_handle_,
2175                                               GetPackedFlag<kFlagReferenceTypeIsExact>());
2176   }
2177 
AddUseAt(HInstruction * user,size_t index)2178   void AddUseAt(HInstruction* user, size_t index) {
2179     DCHECK(user != nullptr);
2180     // Note: fixup_end remains valid across push_front().
2181     auto fixup_end = uses_.empty() ? uses_.begin() : ++uses_.begin();
2182     HUseListNode<HInstruction*>* new_node =
2183         new (GetBlock()->GetGraph()->GetAllocator()) HUseListNode<HInstruction*>(user, index);
2184     uses_.push_front(*new_node);
2185     FixUpUserRecordsAfterUseInsertion(fixup_end);
2186   }
2187 
AddEnvUseAt(HEnvironment * user,size_t index)2188   void AddEnvUseAt(HEnvironment* user, size_t index) {
2189     DCHECK(user != nullptr);
2190     // Note: env_fixup_end remains valid across push_front().
2191     auto env_fixup_end = env_uses_.empty() ? env_uses_.begin() : ++env_uses_.begin();
2192     HUseListNode<HEnvironment*>* new_node =
2193         new (GetBlock()->GetGraph()->GetAllocator()) HUseListNode<HEnvironment*>(user, index);
2194     env_uses_.push_front(*new_node);
2195     FixUpUserRecordsAfterEnvUseInsertion(env_fixup_end);
2196   }
2197 
RemoveAsUserOfInput(size_t input)2198   void RemoveAsUserOfInput(size_t input) {
2199     HUserRecord<HInstruction*> input_use = InputRecordAt(input);
2200     HUseList<HInstruction*>::iterator before_use_node = input_use.GetBeforeUseNode();
2201     input_use.GetInstruction()->uses_.erase_after(before_use_node);
2202     input_use.GetInstruction()->FixUpUserRecordsAfterUseRemoval(before_use_node);
2203   }
2204 
RemoveAsUserOfAllInputs()2205   void RemoveAsUserOfAllInputs() {
2206     for (const HUserRecord<HInstruction*>& input_use : GetInputRecords()) {
2207       HUseList<HInstruction*>::iterator before_use_node = input_use.GetBeforeUseNode();
2208       input_use.GetInstruction()->uses_.erase_after(before_use_node);
2209       input_use.GetInstruction()->FixUpUserRecordsAfterUseRemoval(before_use_node);
2210     }
2211   }
2212 
GetUses()2213   const HUseList<HInstruction*>& GetUses() const { return uses_; }
GetEnvUses()2214   const HUseList<HEnvironment*>& GetEnvUses() const { return env_uses_; }
2215 
HasUses()2216   bool HasUses() const { return !uses_.empty() || !env_uses_.empty(); }
HasEnvironmentUses()2217   bool HasEnvironmentUses() const { return !env_uses_.empty(); }
HasNonEnvironmentUses()2218   bool HasNonEnvironmentUses() const { return !uses_.empty(); }
HasOnlyOneNonEnvironmentUse()2219   bool HasOnlyOneNonEnvironmentUse() const {
2220     return !HasEnvironmentUses() && GetUses().HasExactlyOneElement();
2221   }
2222 
IsRemovable()2223   bool IsRemovable() const {
2224     return
2225         !DoesAnyWrite() &&
2226         !CanThrow() &&
2227         !IsSuspendCheck() &&
2228         !IsControlFlow() &&
2229         !IsNativeDebugInfo() &&
2230         !IsParameterValue() &&
2231         // If we added an explicit barrier then we should keep it.
2232         !IsMemoryBarrier() &&
2233         !IsConstructorFence();
2234   }
2235 
IsDeadAndRemovable()2236   bool IsDeadAndRemovable() const {
2237     return IsRemovable() && !HasUses();
2238   }
2239 
2240   // Does this instruction strictly dominate `other_instruction`?
2241   // Returns false if this instruction and `other_instruction` are the same.
2242   // Aborts if this instruction and `other_instruction` are both phis.
2243   bool StrictlyDominates(HInstruction* other_instruction) const;
2244 
GetId()2245   int GetId() const { return id_; }
SetId(int id)2246   void SetId(int id) { id_ = id; }
2247 
GetSsaIndex()2248   int GetSsaIndex() const { return ssa_index_; }
SetSsaIndex(int ssa_index)2249   void SetSsaIndex(int ssa_index) { ssa_index_ = ssa_index; }
HasSsaIndex()2250   bool HasSsaIndex() const { return ssa_index_ != -1; }
2251 
HasEnvironment()2252   bool HasEnvironment() const { return environment_ != nullptr; }
GetEnvironment()2253   HEnvironment* GetEnvironment() const { return environment_; }
2254   // Set the `environment_` field. Raw because this method does not
2255   // update the uses lists.
SetRawEnvironment(HEnvironment * environment)2256   void SetRawEnvironment(HEnvironment* environment) {
2257     DCHECK(environment_ == nullptr);
2258     DCHECK_EQ(environment->GetHolder(), this);
2259     environment_ = environment;
2260   }
2261 
InsertRawEnvironment(HEnvironment * environment)2262   void InsertRawEnvironment(HEnvironment* environment) {
2263     DCHECK(environment_ != nullptr);
2264     DCHECK_EQ(environment->GetHolder(), this);
2265     DCHECK(environment->GetParent() == nullptr);
2266     environment->parent_ = environment_;
2267     environment_ = environment;
2268   }
2269 
2270   void RemoveEnvironment();
2271 
2272   // Set the environment of this instruction, copying it from `environment`. While
2273   // copying, the uses lists are being updated.
CopyEnvironmentFrom(HEnvironment * environment)2274   void CopyEnvironmentFrom(HEnvironment* environment) {
2275     DCHECK(environment_ == nullptr);
2276     ArenaAllocator* allocator = GetBlock()->GetGraph()->GetAllocator();
2277     environment_ = new (allocator) HEnvironment(allocator, *environment, this);
2278     environment_->CopyFrom(environment);
2279     if (environment->GetParent() != nullptr) {
2280       environment_->SetAndCopyParentChain(allocator, environment->GetParent());
2281     }
2282   }
2283 
CopyEnvironmentFromWithLoopPhiAdjustment(HEnvironment * environment,HBasicBlock * block)2284   void CopyEnvironmentFromWithLoopPhiAdjustment(HEnvironment* environment,
2285                                                 HBasicBlock* block) {
2286     DCHECK(environment_ == nullptr);
2287     ArenaAllocator* allocator = GetBlock()->GetGraph()->GetAllocator();
2288     environment_ = new (allocator) HEnvironment(allocator, *environment, this);
2289     environment_->CopyFromWithLoopPhiAdjustment(environment, block);
2290     if (environment->GetParent() != nullptr) {
2291       environment_->SetAndCopyParentChain(allocator, environment->GetParent());
2292     }
2293   }
2294 
2295   // Returns the number of entries in the environment. Typically, that is the
2296   // number of dex registers in a method. It could be more in case of inlining.
2297   size_t EnvironmentSize() const;
2298 
GetLocations()2299   LocationSummary* GetLocations() const { return locations_; }
SetLocations(LocationSummary * locations)2300   void SetLocations(LocationSummary* locations) { locations_ = locations; }
2301 
2302   void ReplaceWith(HInstruction* instruction);
2303   void ReplaceUsesDominatedBy(HInstruction* dominator, HInstruction* replacement);
2304   void ReplaceEnvUsesDominatedBy(HInstruction* dominator, HInstruction* replacement);
2305   void ReplaceInput(HInstruction* replacement, size_t index);
2306 
2307   // This is almost the same as doing `ReplaceWith()`. But in this helper, the
2308   // uses of this instruction by `other` are *not* updated.
ReplaceWithExceptInReplacementAtIndex(HInstruction * other,size_t use_index)2309   void ReplaceWithExceptInReplacementAtIndex(HInstruction* other, size_t use_index) {
2310     ReplaceWith(other);
2311     other->ReplaceInput(this, use_index);
2312   }
2313 
2314   // Move `this` instruction before `cursor`
2315   void MoveBefore(HInstruction* cursor, bool do_checks = true);
2316 
2317   // Move `this` before its first user and out of any loops. If there is no
2318   // out-of-loop user that dominates all other users, move the instruction
2319   // to the end of the out-of-loop common dominator of the user's blocks.
2320   //
2321   // This can be used only on non-throwing instructions with no side effects that
2322   // have at least one use but no environment uses.
2323   void MoveBeforeFirstUserAndOutOfLoops();
2324 
2325 #define INSTRUCTION_TYPE_CHECK(type, super)                                    \
2326   bool Is##type() const;
2327 
2328   FOR_EACH_INSTRUCTION(INSTRUCTION_TYPE_CHECK)
2329 #undef INSTRUCTION_TYPE_CHECK
2330 
2331 #define INSTRUCTION_TYPE_CAST(type, super)                                     \
2332   const H##type* As##type() const;                                             \
2333   H##type* As##type();
2334 
FOR_EACH_INSTRUCTION(INSTRUCTION_TYPE_CAST)2335   FOR_EACH_INSTRUCTION(INSTRUCTION_TYPE_CAST)
2336 #undef INSTRUCTION_TYPE_CAST
2337 
2338   // Return a clone of the instruction if it is clonable (shallow copy by default, custom copy
2339   // if a custom copy-constructor is provided for a particular type). If IsClonable() is false for
2340   // the instruction then the behaviour of this function is undefined.
2341   //
2342   // Note: It is semantically valid to create a clone of the instruction only until
2343   // prepare_for_register_allocator phase as lifetime, intervals and codegen info are not
2344   // copied.
2345   //
2346   // Note: HEnvironment and some other fields are not copied and are set to default values, see
2347   // 'explicit HInstruction(const HInstruction& other)' for details.
2348   virtual HInstruction* Clone(ArenaAllocator* arena ATTRIBUTE_UNUSED) const {
2349     LOG(FATAL) << "Cloning is not implemented for the instruction " <<
2350                   DebugName() << " " << GetId();
2351     UNREACHABLE();
2352   }
2353 
2354   // Return whether instruction can be cloned (copied).
IsClonable()2355   virtual bool IsClonable() const { return false; }
2356 
2357   // Returns whether the instruction can be moved within the graph.
2358   // TODO: this method is used by LICM and GVN with possibly different
2359   //       meanings? split and rename?
CanBeMoved()2360   virtual bool CanBeMoved() const { return false; }
2361 
2362   // Returns whether any data encoded in the two instructions is equal.
2363   // This method does not look at the inputs. Both instructions must be
2364   // of the same type, otherwise the method has undefined behavior.
InstructionDataEquals(const HInstruction * other ATTRIBUTE_UNUSED)2365   virtual bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const {
2366     return false;
2367   }
2368 
2369   // Returns whether two instructions are equal, that is:
2370   // 1) They have the same type and contain the same data (InstructionDataEquals).
2371   // 2) Their inputs are identical.
2372   bool Equals(const HInstruction* other) const;
2373 
GetKind()2374   InstructionKind GetKind() const { return GetPackedField<InstructionKindField>(); }
2375 
ComputeHashCode()2376   virtual size_t ComputeHashCode() const {
2377     size_t result = GetKind();
2378     for (const HInstruction* input : GetInputs()) {
2379       result = (result * 31) + input->GetId();
2380     }
2381     return result;
2382   }
2383 
GetSideEffects()2384   SideEffects GetSideEffects() const { return side_effects_; }
SetSideEffects(SideEffects other)2385   void SetSideEffects(SideEffects other) { side_effects_ = other; }
AddSideEffects(SideEffects other)2386   void AddSideEffects(SideEffects other) { side_effects_.Add(other); }
2387 
GetLifetimePosition()2388   size_t GetLifetimePosition() const { return lifetime_position_; }
SetLifetimePosition(size_t position)2389   void SetLifetimePosition(size_t position) { lifetime_position_ = position; }
GetLiveInterval()2390   LiveInterval* GetLiveInterval() const { return live_interval_; }
SetLiveInterval(LiveInterval * interval)2391   void SetLiveInterval(LiveInterval* interval) { live_interval_ = interval; }
HasLiveInterval()2392   bool HasLiveInterval() const { return live_interval_ != nullptr; }
2393 
IsSuspendCheckEntry()2394   bool IsSuspendCheckEntry() const { return IsSuspendCheck() && GetBlock()->IsEntryBlock(); }
2395 
2396   // Returns whether the code generation of the instruction will require to have access
2397   // to the current method. Such instructions are:
2398   // (1): Instructions that require an environment, as calling the runtime requires
2399   //      to walk the stack and have the current method stored at a specific stack address.
2400   // (2): HCurrentMethod, potentially used by HInvokeStaticOrDirect, HLoadString, or HLoadClass
2401   //      to access the dex cache.
NeedsCurrentMethod()2402   bool NeedsCurrentMethod() const {
2403     return NeedsEnvironment() || IsCurrentMethod();
2404   }
2405 
2406   // Returns whether the code generation of the instruction will require to have access
2407   // to the dex cache of the current method's declaring class via the current method.
NeedsDexCacheOfDeclaringClass()2408   virtual bool NeedsDexCacheOfDeclaringClass() const { return false; }
2409 
2410   // Does this instruction have any use in an environment before
2411   // control flow hits 'other'?
2412   bool HasAnyEnvironmentUseBefore(HInstruction* other);
2413 
2414   // Remove all references to environment uses of this instruction.
2415   // The caller must ensure that this is safe to do.
2416   void RemoveEnvironmentUsers();
2417 
IsEmittedAtUseSite()2418   bool IsEmittedAtUseSite() const { return GetPackedFlag<kFlagEmittedAtUseSite>(); }
MarkEmittedAtUseSite()2419   void MarkEmittedAtUseSite() { SetPackedFlag<kFlagEmittedAtUseSite>(true); }
2420 
2421  protected:
2422   // If set, the machine code for this instruction is assumed to be generated by
2423   // its users. Used by liveness analysis to compute use positions accordingly.
2424   static constexpr size_t kFlagEmittedAtUseSite = 0u;
2425   static constexpr size_t kFlagReferenceTypeIsExact = kFlagEmittedAtUseSite + 1;
2426   static constexpr size_t kFieldInstructionKind = kFlagReferenceTypeIsExact + 1;
2427   static constexpr size_t kFieldInstructionKindSize =
2428       MinimumBitsToStore(static_cast<size_t>(InstructionKind::kLastInstructionKind - 1));
2429   static constexpr size_t kFieldType =
2430       kFieldInstructionKind + kFieldInstructionKindSize;
2431   static constexpr size_t kFieldTypeSize =
2432       MinimumBitsToStore(static_cast<size_t>(DataType::Type::kLast));
2433   static constexpr size_t kNumberOfGenericPackedBits = kFieldType + kFieldTypeSize;
2434   static constexpr size_t kMaxNumberOfPackedBits = sizeof(uint32_t) * kBitsPerByte;
2435 
2436   static_assert(kNumberOfGenericPackedBits <= kMaxNumberOfPackedBits,
2437                 "Too many generic packed fields");
2438 
2439   using TypeField = BitField<DataType::Type, kFieldType, kFieldTypeSize>;
2440 
InputRecordAt(size_t i)2441   const HUserRecord<HInstruction*> InputRecordAt(size_t i) const {
2442     return GetInputRecords()[i];
2443   }
2444 
SetRawInputRecordAt(size_t index,const HUserRecord<HInstruction * > & input)2445   void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) {
2446     ArrayRef<HUserRecord<HInstruction*>> input_records = GetInputRecords();
2447     input_records[index] = input;
2448   }
2449 
GetPackedFields()2450   uint32_t GetPackedFields() const {
2451     return packed_fields_;
2452   }
2453 
2454   template <size_t flag>
GetPackedFlag()2455   bool GetPackedFlag() const {
2456     return (packed_fields_ & (1u << flag)) != 0u;
2457   }
2458 
2459   template <size_t flag>
2460   void SetPackedFlag(bool value = true) {
2461     packed_fields_ = (packed_fields_ & ~(1u << flag)) | ((value ? 1u : 0u) << flag);
2462   }
2463 
2464   template <typename BitFieldType>
GetPackedField()2465   typename BitFieldType::value_type GetPackedField() const {
2466     return BitFieldType::Decode(packed_fields_);
2467   }
2468 
2469   template <typename BitFieldType>
SetPackedField(typename BitFieldType::value_type value)2470   void SetPackedField(typename BitFieldType::value_type value) {
2471     DCHECK(IsUint<BitFieldType::size>(static_cast<uintptr_t>(value)));
2472     packed_fields_ = BitFieldType::Update(value, packed_fields_);
2473   }
2474 
2475   // Copy construction for the instruction (used for Clone function).
2476   //
2477   // Fields (e.g. lifetime, intervals and codegen info) associated with phases starting from
2478   // prepare_for_register_allocator are not copied (set to default values).
2479   //
2480   // Copy constructors must be provided for every HInstruction type; default copy constructor is
2481   // fine for most of them. However for some of the instructions a custom copy constructor must be
2482   // specified (when instruction has non-trivially copyable fields and must have a special behaviour
2483   // for copying them).
HInstruction(const HInstruction & other)2484   explicit HInstruction(const HInstruction& other)
2485       : previous_(nullptr),
2486         next_(nullptr),
2487         block_(nullptr),
2488         dex_pc_(other.dex_pc_),
2489         id_(-1),
2490         ssa_index_(-1),
2491         packed_fields_(other.packed_fields_),
2492         environment_(nullptr),
2493         locations_(nullptr),
2494         live_interval_(nullptr),
2495         lifetime_position_(kNoLifetime),
2496         side_effects_(other.side_effects_),
2497         reference_type_handle_(other.reference_type_handle_) {
2498   }
2499 
2500  private:
2501   using InstructionKindField =
2502      BitField<InstructionKind, kFieldInstructionKind, kFieldInstructionKindSize>;
2503 
FixUpUserRecordsAfterUseInsertion(HUseList<HInstruction * >::iterator fixup_end)2504   void FixUpUserRecordsAfterUseInsertion(HUseList<HInstruction*>::iterator fixup_end) {
2505     auto before_use_node = uses_.before_begin();
2506     for (auto use_node = uses_.begin(); use_node != fixup_end; ++use_node) {
2507       HInstruction* user = use_node->GetUser();
2508       size_t input_index = use_node->GetIndex();
2509       user->SetRawInputRecordAt(input_index, HUserRecord<HInstruction*>(this, before_use_node));
2510       before_use_node = use_node;
2511     }
2512   }
2513 
FixUpUserRecordsAfterUseRemoval(HUseList<HInstruction * >::iterator before_use_node)2514   void FixUpUserRecordsAfterUseRemoval(HUseList<HInstruction*>::iterator before_use_node) {
2515     auto next = ++HUseList<HInstruction*>::iterator(before_use_node);
2516     if (next != uses_.end()) {
2517       HInstruction* next_user = next->GetUser();
2518       size_t next_index = next->GetIndex();
2519       DCHECK(next_user->InputRecordAt(next_index).GetInstruction() == this);
2520       next_user->SetRawInputRecordAt(next_index, HUserRecord<HInstruction*>(this, before_use_node));
2521     }
2522   }
2523 
FixUpUserRecordsAfterEnvUseInsertion(HUseList<HEnvironment * >::iterator env_fixup_end)2524   void FixUpUserRecordsAfterEnvUseInsertion(HUseList<HEnvironment*>::iterator env_fixup_end) {
2525     auto before_env_use_node = env_uses_.before_begin();
2526     for (auto env_use_node = env_uses_.begin(); env_use_node != env_fixup_end; ++env_use_node) {
2527       HEnvironment* user = env_use_node->GetUser();
2528       size_t input_index = env_use_node->GetIndex();
2529       user->vregs_[input_index] = HUserRecord<HEnvironment*>(this, before_env_use_node);
2530       before_env_use_node = env_use_node;
2531     }
2532   }
2533 
FixUpUserRecordsAfterEnvUseRemoval(HUseList<HEnvironment * >::iterator before_env_use_node)2534   void FixUpUserRecordsAfterEnvUseRemoval(HUseList<HEnvironment*>::iterator before_env_use_node) {
2535     auto next = ++HUseList<HEnvironment*>::iterator(before_env_use_node);
2536     if (next != env_uses_.end()) {
2537       HEnvironment* next_user = next->GetUser();
2538       size_t next_index = next->GetIndex();
2539       DCHECK(next_user->vregs_[next_index].GetInstruction() == this);
2540       next_user->vregs_[next_index] = HUserRecord<HEnvironment*>(this, before_env_use_node);
2541     }
2542   }
2543 
2544   HInstruction* previous_;
2545   HInstruction* next_;
2546   HBasicBlock* block_;
2547   const uint32_t dex_pc_;
2548 
2549   // An instruction gets an id when it is added to the graph.
2550   // It reflects creation order. A negative id means the instruction
2551   // has not been added to the graph.
2552   int id_;
2553 
2554   // When doing liveness analysis, instructions that have uses get an SSA index.
2555   int ssa_index_;
2556 
2557   // Packed fields.
2558   uint32_t packed_fields_;
2559 
2560   // List of instructions that have this instruction as input.
2561   HUseList<HInstruction*> uses_;
2562 
2563   // List of environments that contain this instruction.
2564   HUseList<HEnvironment*> env_uses_;
2565 
2566   // The environment associated with this instruction. Not null if the instruction
2567   // might jump out of the method.
2568   HEnvironment* environment_;
2569 
2570   // Set by the code generator.
2571   LocationSummary* locations_;
2572 
2573   // Set by the liveness analysis.
2574   LiveInterval* live_interval_;
2575 
2576   // Set by the liveness analysis, this is the position in a linear
2577   // order of blocks where this instruction's live interval start.
2578   size_t lifetime_position_;
2579 
2580   SideEffects side_effects_;
2581 
2582   // The reference handle part of the reference type info.
2583   // The IsExact() flag is stored in packed fields.
2584   // TODO: for primitive types this should be marked as invalid.
2585   ReferenceTypeInfo::TypeHandle reference_type_handle_;
2586 
2587   friend class GraphChecker;
2588   friend class HBasicBlock;
2589   friend class HEnvironment;
2590   friend class HGraph;
2591   friend class HInstructionList;
2592 };
2593 std::ostream& operator<<(std::ostream& os, const HInstruction::InstructionKind& rhs);
2594 
2595 // Iterates over the instructions, while preserving the next instruction
2596 // in case the current instruction gets removed from the list by the user
2597 // of this iterator.
2598 class HInstructionIterator : public ValueObject {
2599  public:
HInstructionIterator(const HInstructionList & instructions)2600   explicit HInstructionIterator(const HInstructionList& instructions)
2601       : instruction_(instructions.first_instruction_) {
2602     next_ = Done() ? nullptr : instruction_->GetNext();
2603   }
2604 
Done()2605   bool Done() const { return instruction_ == nullptr; }
Current()2606   HInstruction* Current() const { return instruction_; }
Advance()2607   void Advance() {
2608     instruction_ = next_;
2609     next_ = Done() ? nullptr : instruction_->GetNext();
2610   }
2611 
2612  private:
2613   HInstruction* instruction_;
2614   HInstruction* next_;
2615 
2616   DISALLOW_COPY_AND_ASSIGN(HInstructionIterator);
2617 };
2618 
2619 // Iterates over the instructions without saving the next instruction,
2620 // therefore handling changes in the graph potentially made by the user
2621 // of this iterator.
2622 class HInstructionIteratorHandleChanges : public ValueObject {
2623  public:
HInstructionIteratorHandleChanges(const HInstructionList & instructions)2624   explicit HInstructionIteratorHandleChanges(const HInstructionList& instructions)
2625       : instruction_(instructions.first_instruction_) {
2626   }
2627 
Done()2628   bool Done() const { return instruction_ == nullptr; }
Current()2629   HInstruction* Current() const { return instruction_; }
Advance()2630   void Advance() {
2631     instruction_ = instruction_->GetNext();
2632   }
2633 
2634  private:
2635   HInstruction* instruction_;
2636 
2637   DISALLOW_COPY_AND_ASSIGN(HInstructionIteratorHandleChanges);
2638 };
2639 
2640 
2641 class HBackwardInstructionIterator : public ValueObject {
2642  public:
HBackwardInstructionIterator(const HInstructionList & instructions)2643   explicit HBackwardInstructionIterator(const HInstructionList& instructions)
2644       : instruction_(instructions.last_instruction_) {
2645     next_ = Done() ? nullptr : instruction_->GetPrevious();
2646   }
2647 
Done()2648   bool Done() const { return instruction_ == nullptr; }
Current()2649   HInstruction* Current() const { return instruction_; }
Advance()2650   void Advance() {
2651     instruction_ = next_;
2652     next_ = Done() ? nullptr : instruction_->GetPrevious();
2653   }
2654 
2655  private:
2656   HInstruction* instruction_;
2657   HInstruction* next_;
2658 
2659   DISALLOW_COPY_AND_ASSIGN(HBackwardInstructionIterator);
2660 };
2661 
2662 class HVariableInputSizeInstruction : public HInstruction {
2663  public:
2664   using HInstruction::GetInputRecords;  // Keep the const version visible.
GetInputRecords()2665   ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() override {
2666     return ArrayRef<HUserRecord<HInstruction*>>(inputs_);
2667   }
2668 
2669   void AddInput(HInstruction* input);
2670   void InsertInputAt(size_t index, HInstruction* input);
2671   void RemoveInputAt(size_t index);
2672 
2673   // Removes all the inputs.
2674   // Also removes this instructions from each input's use list
2675   // (for non-environment uses only).
2676   void RemoveAllInputs();
2677 
2678  protected:
HVariableInputSizeInstruction(InstructionKind inst_kind,SideEffects side_effects,uint32_t dex_pc,ArenaAllocator * allocator,size_t number_of_inputs,ArenaAllocKind kind)2679   HVariableInputSizeInstruction(InstructionKind inst_kind,
2680                                 SideEffects side_effects,
2681                                 uint32_t dex_pc,
2682                                 ArenaAllocator* allocator,
2683                                 size_t number_of_inputs,
2684                                 ArenaAllocKind kind)
2685       : HInstruction(inst_kind, side_effects, dex_pc),
2686         inputs_(number_of_inputs, allocator->Adapter(kind)) {}
HVariableInputSizeInstruction(InstructionKind inst_kind,DataType::Type type,SideEffects side_effects,uint32_t dex_pc,ArenaAllocator * allocator,size_t number_of_inputs,ArenaAllocKind kind)2687   HVariableInputSizeInstruction(InstructionKind inst_kind,
2688                                 DataType::Type type,
2689                                 SideEffects side_effects,
2690                                 uint32_t dex_pc,
2691                                 ArenaAllocator* allocator,
2692                                 size_t number_of_inputs,
2693                                 ArenaAllocKind kind)
2694       : HInstruction(inst_kind, type, side_effects, dex_pc),
2695         inputs_(number_of_inputs, allocator->Adapter(kind)) {}
2696 
2697   DEFAULT_COPY_CONSTRUCTOR(VariableInputSizeInstruction);
2698 
2699   ArenaVector<HUserRecord<HInstruction*>> inputs_;
2700 };
2701 
2702 template<size_t N>
2703 class HExpression : public HInstruction {
2704  public:
2705   HExpression<N>(InstructionKind kind, SideEffects side_effects, uint32_t dex_pc)
HInstruction(kind,side_effects,dex_pc)2706       : HInstruction(kind, side_effects, dex_pc), inputs_() {}
2707   HExpression<N>(InstructionKind kind,
2708                  DataType::Type type,
2709                  SideEffects side_effects,
2710                  uint32_t dex_pc)
HInstruction(kind,type,side_effects,dex_pc)2711       : HInstruction(kind, type, side_effects, dex_pc), inputs_() {}
~HExpression()2712   virtual ~HExpression() {}
2713 
2714   using HInstruction::GetInputRecords;  // Keep the const version visible.
GetInputRecords()2715   ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() final {
2716     return ArrayRef<HUserRecord<HInstruction*>>(inputs_);
2717   }
2718 
2719  protected:
2720   DEFAULT_COPY_CONSTRUCTOR(Expression<N>);
2721 
2722  private:
2723   std::array<HUserRecord<HInstruction*>, N> inputs_;
2724 
2725   friend class SsaBuilder;
2726 };
2727 
2728 // HExpression specialization for N=0.
2729 template<>
2730 class HExpression<0> : public HInstruction {
2731  public:
2732   using HInstruction::HInstruction;
2733 
~HExpression()2734   virtual ~HExpression() {}
2735 
2736   using HInstruction::GetInputRecords;  // Keep the const version visible.
GetInputRecords()2737   ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() final {
2738     return ArrayRef<HUserRecord<HInstruction*>>();
2739   }
2740 
2741  protected:
2742   DEFAULT_COPY_CONSTRUCTOR(Expression<0>);
2743 
2744  private:
2745   friend class SsaBuilder;
2746 };
2747 
2748 // Represents dex's RETURN_VOID opcode. A HReturnVoid is a control flow
2749 // instruction that branches to the exit block.
2750 class HReturnVoid final : public HExpression<0> {
2751  public:
2752   explicit HReturnVoid(uint32_t dex_pc = kNoDexPc)
HExpression(kReturnVoid,SideEffects::None (),dex_pc)2753       : HExpression(kReturnVoid, SideEffects::None(), dex_pc) {
2754   }
2755 
IsControlFlow()2756   bool IsControlFlow() const override { return true; }
2757 
2758   DECLARE_INSTRUCTION(ReturnVoid);
2759 
2760  protected:
2761   DEFAULT_COPY_CONSTRUCTOR(ReturnVoid);
2762 };
2763 
2764 // Represents dex's RETURN opcodes. A HReturn is a control flow
2765 // instruction that branches to the exit block.
2766 class HReturn final : public HExpression<1> {
2767  public:
2768   explicit HReturn(HInstruction* value, uint32_t dex_pc = kNoDexPc)
HExpression(kReturn,SideEffects::None (),dex_pc)2769       : HExpression(kReturn, SideEffects::None(), dex_pc) {
2770     SetRawInputAt(0, value);
2771   }
2772 
IsControlFlow()2773   bool IsControlFlow() const override { return true; }
2774 
2775   DECLARE_INSTRUCTION(Return);
2776 
2777  protected:
2778   DEFAULT_COPY_CONSTRUCTOR(Return);
2779 };
2780 
2781 class HPhi final : public HVariableInputSizeInstruction {
2782  public:
2783   HPhi(ArenaAllocator* allocator,
2784        uint32_t reg_number,
2785        size_t number_of_inputs,
2786        DataType::Type type,
2787        uint32_t dex_pc = kNoDexPc)
HVariableInputSizeInstruction(kPhi,ToPhiType (type),SideEffects::None (),dex_pc,allocator,number_of_inputs,kArenaAllocPhiInputs)2788       : HVariableInputSizeInstruction(
2789             kPhi,
2790             ToPhiType(type),
2791             SideEffects::None(),
2792             dex_pc,
2793             allocator,
2794             number_of_inputs,
2795             kArenaAllocPhiInputs),
2796         reg_number_(reg_number) {
2797     DCHECK_NE(GetType(), DataType::Type::kVoid);
2798     // Phis are constructed live and marked dead if conflicting or unused.
2799     // Individual steps of SsaBuilder should assume that if a phi has been
2800     // marked dead, it can be ignored and will be removed by SsaPhiElimination.
2801     SetPackedFlag<kFlagIsLive>(true);
2802     SetPackedFlag<kFlagCanBeNull>(true);
2803   }
2804 
IsClonable()2805   bool IsClonable() const override { return true; }
2806 
2807   // Returns a type equivalent to the given `type`, but that a `HPhi` can hold.
ToPhiType(DataType::Type type)2808   static DataType::Type ToPhiType(DataType::Type type) {
2809     return DataType::Kind(type);
2810   }
2811 
IsCatchPhi()2812   bool IsCatchPhi() const { return GetBlock()->IsCatchBlock(); }
2813 
SetType(DataType::Type new_type)2814   void SetType(DataType::Type new_type) {
2815     // Make sure that only valid type changes occur. The following are allowed:
2816     //  (1) int  -> float/ref (primitive type propagation),
2817     //  (2) long -> double (primitive type propagation).
2818     DCHECK(GetType() == new_type ||
2819            (GetType() == DataType::Type::kInt32 && new_type == DataType::Type::kFloat32) ||
2820            (GetType() == DataType::Type::kInt32 && new_type == DataType::Type::kReference) ||
2821            (GetType() == DataType::Type::kInt64 && new_type == DataType::Type::kFloat64));
2822     SetPackedField<TypeField>(new_type);
2823   }
2824 
CanBeNull()2825   bool CanBeNull() const override { return GetPackedFlag<kFlagCanBeNull>(); }
SetCanBeNull(bool can_be_null)2826   void SetCanBeNull(bool can_be_null) { SetPackedFlag<kFlagCanBeNull>(can_be_null); }
2827 
GetRegNumber()2828   uint32_t GetRegNumber() const { return reg_number_; }
2829 
SetDead()2830   void SetDead() { SetPackedFlag<kFlagIsLive>(false); }
SetLive()2831   void SetLive() { SetPackedFlag<kFlagIsLive>(true); }
IsDead()2832   bool IsDead() const { return !IsLive(); }
IsLive()2833   bool IsLive() const { return GetPackedFlag<kFlagIsLive>(); }
2834 
IsVRegEquivalentOf(const HInstruction * other)2835   bool IsVRegEquivalentOf(const HInstruction* other) const {
2836     return other != nullptr
2837         && other->IsPhi()
2838         && other->AsPhi()->GetBlock() == GetBlock()
2839         && other->AsPhi()->GetRegNumber() == GetRegNumber();
2840   }
2841 
HasEquivalentPhi()2842   bool HasEquivalentPhi() const {
2843     if (GetPrevious() != nullptr && GetPrevious()->AsPhi()->GetRegNumber() == GetRegNumber()) {
2844       return true;
2845     }
2846     if (GetNext() != nullptr && GetNext()->AsPhi()->GetRegNumber() == GetRegNumber()) {
2847       return true;
2848     }
2849     return false;
2850   }
2851 
2852   // Returns the next equivalent phi (starting from the current one) or null if there is none.
2853   // An equivalent phi is a phi having the same dex register and type.
2854   // It assumes that phis with the same dex register are adjacent.
GetNextEquivalentPhiWithSameType()2855   HPhi* GetNextEquivalentPhiWithSameType() {
2856     HInstruction* next = GetNext();
2857     while (next != nullptr && next->AsPhi()->GetRegNumber() == reg_number_) {
2858       if (next->GetType() == GetType()) {
2859         return next->AsPhi();
2860       }
2861       next = next->GetNext();
2862     }
2863     return nullptr;
2864   }
2865 
2866   DECLARE_INSTRUCTION(Phi);
2867 
2868  protected:
2869   DEFAULT_COPY_CONSTRUCTOR(Phi);
2870 
2871  private:
2872   static constexpr size_t kFlagIsLive = HInstruction::kNumberOfGenericPackedBits;
2873   static constexpr size_t kFlagCanBeNull = kFlagIsLive + 1;
2874   static constexpr size_t kNumberOfPhiPackedBits = kFlagCanBeNull + 1;
2875   static_assert(kNumberOfPhiPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
2876 
2877   const uint32_t reg_number_;
2878 };
2879 
2880 // The exit instruction is the only instruction of the exit block.
2881 // Instructions aborting the method (HThrow and HReturn) must branch to the
2882 // exit block.
2883 class HExit final : public HExpression<0> {
2884  public:
2885   explicit HExit(uint32_t dex_pc = kNoDexPc)
HExpression(kExit,SideEffects::None (),dex_pc)2886       : HExpression(kExit, SideEffects::None(), dex_pc) {
2887   }
2888 
IsControlFlow()2889   bool IsControlFlow() const override { return true; }
2890 
2891   DECLARE_INSTRUCTION(Exit);
2892 
2893  protected:
2894   DEFAULT_COPY_CONSTRUCTOR(Exit);
2895 };
2896 
2897 // Jumps from one block to another.
2898 class HGoto final : public HExpression<0> {
2899  public:
2900   explicit HGoto(uint32_t dex_pc = kNoDexPc)
HExpression(kGoto,SideEffects::None (),dex_pc)2901       : HExpression(kGoto, SideEffects::None(), dex_pc) {
2902   }
2903 
IsClonable()2904   bool IsClonable() const override { return true; }
IsControlFlow()2905   bool IsControlFlow() const override { return true; }
2906 
GetSuccessor()2907   HBasicBlock* GetSuccessor() const {
2908     return GetBlock()->GetSingleSuccessor();
2909   }
2910 
2911   DECLARE_INSTRUCTION(Goto);
2912 
2913  protected:
2914   DEFAULT_COPY_CONSTRUCTOR(Goto);
2915 };
2916 
2917 class HConstant : public HExpression<0> {
2918  public:
2919   explicit HConstant(InstructionKind kind, DataType::Type type, uint32_t dex_pc = kNoDexPc)
HExpression(kind,type,SideEffects::None (),dex_pc)2920       : HExpression(kind, type, SideEffects::None(), dex_pc) {
2921   }
2922 
CanBeMoved()2923   bool CanBeMoved() const override { return true; }
2924 
2925   // Is this constant -1 in the arithmetic sense?
IsMinusOne()2926   virtual bool IsMinusOne() const { return false; }
2927   // Is this constant 0 in the arithmetic sense?
IsArithmeticZero()2928   virtual bool IsArithmeticZero() const { return false; }
2929   // Is this constant a 0-bit pattern?
IsZeroBitPattern()2930   virtual bool IsZeroBitPattern() const { return false; }
2931   // Is this constant 1 in the arithmetic sense?
IsOne()2932   virtual bool IsOne() const { return false; }
2933 
2934   virtual uint64_t GetValueAsUint64() const = 0;
2935 
2936   DECLARE_ABSTRACT_INSTRUCTION(Constant);
2937 
2938  protected:
2939   DEFAULT_COPY_CONSTRUCTOR(Constant);
2940 };
2941 
2942 class HNullConstant final : public HConstant {
2943  public:
InstructionDataEquals(const HInstruction * other ATTRIBUTE_UNUSED)2944   bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
2945     return true;
2946   }
2947 
GetValueAsUint64()2948   uint64_t GetValueAsUint64() const override { return 0; }
2949 
ComputeHashCode()2950   size_t ComputeHashCode() const override { return 0; }
2951 
2952   // The null constant representation is a 0-bit pattern.
IsZeroBitPattern()2953   bool IsZeroBitPattern() const override { return true; }
2954 
2955   DECLARE_INSTRUCTION(NullConstant);
2956 
2957  protected:
2958   DEFAULT_COPY_CONSTRUCTOR(NullConstant);
2959 
2960  private:
2961   explicit HNullConstant(uint32_t dex_pc = kNoDexPc)
HConstant(kNullConstant,DataType::Type::kReference,dex_pc)2962       : HConstant(kNullConstant, DataType::Type::kReference, dex_pc) {
2963   }
2964 
2965   friend class HGraph;
2966 };
2967 
2968 // Constants of the type int. Those can be from Dex instructions, or
2969 // synthesized (for example with the if-eqz instruction).
2970 class HIntConstant final : public HConstant {
2971  public:
GetValue()2972   int32_t GetValue() const { return value_; }
2973 
GetValueAsUint64()2974   uint64_t GetValueAsUint64() const override {
2975     return static_cast<uint64_t>(static_cast<uint32_t>(value_));
2976   }
2977 
InstructionDataEquals(const HInstruction * other)2978   bool InstructionDataEquals(const HInstruction* other) const override {
2979     DCHECK(other->IsIntConstant()) << other->DebugName();
2980     return other->AsIntConstant()->value_ == value_;
2981   }
2982 
ComputeHashCode()2983   size_t ComputeHashCode() const override { return GetValue(); }
2984 
IsMinusOne()2985   bool IsMinusOne() const override { return GetValue() == -1; }
IsArithmeticZero()2986   bool IsArithmeticZero() const override { return GetValue() == 0; }
IsZeroBitPattern()2987   bool IsZeroBitPattern() const override { return GetValue() == 0; }
IsOne()2988   bool IsOne() const override { return GetValue() == 1; }
2989 
2990   // Integer constants are used to encode Boolean values as well,
2991   // where 1 means true and 0 means false.
IsTrue()2992   bool IsTrue() const { return GetValue() == 1; }
IsFalse()2993   bool IsFalse() const { return GetValue() == 0; }
2994 
2995   DECLARE_INSTRUCTION(IntConstant);
2996 
2997  protected:
2998   DEFAULT_COPY_CONSTRUCTOR(IntConstant);
2999 
3000  private:
3001   explicit HIntConstant(int32_t value, uint32_t dex_pc = kNoDexPc)
HConstant(kIntConstant,DataType::Type::kInt32,dex_pc)3002       : HConstant(kIntConstant, DataType::Type::kInt32, dex_pc), value_(value) {
3003   }
3004   explicit HIntConstant(bool value, uint32_t dex_pc = kNoDexPc)
HConstant(kIntConstant,DataType::Type::kInt32,dex_pc)3005       : HConstant(kIntConstant, DataType::Type::kInt32, dex_pc),
3006         value_(value ? 1 : 0) {
3007   }
3008 
3009   const int32_t value_;
3010 
3011   friend class HGraph;
3012   ART_FRIEND_TEST(GraphTest, InsertInstructionBefore);
3013   ART_FRIEND_TYPED_TEST(ParallelMoveTest, ConstantLast);
3014 };
3015 
3016 class HLongConstant final : public HConstant {
3017  public:
GetValue()3018   int64_t GetValue() const { return value_; }
3019 
GetValueAsUint64()3020   uint64_t GetValueAsUint64() const override { return value_; }
3021 
InstructionDataEquals(const HInstruction * other)3022   bool InstructionDataEquals(const HInstruction* other) const override {
3023     DCHECK(other->IsLongConstant()) << other->DebugName();
3024     return other->AsLongConstant()->value_ == value_;
3025   }
3026 
ComputeHashCode()3027   size_t ComputeHashCode() const override { return static_cast<size_t>(GetValue()); }
3028 
IsMinusOne()3029   bool IsMinusOne() const override { return GetValue() == -1; }
IsArithmeticZero()3030   bool IsArithmeticZero() const override { return GetValue() == 0; }
IsZeroBitPattern()3031   bool IsZeroBitPattern() const override { return GetValue() == 0; }
IsOne()3032   bool IsOne() const override { return GetValue() == 1; }
3033 
3034   DECLARE_INSTRUCTION(LongConstant);
3035 
3036  protected:
3037   DEFAULT_COPY_CONSTRUCTOR(LongConstant);
3038 
3039  private:
3040   explicit HLongConstant(int64_t value, uint32_t dex_pc = kNoDexPc)
HConstant(kLongConstant,DataType::Type::kInt64,dex_pc)3041       : HConstant(kLongConstant, DataType::Type::kInt64, dex_pc),
3042         value_(value) {
3043   }
3044 
3045   const int64_t value_;
3046 
3047   friend class HGraph;
3048 };
3049 
3050 class HFloatConstant final : public HConstant {
3051  public:
GetValue()3052   float GetValue() const { return value_; }
3053 
GetValueAsUint64()3054   uint64_t GetValueAsUint64() const override {
3055     return static_cast<uint64_t>(bit_cast<uint32_t, float>(value_));
3056   }
3057 
InstructionDataEquals(const HInstruction * other)3058   bool InstructionDataEquals(const HInstruction* other) const override {
3059     DCHECK(other->IsFloatConstant()) << other->DebugName();
3060     return other->AsFloatConstant()->GetValueAsUint64() == GetValueAsUint64();
3061   }
3062 
ComputeHashCode()3063   size_t ComputeHashCode() const override { return static_cast<size_t>(GetValue()); }
3064 
IsMinusOne()3065   bool IsMinusOne() const override {
3066     return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>((-1.0f));
3067   }
IsArithmeticZero()3068   bool IsArithmeticZero() const override {
3069     return std::fpclassify(value_) == FP_ZERO;
3070   }
IsArithmeticPositiveZero()3071   bool IsArithmeticPositiveZero() const {
3072     return IsArithmeticZero() && !std::signbit(value_);
3073   }
IsArithmeticNegativeZero()3074   bool IsArithmeticNegativeZero() const {
3075     return IsArithmeticZero() && std::signbit(value_);
3076   }
IsZeroBitPattern()3077   bool IsZeroBitPattern() const override {
3078     return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>(0.0f);
3079   }
IsOne()3080   bool IsOne() const override {
3081     return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>(1.0f);
3082   }
IsNaN()3083   bool IsNaN() const {
3084     return std::isnan(value_);
3085   }
3086 
3087   DECLARE_INSTRUCTION(FloatConstant);
3088 
3089  protected:
3090   DEFAULT_COPY_CONSTRUCTOR(FloatConstant);
3091 
3092  private:
3093   explicit HFloatConstant(float value, uint32_t dex_pc = kNoDexPc)
HConstant(kFloatConstant,DataType::Type::kFloat32,dex_pc)3094       : HConstant(kFloatConstant, DataType::Type::kFloat32, dex_pc),
3095         value_(value) {
3096   }
3097   explicit HFloatConstant(int32_t value, uint32_t dex_pc = kNoDexPc)
HConstant(kFloatConstant,DataType::Type::kFloat32,dex_pc)3098       : HConstant(kFloatConstant, DataType::Type::kFloat32, dex_pc),
3099         value_(bit_cast<float, int32_t>(value)) {
3100   }
3101 
3102   const float value_;
3103 
3104   // Only the SsaBuilder and HGraph can create floating-point constants.
3105   friend class SsaBuilder;
3106   friend class HGraph;
3107 };
3108 
3109 class HDoubleConstant final : public HConstant {
3110  public:
GetValue()3111   double GetValue() const { return value_; }
3112 
GetValueAsUint64()3113   uint64_t GetValueAsUint64() const override { return bit_cast<uint64_t, double>(value_); }
3114 
InstructionDataEquals(const HInstruction * other)3115   bool InstructionDataEquals(const HInstruction* other) const override {
3116     DCHECK(other->IsDoubleConstant()) << other->DebugName();
3117     return other->AsDoubleConstant()->GetValueAsUint64() == GetValueAsUint64();
3118   }
3119 
ComputeHashCode()3120   size_t ComputeHashCode() const override { return static_cast<size_t>(GetValue()); }
3121 
IsMinusOne()3122   bool IsMinusOne() const override {
3123     return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>((-1.0));
3124   }
IsArithmeticZero()3125   bool IsArithmeticZero() const override {
3126     return std::fpclassify(value_) == FP_ZERO;
3127   }
IsArithmeticPositiveZero()3128   bool IsArithmeticPositiveZero() const {
3129     return IsArithmeticZero() && !std::signbit(value_);
3130   }
IsArithmeticNegativeZero()3131   bool IsArithmeticNegativeZero() const {
3132     return IsArithmeticZero() && std::signbit(value_);
3133   }
IsZeroBitPattern()3134   bool IsZeroBitPattern() const override {
3135     return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>((0.0));
3136   }
IsOne()3137   bool IsOne() const override {
3138     return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>(1.0);
3139   }
IsNaN()3140   bool IsNaN() const {
3141     return std::isnan(value_);
3142   }
3143 
3144   DECLARE_INSTRUCTION(DoubleConstant);
3145 
3146  protected:
3147   DEFAULT_COPY_CONSTRUCTOR(DoubleConstant);
3148 
3149  private:
3150   explicit HDoubleConstant(double value, uint32_t dex_pc = kNoDexPc)
HConstant(kDoubleConstant,DataType::Type::kFloat64,dex_pc)3151       : HConstant(kDoubleConstant, DataType::Type::kFloat64, dex_pc),
3152         value_(value) {
3153   }
3154   explicit HDoubleConstant(int64_t value, uint32_t dex_pc = kNoDexPc)
HConstant(kDoubleConstant,DataType::Type::kFloat64,dex_pc)3155       : HConstant(kDoubleConstant, DataType::Type::kFloat64, dex_pc),
3156         value_(bit_cast<double, int64_t>(value)) {
3157   }
3158 
3159   const double value_;
3160 
3161   // Only the SsaBuilder and HGraph can create floating-point constants.
3162   friend class SsaBuilder;
3163   friend class HGraph;
3164 };
3165 
3166 // Conditional branch. A block ending with an HIf instruction must have
3167 // two successors.
3168 class HIf final : public HExpression<1> {
3169  public:
3170   explicit HIf(HInstruction* input, uint32_t dex_pc = kNoDexPc)
HExpression(kIf,SideEffects::None (),dex_pc)3171       : HExpression(kIf, SideEffects::None(), dex_pc) {
3172     SetRawInputAt(0, input);
3173   }
3174 
IsClonable()3175   bool IsClonable() const override { return true; }
IsControlFlow()3176   bool IsControlFlow() const override { return true; }
3177 
IfTrueSuccessor()3178   HBasicBlock* IfTrueSuccessor() const {
3179     return GetBlock()->GetSuccessors()[0];
3180   }
3181 
IfFalseSuccessor()3182   HBasicBlock* IfFalseSuccessor() const {
3183     return GetBlock()->GetSuccessors()[1];
3184   }
3185 
3186   DECLARE_INSTRUCTION(If);
3187 
3188  protected:
3189   DEFAULT_COPY_CONSTRUCTOR(If);
3190 };
3191 
3192 
3193 // Abstract instruction which marks the beginning and/or end of a try block and
3194 // links it to the respective exception handlers. Behaves the same as a Goto in
3195 // non-exceptional control flow.
3196 // Normal-flow successor is stored at index zero, exception handlers under
3197 // higher indices in no particular order.
3198 class HTryBoundary final : public HExpression<0> {
3199  public:
3200   enum class BoundaryKind {
3201     kEntry,
3202     kExit,
3203     kLast = kExit
3204   };
3205 
3206   // SideEffects::CanTriggerGC prevents instructions with SideEffects::DependOnGC to be alive
3207   // across the catch block entering edges as GC might happen during throwing an exception.
3208   // TryBoundary with BoundaryKind::kExit is conservatively used for that as there is no
3209   // HInstruction which a catch block must start from.
3210   explicit HTryBoundary(BoundaryKind kind, uint32_t dex_pc = kNoDexPc)
3211       : HExpression(kTryBoundary,
3212                     (kind == BoundaryKind::kExit) ? SideEffects::CanTriggerGC()
3213                                                   : SideEffects::None(),
3214                     dex_pc) {
3215     SetPackedField<BoundaryKindField>(kind);
3216   }
3217 
IsControlFlow()3218   bool IsControlFlow() const override { return true; }
3219 
3220   // Returns the block's non-exceptional successor (index zero).
GetNormalFlowSuccessor()3221   HBasicBlock* GetNormalFlowSuccessor() const { return GetBlock()->GetSuccessors()[0]; }
3222 
GetExceptionHandlers()3223   ArrayRef<HBasicBlock* const> GetExceptionHandlers() const {
3224     return ArrayRef<HBasicBlock* const>(GetBlock()->GetSuccessors()).SubArray(1u);
3225   }
3226 
3227   // Returns whether `handler` is among its exception handlers (non-zero index
3228   // successors).
HasExceptionHandler(const HBasicBlock & handler)3229   bool HasExceptionHandler(const HBasicBlock& handler) const {
3230     DCHECK(handler.IsCatchBlock());
3231     return GetBlock()->HasSuccessor(&handler, 1u /* Skip first successor. */);
3232   }
3233 
3234   // If not present already, adds `handler` to its block's list of exception
3235   // handlers.
AddExceptionHandler(HBasicBlock * handler)3236   void AddExceptionHandler(HBasicBlock* handler) {
3237     if (!HasExceptionHandler(*handler)) {
3238       GetBlock()->AddSuccessor(handler);
3239     }
3240   }
3241 
GetBoundaryKind()3242   BoundaryKind GetBoundaryKind() const { return GetPackedField<BoundaryKindField>(); }
IsEntry()3243   bool IsEntry() const { return GetBoundaryKind() == BoundaryKind::kEntry; }
3244 
3245   bool HasSameExceptionHandlersAs(const HTryBoundary& other) const;
3246 
3247   DECLARE_INSTRUCTION(TryBoundary);
3248 
3249  protected:
3250   DEFAULT_COPY_CONSTRUCTOR(TryBoundary);
3251 
3252  private:
3253   static constexpr size_t kFieldBoundaryKind = kNumberOfGenericPackedBits;
3254   static constexpr size_t kFieldBoundaryKindSize =
3255       MinimumBitsToStore(static_cast<size_t>(BoundaryKind::kLast));
3256   static constexpr size_t kNumberOfTryBoundaryPackedBits =
3257       kFieldBoundaryKind + kFieldBoundaryKindSize;
3258   static_assert(kNumberOfTryBoundaryPackedBits <= kMaxNumberOfPackedBits,
3259                 "Too many packed fields.");
3260   using BoundaryKindField = BitField<BoundaryKind, kFieldBoundaryKind, kFieldBoundaryKindSize>;
3261 };
3262 
3263 // Deoptimize to interpreter, upon checking a condition.
3264 class HDeoptimize final : public HVariableInputSizeInstruction {
3265  public:
3266   // Use this constructor when the `HDeoptimize` acts as a barrier, where no code can move
3267   // across.
HDeoptimize(ArenaAllocator * allocator,HInstruction * cond,DeoptimizationKind kind,uint32_t dex_pc)3268   HDeoptimize(ArenaAllocator* allocator,
3269               HInstruction* cond,
3270               DeoptimizationKind kind,
3271               uint32_t dex_pc)
3272       : HVariableInputSizeInstruction(
3273             kDeoptimize,
3274             SideEffects::All(),
3275             dex_pc,
3276             allocator,
3277             /* number_of_inputs= */ 1,
3278             kArenaAllocMisc) {
3279     SetPackedFlag<kFieldCanBeMoved>(false);
3280     SetPackedField<DeoptimizeKindField>(kind);
3281     SetRawInputAt(0, cond);
3282   }
3283 
IsClonable()3284   bool IsClonable() const override { return true; }
3285 
3286   // Use this constructor when the `HDeoptimize` guards an instruction, and any user
3287   // that relies on the deoptimization to pass should have its input be the `HDeoptimize`
3288   // instead of `guard`.
3289   // We set CanTriggerGC to prevent any intermediate address to be live
3290   // at the point of the `HDeoptimize`.
HDeoptimize(ArenaAllocator * allocator,HInstruction * cond,HInstruction * guard,DeoptimizationKind kind,uint32_t dex_pc)3291   HDeoptimize(ArenaAllocator* allocator,
3292               HInstruction* cond,
3293               HInstruction* guard,
3294               DeoptimizationKind kind,
3295               uint32_t dex_pc)
3296       : HVariableInputSizeInstruction(
3297             kDeoptimize,
3298             guard->GetType(),
3299             SideEffects::CanTriggerGC(),
3300             dex_pc,
3301             allocator,
3302             /* number_of_inputs= */ 2,
3303             kArenaAllocMisc) {
3304     SetPackedFlag<kFieldCanBeMoved>(true);
3305     SetPackedField<DeoptimizeKindField>(kind);
3306     SetRawInputAt(0, cond);
3307     SetRawInputAt(1, guard);
3308   }
3309 
CanBeMoved()3310   bool CanBeMoved() const override { return GetPackedFlag<kFieldCanBeMoved>(); }
3311 
InstructionDataEquals(const HInstruction * other)3312   bool InstructionDataEquals(const HInstruction* other) const override {
3313     return (other->CanBeMoved() == CanBeMoved()) && (other->AsDeoptimize()->GetKind() == GetKind());
3314   }
3315 
NeedsEnvironment()3316   bool NeedsEnvironment() const override { return true; }
3317 
CanThrow()3318   bool CanThrow() const override { return true; }
3319 
GetDeoptimizationKind()3320   DeoptimizationKind GetDeoptimizationKind() const { return GetPackedField<DeoptimizeKindField>(); }
3321 
GuardsAnInput()3322   bool GuardsAnInput() const {
3323     return InputCount() == 2;
3324   }
3325 
GuardedInput()3326   HInstruction* GuardedInput() const {
3327     DCHECK(GuardsAnInput());
3328     return InputAt(1);
3329   }
3330 
RemoveGuard()3331   void RemoveGuard() {
3332     RemoveInputAt(1);
3333   }
3334 
3335   DECLARE_INSTRUCTION(Deoptimize);
3336 
3337  protected:
3338   DEFAULT_COPY_CONSTRUCTOR(Deoptimize);
3339 
3340  private:
3341   static constexpr size_t kFieldCanBeMoved = kNumberOfGenericPackedBits;
3342   static constexpr size_t kFieldDeoptimizeKind = kNumberOfGenericPackedBits + 1;
3343   static constexpr size_t kFieldDeoptimizeKindSize =
3344       MinimumBitsToStore(static_cast<size_t>(DeoptimizationKind::kLast));
3345   static constexpr size_t kNumberOfDeoptimizePackedBits =
3346       kFieldDeoptimizeKind + kFieldDeoptimizeKindSize;
3347   static_assert(kNumberOfDeoptimizePackedBits <= kMaxNumberOfPackedBits,
3348                 "Too many packed fields.");
3349   using DeoptimizeKindField =
3350       BitField<DeoptimizationKind, kFieldDeoptimizeKind, kFieldDeoptimizeKindSize>;
3351 };
3352 
3353 // Represents a should_deoptimize flag. Currently used for CHA-based devirtualization.
3354 // The compiled code checks this flag value in a guard before devirtualized call and
3355 // if it's true, starts to do deoptimization.
3356 // It has a 4-byte slot on stack.
3357 // TODO: allocate a register for this flag.
3358 class HShouldDeoptimizeFlag final : public HVariableInputSizeInstruction {
3359  public:
3360   // CHA guards are only optimized in a separate pass and it has no side effects
3361   // with regard to other passes.
HShouldDeoptimizeFlag(ArenaAllocator * allocator,uint32_t dex_pc)3362   HShouldDeoptimizeFlag(ArenaAllocator* allocator, uint32_t dex_pc)
3363       : HVariableInputSizeInstruction(kShouldDeoptimizeFlag,
3364                                       DataType::Type::kInt32,
3365                                       SideEffects::None(),
3366                                       dex_pc,
3367                                       allocator,
3368                                       0,
3369                                       kArenaAllocCHA) {
3370   }
3371 
3372   // We do all CHA guard elimination/motion in a single pass, after which there is no
3373   // further guard elimination/motion since a guard might have been used for justification
3374   // of the elimination of another guard. Therefore, we pretend this guard cannot be moved
3375   // to avoid other optimizations trying to move it.
CanBeMoved()3376   bool CanBeMoved() const override { return false; }
3377 
3378   DECLARE_INSTRUCTION(ShouldDeoptimizeFlag);
3379 
3380  protected:
3381   DEFAULT_COPY_CONSTRUCTOR(ShouldDeoptimizeFlag);
3382 };
3383 
3384 // Represents the ArtMethod that was passed as a first argument to
3385 // the method. It is used by instructions that depend on it, like
3386 // instructions that work with the dex cache.
3387 class HCurrentMethod final : public HExpression<0> {
3388  public:
3389   explicit HCurrentMethod(DataType::Type type, uint32_t dex_pc = kNoDexPc)
HExpression(kCurrentMethod,type,SideEffects::None (),dex_pc)3390       : HExpression(kCurrentMethod, type, SideEffects::None(), dex_pc) {
3391   }
3392 
3393   DECLARE_INSTRUCTION(CurrentMethod);
3394 
3395  protected:
3396   DEFAULT_COPY_CONSTRUCTOR(CurrentMethod);
3397 };
3398 
3399 // Fetches an ArtMethod from the virtual table or the interface method table
3400 // of a class.
3401 class HClassTableGet final : public HExpression<1> {
3402  public:
3403   enum class TableKind {
3404     kVTable,
3405     kIMTable,
3406     kLast = kIMTable
3407   };
HClassTableGet(HInstruction * cls,DataType::Type type,TableKind kind,size_t index,uint32_t dex_pc)3408   HClassTableGet(HInstruction* cls,
3409                  DataType::Type type,
3410                  TableKind kind,
3411                  size_t index,
3412                  uint32_t dex_pc)
3413       : HExpression(kClassTableGet, type, SideEffects::None(), dex_pc),
3414         index_(index) {
3415     SetPackedField<TableKindField>(kind);
3416     SetRawInputAt(0, cls);
3417   }
3418 
IsClonable()3419   bool IsClonable() const override { return true; }
CanBeMoved()3420   bool CanBeMoved() const override { return true; }
InstructionDataEquals(const HInstruction * other)3421   bool InstructionDataEquals(const HInstruction* other) const override {
3422     return other->AsClassTableGet()->GetIndex() == index_ &&
3423         other->AsClassTableGet()->GetPackedFields() == GetPackedFields();
3424   }
3425 
GetTableKind()3426   TableKind GetTableKind() const { return GetPackedField<TableKindField>(); }
GetIndex()3427   size_t GetIndex() const { return index_; }
3428 
3429   DECLARE_INSTRUCTION(ClassTableGet);
3430 
3431  protected:
3432   DEFAULT_COPY_CONSTRUCTOR(ClassTableGet);
3433 
3434  private:
3435   static constexpr size_t kFieldTableKind = kNumberOfGenericPackedBits;
3436   static constexpr size_t kFieldTableKindSize =
3437       MinimumBitsToStore(static_cast<size_t>(TableKind::kLast));
3438   static constexpr size_t kNumberOfClassTableGetPackedBits = kFieldTableKind + kFieldTableKindSize;
3439   static_assert(kNumberOfClassTableGetPackedBits <= kMaxNumberOfPackedBits,
3440                 "Too many packed fields.");
3441   using TableKindField = BitField<TableKind, kFieldTableKind, kFieldTableKind>;
3442 
3443   // The index of the ArtMethod in the table.
3444   const size_t index_;
3445 };
3446 
3447 // PackedSwitch (jump table). A block ending with a PackedSwitch instruction will
3448 // have one successor for each entry in the switch table, and the final successor
3449 // will be the block containing the next Dex opcode.
3450 class HPackedSwitch final : public HExpression<1> {
3451  public:
3452   HPackedSwitch(int32_t start_value,
3453                 uint32_t num_entries,
3454                 HInstruction* input,
3455                 uint32_t dex_pc = kNoDexPc)
HExpression(kPackedSwitch,SideEffects::None (),dex_pc)3456     : HExpression(kPackedSwitch, SideEffects::None(), dex_pc),
3457       start_value_(start_value),
3458       num_entries_(num_entries) {
3459     SetRawInputAt(0, input);
3460   }
3461 
IsClonable()3462   bool IsClonable() const override { return true; }
3463 
IsControlFlow()3464   bool IsControlFlow() const override { return true; }
3465 
GetStartValue()3466   int32_t GetStartValue() const { return start_value_; }
3467 
GetNumEntries()3468   uint32_t GetNumEntries() const { return num_entries_; }
3469 
GetDefaultBlock()3470   HBasicBlock* GetDefaultBlock() const {
3471     // Last entry is the default block.
3472     return GetBlock()->GetSuccessors()[num_entries_];
3473   }
3474   DECLARE_INSTRUCTION(PackedSwitch);
3475 
3476  protected:
3477   DEFAULT_COPY_CONSTRUCTOR(PackedSwitch);
3478 
3479  private:
3480   const int32_t start_value_;
3481   const uint32_t num_entries_;
3482 };
3483 
3484 class HUnaryOperation : public HExpression<1> {
3485  public:
3486   HUnaryOperation(InstructionKind kind,
3487                   DataType::Type result_type,
3488                   HInstruction* input,
3489                   uint32_t dex_pc = kNoDexPc)
HExpression(kind,result_type,SideEffects::None (),dex_pc)3490       : HExpression(kind, result_type, SideEffects::None(), dex_pc) {
3491     SetRawInputAt(0, input);
3492   }
3493 
3494   // All of the UnaryOperation instructions are clonable.
IsClonable()3495   bool IsClonable() const override { return true; }
3496 
GetInput()3497   HInstruction* GetInput() const { return InputAt(0); }
GetResultType()3498   DataType::Type GetResultType() const { return GetType(); }
3499 
CanBeMoved()3500   bool CanBeMoved() const override { return true; }
InstructionDataEquals(const HInstruction * other ATTRIBUTE_UNUSED)3501   bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
3502     return true;
3503   }
3504 
3505   // Try to statically evaluate `this` and return a HConstant
3506   // containing the result of this evaluation.  If `this` cannot
3507   // be evaluated as a constant, return null.
3508   HConstant* TryStaticEvaluation() const;
3509 
3510   // Apply this operation to `x`.
3511   virtual HConstant* Evaluate(HIntConstant* x) const = 0;
3512   virtual HConstant* Evaluate(HLongConstant* x) const = 0;
3513   virtual HConstant* Evaluate(HFloatConstant* x) const = 0;
3514   virtual HConstant* Evaluate(HDoubleConstant* x) const = 0;
3515 
3516   DECLARE_ABSTRACT_INSTRUCTION(UnaryOperation);
3517 
3518  protected:
3519   DEFAULT_COPY_CONSTRUCTOR(UnaryOperation);
3520 };
3521 
3522 class HBinaryOperation : public HExpression<2> {
3523  public:
3524   HBinaryOperation(InstructionKind kind,
3525                    DataType::Type result_type,
3526                    HInstruction* left,
3527                    HInstruction* right,
3528                    SideEffects side_effects = SideEffects::None(),
3529                    uint32_t dex_pc = kNoDexPc)
HExpression(kind,result_type,side_effects,dex_pc)3530       : HExpression(kind, result_type, side_effects, dex_pc) {
3531     SetRawInputAt(0, left);
3532     SetRawInputAt(1, right);
3533   }
3534 
3535   // All of the BinaryOperation instructions are clonable.
IsClonable()3536   bool IsClonable() const override { return true; }
3537 
GetLeft()3538   HInstruction* GetLeft() const { return InputAt(0); }
GetRight()3539   HInstruction* GetRight() const { return InputAt(1); }
GetResultType()3540   DataType::Type GetResultType() const { return GetType(); }
3541 
IsCommutative()3542   virtual bool IsCommutative() const { return false; }
3543 
3544   // Put constant on the right.
3545   // Returns whether order is changed.
OrderInputsWithConstantOnTheRight()3546   bool OrderInputsWithConstantOnTheRight() {
3547     HInstruction* left = InputAt(0);
3548     HInstruction* right = InputAt(1);
3549     if (left->IsConstant() && !right->IsConstant()) {
3550       ReplaceInput(right, 0);
3551       ReplaceInput(left, 1);
3552       return true;
3553     }
3554     return false;
3555   }
3556 
3557   // Order inputs by instruction id, but favor constant on the right side.
3558   // This helps GVN for commutative ops.
OrderInputs()3559   void OrderInputs() {
3560     DCHECK(IsCommutative());
3561     HInstruction* left = InputAt(0);
3562     HInstruction* right = InputAt(1);
3563     if (left == right || (!left->IsConstant() && right->IsConstant())) {
3564       return;
3565     }
3566     if (OrderInputsWithConstantOnTheRight()) {
3567       return;
3568     }
3569     // Order according to instruction id.
3570     if (left->GetId() > right->GetId()) {
3571       ReplaceInput(right, 0);
3572       ReplaceInput(left, 1);
3573     }
3574   }
3575 
CanBeMoved()3576   bool CanBeMoved() const override { return true; }
InstructionDataEquals(const HInstruction * other ATTRIBUTE_UNUSED)3577   bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
3578     return true;
3579   }
3580 
3581   // Try to statically evaluate `this` and return a HConstant
3582   // containing the result of this evaluation.  If `this` cannot
3583   // be evaluated as a constant, return null.
3584   HConstant* TryStaticEvaluation() const;
3585 
3586   // Apply this operation to `x` and `y`.
Evaluate(HNullConstant * x ATTRIBUTE_UNUSED,HNullConstant * y ATTRIBUTE_UNUSED)3587   virtual HConstant* Evaluate(HNullConstant* x ATTRIBUTE_UNUSED,
3588                               HNullConstant* y ATTRIBUTE_UNUSED) const {
3589     LOG(FATAL) << DebugName() << " is not defined for the (null, null) case.";
3590     UNREACHABLE();
3591   }
3592   virtual HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const = 0;
3593   virtual HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const = 0;
Evaluate(HLongConstant * x ATTRIBUTE_UNUSED,HIntConstant * y ATTRIBUTE_UNUSED)3594   virtual HConstant* Evaluate(HLongConstant* x ATTRIBUTE_UNUSED,
3595                               HIntConstant* y ATTRIBUTE_UNUSED) const {
3596     LOG(FATAL) << DebugName() << " is not defined for the (long, int) case.";
3597     UNREACHABLE();
3598   }
3599   virtual HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const = 0;
3600   virtual HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const = 0;
3601 
3602   // Returns an input that can legally be used as the right input and is
3603   // constant, or null.
3604   HConstant* GetConstantRight() const;
3605 
3606   // If `GetConstantRight()` returns one of the input, this returns the other
3607   // one. Otherwise it returns null.
3608   HInstruction* GetLeastConstantLeft() const;
3609 
3610   DECLARE_ABSTRACT_INSTRUCTION(BinaryOperation);
3611 
3612  protected:
3613   DEFAULT_COPY_CONSTRUCTOR(BinaryOperation);
3614 };
3615 
3616 // The comparison bias applies for floating point operations and indicates how NaN
3617 // comparisons are treated:
3618 enum class ComparisonBias {
3619   kNoBias,  // bias is not applicable (i.e. for long operation)
3620   kGtBias,  // return 1 for NaN comparisons
3621   kLtBias,  // return -1 for NaN comparisons
3622   kLast = kLtBias
3623 };
3624 
3625 std::ostream& operator<<(std::ostream& os, const ComparisonBias& rhs);
3626 
3627 class HCondition : public HBinaryOperation {
3628  public:
3629   HCondition(InstructionKind kind,
3630              HInstruction* first,
3631              HInstruction* second,
3632              uint32_t dex_pc = kNoDexPc)
HBinaryOperation(kind,DataType::Type::kBool,first,second,SideEffects::None (),dex_pc)3633       : HBinaryOperation(kind,
3634                          DataType::Type::kBool,
3635                          first,
3636                          second,
3637                          SideEffects::None(),
3638                          dex_pc) {
3639     SetPackedField<ComparisonBiasField>(ComparisonBias::kNoBias);
3640   }
3641 
3642   // For code generation purposes, returns whether this instruction is just before
3643   // `instruction`, and disregard moves in between.
3644   bool IsBeforeWhenDisregardMoves(HInstruction* instruction) const;
3645 
3646   DECLARE_ABSTRACT_INSTRUCTION(Condition);
3647 
3648   virtual IfCondition GetCondition() const = 0;
3649 
3650   virtual IfCondition GetOppositeCondition() const = 0;
3651 
IsGtBias()3652   bool IsGtBias() const { return GetBias() == ComparisonBias::kGtBias; }
IsLtBias()3653   bool IsLtBias() const { return GetBias() == ComparisonBias::kLtBias; }
3654 
GetBias()3655   ComparisonBias GetBias() const { return GetPackedField<ComparisonBiasField>(); }
SetBias(ComparisonBias bias)3656   void SetBias(ComparisonBias bias) { SetPackedField<ComparisonBiasField>(bias); }
3657 
InstructionDataEquals(const HInstruction * other)3658   bool InstructionDataEquals(const HInstruction* other) const override {
3659     return GetPackedFields() == other->AsCondition()->GetPackedFields();
3660   }
3661 
IsFPConditionTrueIfNaN()3662   bool IsFPConditionTrueIfNaN() const {
3663     DCHECK(DataType::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType();
3664     IfCondition if_cond = GetCondition();
3665     if (if_cond == kCondNE) {
3666       return true;
3667     } else if (if_cond == kCondEQ) {
3668       return false;
3669     }
3670     return ((if_cond == kCondGT) || (if_cond == kCondGE)) && IsGtBias();
3671   }
3672 
IsFPConditionFalseIfNaN()3673   bool IsFPConditionFalseIfNaN() const {
3674     DCHECK(DataType::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType();
3675     IfCondition if_cond = GetCondition();
3676     if (if_cond == kCondEQ) {
3677       return true;
3678     } else if (if_cond == kCondNE) {
3679       return false;
3680     }
3681     return ((if_cond == kCondLT) || (if_cond == kCondLE)) && IsGtBias();
3682   }
3683 
3684  protected:
3685   // Needed if we merge a HCompare into a HCondition.
3686   static constexpr size_t kFieldComparisonBias = kNumberOfGenericPackedBits;
3687   static constexpr size_t kFieldComparisonBiasSize =
3688       MinimumBitsToStore(static_cast<size_t>(ComparisonBias::kLast));
3689   static constexpr size_t kNumberOfConditionPackedBits =
3690       kFieldComparisonBias + kFieldComparisonBiasSize;
3691   static_assert(kNumberOfConditionPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
3692   using ComparisonBiasField =
3693       BitField<ComparisonBias, kFieldComparisonBias, kFieldComparisonBiasSize>;
3694 
3695   template <typename T>
Compare(T x,T y)3696   int32_t Compare(T x, T y) const { return x > y ? 1 : (x < y ? -1 : 0); }
3697 
3698   template <typename T>
CompareFP(T x,T y)3699   int32_t CompareFP(T x, T y) const {
3700     DCHECK(DataType::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType();
3701     DCHECK_NE(GetBias(), ComparisonBias::kNoBias);
3702     // Handle the bias.
3703     return std::isunordered(x, y) ? (IsGtBias() ? 1 : -1) : Compare(x, y);
3704   }
3705 
3706   // Return an integer constant containing the result of a condition evaluated at compile time.
MakeConstantCondition(bool value,uint32_t dex_pc)3707   HIntConstant* MakeConstantCondition(bool value, uint32_t dex_pc) const {
3708     return GetBlock()->GetGraph()->GetIntConstant(value, dex_pc);
3709   }
3710 
3711   DEFAULT_COPY_CONSTRUCTOR(Condition);
3712 };
3713 
3714 // Instruction to check if two inputs are equal to each other.
3715 class HEqual final : public HCondition {
3716  public:
3717   HEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
HCondition(kEqual,first,second,dex_pc)3718       : HCondition(kEqual, first, second, dex_pc) {
3719   }
3720 
IsCommutative()3721   bool IsCommutative() const override { return true; }
3722 
Evaluate(HNullConstant * x ATTRIBUTE_UNUSED,HNullConstant * y ATTRIBUTE_UNUSED)3723   HConstant* Evaluate(HNullConstant* x ATTRIBUTE_UNUSED,
3724                       HNullConstant* y ATTRIBUTE_UNUSED) const override {
3725     return MakeConstantCondition(true, GetDexPc());
3726   }
Evaluate(HIntConstant * x,HIntConstant * y)3727   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
3728     return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3729   }
3730   // In the following Evaluate methods, a HCompare instruction has
3731   // been merged into this HEqual instruction; evaluate it as
3732   // `Compare(x, y) == 0`.
Evaluate(HLongConstant * x,HLongConstant * y)3733   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
3734     return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0),
3735                                  GetDexPc());
3736   }
Evaluate(HFloatConstant * x,HFloatConstant * y)3737   HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
3738     return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3739   }
Evaluate(HDoubleConstant * x,HDoubleConstant * y)3740   HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
3741     return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3742   }
3743 
3744   DECLARE_INSTRUCTION(Equal);
3745 
GetCondition()3746   IfCondition GetCondition() const override {
3747     return kCondEQ;
3748   }
3749 
GetOppositeCondition()3750   IfCondition GetOppositeCondition() const override {
3751     return kCondNE;
3752   }
3753 
3754  protected:
3755   DEFAULT_COPY_CONSTRUCTOR(Equal);
3756 
3757  private:
Compute(T x,T y)3758   template <typename T> static bool Compute(T x, T y) { return x == y; }
3759 };
3760 
3761 class HNotEqual final : public HCondition {
3762  public:
3763   HNotEqual(HInstruction* first, HInstruction* second,
3764             uint32_t dex_pc = kNoDexPc)
HCondition(kNotEqual,first,second,dex_pc)3765       : HCondition(kNotEqual, first, second, dex_pc) {
3766   }
3767 
IsCommutative()3768   bool IsCommutative() const override { return true; }
3769 
Evaluate(HNullConstant * x ATTRIBUTE_UNUSED,HNullConstant * y ATTRIBUTE_UNUSED)3770   HConstant* Evaluate(HNullConstant* x ATTRIBUTE_UNUSED,
3771                       HNullConstant* y ATTRIBUTE_UNUSED) const override {
3772     return MakeConstantCondition(false, GetDexPc());
3773   }
Evaluate(HIntConstant * x,HIntConstant * y)3774   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
3775     return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3776   }
3777   // In the following Evaluate methods, a HCompare instruction has
3778   // been merged into this HNotEqual instruction; evaluate it as
3779   // `Compare(x, y) != 0`.
Evaluate(HLongConstant * x,HLongConstant * y)3780   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
3781     return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc());
3782   }
Evaluate(HFloatConstant * x,HFloatConstant * y)3783   HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
3784     return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3785   }
Evaluate(HDoubleConstant * x,HDoubleConstant * y)3786   HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
3787     return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3788   }
3789 
3790   DECLARE_INSTRUCTION(NotEqual);
3791 
GetCondition()3792   IfCondition GetCondition() const override {
3793     return kCondNE;
3794   }
3795 
GetOppositeCondition()3796   IfCondition GetOppositeCondition() const override {
3797     return kCondEQ;
3798   }
3799 
3800  protected:
3801   DEFAULT_COPY_CONSTRUCTOR(NotEqual);
3802 
3803  private:
Compute(T x,T y)3804   template <typename T> static bool Compute(T x, T y) { return x != y; }
3805 };
3806 
3807 class HLessThan final : public HCondition {
3808  public:
3809   HLessThan(HInstruction* first, HInstruction* second,
3810             uint32_t dex_pc = kNoDexPc)
HCondition(kLessThan,first,second,dex_pc)3811       : HCondition(kLessThan, first, second, dex_pc) {
3812   }
3813 
Evaluate(HIntConstant * x,HIntConstant * y)3814   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
3815     return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3816   }
3817   // In the following Evaluate methods, a HCompare instruction has
3818   // been merged into this HLessThan instruction; evaluate it as
3819   // `Compare(x, y) < 0`.
Evaluate(HLongConstant * x,HLongConstant * y)3820   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
3821     return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc());
3822   }
Evaluate(HFloatConstant * x,HFloatConstant * y)3823   HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
3824     return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3825   }
Evaluate(HDoubleConstant * x,HDoubleConstant * y)3826   HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
3827     return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3828   }
3829 
3830   DECLARE_INSTRUCTION(LessThan);
3831 
GetCondition()3832   IfCondition GetCondition() const override {
3833     return kCondLT;
3834   }
3835 
GetOppositeCondition()3836   IfCondition GetOppositeCondition() const override {
3837     return kCondGE;
3838   }
3839 
3840  protected:
3841   DEFAULT_COPY_CONSTRUCTOR(LessThan);
3842 
3843  private:
Compute(T x,T y)3844   template <typename T> static bool Compute(T x, T y) { return x < y; }
3845 };
3846 
3847 class HLessThanOrEqual final : public HCondition {
3848  public:
3849   HLessThanOrEqual(HInstruction* first, HInstruction* second,
3850                    uint32_t dex_pc = kNoDexPc)
HCondition(kLessThanOrEqual,first,second,dex_pc)3851       : HCondition(kLessThanOrEqual, first, second, dex_pc) {
3852   }
3853 
Evaluate(HIntConstant * x,HIntConstant * y)3854   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
3855     return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3856   }
3857   // In the following Evaluate methods, a HCompare instruction has
3858   // been merged into this HLessThanOrEqual instruction; evaluate it as
3859   // `Compare(x, y) <= 0`.
Evaluate(HLongConstant * x,HLongConstant * y)3860   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
3861     return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc());
3862   }
Evaluate(HFloatConstant * x,HFloatConstant * y)3863   HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
3864     return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3865   }
Evaluate(HDoubleConstant * x,HDoubleConstant * y)3866   HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
3867     return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3868   }
3869 
3870   DECLARE_INSTRUCTION(LessThanOrEqual);
3871 
GetCondition()3872   IfCondition GetCondition() const override {
3873     return kCondLE;
3874   }
3875 
GetOppositeCondition()3876   IfCondition GetOppositeCondition() const override {
3877     return kCondGT;
3878   }
3879 
3880  protected:
3881   DEFAULT_COPY_CONSTRUCTOR(LessThanOrEqual);
3882 
3883  private:
Compute(T x,T y)3884   template <typename T> static bool Compute(T x, T y) { return x <= y; }
3885 };
3886 
3887 class HGreaterThan final : public HCondition {
3888  public:
3889   HGreaterThan(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
HCondition(kGreaterThan,first,second,dex_pc)3890       : HCondition(kGreaterThan, first, second, dex_pc) {
3891   }
3892 
Evaluate(HIntConstant * x,HIntConstant * y)3893   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
3894     return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3895   }
3896   // In the following Evaluate methods, a HCompare instruction has
3897   // been merged into this HGreaterThan instruction; evaluate it as
3898   // `Compare(x, y) > 0`.
Evaluate(HLongConstant * x,HLongConstant * y)3899   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
3900     return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc());
3901   }
Evaluate(HFloatConstant * x,HFloatConstant * y)3902   HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
3903     return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3904   }
Evaluate(HDoubleConstant * x,HDoubleConstant * y)3905   HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
3906     return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3907   }
3908 
3909   DECLARE_INSTRUCTION(GreaterThan);
3910 
GetCondition()3911   IfCondition GetCondition() const override {
3912     return kCondGT;
3913   }
3914 
GetOppositeCondition()3915   IfCondition GetOppositeCondition() const override {
3916     return kCondLE;
3917   }
3918 
3919  protected:
3920   DEFAULT_COPY_CONSTRUCTOR(GreaterThan);
3921 
3922  private:
Compute(T x,T y)3923   template <typename T> static bool Compute(T x, T y) { return x > y; }
3924 };
3925 
3926 class HGreaterThanOrEqual final : public HCondition {
3927  public:
3928   HGreaterThanOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
HCondition(kGreaterThanOrEqual,first,second,dex_pc)3929       : HCondition(kGreaterThanOrEqual, first, second, dex_pc) {
3930   }
3931 
Evaluate(HIntConstant * x,HIntConstant * y)3932   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
3933     return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3934   }
3935   // In the following Evaluate methods, a HCompare instruction has
3936   // been merged into this HGreaterThanOrEqual instruction; evaluate it as
3937   // `Compare(x, y) >= 0`.
Evaluate(HLongConstant * x,HLongConstant * y)3938   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
3939     return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc());
3940   }
Evaluate(HFloatConstant * x,HFloatConstant * y)3941   HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
3942     return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3943   }
Evaluate(HDoubleConstant * x,HDoubleConstant * y)3944   HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
3945     return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3946   }
3947 
3948   DECLARE_INSTRUCTION(GreaterThanOrEqual);
3949 
GetCondition()3950   IfCondition GetCondition() const override {
3951     return kCondGE;
3952   }
3953 
GetOppositeCondition()3954   IfCondition GetOppositeCondition() const override {
3955     return kCondLT;
3956   }
3957 
3958  protected:
3959   DEFAULT_COPY_CONSTRUCTOR(GreaterThanOrEqual);
3960 
3961  private:
Compute(T x,T y)3962   template <typename T> static bool Compute(T x, T y) { return x >= y; }
3963 };
3964 
3965 class HBelow final : public HCondition {
3966  public:
3967   HBelow(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
HCondition(kBelow,first,second,dex_pc)3968       : HCondition(kBelow, first, second, dex_pc) {
3969   }
3970 
Evaluate(HIntConstant * x,HIntConstant * y)3971   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
3972     return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3973   }
Evaluate(HLongConstant * x,HLongConstant * y)3974   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
3975     return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3976   }
Evaluate(HFloatConstant * x ATTRIBUTE_UNUSED,HFloatConstant * y ATTRIBUTE_UNUSED)3977   HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
3978                       HFloatConstant* y ATTRIBUTE_UNUSED) const override {
3979     LOG(FATAL) << DebugName() << " is not defined for float values";
3980     UNREACHABLE();
3981   }
Evaluate(HDoubleConstant * x ATTRIBUTE_UNUSED,HDoubleConstant * y ATTRIBUTE_UNUSED)3982   HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
3983                       HDoubleConstant* y ATTRIBUTE_UNUSED) const override {
3984     LOG(FATAL) << DebugName() << " is not defined for double values";
3985     UNREACHABLE();
3986   }
3987 
3988   DECLARE_INSTRUCTION(Below);
3989 
GetCondition()3990   IfCondition GetCondition() const override {
3991     return kCondB;
3992   }
3993 
GetOppositeCondition()3994   IfCondition GetOppositeCondition() const override {
3995     return kCondAE;
3996   }
3997 
3998  protected:
3999   DEFAULT_COPY_CONSTRUCTOR(Below);
4000 
4001  private:
Compute(T x,T y)4002   template <typename T> static bool Compute(T x, T y) {
4003     return MakeUnsigned(x) < MakeUnsigned(y);
4004   }
4005 };
4006 
4007 class HBelowOrEqual final : public HCondition {
4008  public:
4009   HBelowOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
HCondition(kBelowOrEqual,first,second,dex_pc)4010       : HCondition(kBelowOrEqual, first, second, dex_pc) {
4011   }
4012 
Evaluate(HIntConstant * x,HIntConstant * y)4013   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
4014     return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
4015   }
Evaluate(HLongConstant * x,HLongConstant * y)4016   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
4017     return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
4018   }
Evaluate(HFloatConstant * x ATTRIBUTE_UNUSED,HFloatConstant * y ATTRIBUTE_UNUSED)4019   HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
4020                       HFloatConstant* y ATTRIBUTE_UNUSED) const override {
4021     LOG(FATAL) << DebugName() << " is not defined for float values";
4022     UNREACHABLE();
4023   }
Evaluate(HDoubleConstant * x ATTRIBUTE_UNUSED,HDoubleConstant * y ATTRIBUTE_UNUSED)4024   HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
4025                       HDoubleConstant* y ATTRIBUTE_UNUSED) const override {
4026     LOG(FATAL) << DebugName() << " is not defined for double values";
4027     UNREACHABLE();
4028   }
4029 
4030   DECLARE_INSTRUCTION(BelowOrEqual);
4031 
GetCondition()4032   IfCondition GetCondition() const override {
4033     return kCondBE;
4034   }
4035 
GetOppositeCondition()4036   IfCondition GetOppositeCondition() const override {
4037     return kCondA;
4038   }
4039 
4040  protected:
4041   DEFAULT_COPY_CONSTRUCTOR(BelowOrEqual);
4042 
4043  private:
Compute(T x,T y)4044   template <typename T> static bool Compute(T x, T y) {
4045     return MakeUnsigned(x) <= MakeUnsigned(y);
4046   }
4047 };
4048 
4049 class HAbove final : public HCondition {
4050  public:
4051   HAbove(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
HCondition(kAbove,first,second,dex_pc)4052       : HCondition(kAbove, first, second, dex_pc) {
4053   }
4054 
Evaluate(HIntConstant * x,HIntConstant * y)4055   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
4056     return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
4057   }
Evaluate(HLongConstant * x,HLongConstant * y)4058   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
4059     return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
4060   }
Evaluate(HFloatConstant * x ATTRIBUTE_UNUSED,HFloatConstant * y ATTRIBUTE_UNUSED)4061   HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
4062                       HFloatConstant* y ATTRIBUTE_UNUSED) const override {
4063     LOG(FATAL) << DebugName() << " is not defined for float values";
4064     UNREACHABLE();
4065   }
Evaluate(HDoubleConstant * x ATTRIBUTE_UNUSED,HDoubleConstant * y ATTRIBUTE_UNUSED)4066   HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
4067                       HDoubleConstant* y ATTRIBUTE_UNUSED) const override {
4068     LOG(FATAL) << DebugName() << " is not defined for double values";
4069     UNREACHABLE();
4070   }
4071 
4072   DECLARE_INSTRUCTION(Above);
4073 
GetCondition()4074   IfCondition GetCondition() const override {
4075     return kCondA;
4076   }
4077 
GetOppositeCondition()4078   IfCondition GetOppositeCondition() const override {
4079     return kCondBE;
4080   }
4081 
4082  protected:
4083   DEFAULT_COPY_CONSTRUCTOR(Above);
4084 
4085  private:
Compute(T x,T y)4086   template <typename T> static bool Compute(T x, T y) {
4087     return MakeUnsigned(x) > MakeUnsigned(y);
4088   }
4089 };
4090 
4091 class HAboveOrEqual final : public HCondition {
4092  public:
4093   HAboveOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
HCondition(kAboveOrEqual,first,second,dex_pc)4094       : HCondition(kAboveOrEqual, first, second, dex_pc) {
4095   }
4096 
Evaluate(HIntConstant * x,HIntConstant * y)4097   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
4098     return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
4099   }
Evaluate(HLongConstant * x,HLongConstant * y)4100   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
4101     return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
4102   }
Evaluate(HFloatConstant * x ATTRIBUTE_UNUSED,HFloatConstant * y ATTRIBUTE_UNUSED)4103   HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
4104                       HFloatConstant* y ATTRIBUTE_UNUSED) const override {
4105     LOG(FATAL) << DebugName() << " is not defined for float values";
4106     UNREACHABLE();
4107   }
Evaluate(HDoubleConstant * x ATTRIBUTE_UNUSED,HDoubleConstant * y ATTRIBUTE_UNUSED)4108   HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
4109                       HDoubleConstant* y ATTRIBUTE_UNUSED) const override {
4110     LOG(FATAL) << DebugName() << " is not defined for double values";
4111     UNREACHABLE();
4112   }
4113 
4114   DECLARE_INSTRUCTION(AboveOrEqual);
4115 
GetCondition()4116   IfCondition GetCondition() const override {
4117     return kCondAE;
4118   }
4119 
GetOppositeCondition()4120   IfCondition GetOppositeCondition() const override {
4121     return kCondB;
4122   }
4123 
4124  protected:
4125   DEFAULT_COPY_CONSTRUCTOR(AboveOrEqual);
4126 
4127  private:
Compute(T x,T y)4128   template <typename T> static bool Compute(T x, T y) {
4129     return MakeUnsigned(x) >= MakeUnsigned(y);
4130   }
4131 };
4132 
4133 // Instruction to check how two inputs compare to each other.
4134 // Result is 0 if input0 == input1, 1 if input0 > input1, or -1 if input0 < input1.
4135 class HCompare final : public HBinaryOperation {
4136  public:
4137   // Note that `comparison_type` is the type of comparison performed
4138   // between the comparison's inputs, not the type of the instantiated
4139   // HCompare instruction (which is always DataType::Type::kInt).
HCompare(DataType::Type comparison_type,HInstruction * first,HInstruction * second,ComparisonBias bias,uint32_t dex_pc)4140   HCompare(DataType::Type comparison_type,
4141            HInstruction* first,
4142            HInstruction* second,
4143            ComparisonBias bias,
4144            uint32_t dex_pc)
4145       : HBinaryOperation(kCompare,
4146                          DataType::Type::kInt32,
4147                          first,
4148                          second,
4149                          SideEffectsForArchRuntimeCalls(comparison_type),
4150                          dex_pc) {
4151     SetPackedField<ComparisonBiasField>(bias);
4152     DCHECK_EQ(comparison_type, DataType::Kind(first->GetType()));
4153     DCHECK_EQ(comparison_type, DataType::Kind(second->GetType()));
4154   }
4155 
4156   template <typename T>
Compute(T x,T y)4157   int32_t Compute(T x, T y) const { return x > y ? 1 : (x < y ? -1 : 0); }
4158 
4159   template <typename T>
ComputeFP(T x,T y)4160   int32_t ComputeFP(T x, T y) const {
4161     DCHECK(DataType::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType();
4162     DCHECK_NE(GetBias(), ComparisonBias::kNoBias);
4163     // Handle the bias.
4164     return std::isunordered(x, y) ? (IsGtBias() ? 1 : -1) : Compute(x, y);
4165   }
4166 
Evaluate(HIntConstant * x,HIntConstant * y)4167   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
4168     // Note that there is no "cmp-int" Dex instruction so we shouldn't
4169     // reach this code path when processing a freshly built HIR
4170     // graph. However HCompare integer instructions can be synthesized
4171     // by the instruction simplifier to implement IntegerCompare and
4172     // IntegerSignum intrinsics, so we have to handle this case.
4173     return MakeConstantComparison(Compute(x->GetValue(), y->GetValue()), GetDexPc());
4174   }
Evaluate(HLongConstant * x,HLongConstant * y)4175   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
4176     return MakeConstantComparison(Compute(x->GetValue(), y->GetValue()), GetDexPc());
4177   }
Evaluate(HFloatConstant * x,HFloatConstant * y)4178   HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
4179     return MakeConstantComparison(ComputeFP(x->GetValue(), y->GetValue()), GetDexPc());
4180   }
Evaluate(HDoubleConstant * x,HDoubleConstant * y)4181   HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
4182     return MakeConstantComparison(ComputeFP(x->GetValue(), y->GetValue()), GetDexPc());
4183   }
4184 
InstructionDataEquals(const HInstruction * other)4185   bool InstructionDataEquals(const HInstruction* other) const override {
4186     return GetPackedFields() == other->AsCompare()->GetPackedFields();
4187   }
4188 
GetBias()4189   ComparisonBias GetBias() const { return GetPackedField<ComparisonBiasField>(); }
4190 
4191   // Does this compare instruction have a "gt bias" (vs an "lt bias")?
4192   // Only meaningful for floating-point comparisons.
IsGtBias()4193   bool IsGtBias() const {
4194     DCHECK(DataType::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType();
4195     return GetBias() == ComparisonBias::kGtBias;
4196   }
4197 
SideEffectsForArchRuntimeCalls(DataType::Type type ATTRIBUTE_UNUSED)4198   static SideEffects SideEffectsForArchRuntimeCalls(DataType::Type type ATTRIBUTE_UNUSED) {
4199     // Comparisons do not require a runtime call in any back end.
4200     return SideEffects::None();
4201   }
4202 
4203   DECLARE_INSTRUCTION(Compare);
4204 
4205  protected:
4206   static constexpr size_t kFieldComparisonBias = kNumberOfGenericPackedBits;
4207   static constexpr size_t kFieldComparisonBiasSize =
4208       MinimumBitsToStore(static_cast<size_t>(ComparisonBias::kLast));
4209   static constexpr size_t kNumberOfComparePackedBits =
4210       kFieldComparisonBias + kFieldComparisonBiasSize;
4211   static_assert(kNumberOfComparePackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
4212   using ComparisonBiasField =
4213       BitField<ComparisonBias, kFieldComparisonBias, kFieldComparisonBiasSize>;
4214 
4215   // Return an integer constant containing the result of a comparison evaluated at compile time.
MakeConstantComparison(int32_t value,uint32_t dex_pc)4216   HIntConstant* MakeConstantComparison(int32_t value, uint32_t dex_pc) const {
4217     DCHECK(value == -1 || value == 0 || value == 1) << value;
4218     return GetBlock()->GetGraph()->GetIntConstant(value, dex_pc);
4219   }
4220 
4221   DEFAULT_COPY_CONSTRUCTOR(Compare);
4222 };
4223 
4224 class HNewInstance final : public HExpression<1> {
4225  public:
HNewInstance(HInstruction * cls,uint32_t dex_pc,dex::TypeIndex type_index,const DexFile & dex_file,bool finalizable,QuickEntrypointEnum entrypoint)4226   HNewInstance(HInstruction* cls,
4227                uint32_t dex_pc,
4228                dex::TypeIndex type_index,
4229                const DexFile& dex_file,
4230                bool finalizable,
4231                QuickEntrypointEnum entrypoint)
4232       : HExpression(kNewInstance,
4233                     DataType::Type::kReference,
4234                     SideEffects::CanTriggerGC(),
4235                     dex_pc),
4236         type_index_(type_index),
4237         dex_file_(dex_file),
4238         entrypoint_(entrypoint) {
4239     SetPackedFlag<kFlagFinalizable>(finalizable);
4240     SetRawInputAt(0, cls);
4241   }
4242 
IsClonable()4243   bool IsClonable() const override { return true; }
4244 
GetTypeIndex()4245   dex::TypeIndex GetTypeIndex() const { return type_index_; }
GetDexFile()4246   const DexFile& GetDexFile() const { return dex_file_; }
4247 
4248   // Calls runtime so needs an environment.
NeedsEnvironment()4249   bool NeedsEnvironment() const override { return true; }
4250 
4251   // Can throw errors when out-of-memory or if it's not instantiable/accessible.
CanThrow()4252   bool CanThrow() const override { return true; }
4253 
NeedsChecks()4254   bool NeedsChecks() const {
4255     return entrypoint_ == kQuickAllocObjectWithChecks;
4256   }
4257 
IsFinalizable()4258   bool IsFinalizable() const { return GetPackedFlag<kFlagFinalizable>(); }
4259 
CanBeNull()4260   bool CanBeNull() const override { return false; }
4261 
GetEntrypoint()4262   QuickEntrypointEnum GetEntrypoint() const { return entrypoint_; }
4263 
SetEntrypoint(QuickEntrypointEnum entrypoint)4264   void SetEntrypoint(QuickEntrypointEnum entrypoint) {
4265     entrypoint_ = entrypoint;
4266   }
4267 
GetLoadClass()4268   HLoadClass* GetLoadClass() const {
4269     HInstruction* input = InputAt(0);
4270     if (input->IsClinitCheck()) {
4271       input = input->InputAt(0);
4272     }
4273     DCHECK(input->IsLoadClass());
4274     return input->AsLoadClass();
4275   }
4276 
4277   bool IsStringAlloc() const;
4278 
4279   DECLARE_INSTRUCTION(NewInstance);
4280 
4281  protected:
4282   DEFAULT_COPY_CONSTRUCTOR(NewInstance);
4283 
4284  private:
4285   static constexpr size_t kFlagFinalizable = kNumberOfGenericPackedBits;
4286   static constexpr size_t kNumberOfNewInstancePackedBits = kFlagFinalizable + 1;
4287   static_assert(kNumberOfNewInstancePackedBits <= kMaxNumberOfPackedBits,
4288                 "Too many packed fields.");
4289 
4290   const dex::TypeIndex type_index_;
4291   const DexFile& dex_file_;
4292   QuickEntrypointEnum entrypoint_;
4293 };
4294 
4295 enum IntrinsicNeedsEnvironmentOrCache {
4296   kNoEnvironmentOrCache,        // Intrinsic does not require an environment or dex cache.
4297   kNeedsEnvironmentOrCache      // Intrinsic requires an environment or requires a dex cache.
4298 };
4299 
4300 enum IntrinsicSideEffects {
4301   kNoSideEffects,     // Intrinsic does not have any heap memory side effects.
4302   kReadSideEffects,   // Intrinsic may read heap memory.
4303   kWriteSideEffects,  // Intrinsic may write heap memory.
4304   kAllSideEffects     // Intrinsic may read or write heap memory, or trigger GC.
4305 };
4306 
4307 enum IntrinsicExceptions {
4308   kNoThrow,  // Intrinsic does not throw any exceptions.
4309   kCanThrow  // Intrinsic may throw exceptions.
4310 };
4311 
4312 class HInvoke : public HVariableInputSizeInstruction {
4313  public:
4314   bool NeedsEnvironment() const override;
4315 
SetArgumentAt(size_t index,HInstruction * argument)4316   void SetArgumentAt(size_t index, HInstruction* argument) {
4317     SetRawInputAt(index, argument);
4318   }
4319 
4320   // Return the number of arguments.  This number can be lower than
4321   // the number of inputs returned by InputCount(), as some invoke
4322   // instructions (e.g. HInvokeStaticOrDirect) can have non-argument
4323   // inputs at the end of their list of inputs.
GetNumberOfArguments()4324   uint32_t GetNumberOfArguments() const { return number_of_arguments_; }
4325 
GetDexMethodIndex()4326   uint32_t GetDexMethodIndex() const { return dex_method_index_; }
4327 
GetInvokeType()4328   InvokeType GetInvokeType() const {
4329     return GetPackedField<InvokeTypeField>();
4330   }
4331 
GetIntrinsic()4332   Intrinsics GetIntrinsic() const {
4333     return intrinsic_;
4334   }
4335 
4336   void SetIntrinsic(Intrinsics intrinsic,
4337                     IntrinsicNeedsEnvironmentOrCache needs_env_or_cache,
4338                     IntrinsicSideEffects side_effects,
4339                     IntrinsicExceptions exceptions);
4340 
IsFromInlinedInvoke()4341   bool IsFromInlinedInvoke() const {
4342     return GetEnvironment()->IsFromInlinedInvoke();
4343   }
4344 
SetCanThrow(bool can_throw)4345   void SetCanThrow(bool can_throw) { SetPackedFlag<kFlagCanThrow>(can_throw); }
4346 
CanThrow()4347   bool CanThrow() const override { return GetPackedFlag<kFlagCanThrow>(); }
4348 
SetAlwaysThrows(bool always_throws)4349   void SetAlwaysThrows(bool always_throws) { SetPackedFlag<kFlagAlwaysThrows>(always_throws); }
4350 
AlwaysThrows()4351   bool AlwaysThrows() const override { return GetPackedFlag<kFlagAlwaysThrows>(); }
4352 
CanBeMoved()4353   bool CanBeMoved() const override { return IsIntrinsic() && !DoesAnyWrite(); }
4354 
InstructionDataEquals(const HInstruction * other)4355   bool InstructionDataEquals(const HInstruction* other) const override {
4356     return intrinsic_ != Intrinsics::kNone && intrinsic_ == other->AsInvoke()->intrinsic_;
4357   }
4358 
GetIntrinsicOptimizations()4359   uint32_t* GetIntrinsicOptimizations() {
4360     return &intrinsic_optimizations_;
4361   }
4362 
GetIntrinsicOptimizations()4363   const uint32_t* GetIntrinsicOptimizations() const {
4364     return &intrinsic_optimizations_;
4365   }
4366 
IsIntrinsic()4367   bool IsIntrinsic() const { return intrinsic_ != Intrinsics::kNone; }
4368 
GetResolvedMethod()4369   ArtMethod* GetResolvedMethod() const { return resolved_method_; }
4370   void SetResolvedMethod(ArtMethod* method) REQUIRES_SHARED(Locks::mutator_lock_);
4371 
4372   DECLARE_ABSTRACT_INSTRUCTION(Invoke);
4373 
4374  protected:
4375   static constexpr size_t kFieldInvokeType = kNumberOfGenericPackedBits;
4376   static constexpr size_t kFieldInvokeTypeSize =
4377       MinimumBitsToStore(static_cast<size_t>(kMaxInvokeType));
4378   static constexpr size_t kFlagCanThrow = kFieldInvokeType + kFieldInvokeTypeSize;
4379   static constexpr size_t kFlagAlwaysThrows = kFlagCanThrow + 1;
4380   static constexpr size_t kNumberOfInvokePackedBits = kFlagAlwaysThrows + 1;
4381   static_assert(kNumberOfInvokePackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
4382   using InvokeTypeField = BitField<InvokeType, kFieldInvokeType, kFieldInvokeTypeSize>;
4383 
HInvoke(InstructionKind kind,ArenaAllocator * allocator,uint32_t number_of_arguments,uint32_t number_of_other_inputs,DataType::Type return_type,uint32_t dex_pc,uint32_t dex_method_index,ArtMethod * resolved_method,InvokeType invoke_type)4384   HInvoke(InstructionKind kind,
4385           ArenaAllocator* allocator,
4386           uint32_t number_of_arguments,
4387           uint32_t number_of_other_inputs,
4388           DataType::Type return_type,
4389           uint32_t dex_pc,
4390           uint32_t dex_method_index,
4391           ArtMethod* resolved_method,
4392           InvokeType invoke_type)
4393     : HVariableInputSizeInstruction(
4394           kind,
4395           return_type,
4396           SideEffects::AllExceptGCDependency(),  // Assume write/read on all fields/arrays.
4397           dex_pc,
4398           allocator,
4399           number_of_arguments + number_of_other_inputs,
4400           kArenaAllocInvokeInputs),
4401       number_of_arguments_(number_of_arguments),
4402       dex_method_index_(dex_method_index),
4403       intrinsic_(Intrinsics::kNone),
4404       intrinsic_optimizations_(0) {
4405     SetPackedField<InvokeTypeField>(invoke_type);
4406     SetPackedFlag<kFlagCanThrow>(true);
4407     // Check mutator lock, constructors lack annotalysis support.
4408     Locks::mutator_lock_->AssertNotExclusiveHeld(Thread::Current());
4409     SetResolvedMethod(resolved_method);
4410   }
4411 
4412   DEFAULT_COPY_CONSTRUCTOR(Invoke);
4413 
4414   uint32_t number_of_arguments_;
4415   ArtMethod* resolved_method_;
4416   const uint32_t dex_method_index_;
4417   Intrinsics intrinsic_;
4418 
4419   // A magic word holding optimizations for intrinsics. See intrinsics.h.
4420   uint32_t intrinsic_optimizations_;
4421 };
4422 
4423 class HInvokeUnresolved final : public HInvoke {
4424  public:
HInvokeUnresolved(ArenaAllocator * allocator,uint32_t number_of_arguments,DataType::Type return_type,uint32_t dex_pc,uint32_t dex_method_index,InvokeType invoke_type)4425   HInvokeUnresolved(ArenaAllocator* allocator,
4426                     uint32_t number_of_arguments,
4427                     DataType::Type return_type,
4428                     uint32_t dex_pc,
4429                     uint32_t dex_method_index,
4430                     InvokeType invoke_type)
4431       : HInvoke(kInvokeUnresolved,
4432                 allocator,
4433                 number_of_arguments,
4434                 /* number_of_other_inputs= */ 0u,
4435                 return_type,
4436                 dex_pc,
4437                 dex_method_index,
4438                 nullptr,
4439                 invoke_type) {
4440   }
4441 
IsClonable()4442   bool IsClonable() const override { return true; }
4443 
4444   DECLARE_INSTRUCTION(InvokeUnresolved);
4445 
4446  protected:
4447   DEFAULT_COPY_CONSTRUCTOR(InvokeUnresolved);
4448 };
4449 
4450 class HInvokePolymorphic final : public HInvoke {
4451  public:
HInvokePolymorphic(ArenaAllocator * allocator,uint32_t number_of_arguments,DataType::Type return_type,uint32_t dex_pc,uint32_t dex_method_index)4452   HInvokePolymorphic(ArenaAllocator* allocator,
4453                      uint32_t number_of_arguments,
4454                      DataType::Type return_type,
4455                      uint32_t dex_pc,
4456                      uint32_t dex_method_index)
4457       : HInvoke(kInvokePolymorphic,
4458                 allocator,
4459                 number_of_arguments,
4460                 /* number_of_other_inputs= */ 0u,
4461                 return_type,
4462                 dex_pc,
4463                 dex_method_index,
4464                 nullptr,
4465                 kVirtual) {
4466   }
4467 
IsClonable()4468   bool IsClonable() const override { return true; }
4469 
4470   DECLARE_INSTRUCTION(InvokePolymorphic);
4471 
4472  protected:
4473   DEFAULT_COPY_CONSTRUCTOR(InvokePolymorphic);
4474 };
4475 
4476 class HInvokeCustom final : public HInvoke {
4477  public:
HInvokeCustom(ArenaAllocator * allocator,uint32_t number_of_arguments,uint32_t call_site_index,DataType::Type return_type,uint32_t dex_pc)4478   HInvokeCustom(ArenaAllocator* allocator,
4479                 uint32_t number_of_arguments,
4480                 uint32_t call_site_index,
4481                 DataType::Type return_type,
4482                 uint32_t dex_pc)
4483       : HInvoke(kInvokeCustom,
4484                 allocator,
4485                 number_of_arguments,
4486                 /* number_of_other_inputs= */ 0u,
4487                 return_type,
4488                 dex_pc,
4489                 /* dex_method_index= */ dex::kDexNoIndex,
4490                 /* resolved_method= */ nullptr,
4491                 kStatic),
4492       call_site_index_(call_site_index) {
4493   }
4494 
GetCallSiteIndex()4495   uint32_t GetCallSiteIndex() const { return call_site_index_; }
4496 
IsClonable()4497   bool IsClonable() const override { return true; }
4498 
4499   DECLARE_INSTRUCTION(InvokeCustom);
4500 
4501  protected:
4502   DEFAULT_COPY_CONSTRUCTOR(InvokeCustom);
4503 
4504  private:
4505   uint32_t call_site_index_;
4506 };
4507 
4508 class HInvokeStaticOrDirect final : public HInvoke {
4509  public:
4510   // Requirements of this method call regarding the class
4511   // initialization (clinit) check of its declaring class.
4512   enum class ClinitCheckRequirement {
4513     kNone,      // Class already initialized.
4514     kExplicit,  // Static call having explicit clinit check as last input.
4515     kImplicit,  // Static call implicitly requiring a clinit check.
4516     kLast = kImplicit
4517   };
4518 
4519   // Determines how to load the target ArtMethod*.
4520   enum class MethodLoadKind {
4521     // Use a String init ArtMethod* loaded from Thread entrypoints.
4522     kStringInit,
4523 
4524     // Use the method's own ArtMethod* loaded by the register allocator.
4525     kRecursive,
4526 
4527     // Use PC-relative boot image ArtMethod* address that will be known at link time.
4528     // Used for boot image methods referenced by boot image code.
4529     kBootImageLinkTimePcRelative,
4530 
4531     // Load from an entry in the .data.bimg.rel.ro using a PC-relative load.
4532     // Used for app->boot calls with relocatable image.
4533     kBootImageRelRo,
4534 
4535     // Load from an entry in the .bss section using a PC-relative load.
4536     // Used for methods outside boot image referenced by AOT-compiled app and boot image code.
4537     kBssEntry,
4538 
4539     // Use ArtMethod* at a known address, embed the direct address in the code.
4540     // Used for for JIT-compiled calls.
4541     kJitDirectAddress,
4542 
4543     // Make a runtime call to resolve and call the method. This is the last-resort-kind
4544     // used when other kinds are unimplemented on a particular architecture.
4545     kRuntimeCall,
4546   };
4547 
4548   // Determines the location of the code pointer.
4549   enum class CodePtrLocation {
4550     // Recursive call, use local PC-relative call instruction.
4551     kCallSelf,
4552 
4553     // Use code pointer from the ArtMethod*.
4554     // Used when we don't know the target code. This is also the last-resort-kind used when
4555     // other kinds are unimplemented or impractical (i.e. slow) on a particular architecture.
4556     kCallArtMethod,
4557   };
4558 
4559   struct DispatchInfo {
4560     MethodLoadKind method_load_kind;
4561     CodePtrLocation code_ptr_location;
4562     // The method load data holds
4563     //   - thread entrypoint offset for kStringInit method if this is a string init invoke.
4564     //     Note that there are multiple string init methods, each having its own offset.
4565     //   - the method address for kDirectAddress
4566     uint64_t method_load_data;
4567   };
4568 
HInvokeStaticOrDirect(ArenaAllocator * allocator,uint32_t number_of_arguments,DataType::Type return_type,uint32_t dex_pc,uint32_t method_index,ArtMethod * resolved_method,DispatchInfo dispatch_info,InvokeType invoke_type,MethodReference target_method,ClinitCheckRequirement clinit_check_requirement)4569   HInvokeStaticOrDirect(ArenaAllocator* allocator,
4570                         uint32_t number_of_arguments,
4571                         DataType::Type return_type,
4572                         uint32_t dex_pc,
4573                         uint32_t method_index,
4574                         ArtMethod* resolved_method,
4575                         DispatchInfo dispatch_info,
4576                         InvokeType invoke_type,
4577                         MethodReference target_method,
4578                         ClinitCheckRequirement clinit_check_requirement)
4579       : HInvoke(kInvokeStaticOrDirect,
4580                 allocator,
4581                 number_of_arguments,
4582                 // There is potentially one extra argument for the HCurrentMethod node, and
4583                 // potentially one other if the clinit check is explicit.
4584                 (NeedsCurrentMethodInput(dispatch_info.method_load_kind) ? 1u : 0u) +
4585                     (clinit_check_requirement == ClinitCheckRequirement::kExplicit ? 1u : 0u),
4586                 return_type,
4587                 dex_pc,
4588                 method_index,
4589                 resolved_method,
4590                 invoke_type),
4591         target_method_(target_method),
4592         dispatch_info_(dispatch_info) {
4593     SetPackedField<ClinitCheckRequirementField>(clinit_check_requirement);
4594   }
4595 
IsClonable()4596   bool IsClonable() const override { return true; }
4597 
SetDispatchInfo(const DispatchInfo & dispatch_info)4598   void SetDispatchInfo(const DispatchInfo& dispatch_info) {
4599     bool had_current_method_input = HasCurrentMethodInput();
4600     bool needs_current_method_input = NeedsCurrentMethodInput(dispatch_info.method_load_kind);
4601 
4602     // Using the current method is the default and once we find a better
4603     // method load kind, we should not go back to using the current method.
4604     DCHECK(had_current_method_input || !needs_current_method_input);
4605 
4606     if (had_current_method_input && !needs_current_method_input) {
4607       DCHECK_EQ(InputAt(GetSpecialInputIndex()), GetBlock()->GetGraph()->GetCurrentMethod());
4608       RemoveInputAt(GetSpecialInputIndex());
4609     }
4610     dispatch_info_ = dispatch_info;
4611   }
4612 
GetDispatchInfo()4613   DispatchInfo GetDispatchInfo() const {
4614     return dispatch_info_;
4615   }
4616 
AddSpecialInput(HInstruction * input)4617   void AddSpecialInput(HInstruction* input) {
4618     // We allow only one special input.
4619     DCHECK(!IsStringInit() && !HasCurrentMethodInput());
4620     DCHECK(InputCount() == GetSpecialInputIndex() ||
4621            (InputCount() == GetSpecialInputIndex() + 1 && IsStaticWithExplicitClinitCheck()));
4622     InsertInputAt(GetSpecialInputIndex(), input);
4623   }
4624 
4625   using HInstruction::GetInputRecords;  // Keep the const version visible.
GetInputRecords()4626   ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() override {
4627     ArrayRef<HUserRecord<HInstruction*>> input_records = HInvoke::GetInputRecords();
4628     if (kIsDebugBuild && IsStaticWithExplicitClinitCheck()) {
4629       DCHECK(!input_records.empty());
4630       DCHECK_GT(input_records.size(), GetNumberOfArguments());
4631       HInstruction* last_input = input_records.back().GetInstruction();
4632       // Note: `last_input` may be null during arguments setup.
4633       if (last_input != nullptr) {
4634         // `last_input` is the last input of a static invoke marked as having
4635         // an explicit clinit check. It must either be:
4636         // - an art::HClinitCheck instruction, set by art::HGraphBuilder; or
4637         // - an art::HLoadClass instruction, set by art::PrepareForRegisterAllocation.
4638         DCHECK(last_input->IsClinitCheck() || last_input->IsLoadClass()) << last_input->DebugName();
4639       }
4640     }
4641     return input_records;
4642   }
4643 
CanDoImplicitNullCheckOn(HInstruction * obj ATTRIBUTE_UNUSED)4644   bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const override {
4645     // We access the method via the dex cache so we can't do an implicit null check.
4646     // TODO: for intrinsics we can generate implicit null checks.
4647     return false;
4648   }
4649 
CanBeNull()4650   bool CanBeNull() const override {
4651     return GetType() == DataType::Type::kReference && !IsStringInit();
4652   }
4653 
4654   // Get the index of the special input, if any.
4655   //
4656   // If the invoke HasCurrentMethodInput(), the "special input" is the current
4657   // method pointer; otherwise there may be one platform-specific special input,
4658   // such as PC-relative addressing base.
GetSpecialInputIndex()4659   uint32_t GetSpecialInputIndex() const { return GetNumberOfArguments(); }
HasSpecialInput()4660   bool HasSpecialInput() const { return GetNumberOfArguments() != InputCount(); }
4661 
GetMethodLoadKind()4662   MethodLoadKind GetMethodLoadKind() const { return dispatch_info_.method_load_kind; }
GetCodePtrLocation()4663   CodePtrLocation GetCodePtrLocation() const { return dispatch_info_.code_ptr_location; }
IsRecursive()4664   bool IsRecursive() const { return GetMethodLoadKind() == MethodLoadKind::kRecursive; }
4665   bool NeedsDexCacheOfDeclaringClass() const override;
IsStringInit()4666   bool IsStringInit() const { return GetMethodLoadKind() == MethodLoadKind::kStringInit; }
HasMethodAddress()4667   bool HasMethodAddress() const { return GetMethodLoadKind() == MethodLoadKind::kJitDirectAddress; }
HasPcRelativeMethodLoadKind()4668   bool HasPcRelativeMethodLoadKind() const {
4669     return GetMethodLoadKind() == MethodLoadKind::kBootImageLinkTimePcRelative ||
4670            GetMethodLoadKind() == MethodLoadKind::kBootImageRelRo ||
4671            GetMethodLoadKind() == MethodLoadKind::kBssEntry;
4672   }
HasCurrentMethodInput()4673   bool HasCurrentMethodInput() const {
4674     // This function can be called only after the invoke has been fully initialized by the builder.
4675     if (NeedsCurrentMethodInput(GetMethodLoadKind())) {
4676       DCHECK(InputAt(GetSpecialInputIndex())->IsCurrentMethod());
4677       return true;
4678     } else {
4679       DCHECK(InputCount() == GetSpecialInputIndex() ||
4680              !InputAt(GetSpecialInputIndex())->IsCurrentMethod());
4681       return false;
4682     }
4683   }
4684 
GetStringInitEntryPoint()4685   QuickEntrypointEnum GetStringInitEntryPoint() const {
4686     DCHECK(IsStringInit());
4687     return static_cast<QuickEntrypointEnum>(dispatch_info_.method_load_data);
4688   }
4689 
GetMethodAddress()4690   uint64_t GetMethodAddress() const {
4691     DCHECK(HasMethodAddress());
4692     return dispatch_info_.method_load_data;
4693   }
4694 
4695   const DexFile& GetDexFileForPcRelativeDexCache() const;
4696 
GetClinitCheckRequirement()4697   ClinitCheckRequirement GetClinitCheckRequirement() const {
4698     return GetPackedField<ClinitCheckRequirementField>();
4699   }
4700 
4701   // Is this instruction a call to a static method?
IsStatic()4702   bool IsStatic() const {
4703     return GetInvokeType() == kStatic;
4704   }
4705 
GetTargetMethod()4706   MethodReference GetTargetMethod() const {
4707     return target_method_;
4708   }
4709 
4710   // Remove the HClinitCheck or the replacement HLoadClass (set as last input by
4711   // PrepareForRegisterAllocation::VisitClinitCheck() in lieu of the initial HClinitCheck)
4712   // instruction; only relevant for static calls with explicit clinit check.
RemoveExplicitClinitCheck(ClinitCheckRequirement new_requirement)4713   void RemoveExplicitClinitCheck(ClinitCheckRequirement new_requirement) {
4714     DCHECK(IsStaticWithExplicitClinitCheck());
4715     size_t last_input_index = inputs_.size() - 1u;
4716     HInstruction* last_input = inputs_.back().GetInstruction();
4717     DCHECK(last_input != nullptr);
4718     DCHECK(last_input->IsLoadClass() || last_input->IsClinitCheck()) << last_input->DebugName();
4719     RemoveAsUserOfInput(last_input_index);
4720     inputs_.pop_back();
4721     SetPackedField<ClinitCheckRequirementField>(new_requirement);
4722     DCHECK(!IsStaticWithExplicitClinitCheck());
4723   }
4724 
4725   // Is this a call to a static method whose declaring class has an
4726   // explicit initialization check in the graph?
IsStaticWithExplicitClinitCheck()4727   bool IsStaticWithExplicitClinitCheck() const {
4728     return IsStatic() && (GetClinitCheckRequirement() == ClinitCheckRequirement::kExplicit);
4729   }
4730 
4731   // Is this a call to a static method whose declaring class has an
4732   // implicit intialization check requirement?
IsStaticWithImplicitClinitCheck()4733   bool IsStaticWithImplicitClinitCheck() const {
4734     return IsStatic() && (GetClinitCheckRequirement() == ClinitCheckRequirement::kImplicit);
4735   }
4736 
4737   // Does this method load kind need the current method as an input?
NeedsCurrentMethodInput(MethodLoadKind kind)4738   static bool NeedsCurrentMethodInput(MethodLoadKind kind) {
4739     return kind == MethodLoadKind::kRecursive || kind == MethodLoadKind::kRuntimeCall;
4740   }
4741 
4742   DECLARE_INSTRUCTION(InvokeStaticOrDirect);
4743 
4744  protected:
4745   DEFAULT_COPY_CONSTRUCTOR(InvokeStaticOrDirect);
4746 
4747  private:
4748   static constexpr size_t kFieldClinitCheckRequirement = kNumberOfInvokePackedBits;
4749   static constexpr size_t kFieldClinitCheckRequirementSize =
4750       MinimumBitsToStore(static_cast<size_t>(ClinitCheckRequirement::kLast));
4751   static constexpr size_t kNumberOfInvokeStaticOrDirectPackedBits =
4752       kFieldClinitCheckRequirement + kFieldClinitCheckRequirementSize;
4753   static_assert(kNumberOfInvokeStaticOrDirectPackedBits <= kMaxNumberOfPackedBits,
4754                 "Too many packed fields.");
4755   using ClinitCheckRequirementField = BitField<ClinitCheckRequirement,
4756                                                kFieldClinitCheckRequirement,
4757                                                kFieldClinitCheckRequirementSize>;
4758 
4759   // Cached values of the resolved method, to avoid needing the mutator lock.
4760   const MethodReference target_method_;
4761   DispatchInfo dispatch_info_;
4762 };
4763 std::ostream& operator<<(std::ostream& os, HInvokeStaticOrDirect::MethodLoadKind rhs);
4764 std::ostream& operator<<(std::ostream& os, HInvokeStaticOrDirect::ClinitCheckRequirement rhs);
4765 
4766 class HInvokeVirtual final : public HInvoke {
4767  public:
HInvokeVirtual(ArenaAllocator * allocator,uint32_t number_of_arguments,DataType::Type return_type,uint32_t dex_pc,uint32_t dex_method_index,ArtMethod * resolved_method,uint32_t vtable_index)4768   HInvokeVirtual(ArenaAllocator* allocator,
4769                  uint32_t number_of_arguments,
4770                  DataType::Type return_type,
4771                  uint32_t dex_pc,
4772                  uint32_t dex_method_index,
4773                  ArtMethod* resolved_method,
4774                  uint32_t vtable_index)
4775       : HInvoke(kInvokeVirtual,
4776                 allocator,
4777                 number_of_arguments,
4778                 0u,
4779                 return_type,
4780                 dex_pc,
4781                 dex_method_index,
4782                 resolved_method,
4783                 kVirtual),
4784         vtable_index_(vtable_index) {
4785   }
4786 
IsClonable()4787   bool IsClonable() const override { return true; }
4788 
CanBeNull()4789   bool CanBeNull() const override {
4790     switch (GetIntrinsic()) {
4791       case Intrinsics::kThreadCurrentThread:
4792       case Intrinsics::kStringBufferAppend:
4793       case Intrinsics::kStringBufferToString:
4794       case Intrinsics::kStringBuilderAppendObject:
4795       case Intrinsics::kStringBuilderAppendString:
4796       case Intrinsics::kStringBuilderAppendCharSequence:
4797       case Intrinsics::kStringBuilderAppendCharArray:
4798       case Intrinsics::kStringBuilderAppendBoolean:
4799       case Intrinsics::kStringBuilderAppendChar:
4800       case Intrinsics::kStringBuilderAppendInt:
4801       case Intrinsics::kStringBuilderAppendLong:
4802       case Intrinsics::kStringBuilderAppendFloat:
4803       case Intrinsics::kStringBuilderAppendDouble:
4804       case Intrinsics::kStringBuilderToString:
4805         return false;
4806       default:
4807         return HInvoke::CanBeNull();
4808     }
4809   }
4810 
CanDoImplicitNullCheckOn(HInstruction * obj)4811   bool CanDoImplicitNullCheckOn(HInstruction* obj) const override {
4812     // TODO: Add implicit null checks in intrinsics.
4813     return (obj == InputAt(0)) && !IsIntrinsic();
4814   }
4815 
GetVTableIndex()4816   uint32_t GetVTableIndex() const { return vtable_index_; }
4817 
4818   DECLARE_INSTRUCTION(InvokeVirtual);
4819 
4820  protected:
4821   DEFAULT_COPY_CONSTRUCTOR(InvokeVirtual);
4822 
4823  private:
4824   // Cached value of the resolved method, to avoid needing the mutator lock.
4825   const uint32_t vtable_index_;
4826 };
4827 
4828 class HInvokeInterface final : public HInvoke {
4829  public:
HInvokeInterface(ArenaAllocator * allocator,uint32_t number_of_arguments,DataType::Type return_type,uint32_t dex_pc,uint32_t dex_method_index,ArtMethod * resolved_method,uint32_t imt_index)4830   HInvokeInterface(ArenaAllocator* allocator,
4831                    uint32_t number_of_arguments,
4832                    DataType::Type return_type,
4833                    uint32_t dex_pc,
4834                    uint32_t dex_method_index,
4835                    ArtMethod* resolved_method,
4836                    uint32_t imt_index)
4837       : HInvoke(kInvokeInterface,
4838                 allocator,
4839                 number_of_arguments,
4840                 0u,
4841                 return_type,
4842                 dex_pc,
4843                 dex_method_index,
4844                 resolved_method,
4845                 kInterface),
4846         imt_index_(imt_index) {
4847   }
4848 
IsClonable()4849   bool IsClonable() const override { return true; }
4850 
CanDoImplicitNullCheckOn(HInstruction * obj)4851   bool CanDoImplicitNullCheckOn(HInstruction* obj) const override {
4852     // TODO: Add implicit null checks in intrinsics.
4853     return (obj == InputAt(0)) && !IsIntrinsic();
4854   }
4855 
NeedsDexCacheOfDeclaringClass()4856   bool NeedsDexCacheOfDeclaringClass() const override {
4857     // The assembly stub currently needs it.
4858     return true;
4859   }
4860 
GetImtIndex()4861   uint32_t GetImtIndex() const { return imt_index_; }
4862 
4863   DECLARE_INSTRUCTION(InvokeInterface);
4864 
4865  protected:
4866   DEFAULT_COPY_CONSTRUCTOR(InvokeInterface);
4867 
4868  private:
4869   // Cached value of the resolved method, to avoid needing the mutator lock.
4870   const uint32_t imt_index_;
4871 };
4872 
4873 class HNeg final : public HUnaryOperation {
4874  public:
4875   HNeg(DataType::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
HUnaryOperation(kNeg,result_type,input,dex_pc)4876       : HUnaryOperation(kNeg, result_type, input, dex_pc) {
4877     DCHECK_EQ(result_type, DataType::Kind(input->GetType()));
4878   }
4879 
Compute(T x)4880   template <typename T> static T Compute(T x) { return -x; }
4881 
Evaluate(HIntConstant * x)4882   HConstant* Evaluate(HIntConstant* x) const override {
4883     return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc());
4884   }
Evaluate(HLongConstant * x)4885   HConstant* Evaluate(HLongConstant* x) const override {
4886     return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue()), GetDexPc());
4887   }
Evaluate(HFloatConstant * x)4888   HConstant* Evaluate(HFloatConstant* x) const override {
4889     return GetBlock()->GetGraph()->GetFloatConstant(Compute(x->GetValue()), GetDexPc());
4890   }
Evaluate(HDoubleConstant * x)4891   HConstant* Evaluate(HDoubleConstant* x) const override {
4892     return GetBlock()->GetGraph()->GetDoubleConstant(Compute(x->GetValue()), GetDexPc());
4893   }
4894 
4895   DECLARE_INSTRUCTION(Neg);
4896 
4897  protected:
4898   DEFAULT_COPY_CONSTRUCTOR(Neg);
4899 };
4900 
4901 class HNewArray final : public HExpression<2> {
4902  public:
HNewArray(HInstruction * cls,HInstruction * length,uint32_t dex_pc,size_t component_size_shift)4903   HNewArray(HInstruction* cls, HInstruction* length, uint32_t dex_pc, size_t component_size_shift)
4904       : HExpression(kNewArray, DataType::Type::kReference, SideEffects::CanTriggerGC(), dex_pc) {
4905     SetRawInputAt(0, cls);
4906     SetRawInputAt(1, length);
4907     SetPackedField<ComponentSizeShiftField>(component_size_shift);
4908   }
4909 
IsClonable()4910   bool IsClonable() const override { return true; }
4911 
4912   // Calls runtime so needs an environment.
NeedsEnvironment()4913   bool NeedsEnvironment() const override { return true; }
4914 
4915   // May throw NegativeArraySizeException, OutOfMemoryError, etc.
CanThrow()4916   bool CanThrow() const override { return true; }
4917 
CanBeNull()4918   bool CanBeNull() const override { return false; }
4919 
GetLoadClass()4920   HLoadClass* GetLoadClass() const {
4921     DCHECK(InputAt(0)->IsLoadClass());
4922     return InputAt(0)->AsLoadClass();
4923   }
4924 
GetLength()4925   HInstruction* GetLength() const {
4926     return InputAt(1);
4927   }
4928 
GetComponentSizeShift()4929   size_t GetComponentSizeShift() {
4930     return GetPackedField<ComponentSizeShiftField>();
4931   }
4932 
4933   DECLARE_INSTRUCTION(NewArray);
4934 
4935  protected:
4936   DEFAULT_COPY_CONSTRUCTOR(NewArray);
4937 
4938  private:
4939   static constexpr size_t kFieldComponentSizeShift = kNumberOfGenericPackedBits;
4940   static constexpr size_t kFieldComponentSizeShiftSize = MinimumBitsToStore(3u);
4941   static constexpr size_t kNumberOfNewArrayPackedBits =
4942       kFieldComponentSizeShift + kFieldComponentSizeShiftSize;
4943   static_assert(kNumberOfNewArrayPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
4944   using ComponentSizeShiftField =
4945       BitField<size_t, kFieldComponentSizeShift, kFieldComponentSizeShift>;
4946 };
4947 
4948 class HAdd final : public HBinaryOperation {
4949  public:
4950   HAdd(DataType::Type result_type,
4951        HInstruction* left,
4952        HInstruction* right,
4953        uint32_t dex_pc = kNoDexPc)
HBinaryOperation(kAdd,result_type,left,right,SideEffects::None (),dex_pc)4954       : HBinaryOperation(kAdd, result_type, left, right, SideEffects::None(), dex_pc) {
4955   }
4956 
IsCommutative()4957   bool IsCommutative() const override { return true; }
4958 
Compute(T x,T y)4959   template <typename T> static T Compute(T x, T y) { return x + y; }
4960 
Evaluate(HIntConstant * x,HIntConstant * y)4961   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
4962     return GetBlock()->GetGraph()->GetIntConstant(
4963         Compute(x->GetValue(), y->GetValue()), GetDexPc());
4964   }
Evaluate(HLongConstant * x,HLongConstant * y)4965   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
4966     return GetBlock()->GetGraph()->GetLongConstant(
4967         Compute(x->GetValue(), y->GetValue()), GetDexPc());
4968   }
Evaluate(HFloatConstant * x,HFloatConstant * y)4969   HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
4970     return GetBlock()->GetGraph()->GetFloatConstant(
4971         Compute(x->GetValue(), y->GetValue()), GetDexPc());
4972   }
Evaluate(HDoubleConstant * x,HDoubleConstant * y)4973   HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
4974     return GetBlock()->GetGraph()->GetDoubleConstant(
4975         Compute(x->GetValue(), y->GetValue()), GetDexPc());
4976   }
4977 
4978   DECLARE_INSTRUCTION(Add);
4979 
4980  protected:
4981   DEFAULT_COPY_CONSTRUCTOR(Add);
4982 };
4983 
4984 class HSub final : public HBinaryOperation {
4985  public:
4986   HSub(DataType::Type result_type,
4987        HInstruction* left,
4988        HInstruction* right,
4989        uint32_t dex_pc = kNoDexPc)
HBinaryOperation(kSub,result_type,left,right,SideEffects::None (),dex_pc)4990       : HBinaryOperation(kSub, result_type, left, right, SideEffects::None(), dex_pc) {
4991   }
4992 
Compute(T x,T y)4993   template <typename T> static T Compute(T x, T y) { return x - y; }
4994 
Evaluate(HIntConstant * x,HIntConstant * y)4995   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
4996     return GetBlock()->GetGraph()->GetIntConstant(
4997         Compute(x->GetValue(), y->GetValue()), GetDexPc());
4998   }
Evaluate(HLongConstant * x,HLongConstant * y)4999   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
5000     return GetBlock()->GetGraph()->GetLongConstant(
5001         Compute(x->GetValue(), y->GetValue()), GetDexPc());
5002   }
Evaluate(HFloatConstant * x,HFloatConstant * y)5003   HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
5004     return GetBlock()->GetGraph()->GetFloatConstant(
5005         Compute(x->GetValue(), y->GetValue()), GetDexPc());
5006   }
Evaluate(HDoubleConstant * x,HDoubleConstant * y)5007   HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
5008     return GetBlock()->GetGraph()->GetDoubleConstant(
5009         Compute(x->GetValue(), y->GetValue()), GetDexPc());
5010   }
5011 
5012   DECLARE_INSTRUCTION(Sub);
5013 
5014  protected:
5015   DEFAULT_COPY_CONSTRUCTOR(Sub);
5016 };
5017 
5018 class HMul final : public HBinaryOperation {
5019  public:
5020   HMul(DataType::Type result_type,
5021        HInstruction* left,
5022        HInstruction* right,
5023        uint32_t dex_pc = kNoDexPc)
HBinaryOperation(kMul,result_type,left,right,SideEffects::None (),dex_pc)5024       : HBinaryOperation(kMul, result_type, left, right, SideEffects::None(), dex_pc) {
5025   }
5026 
IsCommutative()5027   bool IsCommutative() const override { return true; }
5028 
Compute(T x,T y)5029   template <typename T> static T Compute(T x, T y) { return x * y; }
5030 
Evaluate(HIntConstant * x,HIntConstant * y)5031   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
5032     return GetBlock()->GetGraph()->GetIntConstant(
5033         Compute(x->GetValue(), y->GetValue()), GetDexPc());
5034   }
Evaluate(HLongConstant * x,HLongConstant * y)5035   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
5036     return GetBlock()->GetGraph()->GetLongConstant(
5037         Compute(x->GetValue(), y->GetValue()), GetDexPc());
5038   }
Evaluate(HFloatConstant * x,HFloatConstant * y)5039   HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
5040     return GetBlock()->GetGraph()->GetFloatConstant(
5041         Compute(x->GetValue(), y->GetValue()), GetDexPc());
5042   }
Evaluate(HDoubleConstant * x,HDoubleConstant * y)5043   HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
5044     return GetBlock()->GetGraph()->GetDoubleConstant(
5045         Compute(x->GetValue(), y->GetValue()), GetDexPc());
5046   }
5047 
5048   DECLARE_INSTRUCTION(Mul);
5049 
5050  protected:
5051   DEFAULT_COPY_CONSTRUCTOR(Mul);
5052 };
5053 
5054 class HDiv final : public HBinaryOperation {
5055  public:
HDiv(DataType::Type result_type,HInstruction * left,HInstruction * right,uint32_t dex_pc)5056   HDiv(DataType::Type result_type,
5057        HInstruction* left,
5058        HInstruction* right,
5059        uint32_t dex_pc)
5060       : HBinaryOperation(kDiv, result_type, left, right, SideEffects::None(), dex_pc) {
5061   }
5062 
5063   template <typename T>
ComputeIntegral(T x,T y)5064   T ComputeIntegral(T x, T y) const {
5065     DCHECK(!DataType::IsFloatingPointType(GetType())) << GetType();
5066     // Our graph structure ensures we never have 0 for `y` during
5067     // constant folding.
5068     DCHECK_NE(y, 0);
5069     // Special case -1 to avoid getting a SIGFPE on x86(_64).
5070     return (y == -1) ? -x : x / y;
5071   }
5072 
5073   template <typename T>
ComputeFP(T x,T y)5074   T ComputeFP(T x, T y) const {
5075     DCHECK(DataType::IsFloatingPointType(GetType())) << GetType();
5076     return x / y;
5077   }
5078 
Evaluate(HIntConstant * x,HIntConstant * y)5079   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
5080     return GetBlock()->GetGraph()->GetIntConstant(
5081         ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc());
5082   }
Evaluate(HLongConstant * x,HLongConstant * y)5083   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
5084     return GetBlock()->GetGraph()->GetLongConstant(
5085         ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc());
5086   }
Evaluate(HFloatConstant * x,HFloatConstant * y)5087   HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
5088     return GetBlock()->GetGraph()->GetFloatConstant(
5089         ComputeFP(x->GetValue(), y->GetValue()), GetDexPc());
5090   }
Evaluate(HDoubleConstant * x,HDoubleConstant * y)5091   HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
5092     return GetBlock()->GetGraph()->GetDoubleConstant(
5093         ComputeFP(x->GetValue(), y->GetValue()), GetDexPc());
5094   }
5095 
5096   DECLARE_INSTRUCTION(Div);
5097 
5098  protected:
5099   DEFAULT_COPY_CONSTRUCTOR(Div);
5100 };
5101 
5102 class HRem final : public HBinaryOperation {
5103  public:
HRem(DataType::Type result_type,HInstruction * left,HInstruction * right,uint32_t dex_pc)5104   HRem(DataType::Type result_type,
5105        HInstruction* left,
5106        HInstruction* right,
5107        uint32_t dex_pc)
5108       : HBinaryOperation(kRem, result_type, left, right, SideEffects::None(), dex_pc) {
5109   }
5110 
5111   template <typename T>
ComputeIntegral(T x,T y)5112   T ComputeIntegral(T x, T y) const {
5113     DCHECK(!DataType::IsFloatingPointType(GetType())) << GetType();
5114     // Our graph structure ensures we never have 0 for `y` during
5115     // constant folding.
5116     DCHECK_NE(y, 0);
5117     // Special case -1 to avoid getting a SIGFPE on x86(_64).
5118     return (y == -1) ? 0 : x % y;
5119   }
5120 
5121   template <typename T>
ComputeFP(T x,T y)5122   T ComputeFP(T x, T y) const {
5123     DCHECK(DataType::IsFloatingPointType(GetType())) << GetType();
5124     return std::fmod(x, y);
5125   }
5126 
Evaluate(HIntConstant * x,HIntConstant * y)5127   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
5128     return GetBlock()->GetGraph()->GetIntConstant(
5129         ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc());
5130   }
Evaluate(HLongConstant * x,HLongConstant * y)5131   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
5132     return GetBlock()->GetGraph()->GetLongConstant(
5133         ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc());
5134   }
Evaluate(HFloatConstant * x,HFloatConstant * y)5135   HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
5136     return GetBlock()->GetGraph()->GetFloatConstant(
5137         ComputeFP(x->GetValue(), y->GetValue()), GetDexPc());
5138   }
Evaluate(HDoubleConstant * x,HDoubleConstant * y)5139   HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
5140     return GetBlock()->GetGraph()->GetDoubleConstant(
5141         ComputeFP(x->GetValue(), y->GetValue()), GetDexPc());
5142   }
5143 
5144   DECLARE_INSTRUCTION(Rem);
5145 
5146  protected:
5147   DEFAULT_COPY_CONSTRUCTOR(Rem);
5148 };
5149 
5150 class HMin final : public HBinaryOperation {
5151  public:
HMin(DataType::Type result_type,HInstruction * left,HInstruction * right,uint32_t dex_pc)5152   HMin(DataType::Type result_type,
5153        HInstruction* left,
5154        HInstruction* right,
5155        uint32_t dex_pc)
5156       : HBinaryOperation(kMin, result_type, left, right, SideEffects::None(), dex_pc) {}
5157 
IsCommutative()5158   bool IsCommutative() const override { return true; }
5159 
5160   // Evaluation for integral values.
ComputeIntegral(T x,T y)5161   template <typename T> static T ComputeIntegral(T x, T y) {
5162     return (x <= y) ? x : y;
5163   }
5164 
Evaluate(HIntConstant * x,HIntConstant * y)5165   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
5166     return GetBlock()->GetGraph()->GetIntConstant(
5167         ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc());
5168   }
Evaluate(HLongConstant * x,HLongConstant * y)5169   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
5170     return GetBlock()->GetGraph()->GetLongConstant(
5171         ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc());
5172   }
5173   // TODO: Evaluation for floating-point values.
Evaluate(HFloatConstant * x ATTRIBUTE_UNUSED,HFloatConstant * y ATTRIBUTE_UNUSED)5174   HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
5175                       HFloatConstant* y ATTRIBUTE_UNUSED) const override { return nullptr; }
Evaluate(HDoubleConstant * x ATTRIBUTE_UNUSED,HDoubleConstant * y ATTRIBUTE_UNUSED)5176   HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
5177                       HDoubleConstant* y ATTRIBUTE_UNUSED) const override { return nullptr; }
5178 
5179   DECLARE_INSTRUCTION(Min);
5180 
5181  protected:
5182   DEFAULT_COPY_CONSTRUCTOR(Min);
5183 };
5184 
5185 class HMax final : public HBinaryOperation {
5186  public:
HMax(DataType::Type result_type,HInstruction * left,HInstruction * right,uint32_t dex_pc)5187   HMax(DataType::Type result_type,
5188        HInstruction* left,
5189        HInstruction* right,
5190        uint32_t dex_pc)
5191       : HBinaryOperation(kMax, result_type, left, right, SideEffects::None(), dex_pc) {}
5192 
IsCommutative()5193   bool IsCommutative() const override { return true; }
5194 
5195   // Evaluation for integral values.
ComputeIntegral(T x,T y)5196   template <typename T> static T ComputeIntegral(T x, T y) {
5197     return (x >= y) ? x : y;
5198   }
5199 
Evaluate(HIntConstant * x,HIntConstant * y)5200   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
5201     return GetBlock()->GetGraph()->GetIntConstant(
5202         ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc());
5203   }
Evaluate(HLongConstant * x,HLongConstant * y)5204   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
5205     return GetBlock()->GetGraph()->GetLongConstant(
5206         ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc());
5207   }
5208   // TODO: Evaluation for floating-point values.
Evaluate(HFloatConstant * x ATTRIBUTE_UNUSED,HFloatConstant * y ATTRIBUTE_UNUSED)5209   HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
5210                       HFloatConstant* y ATTRIBUTE_UNUSED) const override { return nullptr; }
Evaluate(HDoubleConstant * x ATTRIBUTE_UNUSED,HDoubleConstant * y ATTRIBUTE_UNUSED)5211   HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
5212                       HDoubleConstant* y ATTRIBUTE_UNUSED) const override { return nullptr; }
5213 
5214   DECLARE_INSTRUCTION(Max);
5215 
5216  protected:
5217   DEFAULT_COPY_CONSTRUCTOR(Max);
5218 };
5219 
5220 class HAbs final : public HUnaryOperation {
5221  public:
5222   HAbs(DataType::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
HUnaryOperation(kAbs,result_type,input,dex_pc)5223       : HUnaryOperation(kAbs, result_type, input, dex_pc) {}
5224 
5225   // Evaluation for integral values.
ComputeIntegral(T x)5226   template <typename T> static T ComputeIntegral(T x) {
5227     return x < 0 ? -x : x;
5228   }
5229 
5230   // Evaluation for floating-point values.
5231   // Note, as a "quality of implementation", rather than pure "spec compliance",
5232   // we require that Math.abs() clears the sign bit (but changes nothing else)
5233   // for all floating-point numbers, including NaN (signaling NaN may become quiet though).
5234   // http://b/30758343
ComputeFP(T x)5235   template <typename T, typename S> static T ComputeFP(T x) {
5236     S bits = bit_cast<S, T>(x);
5237     return bit_cast<T, S>(bits & std::numeric_limits<S>::max());
5238   }
5239 
Evaluate(HIntConstant * x)5240   HConstant* Evaluate(HIntConstant* x) const override {
5241     return GetBlock()->GetGraph()->GetIntConstant(ComputeIntegral(x->GetValue()), GetDexPc());
5242   }
Evaluate(HLongConstant * x)5243   HConstant* Evaluate(HLongConstant* x) const override {
5244     return GetBlock()->GetGraph()->GetLongConstant(ComputeIntegral(x->GetValue()), GetDexPc());
5245   }
Evaluate(HFloatConstant * x)5246   HConstant* Evaluate(HFloatConstant* x) const override {
5247     return GetBlock()->GetGraph()->GetFloatConstant(
5248         ComputeFP<float, int32_t>(x->GetValue()), GetDexPc());
5249   }
Evaluate(HDoubleConstant * x)5250   HConstant* Evaluate(HDoubleConstant* x) const override {
5251     return GetBlock()->GetGraph()->GetDoubleConstant(
5252         ComputeFP<double, int64_t>(x->GetValue()), GetDexPc());
5253   }
5254 
5255   DECLARE_INSTRUCTION(Abs);
5256 
5257  protected:
5258   DEFAULT_COPY_CONSTRUCTOR(Abs);
5259 };
5260 
5261 class HDivZeroCheck final : public HExpression<1> {
5262  public:
5263   // `HDivZeroCheck` can trigger GC, as it may call the `ArithmeticException`
5264   // constructor. However it can only do it on a fatal slow path so execution never returns to the
5265   // instruction following the current one; thus 'SideEffects::None()' is used.
HDivZeroCheck(HInstruction * value,uint32_t dex_pc)5266   HDivZeroCheck(HInstruction* value, uint32_t dex_pc)
5267       : HExpression(kDivZeroCheck, value->GetType(), SideEffects::None(), dex_pc) {
5268     SetRawInputAt(0, value);
5269   }
5270 
IsClonable()5271   bool IsClonable() const override { return true; }
CanBeMoved()5272   bool CanBeMoved() const override { return true; }
5273 
InstructionDataEquals(const HInstruction * other ATTRIBUTE_UNUSED)5274   bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
5275     return true;
5276   }
5277 
NeedsEnvironment()5278   bool NeedsEnvironment() const override { return true; }
CanThrow()5279   bool CanThrow() const override { return true; }
5280 
5281   DECLARE_INSTRUCTION(DivZeroCheck);
5282 
5283  protected:
5284   DEFAULT_COPY_CONSTRUCTOR(DivZeroCheck);
5285 };
5286 
5287 class HShl final : public HBinaryOperation {
5288  public:
5289   HShl(DataType::Type result_type,
5290        HInstruction* value,
5291        HInstruction* distance,
5292        uint32_t dex_pc = kNoDexPc)
HBinaryOperation(kShl,result_type,value,distance,SideEffects::None (),dex_pc)5293       : HBinaryOperation(kShl, result_type, value, distance, SideEffects::None(), dex_pc) {
5294     DCHECK_EQ(result_type, DataType::Kind(value->GetType()));
5295     DCHECK_EQ(DataType::Type::kInt32, DataType::Kind(distance->GetType()));
5296   }
5297 
5298   template <typename T>
Compute(T value,int32_t distance,int32_t max_shift_distance)5299   static T Compute(T value, int32_t distance, int32_t max_shift_distance) {
5300     return value << (distance & max_shift_distance);
5301   }
5302 
Evaluate(HIntConstant * value,HIntConstant * distance)5303   HConstant* Evaluate(HIntConstant* value, HIntConstant* distance) const override {
5304     return GetBlock()->GetGraph()->GetIntConstant(
5305         Compute(value->GetValue(), distance->GetValue(), kMaxIntShiftDistance), GetDexPc());
5306   }
Evaluate(HLongConstant * value,HIntConstant * distance)5307   HConstant* Evaluate(HLongConstant* value, HIntConstant* distance) const override {
5308     return GetBlock()->GetGraph()->GetLongConstant(
5309         Compute(value->GetValue(), distance->GetValue(), kMaxLongShiftDistance), GetDexPc());
5310   }
Evaluate(HLongConstant * value ATTRIBUTE_UNUSED,HLongConstant * distance ATTRIBUTE_UNUSED)5311   HConstant* Evaluate(HLongConstant* value ATTRIBUTE_UNUSED,
5312                       HLongConstant* distance ATTRIBUTE_UNUSED) const override {
5313     LOG(FATAL) << DebugName() << " is not defined for the (long, long) case.";
5314     UNREACHABLE();
5315   }
Evaluate(HFloatConstant * value ATTRIBUTE_UNUSED,HFloatConstant * distance ATTRIBUTE_UNUSED)5316   HConstant* Evaluate(HFloatConstant* value ATTRIBUTE_UNUSED,
5317                       HFloatConstant* distance ATTRIBUTE_UNUSED) const override {
5318     LOG(FATAL) << DebugName() << " is not defined for float values";
5319     UNREACHABLE();
5320   }
Evaluate(HDoubleConstant * value ATTRIBUTE_UNUSED,HDoubleConstant * distance ATTRIBUTE_UNUSED)5321   HConstant* Evaluate(HDoubleConstant* value ATTRIBUTE_UNUSED,
5322                       HDoubleConstant* distance ATTRIBUTE_UNUSED) const override {
5323     LOG(FATAL) << DebugName() << " is not defined for double values";
5324     UNREACHABLE();
5325   }
5326 
5327   DECLARE_INSTRUCTION(Shl);
5328 
5329  protected:
5330   DEFAULT_COPY_CONSTRUCTOR(Shl);
5331 };
5332 
5333 class HShr final : public HBinaryOperation {
5334  public:
5335   HShr(DataType::Type result_type,
5336        HInstruction* value,
5337        HInstruction* distance,
5338        uint32_t dex_pc = kNoDexPc)
HBinaryOperation(kShr,result_type,value,distance,SideEffects::None (),dex_pc)5339       : HBinaryOperation(kShr, result_type, value, distance, SideEffects::None(), dex_pc) {
5340     DCHECK_EQ(result_type, DataType::Kind(value->GetType()));
5341     DCHECK_EQ(DataType::Type::kInt32, DataType::Kind(distance->GetType()));
5342   }
5343 
5344   template <typename T>
Compute(T value,int32_t distance,int32_t max_shift_distance)5345   static T Compute(T value, int32_t distance, int32_t max_shift_distance) {
5346     return value >> (distance & max_shift_distance);
5347   }
5348 
Evaluate(HIntConstant * value,HIntConstant * distance)5349   HConstant* Evaluate(HIntConstant* value, HIntConstant* distance) const override {
5350     return GetBlock()->GetGraph()->GetIntConstant(
5351         Compute(value->GetValue(), distance->GetValue(), kMaxIntShiftDistance), GetDexPc());
5352   }
Evaluate(HLongConstant * value,HIntConstant * distance)5353   HConstant* Evaluate(HLongConstant* value, HIntConstant* distance) const override {
5354     return GetBlock()->GetGraph()->GetLongConstant(
5355         Compute(value->GetValue(), distance->GetValue(), kMaxLongShiftDistance), GetDexPc());
5356   }
Evaluate(HLongConstant * value ATTRIBUTE_UNUSED,HLongConstant * distance ATTRIBUTE_UNUSED)5357   HConstant* Evaluate(HLongConstant* value ATTRIBUTE_UNUSED,
5358                       HLongConstant* distance ATTRIBUTE_UNUSED) const override {
5359     LOG(FATAL) << DebugName() << " is not defined for the (long, long) case.";
5360     UNREACHABLE();
5361   }
Evaluate(HFloatConstant * value ATTRIBUTE_UNUSED,HFloatConstant * distance ATTRIBUTE_UNUSED)5362   HConstant* Evaluate(HFloatConstant* value ATTRIBUTE_UNUSED,
5363                       HFloatConstant* distance ATTRIBUTE_UNUSED) const override {
5364     LOG(FATAL) << DebugName() << " is not defined for float values";
5365     UNREACHABLE();
5366   }
Evaluate(HDoubleConstant * value ATTRIBUTE_UNUSED,HDoubleConstant * distance ATTRIBUTE_UNUSED)5367   HConstant* Evaluate(HDoubleConstant* value ATTRIBUTE_UNUSED,
5368                       HDoubleConstant* distance ATTRIBUTE_UNUSED) const override {
5369     LOG(FATAL) << DebugName() << " is not defined for double values";
5370     UNREACHABLE();
5371   }
5372 
5373   DECLARE_INSTRUCTION(Shr);
5374 
5375  protected:
5376   DEFAULT_COPY_CONSTRUCTOR(Shr);
5377 };
5378 
5379 class HUShr final : public HBinaryOperation {
5380  public:
5381   HUShr(DataType::Type result_type,
5382         HInstruction* value,
5383         HInstruction* distance,
5384         uint32_t dex_pc = kNoDexPc)
HBinaryOperation(kUShr,result_type,value,distance,SideEffects::None (),dex_pc)5385       : HBinaryOperation(kUShr, result_type, value, distance, SideEffects::None(), dex_pc) {
5386     DCHECK_EQ(result_type, DataType::Kind(value->GetType()));
5387     DCHECK_EQ(DataType::Type::kInt32, DataType::Kind(distance->GetType()));
5388   }
5389 
5390   template <typename T>
Compute(T value,int32_t distance,int32_t max_shift_distance)5391   static T Compute(T value, int32_t distance, int32_t max_shift_distance) {
5392     typedef typename std::make_unsigned<T>::type V;
5393     V ux = static_cast<V>(value);
5394     return static_cast<T>(ux >> (distance & max_shift_distance));
5395   }
5396 
Evaluate(HIntConstant * value,HIntConstant * distance)5397   HConstant* Evaluate(HIntConstant* value, HIntConstant* distance) const override {
5398     return GetBlock()->GetGraph()->GetIntConstant(
5399         Compute(value->GetValue(), distance->GetValue(), kMaxIntShiftDistance), GetDexPc());
5400   }
Evaluate(HLongConstant * value,HIntConstant * distance)5401   HConstant* Evaluate(HLongConstant* value, HIntConstant* distance) const override {
5402     return GetBlock()->GetGraph()->GetLongConstant(
5403         Compute(value->GetValue(), distance->GetValue(), kMaxLongShiftDistance), GetDexPc());
5404   }
Evaluate(HLongConstant * value ATTRIBUTE_UNUSED,HLongConstant * distance ATTRIBUTE_UNUSED)5405   HConstant* Evaluate(HLongConstant* value ATTRIBUTE_UNUSED,
5406                       HLongConstant* distance ATTRIBUTE_UNUSED) const override {
5407     LOG(FATAL) << DebugName() << " is not defined for the (long, long) case.";
5408     UNREACHABLE();
5409   }
Evaluate(HFloatConstant * value ATTRIBUTE_UNUSED,HFloatConstant * distance ATTRIBUTE_UNUSED)5410   HConstant* Evaluate(HFloatConstant* value ATTRIBUTE_UNUSED,
5411                       HFloatConstant* distance ATTRIBUTE_UNUSED) const override {
5412     LOG(FATAL) << DebugName() << " is not defined for float values";
5413     UNREACHABLE();
5414   }
Evaluate(HDoubleConstant * value ATTRIBUTE_UNUSED,HDoubleConstant * distance ATTRIBUTE_UNUSED)5415   HConstant* Evaluate(HDoubleConstant* value ATTRIBUTE_UNUSED,
5416                       HDoubleConstant* distance ATTRIBUTE_UNUSED) const override {
5417     LOG(FATAL) << DebugName() << " is not defined for double values";
5418     UNREACHABLE();
5419   }
5420 
5421   DECLARE_INSTRUCTION(UShr);
5422 
5423  protected:
5424   DEFAULT_COPY_CONSTRUCTOR(UShr);
5425 };
5426 
5427 class HAnd final : public HBinaryOperation {
5428  public:
5429   HAnd(DataType::Type result_type,
5430        HInstruction* left,
5431        HInstruction* right,
5432        uint32_t dex_pc = kNoDexPc)
HBinaryOperation(kAnd,result_type,left,right,SideEffects::None (),dex_pc)5433       : HBinaryOperation(kAnd, result_type, left, right, SideEffects::None(), dex_pc) {
5434   }
5435 
IsCommutative()5436   bool IsCommutative() const override { return true; }
5437 
Compute(T x,T y)5438   template <typename T> static T Compute(T x, T y) { return x & y; }
5439 
Evaluate(HIntConstant * x,HIntConstant * y)5440   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
5441     return GetBlock()->GetGraph()->GetIntConstant(
5442         Compute(x->GetValue(), y->GetValue()), GetDexPc());
5443   }
Evaluate(HLongConstant * x,HLongConstant * y)5444   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
5445     return GetBlock()->GetGraph()->GetLongConstant(
5446         Compute(x->GetValue(), y->GetValue()), GetDexPc());
5447   }
Evaluate(HFloatConstant * x ATTRIBUTE_UNUSED,HFloatConstant * y ATTRIBUTE_UNUSED)5448   HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
5449                       HFloatConstant* y ATTRIBUTE_UNUSED) const override {
5450     LOG(FATAL) << DebugName() << " is not defined for float values";
5451     UNREACHABLE();
5452   }
Evaluate(HDoubleConstant * x ATTRIBUTE_UNUSED,HDoubleConstant * y ATTRIBUTE_UNUSED)5453   HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
5454                       HDoubleConstant* y ATTRIBUTE_UNUSED) const override {
5455     LOG(FATAL) << DebugName() << " is not defined for double values";
5456     UNREACHABLE();
5457   }
5458 
5459   DECLARE_INSTRUCTION(And);
5460 
5461  protected:
5462   DEFAULT_COPY_CONSTRUCTOR(And);
5463 };
5464 
5465 class HOr final : public HBinaryOperation {
5466  public:
5467   HOr(DataType::Type result_type,
5468       HInstruction* left,
5469       HInstruction* right,
5470       uint32_t dex_pc = kNoDexPc)
HBinaryOperation(kOr,result_type,left,right,SideEffects::None (),dex_pc)5471       : HBinaryOperation(kOr, result_type, left, right, SideEffects::None(), dex_pc) {
5472   }
5473 
IsCommutative()5474   bool IsCommutative() const override { return true; }
5475 
Compute(T x,T y)5476   template <typename T> static T Compute(T x, T y) { return x | y; }
5477 
Evaluate(HIntConstant * x,HIntConstant * y)5478   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
5479     return GetBlock()->GetGraph()->GetIntConstant(
5480         Compute(x->GetValue(), y->GetValue()), GetDexPc());
5481   }
Evaluate(HLongConstant * x,HLongConstant * y)5482   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
5483     return GetBlock()->GetGraph()->GetLongConstant(
5484         Compute(x->GetValue(), y->GetValue()), GetDexPc());
5485   }
Evaluate(HFloatConstant * x ATTRIBUTE_UNUSED,HFloatConstant * y ATTRIBUTE_UNUSED)5486   HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
5487                       HFloatConstant* y ATTRIBUTE_UNUSED) const override {
5488     LOG(FATAL) << DebugName() << " is not defined for float values";
5489     UNREACHABLE();
5490   }
Evaluate(HDoubleConstant * x ATTRIBUTE_UNUSED,HDoubleConstant * y ATTRIBUTE_UNUSED)5491   HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
5492                       HDoubleConstant* y ATTRIBUTE_UNUSED) const override {
5493     LOG(FATAL) << DebugName() << " is not defined for double values";
5494     UNREACHABLE();
5495   }
5496 
5497   DECLARE_INSTRUCTION(Or);
5498 
5499  protected:
5500   DEFAULT_COPY_CONSTRUCTOR(Or);
5501 };
5502 
5503 class HXor final : public HBinaryOperation {
5504  public:
5505   HXor(DataType::Type result_type,
5506        HInstruction* left,
5507        HInstruction* right,
5508        uint32_t dex_pc = kNoDexPc)
HBinaryOperation(kXor,result_type,left,right,SideEffects::None (),dex_pc)5509       : HBinaryOperation(kXor, result_type, left, right, SideEffects::None(), dex_pc) {
5510   }
5511 
IsCommutative()5512   bool IsCommutative() const override { return true; }
5513 
Compute(T x,T y)5514   template <typename T> static T Compute(T x, T y) { return x ^ y; }
5515 
Evaluate(HIntConstant * x,HIntConstant * y)5516   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
5517     return GetBlock()->GetGraph()->GetIntConstant(
5518         Compute(x->GetValue(), y->GetValue()), GetDexPc());
5519   }
Evaluate(HLongConstant * x,HLongConstant * y)5520   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
5521     return GetBlock()->GetGraph()->GetLongConstant(
5522         Compute(x->GetValue(), y->GetValue()), GetDexPc());
5523   }
Evaluate(HFloatConstant * x ATTRIBUTE_UNUSED,HFloatConstant * y ATTRIBUTE_UNUSED)5524   HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
5525                       HFloatConstant* y ATTRIBUTE_UNUSED) const override {
5526     LOG(FATAL) << DebugName() << " is not defined for float values";
5527     UNREACHABLE();
5528   }
Evaluate(HDoubleConstant * x ATTRIBUTE_UNUSED,HDoubleConstant * y ATTRIBUTE_UNUSED)5529   HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
5530                       HDoubleConstant* y ATTRIBUTE_UNUSED) const override {
5531     LOG(FATAL) << DebugName() << " is not defined for double values";
5532     UNREACHABLE();
5533   }
5534 
5535   DECLARE_INSTRUCTION(Xor);
5536 
5537  protected:
5538   DEFAULT_COPY_CONSTRUCTOR(Xor);
5539 };
5540 
5541 class HRor final : public HBinaryOperation {
5542  public:
HRor(DataType::Type result_type,HInstruction * value,HInstruction * distance)5543   HRor(DataType::Type result_type, HInstruction* value, HInstruction* distance)
5544       : HBinaryOperation(kRor, result_type, value, distance) {
5545     DCHECK_EQ(result_type, DataType::Kind(value->GetType()));
5546     DCHECK_EQ(DataType::Type::kInt32, DataType::Kind(distance->GetType()));
5547   }
5548 
5549   template <typename T>
Compute(T value,int32_t distance,int32_t max_shift_value)5550   static T Compute(T value, int32_t distance, int32_t max_shift_value) {
5551     typedef typename std::make_unsigned<T>::type V;
5552     V ux = static_cast<V>(value);
5553     if ((distance & max_shift_value) == 0) {
5554       return static_cast<T>(ux);
5555     } else {
5556       const V reg_bits = sizeof(T) * 8;
5557       return static_cast<T>(ux >> (distance & max_shift_value)) |
5558                            (value << (reg_bits - (distance & max_shift_value)));
5559     }
5560   }
5561 
Evaluate(HIntConstant * value,HIntConstant * distance)5562   HConstant* Evaluate(HIntConstant* value, HIntConstant* distance) const override {
5563     return GetBlock()->GetGraph()->GetIntConstant(
5564         Compute(value->GetValue(), distance->GetValue(), kMaxIntShiftDistance), GetDexPc());
5565   }
Evaluate(HLongConstant * value,HIntConstant * distance)5566   HConstant* Evaluate(HLongConstant* value, HIntConstant* distance) const override {
5567     return GetBlock()->GetGraph()->GetLongConstant(
5568         Compute(value->GetValue(), distance->GetValue(), kMaxLongShiftDistance), GetDexPc());
5569   }
Evaluate(HLongConstant * value ATTRIBUTE_UNUSED,HLongConstant * distance ATTRIBUTE_UNUSED)5570   HConstant* Evaluate(HLongConstant* value ATTRIBUTE_UNUSED,
5571                       HLongConstant* distance ATTRIBUTE_UNUSED) const override {
5572     LOG(FATAL) << DebugName() << " is not defined for the (long, long) case.";
5573     UNREACHABLE();
5574   }
Evaluate(HFloatConstant * value ATTRIBUTE_UNUSED,HFloatConstant * distance ATTRIBUTE_UNUSED)5575   HConstant* Evaluate(HFloatConstant* value ATTRIBUTE_UNUSED,
5576                       HFloatConstant* distance ATTRIBUTE_UNUSED) const override {
5577     LOG(FATAL) << DebugName() << " is not defined for float values";
5578     UNREACHABLE();
5579   }
Evaluate(HDoubleConstant * value ATTRIBUTE_UNUSED,HDoubleConstant * distance ATTRIBUTE_UNUSED)5580   HConstant* Evaluate(HDoubleConstant* value ATTRIBUTE_UNUSED,
5581                       HDoubleConstant* distance ATTRIBUTE_UNUSED) const override {
5582     LOG(FATAL) << DebugName() << " is not defined for double values";
5583     UNREACHABLE();
5584   }
5585 
5586   DECLARE_INSTRUCTION(Ror);
5587 
5588  protected:
5589   DEFAULT_COPY_CONSTRUCTOR(Ror);
5590 };
5591 
5592 // The value of a parameter in this method. Its location depends on
5593 // the calling convention.
5594 class HParameterValue final : public HExpression<0> {
5595  public:
5596   HParameterValue(const DexFile& dex_file,
5597                   dex::TypeIndex type_index,
5598                   uint8_t index,
5599                   DataType::Type parameter_type,
5600                   bool is_this = false)
HExpression(kParameterValue,parameter_type,SideEffects::None (),kNoDexPc)5601       : HExpression(kParameterValue, parameter_type, SideEffects::None(), kNoDexPc),
5602         dex_file_(dex_file),
5603         type_index_(type_index),
5604         index_(index) {
5605     SetPackedFlag<kFlagIsThis>(is_this);
5606     SetPackedFlag<kFlagCanBeNull>(!is_this);
5607   }
5608 
GetDexFile()5609   const DexFile& GetDexFile() const { return dex_file_; }
GetTypeIndex()5610   dex::TypeIndex GetTypeIndex() const { return type_index_; }
GetIndex()5611   uint8_t GetIndex() const { return index_; }
IsThis()5612   bool IsThis() const { return GetPackedFlag<kFlagIsThis>(); }
5613 
CanBeNull()5614   bool CanBeNull() const override { return GetPackedFlag<kFlagCanBeNull>(); }
SetCanBeNull(bool can_be_null)5615   void SetCanBeNull(bool can_be_null) { SetPackedFlag<kFlagCanBeNull>(can_be_null); }
5616 
5617   DECLARE_INSTRUCTION(ParameterValue);
5618 
5619  protected:
5620   DEFAULT_COPY_CONSTRUCTOR(ParameterValue);
5621 
5622  private:
5623   // Whether or not the parameter value corresponds to 'this' argument.
5624   static constexpr size_t kFlagIsThis = kNumberOfGenericPackedBits;
5625   static constexpr size_t kFlagCanBeNull = kFlagIsThis + 1;
5626   static constexpr size_t kNumberOfParameterValuePackedBits = kFlagCanBeNull + 1;
5627   static_assert(kNumberOfParameterValuePackedBits <= kMaxNumberOfPackedBits,
5628                 "Too many packed fields.");
5629 
5630   const DexFile& dex_file_;
5631   const dex::TypeIndex type_index_;
5632   // The index of this parameter in the parameters list. Must be less
5633   // than HGraph::number_of_in_vregs_.
5634   const uint8_t index_;
5635 };
5636 
5637 class HNot final : public HUnaryOperation {
5638  public:
5639   HNot(DataType::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
HUnaryOperation(kNot,result_type,input,dex_pc)5640       : HUnaryOperation(kNot, result_type, input, dex_pc) {
5641   }
5642 
CanBeMoved()5643   bool CanBeMoved() const override { return true; }
InstructionDataEquals(const HInstruction * other ATTRIBUTE_UNUSED)5644   bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
5645     return true;
5646   }
5647 
Compute(T x)5648   template <typename T> static T Compute(T x) { return ~x; }
5649 
Evaluate(HIntConstant * x)5650   HConstant* Evaluate(HIntConstant* x) const override {
5651     return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc());
5652   }
Evaluate(HLongConstant * x)5653   HConstant* Evaluate(HLongConstant* x) const override {
5654     return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue()), GetDexPc());
5655   }
Evaluate(HFloatConstant * x ATTRIBUTE_UNUSED)5656   HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED) const override {
5657     LOG(FATAL) << DebugName() << " is not defined for float values";
5658     UNREACHABLE();
5659   }
Evaluate(HDoubleConstant * x ATTRIBUTE_UNUSED)5660   HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED) const override {
5661     LOG(FATAL) << DebugName() << " is not defined for double values";
5662     UNREACHABLE();
5663   }
5664 
5665   DECLARE_INSTRUCTION(Not);
5666 
5667  protected:
5668   DEFAULT_COPY_CONSTRUCTOR(Not);
5669 };
5670 
5671 class HBooleanNot final : public HUnaryOperation {
5672  public:
5673   explicit HBooleanNot(HInstruction* input, uint32_t dex_pc = kNoDexPc)
HUnaryOperation(kBooleanNot,DataType::Type::kBool,input,dex_pc)5674       : HUnaryOperation(kBooleanNot, DataType::Type::kBool, input, dex_pc) {
5675   }
5676 
CanBeMoved()5677   bool CanBeMoved() const override { return true; }
InstructionDataEquals(const HInstruction * other ATTRIBUTE_UNUSED)5678   bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
5679     return true;
5680   }
5681 
Compute(T x)5682   template <typename T> static bool Compute(T x) {
5683     DCHECK(IsUint<1>(x)) << x;
5684     return !x;
5685   }
5686 
Evaluate(HIntConstant * x)5687   HConstant* Evaluate(HIntConstant* x) const override {
5688     return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc());
5689   }
Evaluate(HLongConstant * x ATTRIBUTE_UNUSED)5690   HConstant* Evaluate(HLongConstant* x ATTRIBUTE_UNUSED) const override {
5691     LOG(FATAL) << DebugName() << " is not defined for long values";
5692     UNREACHABLE();
5693   }
Evaluate(HFloatConstant * x ATTRIBUTE_UNUSED)5694   HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED) const override {
5695     LOG(FATAL) << DebugName() << " is not defined for float values";
5696     UNREACHABLE();
5697   }
Evaluate(HDoubleConstant * x ATTRIBUTE_UNUSED)5698   HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED) const override {
5699     LOG(FATAL) << DebugName() << " is not defined for double values";
5700     UNREACHABLE();
5701   }
5702 
5703   DECLARE_INSTRUCTION(BooleanNot);
5704 
5705  protected:
5706   DEFAULT_COPY_CONSTRUCTOR(BooleanNot);
5707 };
5708 
5709 class HTypeConversion final : public HExpression<1> {
5710  public:
5711   // Instantiate a type conversion of `input` to `result_type`.
5712   HTypeConversion(DataType::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
HExpression(kTypeConversion,result_type,SideEffects::None (),dex_pc)5713       : HExpression(kTypeConversion, result_type, SideEffects::None(), dex_pc) {
5714     SetRawInputAt(0, input);
5715     // Invariant: We should never generate a conversion to a Boolean value.
5716     DCHECK_NE(DataType::Type::kBool, result_type);
5717   }
5718 
GetInput()5719   HInstruction* GetInput() const { return InputAt(0); }
GetInputType()5720   DataType::Type GetInputType() const { return GetInput()->GetType(); }
GetResultType()5721   DataType::Type GetResultType() const { return GetType(); }
5722 
IsClonable()5723   bool IsClonable() const override { return true; }
CanBeMoved()5724   bool CanBeMoved() const override { return true; }
InstructionDataEquals(const HInstruction * other ATTRIBUTE_UNUSED)5725   bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
5726     return true;
5727   }
5728   // Return whether the conversion is implicit. This includes conversion to the same type.
IsImplicitConversion()5729   bool IsImplicitConversion() const {
5730     return DataType::IsTypeConversionImplicit(GetInputType(), GetResultType());
5731   }
5732 
5733   // Try to statically evaluate the conversion and return a HConstant
5734   // containing the result.  If the input cannot be converted, return nullptr.
5735   HConstant* TryStaticEvaluation() const;
5736 
5737   DECLARE_INSTRUCTION(TypeConversion);
5738 
5739  protected:
5740   DEFAULT_COPY_CONSTRUCTOR(TypeConversion);
5741 };
5742 
5743 static constexpr uint32_t kNoRegNumber = -1;
5744 
5745 class HNullCheck final : public HExpression<1> {
5746  public:
5747   // `HNullCheck` can trigger GC, as it may call the `NullPointerException`
5748   // constructor. However it can only do it on a fatal slow path so execution never returns to the
5749   // instruction following the current one; thus 'SideEffects::None()' is used.
HNullCheck(HInstruction * value,uint32_t dex_pc)5750   HNullCheck(HInstruction* value, uint32_t dex_pc)
5751       : HExpression(kNullCheck, value->GetType(), SideEffects::None(), dex_pc) {
5752     SetRawInputAt(0, value);
5753   }
5754 
IsClonable()5755   bool IsClonable() const override { return true; }
CanBeMoved()5756   bool CanBeMoved() const override { return true; }
InstructionDataEquals(const HInstruction * other ATTRIBUTE_UNUSED)5757   bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
5758     return true;
5759   }
5760 
NeedsEnvironment()5761   bool NeedsEnvironment() const override { return true; }
5762 
CanThrow()5763   bool CanThrow() const override { return true; }
5764 
CanBeNull()5765   bool CanBeNull() const override { return false; }
5766 
5767   DECLARE_INSTRUCTION(NullCheck);
5768 
5769  protected:
5770   DEFAULT_COPY_CONSTRUCTOR(NullCheck);
5771 };
5772 
5773 // Embeds an ArtField and all the information required by the compiler. We cache
5774 // that information to avoid requiring the mutator lock every time we need it.
5775 class FieldInfo : public ValueObject {
5776  public:
FieldInfo(ArtField * field,MemberOffset field_offset,DataType::Type field_type,bool is_volatile,uint32_t index,uint16_t declaring_class_def_index,const DexFile & dex_file)5777   FieldInfo(ArtField* field,
5778             MemberOffset field_offset,
5779             DataType::Type field_type,
5780             bool is_volatile,
5781             uint32_t index,
5782             uint16_t declaring_class_def_index,
5783             const DexFile& dex_file)
5784       : field_(field),
5785         field_offset_(field_offset),
5786         field_type_(field_type),
5787         is_volatile_(is_volatile),
5788         index_(index),
5789         declaring_class_def_index_(declaring_class_def_index),
5790         dex_file_(dex_file) {}
5791 
GetField()5792   ArtField* GetField() const { return field_; }
GetFieldOffset()5793   MemberOffset GetFieldOffset() const { return field_offset_; }
GetFieldType()5794   DataType::Type GetFieldType() const { return field_type_; }
GetFieldIndex()5795   uint32_t GetFieldIndex() const { return index_; }
GetDeclaringClassDefIndex()5796   uint16_t GetDeclaringClassDefIndex() const { return declaring_class_def_index_;}
GetDexFile()5797   const DexFile& GetDexFile() const { return dex_file_; }
IsVolatile()5798   bool IsVolatile() const { return is_volatile_; }
5799 
5800  private:
5801   ArtField* const field_;
5802   const MemberOffset field_offset_;
5803   const DataType::Type field_type_;
5804   const bool is_volatile_;
5805   const uint32_t index_;
5806   const uint16_t declaring_class_def_index_;
5807   const DexFile& dex_file_;
5808 };
5809 
5810 class HInstanceFieldGet final : public HExpression<1> {
5811  public:
HInstanceFieldGet(HInstruction * value,ArtField * field,DataType::Type field_type,MemberOffset field_offset,bool is_volatile,uint32_t field_idx,uint16_t declaring_class_def_index,const DexFile & dex_file,uint32_t dex_pc)5812   HInstanceFieldGet(HInstruction* value,
5813                     ArtField* field,
5814                     DataType::Type field_type,
5815                     MemberOffset field_offset,
5816                     bool is_volatile,
5817                     uint32_t field_idx,
5818                     uint16_t declaring_class_def_index,
5819                     const DexFile& dex_file,
5820                     uint32_t dex_pc)
5821       : HExpression(kInstanceFieldGet,
5822                     field_type,
5823                     SideEffects::FieldReadOfType(field_type, is_volatile),
5824                     dex_pc),
5825         field_info_(field,
5826                     field_offset,
5827                     field_type,
5828                     is_volatile,
5829                     field_idx,
5830                     declaring_class_def_index,
5831                     dex_file) {
5832     SetRawInputAt(0, value);
5833   }
5834 
IsClonable()5835   bool IsClonable() const override { return true; }
CanBeMoved()5836   bool CanBeMoved() const override { return !IsVolatile(); }
5837 
InstructionDataEquals(const HInstruction * other)5838   bool InstructionDataEquals(const HInstruction* other) const override {
5839     const HInstanceFieldGet* other_get = other->AsInstanceFieldGet();
5840     return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue();
5841   }
5842 
CanDoImplicitNullCheckOn(HInstruction * obj)5843   bool CanDoImplicitNullCheckOn(HInstruction* obj) const override {
5844     return (obj == InputAt(0)) && art::CanDoImplicitNullCheckOn(GetFieldOffset().Uint32Value());
5845   }
5846 
ComputeHashCode()5847   size_t ComputeHashCode() const override {
5848     return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue();
5849   }
5850 
GetFieldInfo()5851   const FieldInfo& GetFieldInfo() const { return field_info_; }
GetFieldOffset()5852   MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
GetFieldType()5853   DataType::Type GetFieldType() const { return field_info_.GetFieldType(); }
IsVolatile()5854   bool IsVolatile() const { return field_info_.IsVolatile(); }
5855 
SetType(DataType::Type new_type)5856   void SetType(DataType::Type new_type) {
5857     DCHECK(DataType::IsIntegralType(GetType()));
5858     DCHECK(DataType::IsIntegralType(new_type));
5859     DCHECK_EQ(DataType::Size(GetType()), DataType::Size(new_type));
5860     SetPackedField<TypeField>(new_type);
5861   }
5862 
5863   DECLARE_INSTRUCTION(InstanceFieldGet);
5864 
5865  protected:
5866   DEFAULT_COPY_CONSTRUCTOR(InstanceFieldGet);
5867 
5868  private:
5869   const FieldInfo field_info_;
5870 };
5871 
5872 class HInstanceFieldSet final : public HExpression<2> {
5873  public:
HInstanceFieldSet(HInstruction * object,HInstruction * value,ArtField * field,DataType::Type field_type,MemberOffset field_offset,bool is_volatile,uint32_t field_idx,uint16_t declaring_class_def_index,const DexFile & dex_file,uint32_t dex_pc)5874   HInstanceFieldSet(HInstruction* object,
5875                     HInstruction* value,
5876                     ArtField* field,
5877                     DataType::Type field_type,
5878                     MemberOffset field_offset,
5879                     bool is_volatile,
5880                     uint32_t field_idx,
5881                     uint16_t declaring_class_def_index,
5882                     const DexFile& dex_file,
5883                     uint32_t dex_pc)
5884       : HExpression(kInstanceFieldSet,
5885                     SideEffects::FieldWriteOfType(field_type, is_volatile),
5886                     dex_pc),
5887         field_info_(field,
5888                     field_offset,
5889                     field_type,
5890                     is_volatile,
5891                     field_idx,
5892                     declaring_class_def_index,
5893                     dex_file) {
5894     SetPackedFlag<kFlagValueCanBeNull>(true);
5895     SetRawInputAt(0, object);
5896     SetRawInputAt(1, value);
5897   }
5898 
IsClonable()5899   bool IsClonable() const override { return true; }
5900 
CanDoImplicitNullCheckOn(HInstruction * obj)5901   bool CanDoImplicitNullCheckOn(HInstruction* obj) const override {
5902     return (obj == InputAt(0)) && art::CanDoImplicitNullCheckOn(GetFieldOffset().Uint32Value());
5903   }
5904 
GetFieldInfo()5905   const FieldInfo& GetFieldInfo() const { return field_info_; }
GetFieldOffset()5906   MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
GetFieldType()5907   DataType::Type GetFieldType() const { return field_info_.GetFieldType(); }
IsVolatile()5908   bool IsVolatile() const { return field_info_.IsVolatile(); }
GetValue()5909   HInstruction* GetValue() const { return InputAt(1); }
GetValueCanBeNull()5910   bool GetValueCanBeNull() const { return GetPackedFlag<kFlagValueCanBeNull>(); }
ClearValueCanBeNull()5911   void ClearValueCanBeNull() { SetPackedFlag<kFlagValueCanBeNull>(false); }
5912 
5913   DECLARE_INSTRUCTION(InstanceFieldSet);
5914 
5915  protected:
5916   DEFAULT_COPY_CONSTRUCTOR(InstanceFieldSet);
5917 
5918  private:
5919   static constexpr size_t kFlagValueCanBeNull = kNumberOfGenericPackedBits;
5920   static constexpr size_t kNumberOfInstanceFieldSetPackedBits = kFlagValueCanBeNull + 1;
5921   static_assert(kNumberOfInstanceFieldSetPackedBits <= kMaxNumberOfPackedBits,
5922                 "Too many packed fields.");
5923 
5924   const FieldInfo field_info_;
5925 };
5926 
5927 class HArrayGet final : public HExpression<2> {
5928  public:
HArrayGet(HInstruction * array,HInstruction * index,DataType::Type type,uint32_t dex_pc)5929   HArrayGet(HInstruction* array,
5930             HInstruction* index,
5931             DataType::Type type,
5932             uint32_t dex_pc)
5933      : HArrayGet(array,
5934                  index,
5935                  type,
5936                  SideEffects::ArrayReadOfType(type),
5937                  dex_pc,
5938                  /* is_string_char_at= */ false) {
5939   }
5940 
HArrayGet(HInstruction * array,HInstruction * index,DataType::Type type,SideEffects side_effects,uint32_t dex_pc,bool is_string_char_at)5941   HArrayGet(HInstruction* array,
5942             HInstruction* index,
5943             DataType::Type type,
5944             SideEffects side_effects,
5945             uint32_t dex_pc,
5946             bool is_string_char_at)
5947       : HExpression(kArrayGet, type, side_effects, dex_pc) {
5948     SetPackedFlag<kFlagIsStringCharAt>(is_string_char_at);
5949     SetRawInputAt(0, array);
5950     SetRawInputAt(1, index);
5951   }
5952 
IsClonable()5953   bool IsClonable() const override { return true; }
CanBeMoved()5954   bool CanBeMoved() const override { return true; }
InstructionDataEquals(const HInstruction * other ATTRIBUTE_UNUSED)5955   bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
5956     return true;
5957   }
CanDoImplicitNullCheckOn(HInstruction * obj ATTRIBUTE_UNUSED)5958   bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const override {
5959     // TODO: We can be smarter here.
5960     // Currently, unless the array is the result of NewArray, the array access is always
5961     // preceded by some form of null NullCheck necessary for the bounds check, usually
5962     // implicit null check on the ArrayLength input to BoundsCheck or Deoptimize for
5963     // dynamic BCE. There are cases when these could be removed to produce better code.
5964     // If we ever add optimizations to do so we should allow an implicit check here
5965     // (as long as the address falls in the first page).
5966     //
5967     // As an example of such fancy optimization, we could eliminate BoundsCheck for
5968     //     a = cond ? new int[1] : null;
5969     //     a[0];  // The Phi does not need bounds check for either input.
5970     return false;
5971   }
5972 
IsEquivalentOf(HArrayGet * other)5973   bool IsEquivalentOf(HArrayGet* other) const {
5974     bool result = (GetDexPc() == other->GetDexPc());
5975     if (kIsDebugBuild && result) {
5976       DCHECK_EQ(GetBlock(), other->GetBlock());
5977       DCHECK_EQ(GetArray(), other->GetArray());
5978       DCHECK_EQ(GetIndex(), other->GetIndex());
5979       if (DataType::IsIntOrLongType(GetType())) {
5980         DCHECK(DataType::IsFloatingPointType(other->GetType())) << other->GetType();
5981       } else {
5982         DCHECK(DataType::IsFloatingPointType(GetType())) << GetType();
5983         DCHECK(DataType::IsIntOrLongType(other->GetType())) << other->GetType();
5984       }
5985     }
5986     return result;
5987   }
5988 
IsStringCharAt()5989   bool IsStringCharAt() const { return GetPackedFlag<kFlagIsStringCharAt>(); }
5990 
GetArray()5991   HInstruction* GetArray() const { return InputAt(0); }
GetIndex()5992   HInstruction* GetIndex() const { return InputAt(1); }
5993 
SetType(DataType::Type new_type)5994   void SetType(DataType::Type new_type) {
5995     DCHECK(DataType::IsIntegralType(GetType()));
5996     DCHECK(DataType::IsIntegralType(new_type));
5997     DCHECK_EQ(DataType::Size(GetType()), DataType::Size(new_type));
5998     SetPackedField<TypeField>(new_type);
5999   }
6000 
6001   DECLARE_INSTRUCTION(ArrayGet);
6002 
6003  protected:
6004   DEFAULT_COPY_CONSTRUCTOR(ArrayGet);
6005 
6006  private:
6007   // We treat a String as an array, creating the HArrayGet from String.charAt()
6008   // intrinsic in the instruction simplifier. We can always determine whether
6009   // a particular HArrayGet is actually a String.charAt() by looking at the type
6010   // of the input but that requires holding the mutator lock, so we prefer to use
6011   // a flag, so that code generators don't need to do the locking.
6012   static constexpr size_t kFlagIsStringCharAt = kNumberOfGenericPackedBits;
6013   static constexpr size_t kNumberOfArrayGetPackedBits = kFlagIsStringCharAt + 1;
6014   static_assert(kNumberOfArrayGetPackedBits <= HInstruction::kMaxNumberOfPackedBits,
6015                 "Too many packed fields.");
6016 };
6017 
6018 class HArraySet final : public HExpression<3> {
6019  public:
HArraySet(HInstruction * array,HInstruction * index,HInstruction * value,DataType::Type expected_component_type,uint32_t dex_pc)6020   HArraySet(HInstruction* array,
6021             HInstruction* index,
6022             HInstruction* value,
6023             DataType::Type expected_component_type,
6024             uint32_t dex_pc)
6025       : HArraySet(array,
6026                   index,
6027                   value,
6028                   expected_component_type,
6029                   // Make a best guess for side effects now, may be refined during SSA building.
6030                   ComputeSideEffects(GetComponentType(value->GetType(), expected_component_type)),
6031                   dex_pc) {
6032   }
6033 
HArraySet(HInstruction * array,HInstruction * index,HInstruction * value,DataType::Type expected_component_type,SideEffects side_effects,uint32_t dex_pc)6034   HArraySet(HInstruction* array,
6035             HInstruction* index,
6036             HInstruction* value,
6037             DataType::Type expected_component_type,
6038             SideEffects side_effects,
6039             uint32_t dex_pc)
6040       : HExpression(kArraySet, side_effects, dex_pc) {
6041     SetPackedField<ExpectedComponentTypeField>(expected_component_type);
6042     SetPackedFlag<kFlagNeedsTypeCheck>(value->GetType() == DataType::Type::kReference);
6043     SetPackedFlag<kFlagValueCanBeNull>(true);
6044     SetPackedFlag<kFlagStaticTypeOfArrayIsObjectArray>(false);
6045     SetRawInputAt(0, array);
6046     SetRawInputAt(1, index);
6047     SetRawInputAt(2, value);
6048   }
6049 
IsClonable()6050   bool IsClonable() const override { return true; }
6051 
NeedsEnvironment()6052   bool NeedsEnvironment() const override {
6053     // We call a runtime method to throw ArrayStoreException.
6054     return NeedsTypeCheck();
6055   }
6056 
6057   // Can throw ArrayStoreException.
CanThrow()6058   bool CanThrow() const override { return NeedsTypeCheck(); }
6059 
CanDoImplicitNullCheckOn(HInstruction * obj ATTRIBUTE_UNUSED)6060   bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const override {
6061     // TODO: Same as for ArrayGet.
6062     return false;
6063   }
6064 
ClearNeedsTypeCheck()6065   void ClearNeedsTypeCheck() {
6066     SetPackedFlag<kFlagNeedsTypeCheck>(false);
6067   }
6068 
ClearValueCanBeNull()6069   void ClearValueCanBeNull() {
6070     SetPackedFlag<kFlagValueCanBeNull>(false);
6071   }
6072 
SetStaticTypeOfArrayIsObjectArray()6073   void SetStaticTypeOfArrayIsObjectArray() {
6074     SetPackedFlag<kFlagStaticTypeOfArrayIsObjectArray>(true);
6075   }
6076 
GetValueCanBeNull()6077   bool GetValueCanBeNull() const { return GetPackedFlag<kFlagValueCanBeNull>(); }
NeedsTypeCheck()6078   bool NeedsTypeCheck() const { return GetPackedFlag<kFlagNeedsTypeCheck>(); }
StaticTypeOfArrayIsObjectArray()6079   bool StaticTypeOfArrayIsObjectArray() const {
6080     return GetPackedFlag<kFlagStaticTypeOfArrayIsObjectArray>();
6081   }
6082 
GetArray()6083   HInstruction* GetArray() const { return InputAt(0); }
GetIndex()6084   HInstruction* GetIndex() const { return InputAt(1); }
GetValue()6085   HInstruction* GetValue() const { return InputAt(2); }
6086 
GetComponentType()6087   DataType::Type GetComponentType() const {
6088     return GetComponentType(GetValue()->GetType(), GetRawExpectedComponentType());
6089   }
6090 
GetComponentType(DataType::Type value_type,DataType::Type expected_component_type)6091   static DataType::Type GetComponentType(DataType::Type value_type,
6092                                          DataType::Type expected_component_type) {
6093     // The Dex format does not type floating point index operations. Since the
6094     // `expected_component_type` comes from SSA building and can therefore not
6095     // be correct, we also check what is the value type. If it is a floating
6096     // point type, we must use that type.
6097     return ((value_type == DataType::Type::kFloat32) || (value_type == DataType::Type::kFloat64))
6098         ? value_type
6099         : expected_component_type;
6100   }
6101 
GetRawExpectedComponentType()6102   DataType::Type GetRawExpectedComponentType() const {
6103     return GetPackedField<ExpectedComponentTypeField>();
6104   }
6105 
ComputeSideEffects(DataType::Type type)6106   static SideEffects ComputeSideEffects(DataType::Type type) {
6107     return SideEffects::ArrayWriteOfType(type).Union(SideEffectsForArchRuntimeCalls(type));
6108   }
6109 
SideEffectsForArchRuntimeCalls(DataType::Type value_type)6110   static SideEffects SideEffectsForArchRuntimeCalls(DataType::Type value_type) {
6111     return (value_type == DataType::Type::kReference) ? SideEffects::CanTriggerGC()
6112                                                       : SideEffects::None();
6113   }
6114 
6115   DECLARE_INSTRUCTION(ArraySet);
6116 
6117  protected:
6118   DEFAULT_COPY_CONSTRUCTOR(ArraySet);
6119 
6120  private:
6121   static constexpr size_t kFieldExpectedComponentType = kNumberOfGenericPackedBits;
6122   static constexpr size_t kFieldExpectedComponentTypeSize =
6123       MinimumBitsToStore(static_cast<size_t>(DataType::Type::kLast));
6124   static constexpr size_t kFlagNeedsTypeCheck =
6125       kFieldExpectedComponentType + kFieldExpectedComponentTypeSize;
6126   static constexpr size_t kFlagValueCanBeNull = kFlagNeedsTypeCheck + 1;
6127   // Cached information for the reference_type_info_ so that codegen
6128   // does not need to inspect the static type.
6129   static constexpr size_t kFlagStaticTypeOfArrayIsObjectArray = kFlagValueCanBeNull + 1;
6130   static constexpr size_t kNumberOfArraySetPackedBits =
6131       kFlagStaticTypeOfArrayIsObjectArray + 1;
6132   static_assert(kNumberOfArraySetPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
6133   using ExpectedComponentTypeField =
6134       BitField<DataType::Type, kFieldExpectedComponentType, kFieldExpectedComponentTypeSize>;
6135 };
6136 
6137 class HArrayLength final : public HExpression<1> {
6138  public:
6139   HArrayLength(HInstruction* array, uint32_t dex_pc, bool is_string_length = false)
HExpression(kArrayLength,DataType::Type::kInt32,SideEffects::None (),dex_pc)6140       : HExpression(kArrayLength, DataType::Type::kInt32, SideEffects::None(), dex_pc) {
6141     SetPackedFlag<kFlagIsStringLength>(is_string_length);
6142     // Note that arrays do not change length, so the instruction does not
6143     // depend on any write.
6144     SetRawInputAt(0, array);
6145   }
6146 
IsClonable()6147   bool IsClonable() const override { return true; }
CanBeMoved()6148   bool CanBeMoved() const override { return true; }
InstructionDataEquals(const HInstruction * other ATTRIBUTE_UNUSED)6149   bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
6150     return true;
6151   }
CanDoImplicitNullCheckOn(HInstruction * obj)6152   bool CanDoImplicitNullCheckOn(HInstruction* obj) const override {
6153     return obj == InputAt(0);
6154   }
6155 
IsStringLength()6156   bool IsStringLength() const { return GetPackedFlag<kFlagIsStringLength>(); }
6157 
6158   DECLARE_INSTRUCTION(ArrayLength);
6159 
6160  protected:
6161   DEFAULT_COPY_CONSTRUCTOR(ArrayLength);
6162 
6163  private:
6164   // We treat a String as an array, creating the HArrayLength from String.length()
6165   // or String.isEmpty() intrinsic in the instruction simplifier. We can always
6166   // determine whether a particular HArrayLength is actually a String.length() by
6167   // looking at the type of the input but that requires holding the mutator lock, so
6168   // we prefer to use a flag, so that code generators don't need to do the locking.
6169   static constexpr size_t kFlagIsStringLength = kNumberOfGenericPackedBits;
6170   static constexpr size_t kNumberOfArrayLengthPackedBits = kFlagIsStringLength + 1;
6171   static_assert(kNumberOfArrayLengthPackedBits <= HInstruction::kMaxNumberOfPackedBits,
6172                 "Too many packed fields.");
6173 };
6174 
6175 class HBoundsCheck final : public HExpression<2> {
6176  public:
6177   // `HBoundsCheck` can trigger GC, as it may call the `IndexOutOfBoundsException`
6178   // constructor. However it can only do it on a fatal slow path so execution never returns to the
6179   // instruction following the current one; thus 'SideEffects::None()' is used.
6180   HBoundsCheck(HInstruction* index,
6181                HInstruction* length,
6182                uint32_t dex_pc,
6183                bool is_string_char_at = false)
6184       : HExpression(kBoundsCheck, index->GetType(), SideEffects::None(), dex_pc) {
6185     DCHECK_EQ(DataType::Type::kInt32, DataType::Kind(index->GetType()));
6186     SetPackedFlag<kFlagIsStringCharAt>(is_string_char_at);
6187     SetRawInputAt(0, index);
6188     SetRawInputAt(1, length);
6189   }
6190 
IsClonable()6191   bool IsClonable() const override { return true; }
CanBeMoved()6192   bool CanBeMoved() const override { return true; }
InstructionDataEquals(const HInstruction * other ATTRIBUTE_UNUSED)6193   bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
6194     return true;
6195   }
6196 
NeedsEnvironment()6197   bool NeedsEnvironment() const override { return true; }
6198 
CanThrow()6199   bool CanThrow() const override { return true; }
6200 
IsStringCharAt()6201   bool IsStringCharAt() const { return GetPackedFlag<kFlagIsStringCharAt>(); }
6202 
GetIndex()6203   HInstruction* GetIndex() const { return InputAt(0); }
6204 
6205   DECLARE_INSTRUCTION(BoundsCheck);
6206 
6207  protected:
6208   DEFAULT_COPY_CONSTRUCTOR(BoundsCheck);
6209 
6210  private:
6211   static constexpr size_t kFlagIsStringCharAt = kNumberOfGenericPackedBits;
6212   static constexpr size_t kNumberOfBoundsCheckPackedBits = kFlagIsStringCharAt + 1;
6213   static_assert(kNumberOfBoundsCheckPackedBits <= HInstruction::kMaxNumberOfPackedBits,
6214                 "Too many packed fields.");
6215 };
6216 
6217 class HSuspendCheck final : public HExpression<0> {
6218  public:
6219   explicit HSuspendCheck(uint32_t dex_pc = kNoDexPc)
HExpression(kSuspendCheck,SideEffects::CanTriggerGC (),dex_pc)6220       : HExpression(kSuspendCheck, SideEffects::CanTriggerGC(), dex_pc),
6221         slow_path_(nullptr) {
6222   }
6223 
IsClonable()6224   bool IsClonable() const override { return true; }
6225 
NeedsEnvironment()6226   bool NeedsEnvironment() const override {
6227     return true;
6228   }
6229 
SetSlowPath(SlowPathCode * slow_path)6230   void SetSlowPath(SlowPathCode* slow_path) { slow_path_ = slow_path; }
GetSlowPath()6231   SlowPathCode* GetSlowPath() const { return slow_path_; }
6232 
6233   DECLARE_INSTRUCTION(SuspendCheck);
6234 
6235  protected:
6236   DEFAULT_COPY_CONSTRUCTOR(SuspendCheck);
6237 
6238  private:
6239   // Only used for code generation, in order to share the same slow path between back edges
6240   // of a same loop.
6241   SlowPathCode* slow_path_;
6242 };
6243 
6244 // Pseudo-instruction which provides the native debugger with mapping information.
6245 // It ensures that we can generate line number and local variables at this point.
6246 class HNativeDebugInfo : public HExpression<0> {
6247  public:
HNativeDebugInfo(uint32_t dex_pc)6248   explicit HNativeDebugInfo(uint32_t dex_pc)
6249       : HExpression<0>(kNativeDebugInfo, SideEffects::None(), dex_pc) {
6250   }
6251 
NeedsEnvironment()6252   bool NeedsEnvironment() const override {
6253     return true;
6254   }
6255 
6256   DECLARE_INSTRUCTION(NativeDebugInfo);
6257 
6258  protected:
6259   DEFAULT_COPY_CONSTRUCTOR(NativeDebugInfo);
6260 };
6261 
6262 /**
6263  * Instruction to load a Class object.
6264  */
6265 class HLoadClass final : public HInstruction {
6266  public:
6267   // Determines how to load the Class.
6268   enum class LoadKind {
6269     // We cannot load this class. See HSharpening::SharpenLoadClass.
6270     kInvalid = -1,
6271 
6272     // Use the Class* from the method's own ArtMethod*.
6273     kReferrersClass,
6274 
6275     // Use PC-relative boot image Class* address that will be known at link time.
6276     // Used for boot image classes referenced by boot image code.
6277     kBootImageLinkTimePcRelative,
6278 
6279     // Load from an entry in the .data.bimg.rel.ro using a PC-relative load.
6280     // Used for boot image classes referenced by apps in AOT-compiled code.
6281     kBootImageRelRo,
6282 
6283     // Load from an entry in the .bss section using a PC-relative load.
6284     // Used for classes outside boot image referenced by AOT-compiled app and boot image code.
6285     kBssEntry,
6286 
6287     // Use a known boot image Class* address, embedded in the code by the codegen.
6288     // Used for boot image classes referenced by apps in JIT-compiled code.
6289     kJitBootImageAddress,
6290 
6291     // Load from the root table associated with the JIT compiled method.
6292     kJitTableAddress,
6293 
6294     // Load using a simple runtime call. This is the fall-back load kind when
6295     // the codegen is unable to use another appropriate kind.
6296     kRuntimeCall,
6297 
6298     kLast = kRuntimeCall
6299   };
6300 
HLoadClass(HCurrentMethod * current_method,dex::TypeIndex type_index,const DexFile & dex_file,Handle<mirror::Class> klass,bool is_referrers_class,uint32_t dex_pc,bool needs_access_check)6301   HLoadClass(HCurrentMethod* current_method,
6302              dex::TypeIndex type_index,
6303              const DexFile& dex_file,
6304              Handle<mirror::Class> klass,
6305              bool is_referrers_class,
6306              uint32_t dex_pc,
6307              bool needs_access_check)
6308       : HInstruction(kLoadClass,
6309                      DataType::Type::kReference,
6310                      SideEffectsForArchRuntimeCalls(),
6311                      dex_pc),
6312         special_input_(HUserRecord<HInstruction*>(current_method)),
6313         type_index_(type_index),
6314         dex_file_(dex_file),
6315         klass_(klass) {
6316     // Referrers class should not need access check. We never inline unverified
6317     // methods so we can't possibly end up in this situation.
6318     DCHECK(!is_referrers_class || !needs_access_check);
6319 
6320     SetPackedField<LoadKindField>(
6321         is_referrers_class ? LoadKind::kReferrersClass : LoadKind::kRuntimeCall);
6322     SetPackedFlag<kFlagNeedsAccessCheck>(needs_access_check);
6323     SetPackedFlag<kFlagIsInBootImage>(false);
6324     SetPackedFlag<kFlagGenerateClInitCheck>(false);
6325     SetPackedFlag<kFlagValidLoadedClassRTI>(false);
6326   }
6327 
IsClonable()6328   bool IsClonable() const override { return true; }
6329 
6330   void SetLoadKind(LoadKind load_kind);
6331 
GetLoadKind()6332   LoadKind GetLoadKind() const {
6333     return GetPackedField<LoadKindField>();
6334   }
6335 
HasPcRelativeLoadKind()6336   bool HasPcRelativeLoadKind() const {
6337     return GetLoadKind() == LoadKind::kBootImageLinkTimePcRelative ||
6338            GetLoadKind() == LoadKind::kBootImageRelRo ||
6339            GetLoadKind() == LoadKind::kBssEntry;
6340   }
6341 
CanBeMoved()6342   bool CanBeMoved() const override { return true; }
6343 
6344   bool InstructionDataEquals(const HInstruction* other) const override;
6345 
ComputeHashCode()6346   size_t ComputeHashCode() const override { return type_index_.index_; }
6347 
CanBeNull()6348   bool CanBeNull() const override { return false; }
6349 
NeedsEnvironment()6350   bool NeedsEnvironment() const override {
6351     return CanCallRuntime();
6352   }
6353 
SetMustGenerateClinitCheck(bool generate_clinit_check)6354   void SetMustGenerateClinitCheck(bool generate_clinit_check) {
6355     // The entrypoint the code generator is going to call does not do
6356     // clinit of the class.
6357     DCHECK(!NeedsAccessCheck());
6358     SetPackedFlag<kFlagGenerateClInitCheck>(generate_clinit_check);
6359   }
6360 
CanCallRuntime()6361   bool CanCallRuntime() const {
6362     return NeedsAccessCheck() ||
6363            MustGenerateClinitCheck() ||
6364            GetLoadKind() == LoadKind::kRuntimeCall ||
6365            GetLoadKind() == LoadKind::kBssEntry;
6366   }
6367 
CanThrow()6368   bool CanThrow() const override {
6369     return NeedsAccessCheck() ||
6370            MustGenerateClinitCheck() ||
6371            // If the class is in the boot image, the lookup in the runtime call cannot throw.
6372            ((GetLoadKind() == LoadKind::kRuntimeCall ||
6373              GetLoadKind() == LoadKind::kBssEntry) &&
6374             !IsInBootImage());
6375   }
6376 
GetLoadedClassRTI()6377   ReferenceTypeInfo GetLoadedClassRTI() {
6378     if (GetPackedFlag<kFlagValidLoadedClassRTI>()) {
6379       // Note: The is_exact flag from the return value should not be used.
6380       return ReferenceTypeInfo::CreateUnchecked(klass_, /* is_exact= */ true);
6381     } else {
6382       return ReferenceTypeInfo::CreateInvalid();
6383     }
6384   }
6385 
6386   // Loaded class RTI is marked as valid by RTP if the klass_ is admissible.
SetValidLoadedClassRTI()6387   void SetValidLoadedClassRTI() REQUIRES_SHARED(Locks::mutator_lock_) {
6388     DCHECK(klass_ != nullptr);
6389     SetPackedFlag<kFlagValidLoadedClassRTI>(true);
6390   }
6391 
GetTypeIndex()6392   dex::TypeIndex GetTypeIndex() const { return type_index_; }
GetDexFile()6393   const DexFile& GetDexFile() const { return dex_file_; }
6394 
NeedsDexCacheOfDeclaringClass()6395   bool NeedsDexCacheOfDeclaringClass() const override {
6396     return GetLoadKind() == LoadKind::kRuntimeCall;
6397   }
6398 
SideEffectsForArchRuntimeCalls()6399   static SideEffects SideEffectsForArchRuntimeCalls() {
6400     return SideEffects::CanTriggerGC();
6401   }
6402 
IsReferrersClass()6403   bool IsReferrersClass() const { return GetLoadKind() == LoadKind::kReferrersClass; }
NeedsAccessCheck()6404   bool NeedsAccessCheck() const { return GetPackedFlag<kFlagNeedsAccessCheck>(); }
IsInBootImage()6405   bool IsInBootImage() const { return GetPackedFlag<kFlagIsInBootImage>(); }
MustGenerateClinitCheck()6406   bool MustGenerateClinitCheck() const { return GetPackedFlag<kFlagGenerateClInitCheck>(); }
6407 
MustResolveTypeOnSlowPath()6408   bool MustResolveTypeOnSlowPath() const {
6409     // Check that this instruction has a slow path.
6410     DCHECK(GetLoadKind() != LoadKind::kRuntimeCall);  // kRuntimeCall calls on main path.
6411     DCHECK(GetLoadKind() == LoadKind::kBssEntry || MustGenerateClinitCheck());
6412     return GetLoadKind() == LoadKind::kBssEntry;
6413   }
6414 
MarkInBootImage()6415   void MarkInBootImage() {
6416     SetPackedFlag<kFlagIsInBootImage>(true);
6417   }
6418 
6419   void AddSpecialInput(HInstruction* special_input);
6420 
6421   using HInstruction::GetInputRecords;  // Keep the const version visible.
GetInputRecords()6422   ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() final {
6423     return ArrayRef<HUserRecord<HInstruction*>>(
6424         &special_input_, (special_input_.GetInstruction() != nullptr) ? 1u : 0u);
6425   }
6426 
GetClass()6427   Handle<mirror::Class> GetClass() const {
6428     return klass_;
6429   }
6430 
6431   DECLARE_INSTRUCTION(LoadClass);
6432 
6433  protected:
6434   DEFAULT_COPY_CONSTRUCTOR(LoadClass);
6435 
6436  private:
6437   static constexpr size_t kFlagNeedsAccessCheck    = kNumberOfGenericPackedBits;
6438   static constexpr size_t kFlagIsInBootImage       = kFlagNeedsAccessCheck + 1;
6439   // Whether this instruction must generate the initialization check.
6440   // Used for code generation.
6441   static constexpr size_t kFlagGenerateClInitCheck = kFlagIsInBootImage + 1;
6442   static constexpr size_t kFieldLoadKind           = kFlagGenerateClInitCheck + 1;
6443   static constexpr size_t kFieldLoadKindSize =
6444       MinimumBitsToStore(static_cast<size_t>(LoadKind::kLast));
6445   static constexpr size_t kFlagValidLoadedClassRTI = kFieldLoadKind + kFieldLoadKindSize;
6446   static constexpr size_t kNumberOfLoadClassPackedBits = kFlagValidLoadedClassRTI + 1;
6447   static_assert(kNumberOfLoadClassPackedBits < kMaxNumberOfPackedBits, "Too many packed fields.");
6448   using LoadKindField = BitField<LoadKind, kFieldLoadKind, kFieldLoadKindSize>;
6449 
HasTypeReference(LoadKind load_kind)6450   static bool HasTypeReference(LoadKind load_kind) {
6451     return load_kind == LoadKind::kReferrersClass ||
6452         load_kind == LoadKind::kBootImageLinkTimePcRelative ||
6453         load_kind == LoadKind::kBssEntry ||
6454         load_kind == LoadKind::kRuntimeCall;
6455   }
6456 
6457   void SetLoadKindInternal(LoadKind load_kind);
6458 
6459   // The special input is the HCurrentMethod for kRuntimeCall or kReferrersClass.
6460   // For other load kinds it's empty or possibly some architecture-specific instruction
6461   // for PC-relative loads, i.e. kBssEntry or kBootImageLinkTimePcRelative.
6462   HUserRecord<HInstruction*> special_input_;
6463 
6464   // A type index and dex file where the class can be accessed. The dex file can be:
6465   // - The compiling method's dex file if the class is defined there too.
6466   // - The compiling method's dex file if the class is referenced there.
6467   // - The dex file where the class is defined. When the load kind can only be
6468   //   kBssEntry or kRuntimeCall, we cannot emit code for this `HLoadClass`.
6469   const dex::TypeIndex type_index_;
6470   const DexFile& dex_file_;
6471 
6472   Handle<mirror::Class> klass_;
6473 };
6474 std::ostream& operator<<(std::ostream& os, HLoadClass::LoadKind rhs);
6475 
6476 // Note: defined outside class to see operator<<(., HLoadClass::LoadKind).
SetLoadKind(LoadKind load_kind)6477 inline void HLoadClass::SetLoadKind(LoadKind load_kind) {
6478   // The load kind should be determined before inserting the instruction to the graph.
6479   DCHECK(GetBlock() == nullptr);
6480   DCHECK(GetEnvironment() == nullptr);
6481   SetPackedField<LoadKindField>(load_kind);
6482   if (load_kind != LoadKind::kRuntimeCall && load_kind != LoadKind::kReferrersClass) {
6483     special_input_ = HUserRecord<HInstruction*>(nullptr);
6484   }
6485   if (!NeedsEnvironment()) {
6486     SetSideEffects(SideEffects::None());
6487   }
6488 }
6489 
6490 // Note: defined outside class to see operator<<(., HLoadClass::LoadKind).
AddSpecialInput(HInstruction * special_input)6491 inline void HLoadClass::AddSpecialInput(HInstruction* special_input) {
6492   // The special input is used for PC-relative loads on some architectures,
6493   // including literal pool loads, which are PC-relative too.
6494   DCHECK(GetLoadKind() == LoadKind::kBootImageLinkTimePcRelative ||
6495          GetLoadKind() == LoadKind::kBootImageRelRo ||
6496          GetLoadKind() == LoadKind::kBssEntry ||
6497          GetLoadKind() == LoadKind::kJitBootImageAddress) << GetLoadKind();
6498   DCHECK(special_input_.GetInstruction() == nullptr);
6499   special_input_ = HUserRecord<HInstruction*>(special_input);
6500   special_input->AddUseAt(this, 0);
6501 }
6502 
6503 class HLoadString final : public HInstruction {
6504  public:
6505   // Determines how to load the String.
6506   enum class LoadKind {
6507     // Use PC-relative boot image String* address that will be known at link time.
6508     // Used for boot image strings referenced by boot image code.
6509     kBootImageLinkTimePcRelative,
6510 
6511     // Load from an entry in the .data.bimg.rel.ro using a PC-relative load.
6512     // Used for boot image strings referenced by apps in AOT-compiled code.
6513     kBootImageRelRo,
6514 
6515     // Load from an entry in the .bss section using a PC-relative load.
6516     // Used for strings outside boot image referenced by AOT-compiled app and boot image code.
6517     kBssEntry,
6518 
6519     // Use a known boot image String* address, embedded in the code by the codegen.
6520     // Used for boot image strings referenced by apps in JIT-compiled code.
6521     kJitBootImageAddress,
6522 
6523     // Load from the root table associated with the JIT compiled method.
6524     kJitTableAddress,
6525 
6526     // Load using a simple runtime call. This is the fall-back load kind when
6527     // the codegen is unable to use another appropriate kind.
6528     kRuntimeCall,
6529 
6530     kLast = kRuntimeCall,
6531   };
6532 
HLoadString(HCurrentMethod * current_method,dex::StringIndex string_index,const DexFile & dex_file,uint32_t dex_pc)6533   HLoadString(HCurrentMethod* current_method,
6534               dex::StringIndex string_index,
6535               const DexFile& dex_file,
6536               uint32_t dex_pc)
6537       : HInstruction(kLoadString,
6538                      DataType::Type::kReference,
6539                      SideEffectsForArchRuntimeCalls(),
6540                      dex_pc),
6541         special_input_(HUserRecord<HInstruction*>(current_method)),
6542         string_index_(string_index),
6543         dex_file_(dex_file) {
6544     SetPackedField<LoadKindField>(LoadKind::kRuntimeCall);
6545   }
6546 
IsClonable()6547   bool IsClonable() const override { return true; }
6548 
6549   void SetLoadKind(LoadKind load_kind);
6550 
GetLoadKind()6551   LoadKind GetLoadKind() const {
6552     return GetPackedField<LoadKindField>();
6553   }
6554 
HasPcRelativeLoadKind()6555   bool HasPcRelativeLoadKind() const {
6556     return GetLoadKind() == LoadKind::kBootImageLinkTimePcRelative ||
6557            GetLoadKind() == LoadKind::kBootImageRelRo ||
6558            GetLoadKind() == LoadKind::kBssEntry;
6559   }
6560 
GetDexFile()6561   const DexFile& GetDexFile() const {
6562     return dex_file_;
6563   }
6564 
GetStringIndex()6565   dex::StringIndex GetStringIndex() const {
6566     return string_index_;
6567   }
6568 
GetString()6569   Handle<mirror::String> GetString() const {
6570     return string_;
6571   }
6572 
SetString(Handle<mirror::String> str)6573   void SetString(Handle<mirror::String> str) {
6574     string_ = str;
6575   }
6576 
CanBeMoved()6577   bool CanBeMoved() const override { return true; }
6578 
6579   bool InstructionDataEquals(const HInstruction* other) const override;
6580 
ComputeHashCode()6581   size_t ComputeHashCode() const override { return string_index_.index_; }
6582 
6583   // Will call the runtime if we need to load the string through
6584   // the dex cache and the string is not guaranteed to be there yet.
NeedsEnvironment()6585   bool NeedsEnvironment() const override {
6586     LoadKind load_kind = GetLoadKind();
6587     if (load_kind == LoadKind::kBootImageLinkTimePcRelative ||
6588         load_kind == LoadKind::kBootImageRelRo ||
6589         load_kind == LoadKind::kJitBootImageAddress ||
6590         load_kind == LoadKind::kJitTableAddress) {
6591       return false;
6592     }
6593     return true;
6594   }
6595 
NeedsDexCacheOfDeclaringClass()6596   bool NeedsDexCacheOfDeclaringClass() const override {
6597     return GetLoadKind() == LoadKind::kRuntimeCall;
6598   }
6599 
CanBeNull()6600   bool CanBeNull() const override { return false; }
CanThrow()6601   bool CanThrow() const override { return NeedsEnvironment(); }
6602 
SideEffectsForArchRuntimeCalls()6603   static SideEffects SideEffectsForArchRuntimeCalls() {
6604     return SideEffects::CanTriggerGC();
6605   }
6606 
6607   void AddSpecialInput(HInstruction* special_input);
6608 
6609   using HInstruction::GetInputRecords;  // Keep the const version visible.
GetInputRecords()6610   ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() final {
6611     return ArrayRef<HUserRecord<HInstruction*>>(
6612         &special_input_, (special_input_.GetInstruction() != nullptr) ? 1u : 0u);
6613   }
6614 
6615   DECLARE_INSTRUCTION(LoadString);
6616 
6617  protected:
6618   DEFAULT_COPY_CONSTRUCTOR(LoadString);
6619 
6620  private:
6621   static constexpr size_t kFieldLoadKind = kNumberOfGenericPackedBits;
6622   static constexpr size_t kFieldLoadKindSize =
6623       MinimumBitsToStore(static_cast<size_t>(LoadKind::kLast));
6624   static constexpr size_t kNumberOfLoadStringPackedBits = kFieldLoadKind + kFieldLoadKindSize;
6625   static_assert(kNumberOfLoadStringPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
6626   using LoadKindField = BitField<LoadKind, kFieldLoadKind, kFieldLoadKindSize>;
6627 
6628   void SetLoadKindInternal(LoadKind load_kind);
6629 
6630   // The special input is the HCurrentMethod for kRuntimeCall.
6631   // For other load kinds it's empty or possibly some architecture-specific instruction
6632   // for PC-relative loads, i.e. kBssEntry or kBootImageLinkTimePcRelative.
6633   HUserRecord<HInstruction*> special_input_;
6634 
6635   dex::StringIndex string_index_;
6636   const DexFile& dex_file_;
6637 
6638   Handle<mirror::String> string_;
6639 };
6640 std::ostream& operator<<(std::ostream& os, HLoadString::LoadKind rhs);
6641 
6642 // Note: defined outside class to see operator<<(., HLoadString::LoadKind).
SetLoadKind(LoadKind load_kind)6643 inline void HLoadString::SetLoadKind(LoadKind load_kind) {
6644   // The load kind should be determined before inserting the instruction to the graph.
6645   DCHECK(GetBlock() == nullptr);
6646   DCHECK(GetEnvironment() == nullptr);
6647   DCHECK_EQ(GetLoadKind(), LoadKind::kRuntimeCall);
6648   SetPackedField<LoadKindField>(load_kind);
6649   if (load_kind != LoadKind::kRuntimeCall) {
6650     special_input_ = HUserRecord<HInstruction*>(nullptr);
6651   }
6652   if (!NeedsEnvironment()) {
6653     SetSideEffects(SideEffects::None());
6654   }
6655 }
6656 
6657 // Note: defined outside class to see operator<<(., HLoadString::LoadKind).
AddSpecialInput(HInstruction * special_input)6658 inline void HLoadString::AddSpecialInput(HInstruction* special_input) {
6659   // The special input is used for PC-relative loads on some architectures,
6660   // including literal pool loads, which are PC-relative too.
6661   DCHECK(GetLoadKind() == LoadKind::kBootImageLinkTimePcRelative ||
6662          GetLoadKind() == LoadKind::kBootImageRelRo ||
6663          GetLoadKind() == LoadKind::kBssEntry ||
6664          GetLoadKind() == LoadKind::kJitBootImageAddress) << GetLoadKind();
6665   // HLoadString::GetInputRecords() returns an empty array at this point,
6666   // so use the GetInputRecords() from the base class to set the input record.
6667   DCHECK(special_input_.GetInstruction() == nullptr);
6668   special_input_ = HUserRecord<HInstruction*>(special_input);
6669   special_input->AddUseAt(this, 0);
6670 }
6671 
6672 class HLoadMethodHandle final : public HInstruction {
6673  public:
HLoadMethodHandle(HCurrentMethod * current_method,uint16_t method_handle_idx,const DexFile & dex_file,uint32_t dex_pc)6674   HLoadMethodHandle(HCurrentMethod* current_method,
6675                     uint16_t method_handle_idx,
6676                     const DexFile& dex_file,
6677                     uint32_t dex_pc)
6678       : HInstruction(kLoadMethodHandle,
6679                      DataType::Type::kReference,
6680                      SideEffectsForArchRuntimeCalls(),
6681                      dex_pc),
6682         special_input_(HUserRecord<HInstruction*>(current_method)),
6683         method_handle_idx_(method_handle_idx),
6684         dex_file_(dex_file) {
6685   }
6686 
6687   using HInstruction::GetInputRecords;  // Keep the const version visible.
GetInputRecords()6688   ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() final {
6689     return ArrayRef<HUserRecord<HInstruction*>>(
6690         &special_input_, (special_input_.GetInstruction() != nullptr) ? 1u : 0u);
6691   }
6692 
IsClonable()6693   bool IsClonable() const override { return true; }
6694 
GetMethodHandleIndex()6695   uint16_t GetMethodHandleIndex() const { return method_handle_idx_; }
6696 
GetDexFile()6697   const DexFile& GetDexFile() const { return dex_file_; }
6698 
SideEffectsForArchRuntimeCalls()6699   static SideEffects SideEffectsForArchRuntimeCalls() {
6700     return SideEffects::CanTriggerGC();
6701   }
6702 
6703   DECLARE_INSTRUCTION(LoadMethodHandle);
6704 
6705  protected:
6706   DEFAULT_COPY_CONSTRUCTOR(LoadMethodHandle);
6707 
6708  private:
6709   // The special input is the HCurrentMethod for kRuntimeCall.
6710   HUserRecord<HInstruction*> special_input_;
6711 
6712   const uint16_t method_handle_idx_;
6713   const DexFile& dex_file_;
6714 };
6715 
6716 class HLoadMethodType final : public HInstruction {
6717  public:
HLoadMethodType(HCurrentMethod * current_method,dex::ProtoIndex proto_index,const DexFile & dex_file,uint32_t dex_pc)6718   HLoadMethodType(HCurrentMethod* current_method,
6719                   dex::ProtoIndex proto_index,
6720                   const DexFile& dex_file,
6721                   uint32_t dex_pc)
6722       : HInstruction(kLoadMethodType,
6723                      DataType::Type::kReference,
6724                      SideEffectsForArchRuntimeCalls(),
6725                      dex_pc),
6726         special_input_(HUserRecord<HInstruction*>(current_method)),
6727         proto_index_(proto_index),
6728         dex_file_(dex_file) {
6729   }
6730 
6731   using HInstruction::GetInputRecords;  // Keep the const version visible.
GetInputRecords()6732   ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() final {
6733     return ArrayRef<HUserRecord<HInstruction*>>(
6734         &special_input_, (special_input_.GetInstruction() != nullptr) ? 1u : 0u);
6735   }
6736 
IsClonable()6737   bool IsClonable() const override { return true; }
6738 
GetProtoIndex()6739   dex::ProtoIndex GetProtoIndex() const { return proto_index_; }
6740 
GetDexFile()6741   const DexFile& GetDexFile() const { return dex_file_; }
6742 
SideEffectsForArchRuntimeCalls()6743   static SideEffects SideEffectsForArchRuntimeCalls() {
6744     return SideEffects::CanTriggerGC();
6745   }
6746 
6747   DECLARE_INSTRUCTION(LoadMethodType);
6748 
6749  protected:
6750   DEFAULT_COPY_CONSTRUCTOR(LoadMethodType);
6751 
6752  private:
6753   // The special input is the HCurrentMethod for kRuntimeCall.
6754   HUserRecord<HInstruction*> special_input_;
6755 
6756   const dex::ProtoIndex proto_index_;
6757   const DexFile& dex_file_;
6758 };
6759 
6760 /**
6761  * Performs an initialization check on its Class object input.
6762  */
6763 class HClinitCheck final : public HExpression<1> {
6764  public:
HClinitCheck(HLoadClass * constant,uint32_t dex_pc)6765   HClinitCheck(HLoadClass* constant, uint32_t dex_pc)
6766       : HExpression(
6767             kClinitCheck,
6768             DataType::Type::kReference,
6769             SideEffects::AllExceptGCDependency(),  // Assume write/read on all fields/arrays.
6770             dex_pc) {
6771     SetRawInputAt(0, constant);
6772   }
6773   // TODO: Make ClinitCheck clonable.
CanBeMoved()6774   bool CanBeMoved() const override { return true; }
InstructionDataEquals(const HInstruction * other ATTRIBUTE_UNUSED)6775   bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
6776     return true;
6777   }
6778 
NeedsEnvironment()6779   bool NeedsEnvironment() const override {
6780     // May call runtime to initialize the class.
6781     return true;
6782   }
6783 
CanThrow()6784   bool CanThrow() const override { return true; }
6785 
GetLoadClass()6786   HLoadClass* GetLoadClass() const {
6787     DCHECK(InputAt(0)->IsLoadClass());
6788     return InputAt(0)->AsLoadClass();
6789   }
6790 
6791   DECLARE_INSTRUCTION(ClinitCheck);
6792 
6793 
6794  protected:
6795   DEFAULT_COPY_CONSTRUCTOR(ClinitCheck);
6796 };
6797 
6798 class HStaticFieldGet final : public HExpression<1> {
6799  public:
HStaticFieldGet(HInstruction * cls,ArtField * field,DataType::Type field_type,MemberOffset field_offset,bool is_volatile,uint32_t field_idx,uint16_t declaring_class_def_index,const DexFile & dex_file,uint32_t dex_pc)6800   HStaticFieldGet(HInstruction* cls,
6801                   ArtField* field,
6802                   DataType::Type field_type,
6803                   MemberOffset field_offset,
6804                   bool is_volatile,
6805                   uint32_t field_idx,
6806                   uint16_t declaring_class_def_index,
6807                   const DexFile& dex_file,
6808                   uint32_t dex_pc)
6809       : HExpression(kStaticFieldGet,
6810                     field_type,
6811                     SideEffects::FieldReadOfType(field_type, is_volatile),
6812                     dex_pc),
6813         field_info_(field,
6814                     field_offset,
6815                     field_type,
6816                     is_volatile,
6817                     field_idx,
6818                     declaring_class_def_index,
6819                     dex_file) {
6820     SetRawInputAt(0, cls);
6821   }
6822 
6823 
IsClonable()6824   bool IsClonable() const override { return true; }
CanBeMoved()6825   bool CanBeMoved() const override { return !IsVolatile(); }
6826 
InstructionDataEquals(const HInstruction * other)6827   bool InstructionDataEquals(const HInstruction* other) const override {
6828     const HStaticFieldGet* other_get = other->AsStaticFieldGet();
6829     return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue();
6830   }
6831 
ComputeHashCode()6832   size_t ComputeHashCode() const override {
6833     return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue();
6834   }
6835 
GetFieldInfo()6836   const FieldInfo& GetFieldInfo() const { return field_info_; }
GetFieldOffset()6837   MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
GetFieldType()6838   DataType::Type GetFieldType() const { return field_info_.GetFieldType(); }
IsVolatile()6839   bool IsVolatile() const { return field_info_.IsVolatile(); }
6840 
SetType(DataType::Type new_type)6841   void SetType(DataType::Type new_type) {
6842     DCHECK(DataType::IsIntegralType(GetType()));
6843     DCHECK(DataType::IsIntegralType(new_type));
6844     DCHECK_EQ(DataType::Size(GetType()), DataType::Size(new_type));
6845     SetPackedField<TypeField>(new_type);
6846   }
6847 
6848   DECLARE_INSTRUCTION(StaticFieldGet);
6849 
6850  protected:
6851   DEFAULT_COPY_CONSTRUCTOR(StaticFieldGet);
6852 
6853  private:
6854   const FieldInfo field_info_;
6855 };
6856 
6857 class HStaticFieldSet final : public HExpression<2> {
6858  public:
HStaticFieldSet(HInstruction * cls,HInstruction * value,ArtField * field,DataType::Type field_type,MemberOffset field_offset,bool is_volatile,uint32_t field_idx,uint16_t declaring_class_def_index,const DexFile & dex_file,uint32_t dex_pc)6859   HStaticFieldSet(HInstruction* cls,
6860                   HInstruction* value,
6861                   ArtField* field,
6862                   DataType::Type field_type,
6863                   MemberOffset field_offset,
6864                   bool is_volatile,
6865                   uint32_t field_idx,
6866                   uint16_t declaring_class_def_index,
6867                   const DexFile& dex_file,
6868                   uint32_t dex_pc)
6869       : HExpression(kStaticFieldSet,
6870                     SideEffects::FieldWriteOfType(field_type, is_volatile),
6871                     dex_pc),
6872         field_info_(field,
6873                     field_offset,
6874                     field_type,
6875                     is_volatile,
6876                     field_idx,
6877                     declaring_class_def_index,
6878                     dex_file) {
6879     SetPackedFlag<kFlagValueCanBeNull>(true);
6880     SetRawInputAt(0, cls);
6881     SetRawInputAt(1, value);
6882   }
6883 
IsClonable()6884   bool IsClonable() const override { return true; }
GetFieldInfo()6885   const FieldInfo& GetFieldInfo() const { return field_info_; }
GetFieldOffset()6886   MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
GetFieldType()6887   DataType::Type GetFieldType() const { return field_info_.GetFieldType(); }
IsVolatile()6888   bool IsVolatile() const { return field_info_.IsVolatile(); }
6889 
GetValue()6890   HInstruction* GetValue() const { return InputAt(1); }
GetValueCanBeNull()6891   bool GetValueCanBeNull() const { return GetPackedFlag<kFlagValueCanBeNull>(); }
ClearValueCanBeNull()6892   void ClearValueCanBeNull() { SetPackedFlag<kFlagValueCanBeNull>(false); }
6893 
6894   DECLARE_INSTRUCTION(StaticFieldSet);
6895 
6896  protected:
6897   DEFAULT_COPY_CONSTRUCTOR(StaticFieldSet);
6898 
6899  private:
6900   static constexpr size_t kFlagValueCanBeNull = kNumberOfGenericPackedBits;
6901   static constexpr size_t kNumberOfStaticFieldSetPackedBits = kFlagValueCanBeNull + 1;
6902   static_assert(kNumberOfStaticFieldSetPackedBits <= kMaxNumberOfPackedBits,
6903                 "Too many packed fields.");
6904 
6905   const FieldInfo field_info_;
6906 };
6907 
6908 class HStringBuilderAppend final : public HVariableInputSizeInstruction {
6909  public:
HStringBuilderAppend(HIntConstant * format,uint32_t number_of_arguments,ArenaAllocator * allocator,uint32_t dex_pc)6910   HStringBuilderAppend(HIntConstant* format,
6911                        uint32_t number_of_arguments,
6912                        ArenaAllocator* allocator,
6913                        uint32_t dex_pc)
6914       : HVariableInputSizeInstruction(
6915             kStringBuilderAppend,
6916             DataType::Type::kReference,
6917             // The runtime call may read memory from inputs. It never writes outside
6918             // of the newly allocated result object (or newly allocated helper objects).
6919             SideEffects::AllReads().Union(SideEffects::CanTriggerGC()),
6920             dex_pc,
6921             allocator,
6922             number_of_arguments + /* format */ 1u,
6923             kArenaAllocInvokeInputs) {
6924     DCHECK_GE(number_of_arguments, 1u);  // There must be something to append.
6925     SetRawInputAt(FormatIndex(), format);
6926   }
6927 
SetArgumentAt(size_t index,HInstruction * argument)6928   void SetArgumentAt(size_t index, HInstruction* argument) {
6929     DCHECK_LE(index, GetNumberOfArguments());
6930     SetRawInputAt(index, argument);
6931   }
6932 
6933   // Return the number of arguments, excluding the format.
GetNumberOfArguments()6934   size_t GetNumberOfArguments() const {
6935     DCHECK_GE(InputCount(), 1u);
6936     return InputCount() - 1u;
6937   }
6938 
FormatIndex()6939   size_t FormatIndex() const {
6940     return GetNumberOfArguments();
6941   }
6942 
GetFormat()6943   HIntConstant* GetFormat() {
6944     return InputAt(FormatIndex())->AsIntConstant();
6945   }
6946 
NeedsEnvironment()6947   bool NeedsEnvironment() const override { return true; }
6948 
CanThrow()6949   bool CanThrow() const override { return true; }
6950 
CanBeNull()6951   bool CanBeNull() const override { return false; }
6952 
6953   DECLARE_INSTRUCTION(StringBuilderAppend);
6954 
6955  protected:
6956   DEFAULT_COPY_CONSTRUCTOR(StringBuilderAppend);
6957 };
6958 
6959 class HUnresolvedInstanceFieldGet final : public HExpression<1> {
6960  public:
HUnresolvedInstanceFieldGet(HInstruction * obj,DataType::Type field_type,uint32_t field_index,uint32_t dex_pc)6961   HUnresolvedInstanceFieldGet(HInstruction* obj,
6962                               DataType::Type field_type,
6963                               uint32_t field_index,
6964                               uint32_t dex_pc)
6965       : HExpression(kUnresolvedInstanceFieldGet,
6966                     field_type,
6967                     SideEffects::AllExceptGCDependency(),
6968                     dex_pc),
6969         field_index_(field_index) {
6970     SetRawInputAt(0, obj);
6971   }
6972 
IsClonable()6973   bool IsClonable() const override { return true; }
NeedsEnvironment()6974   bool NeedsEnvironment() const override { return true; }
CanThrow()6975   bool CanThrow() const override { return true; }
6976 
GetFieldType()6977   DataType::Type GetFieldType() const { return GetType(); }
GetFieldIndex()6978   uint32_t GetFieldIndex() const { return field_index_; }
6979 
6980   DECLARE_INSTRUCTION(UnresolvedInstanceFieldGet);
6981 
6982  protected:
6983   DEFAULT_COPY_CONSTRUCTOR(UnresolvedInstanceFieldGet);
6984 
6985  private:
6986   const uint32_t field_index_;
6987 };
6988 
6989 class HUnresolvedInstanceFieldSet final : public HExpression<2> {
6990  public:
HUnresolvedInstanceFieldSet(HInstruction * obj,HInstruction * value,DataType::Type field_type,uint32_t field_index,uint32_t dex_pc)6991   HUnresolvedInstanceFieldSet(HInstruction* obj,
6992                               HInstruction* value,
6993                               DataType::Type field_type,
6994                               uint32_t field_index,
6995                               uint32_t dex_pc)
6996       : HExpression(kUnresolvedInstanceFieldSet, SideEffects::AllExceptGCDependency(), dex_pc),
6997         field_index_(field_index) {
6998     SetPackedField<FieldTypeField>(field_type);
6999     DCHECK_EQ(DataType::Kind(field_type), DataType::Kind(value->GetType()));
7000     SetRawInputAt(0, obj);
7001     SetRawInputAt(1, value);
7002   }
7003 
IsClonable()7004   bool IsClonable() const override { return true; }
NeedsEnvironment()7005   bool NeedsEnvironment() const override { return true; }
CanThrow()7006   bool CanThrow() const override { return true; }
7007 
GetFieldType()7008   DataType::Type GetFieldType() const { return GetPackedField<FieldTypeField>(); }
GetFieldIndex()7009   uint32_t GetFieldIndex() const { return field_index_; }
7010 
7011   DECLARE_INSTRUCTION(UnresolvedInstanceFieldSet);
7012 
7013  protected:
7014   DEFAULT_COPY_CONSTRUCTOR(UnresolvedInstanceFieldSet);
7015 
7016  private:
7017   static constexpr size_t kFieldFieldType = HInstruction::kNumberOfGenericPackedBits;
7018   static constexpr size_t kFieldFieldTypeSize =
7019       MinimumBitsToStore(static_cast<size_t>(DataType::Type::kLast));
7020   static constexpr size_t kNumberOfUnresolvedStaticFieldSetPackedBits =
7021       kFieldFieldType + kFieldFieldTypeSize;
7022   static_assert(kNumberOfUnresolvedStaticFieldSetPackedBits <= HInstruction::kMaxNumberOfPackedBits,
7023                 "Too many packed fields.");
7024   using FieldTypeField = BitField<DataType::Type, kFieldFieldType, kFieldFieldTypeSize>;
7025 
7026   const uint32_t field_index_;
7027 };
7028 
7029 class HUnresolvedStaticFieldGet final : public HExpression<0> {
7030  public:
HUnresolvedStaticFieldGet(DataType::Type field_type,uint32_t field_index,uint32_t dex_pc)7031   HUnresolvedStaticFieldGet(DataType::Type field_type,
7032                             uint32_t field_index,
7033                             uint32_t dex_pc)
7034       : HExpression(kUnresolvedStaticFieldGet,
7035                     field_type,
7036                     SideEffects::AllExceptGCDependency(),
7037                     dex_pc),
7038         field_index_(field_index) {
7039   }
7040 
IsClonable()7041   bool IsClonable() const override { return true; }
NeedsEnvironment()7042   bool NeedsEnvironment() const override { return true; }
CanThrow()7043   bool CanThrow() const override { return true; }
7044 
GetFieldType()7045   DataType::Type GetFieldType() const { return GetType(); }
GetFieldIndex()7046   uint32_t GetFieldIndex() const { return field_index_; }
7047 
7048   DECLARE_INSTRUCTION(UnresolvedStaticFieldGet);
7049 
7050  protected:
7051   DEFAULT_COPY_CONSTRUCTOR(UnresolvedStaticFieldGet);
7052 
7053  private:
7054   const uint32_t field_index_;
7055 };
7056 
7057 class HUnresolvedStaticFieldSet final : public HExpression<1> {
7058  public:
HUnresolvedStaticFieldSet(HInstruction * value,DataType::Type field_type,uint32_t field_index,uint32_t dex_pc)7059   HUnresolvedStaticFieldSet(HInstruction* value,
7060                             DataType::Type field_type,
7061                             uint32_t field_index,
7062                             uint32_t dex_pc)
7063       : HExpression(kUnresolvedStaticFieldSet, SideEffects::AllExceptGCDependency(), dex_pc),
7064         field_index_(field_index) {
7065     SetPackedField<FieldTypeField>(field_type);
7066     DCHECK_EQ(DataType::Kind(field_type), DataType::Kind(value->GetType()));
7067     SetRawInputAt(0, value);
7068   }
7069 
IsClonable()7070   bool IsClonable() const override { return true; }
NeedsEnvironment()7071   bool NeedsEnvironment() const override { return true; }
CanThrow()7072   bool CanThrow() const override { return true; }
7073 
GetFieldType()7074   DataType::Type GetFieldType() const { return GetPackedField<FieldTypeField>(); }
GetFieldIndex()7075   uint32_t GetFieldIndex() const { return field_index_; }
7076 
7077   DECLARE_INSTRUCTION(UnresolvedStaticFieldSet);
7078 
7079  protected:
7080   DEFAULT_COPY_CONSTRUCTOR(UnresolvedStaticFieldSet);
7081 
7082  private:
7083   static constexpr size_t kFieldFieldType = HInstruction::kNumberOfGenericPackedBits;
7084   static constexpr size_t kFieldFieldTypeSize =
7085       MinimumBitsToStore(static_cast<size_t>(DataType::Type::kLast));
7086   static constexpr size_t kNumberOfUnresolvedStaticFieldSetPackedBits =
7087       kFieldFieldType + kFieldFieldTypeSize;
7088   static_assert(kNumberOfUnresolvedStaticFieldSetPackedBits <= HInstruction::kMaxNumberOfPackedBits,
7089                 "Too many packed fields.");
7090   using FieldTypeField = BitField<DataType::Type, kFieldFieldType, kFieldFieldTypeSize>;
7091 
7092   const uint32_t field_index_;
7093 };
7094 
7095 // Implement the move-exception DEX instruction.
7096 class HLoadException final : public HExpression<0> {
7097  public:
7098   explicit HLoadException(uint32_t dex_pc = kNoDexPc)
HExpression(kLoadException,DataType::Type::kReference,SideEffects::None (),dex_pc)7099       : HExpression(kLoadException, DataType::Type::kReference, SideEffects::None(), dex_pc) {
7100   }
7101 
CanBeNull()7102   bool CanBeNull() const override { return false; }
7103 
7104   DECLARE_INSTRUCTION(LoadException);
7105 
7106  protected:
7107   DEFAULT_COPY_CONSTRUCTOR(LoadException);
7108 };
7109 
7110 // Implicit part of move-exception which clears thread-local exception storage.
7111 // Must not be removed because the runtime expects the TLS to get cleared.
7112 class HClearException final : public HExpression<0> {
7113  public:
7114   explicit HClearException(uint32_t dex_pc = kNoDexPc)
HExpression(kClearException,SideEffects::AllWrites (),dex_pc)7115       : HExpression(kClearException, SideEffects::AllWrites(), dex_pc) {
7116   }
7117 
7118   DECLARE_INSTRUCTION(ClearException);
7119 
7120  protected:
7121   DEFAULT_COPY_CONSTRUCTOR(ClearException);
7122 };
7123 
7124 class HThrow final : public HExpression<1> {
7125  public:
HThrow(HInstruction * exception,uint32_t dex_pc)7126   HThrow(HInstruction* exception, uint32_t dex_pc)
7127       : HExpression(kThrow, SideEffects::CanTriggerGC(), dex_pc) {
7128     SetRawInputAt(0, exception);
7129   }
7130 
IsControlFlow()7131   bool IsControlFlow() const override { return true; }
7132 
NeedsEnvironment()7133   bool NeedsEnvironment() const override { return true; }
7134 
CanThrow()7135   bool CanThrow() const override { return true; }
7136 
AlwaysThrows()7137   bool AlwaysThrows() const override { return true; }
7138 
7139   DECLARE_INSTRUCTION(Throw);
7140 
7141  protected:
7142   DEFAULT_COPY_CONSTRUCTOR(Throw);
7143 };
7144 
7145 /**
7146  * Implementation strategies for the code generator of a HInstanceOf
7147  * or `HCheckCast`.
7148  */
7149 enum class TypeCheckKind {
7150   kUnresolvedCheck,       // Check against an unresolved type.
7151   kExactCheck,            // Can do a single class compare.
7152   kClassHierarchyCheck,   // Can just walk the super class chain.
7153   kAbstractClassCheck,    // Can just walk the super class chain, starting one up.
7154   kInterfaceCheck,        // No optimization yet when checking against an interface.
7155   kArrayObjectCheck,      // Can just check if the array is not primitive.
7156   kArrayCheck,            // No optimization yet when checking against a generic array.
7157   kBitstringCheck,        // Compare the type check bitstring.
7158   kLast = kArrayCheck
7159 };
7160 
7161 std::ostream& operator<<(std::ostream& os, TypeCheckKind rhs);
7162 
7163 // Note: HTypeCheckInstruction is just a helper class, not an abstract instruction with an
7164 // `IsTypeCheckInstruction()`. (New virtual methods in the HInstruction class have a high cost.)
7165 class HTypeCheckInstruction : public HVariableInputSizeInstruction {
7166  public:
HTypeCheckInstruction(InstructionKind kind,DataType::Type type,HInstruction * object,HInstruction * target_class_or_null,TypeCheckKind check_kind,Handle<mirror::Class> klass,uint32_t dex_pc,ArenaAllocator * allocator,HIntConstant * bitstring_path_to_root,HIntConstant * bitstring_mask,SideEffects side_effects)7167   HTypeCheckInstruction(InstructionKind kind,
7168                         DataType::Type type,
7169                         HInstruction* object,
7170                         HInstruction* target_class_or_null,
7171                         TypeCheckKind check_kind,
7172                         Handle<mirror::Class> klass,
7173                         uint32_t dex_pc,
7174                         ArenaAllocator* allocator,
7175                         HIntConstant* bitstring_path_to_root,
7176                         HIntConstant* bitstring_mask,
7177                         SideEffects side_effects)
7178       : HVariableInputSizeInstruction(
7179           kind,
7180           type,
7181           side_effects,
7182           dex_pc,
7183           allocator,
7184           /* number_of_inputs= */ check_kind == TypeCheckKind::kBitstringCheck ? 4u : 2u,
7185           kArenaAllocTypeCheckInputs),
7186         klass_(klass) {
7187     SetPackedField<TypeCheckKindField>(check_kind);
7188     SetPackedFlag<kFlagMustDoNullCheck>(true);
7189     SetPackedFlag<kFlagValidTargetClassRTI>(false);
7190     SetRawInputAt(0, object);
7191     SetRawInputAt(1, target_class_or_null);
7192     DCHECK_EQ(check_kind == TypeCheckKind::kBitstringCheck, bitstring_path_to_root != nullptr);
7193     DCHECK_EQ(check_kind == TypeCheckKind::kBitstringCheck, bitstring_mask != nullptr);
7194     if (check_kind == TypeCheckKind::kBitstringCheck) {
7195       DCHECK(target_class_or_null->IsNullConstant());
7196       SetRawInputAt(2, bitstring_path_to_root);
7197       SetRawInputAt(3, bitstring_mask);
7198     } else {
7199       DCHECK(target_class_or_null->IsLoadClass());
7200     }
7201   }
7202 
GetTargetClass()7203   HLoadClass* GetTargetClass() const {
7204     DCHECK_NE(GetTypeCheckKind(), TypeCheckKind::kBitstringCheck);
7205     HInstruction* load_class = InputAt(1);
7206     DCHECK(load_class->IsLoadClass());
7207     return load_class->AsLoadClass();
7208   }
7209 
GetBitstringPathToRoot()7210   uint32_t GetBitstringPathToRoot() const {
7211     DCHECK_EQ(GetTypeCheckKind(), TypeCheckKind::kBitstringCheck);
7212     HInstruction* path_to_root = InputAt(2);
7213     DCHECK(path_to_root->IsIntConstant());
7214     return static_cast<uint32_t>(path_to_root->AsIntConstant()->GetValue());
7215   }
7216 
GetBitstringMask()7217   uint32_t GetBitstringMask() const {
7218     DCHECK_EQ(GetTypeCheckKind(), TypeCheckKind::kBitstringCheck);
7219     HInstruction* mask = InputAt(3);
7220     DCHECK(mask->IsIntConstant());
7221     return static_cast<uint32_t>(mask->AsIntConstant()->GetValue());
7222   }
7223 
IsClonable()7224   bool IsClonable() const override { return true; }
CanBeMoved()7225   bool CanBeMoved() const override { return true; }
7226 
InstructionDataEquals(const HInstruction * other)7227   bool InstructionDataEquals(const HInstruction* other) const override {
7228     DCHECK(other->IsInstanceOf() || other->IsCheckCast()) << other->DebugName();
7229     return GetPackedFields() == down_cast<const HTypeCheckInstruction*>(other)->GetPackedFields();
7230   }
7231 
MustDoNullCheck()7232   bool MustDoNullCheck() const { return GetPackedFlag<kFlagMustDoNullCheck>(); }
ClearMustDoNullCheck()7233   void ClearMustDoNullCheck() { SetPackedFlag<kFlagMustDoNullCheck>(false); }
GetTypeCheckKind()7234   TypeCheckKind GetTypeCheckKind() const { return GetPackedField<TypeCheckKindField>(); }
IsExactCheck()7235   bool IsExactCheck() const { return GetTypeCheckKind() == TypeCheckKind::kExactCheck; }
7236 
GetTargetClassRTI()7237   ReferenceTypeInfo GetTargetClassRTI() {
7238     if (GetPackedFlag<kFlagValidTargetClassRTI>()) {
7239       // Note: The is_exact flag from the return value should not be used.
7240       return ReferenceTypeInfo::CreateUnchecked(klass_, /* is_exact= */ true);
7241     } else {
7242       return ReferenceTypeInfo::CreateInvalid();
7243     }
7244   }
7245 
7246   // Target class RTI is marked as valid by RTP if the klass_ is admissible.
SetValidTargetClassRTI()7247   void SetValidTargetClassRTI() REQUIRES_SHARED(Locks::mutator_lock_) {
7248     DCHECK(klass_ != nullptr);
7249     SetPackedFlag<kFlagValidTargetClassRTI>(true);
7250   }
7251 
GetClass()7252   Handle<mirror::Class> GetClass() const {
7253     return klass_;
7254   }
7255 
7256  protected:
7257   DEFAULT_COPY_CONSTRUCTOR(TypeCheckInstruction);
7258 
7259  private:
7260   static constexpr size_t kFieldTypeCheckKind = kNumberOfGenericPackedBits;
7261   static constexpr size_t kFieldTypeCheckKindSize =
7262       MinimumBitsToStore(static_cast<size_t>(TypeCheckKind::kLast));
7263   static constexpr size_t kFlagMustDoNullCheck = kFieldTypeCheckKind + kFieldTypeCheckKindSize;
7264   static constexpr size_t kFlagValidTargetClassRTI = kFlagMustDoNullCheck + 1;
7265   static constexpr size_t kNumberOfInstanceOfPackedBits = kFlagValidTargetClassRTI + 1;
7266   static_assert(kNumberOfInstanceOfPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
7267   using TypeCheckKindField = BitField<TypeCheckKind, kFieldTypeCheckKind, kFieldTypeCheckKindSize>;
7268 
7269   Handle<mirror::Class> klass_;
7270 };
7271 
7272 class HInstanceOf final : public HTypeCheckInstruction {
7273  public:
HInstanceOf(HInstruction * object,HInstruction * target_class_or_null,TypeCheckKind check_kind,Handle<mirror::Class> klass,uint32_t dex_pc,ArenaAllocator * allocator,HIntConstant * bitstring_path_to_root,HIntConstant * bitstring_mask)7274   HInstanceOf(HInstruction* object,
7275               HInstruction* target_class_or_null,
7276               TypeCheckKind check_kind,
7277               Handle<mirror::Class> klass,
7278               uint32_t dex_pc,
7279               ArenaAllocator* allocator,
7280               HIntConstant* bitstring_path_to_root,
7281               HIntConstant* bitstring_mask)
7282       : HTypeCheckInstruction(kInstanceOf,
7283                               DataType::Type::kBool,
7284                               object,
7285                               target_class_or_null,
7286                               check_kind,
7287                               klass,
7288                               dex_pc,
7289                               allocator,
7290                               bitstring_path_to_root,
7291                               bitstring_mask,
7292                               SideEffectsForArchRuntimeCalls(check_kind)) {}
7293 
IsClonable()7294   bool IsClonable() const override { return true; }
7295 
NeedsEnvironment()7296   bool NeedsEnvironment() const override {
7297     return CanCallRuntime(GetTypeCheckKind());
7298   }
7299 
CanCallRuntime(TypeCheckKind check_kind)7300   static bool CanCallRuntime(TypeCheckKind check_kind) {
7301     // TODO: Re-evaluate now that mips codegen has been removed.
7302     return check_kind != TypeCheckKind::kExactCheck;
7303   }
7304 
SideEffectsForArchRuntimeCalls(TypeCheckKind check_kind)7305   static SideEffects SideEffectsForArchRuntimeCalls(TypeCheckKind check_kind) {
7306     return CanCallRuntime(check_kind) ? SideEffects::CanTriggerGC() : SideEffects::None();
7307   }
7308 
7309   DECLARE_INSTRUCTION(InstanceOf);
7310 
7311  protected:
7312   DEFAULT_COPY_CONSTRUCTOR(InstanceOf);
7313 };
7314 
7315 class HBoundType final : public HExpression<1> {
7316  public:
7317   explicit HBoundType(HInstruction* input, uint32_t dex_pc = kNoDexPc)
HExpression(kBoundType,DataType::Type::kReference,SideEffects::None (),dex_pc)7318       : HExpression(kBoundType, DataType::Type::kReference, SideEffects::None(), dex_pc),
7319         upper_bound_(ReferenceTypeInfo::CreateInvalid()) {
7320     SetPackedFlag<kFlagUpperCanBeNull>(true);
7321     SetPackedFlag<kFlagCanBeNull>(true);
7322     DCHECK_EQ(input->GetType(), DataType::Type::kReference);
7323     SetRawInputAt(0, input);
7324   }
7325 
7326   bool InstructionDataEquals(const HInstruction* other) const override;
IsClonable()7327   bool IsClonable() const override { return true; }
7328 
7329   // {Get,Set}Upper* should only be used in reference type propagation.
GetUpperBound()7330   const ReferenceTypeInfo& GetUpperBound() const { return upper_bound_; }
GetUpperCanBeNull()7331   bool GetUpperCanBeNull() const { return GetPackedFlag<kFlagUpperCanBeNull>(); }
7332   void SetUpperBound(const ReferenceTypeInfo& upper_bound, bool can_be_null);
7333 
SetCanBeNull(bool can_be_null)7334   void SetCanBeNull(bool can_be_null) {
7335     DCHECK(GetUpperCanBeNull() || !can_be_null);
7336     SetPackedFlag<kFlagCanBeNull>(can_be_null);
7337   }
7338 
CanBeNull()7339   bool CanBeNull() const override { return GetPackedFlag<kFlagCanBeNull>(); }
7340 
7341   DECLARE_INSTRUCTION(BoundType);
7342 
7343  protected:
7344   DEFAULT_COPY_CONSTRUCTOR(BoundType);
7345 
7346  private:
7347   // Represents the top constraint that can_be_null_ cannot exceed (i.e. if this
7348   // is false then CanBeNull() cannot be true).
7349   static constexpr size_t kFlagUpperCanBeNull = kNumberOfGenericPackedBits;
7350   static constexpr size_t kFlagCanBeNull = kFlagUpperCanBeNull + 1;
7351   static constexpr size_t kNumberOfBoundTypePackedBits = kFlagCanBeNull + 1;
7352   static_assert(kNumberOfBoundTypePackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
7353 
7354   // Encodes the most upper class that this instruction can have. In other words
7355   // it is always the case that GetUpperBound().IsSupertypeOf(GetReferenceType()).
7356   // It is used to bound the type in cases like:
7357   //   if (x instanceof ClassX) {
7358   //     // uper_bound_ will be ClassX
7359   //   }
7360   ReferenceTypeInfo upper_bound_;
7361 };
7362 
7363 class HCheckCast final : public HTypeCheckInstruction {
7364  public:
HCheckCast(HInstruction * object,HInstruction * target_class_or_null,TypeCheckKind check_kind,Handle<mirror::Class> klass,uint32_t dex_pc,ArenaAllocator * allocator,HIntConstant * bitstring_path_to_root,HIntConstant * bitstring_mask)7365   HCheckCast(HInstruction* object,
7366              HInstruction* target_class_or_null,
7367              TypeCheckKind check_kind,
7368              Handle<mirror::Class> klass,
7369              uint32_t dex_pc,
7370              ArenaAllocator* allocator,
7371              HIntConstant* bitstring_path_to_root,
7372              HIntConstant* bitstring_mask)
7373       : HTypeCheckInstruction(kCheckCast,
7374                               DataType::Type::kVoid,
7375                               object,
7376                               target_class_or_null,
7377                               check_kind,
7378                               klass,
7379                               dex_pc,
7380                               allocator,
7381                               bitstring_path_to_root,
7382                               bitstring_mask,
7383                               SideEffects::CanTriggerGC()) {}
7384 
IsClonable()7385   bool IsClonable() const override { return true; }
NeedsEnvironment()7386   bool NeedsEnvironment() const override {
7387     // Instruction may throw a CheckCastError.
7388     return true;
7389   }
7390 
CanThrow()7391   bool CanThrow() const override { return true; }
7392 
7393   DECLARE_INSTRUCTION(CheckCast);
7394 
7395  protected:
7396   DEFAULT_COPY_CONSTRUCTOR(CheckCast);
7397 };
7398 
7399 /**
7400  * @brief Memory barrier types (see "The JSR-133 Cookbook for Compiler Writers").
7401  * @details We define the combined barrier types that are actually required
7402  * by the Java Memory Model, rather than using exactly the terminology from
7403  * the JSR-133 cookbook.  These should, in many cases, be replaced by acquire/release
7404  * primitives.  Note that the JSR-133 cookbook generally does not deal with
7405  * store atomicity issues, and the recipes there are not always entirely sufficient.
7406  * The current recipe is as follows:
7407  * -# Use AnyStore ~= (LoadStore | StoreStore) ~= release barrier before volatile store.
7408  * -# Use AnyAny barrier after volatile store.  (StoreLoad is as expensive.)
7409  * -# Use LoadAny barrier ~= (LoadLoad | LoadStore) ~= acquire barrier after each volatile load.
7410  * -# Use StoreStore barrier after all stores but before return from any constructor whose
7411  *    class has final fields.
7412  * -# Use NTStoreStore to order non-temporal stores with respect to all later
7413  *    store-to-memory instructions.  Only generated together with non-temporal stores.
7414  */
7415 enum MemBarrierKind {
7416   kAnyStore,
7417   kLoadAny,
7418   kStoreStore,
7419   kAnyAny,
7420   kNTStoreStore,
7421   kLastBarrierKind = kNTStoreStore
7422 };
7423 std::ostream& operator<<(std::ostream& os, const MemBarrierKind& kind);
7424 
7425 class HMemoryBarrier final : public HExpression<0> {
7426  public:
7427   explicit HMemoryBarrier(MemBarrierKind barrier_kind, uint32_t dex_pc = kNoDexPc)
HExpression(kMemoryBarrier,SideEffects::AllWritesAndReads (),dex_pc)7428       : HExpression(kMemoryBarrier,
7429                     SideEffects::AllWritesAndReads(),  // Assume write/read on all fields/arrays.
7430                     dex_pc) {
7431     SetPackedField<BarrierKindField>(barrier_kind);
7432   }
7433 
IsClonable()7434   bool IsClonable() const override { return true; }
7435 
GetBarrierKind()7436   MemBarrierKind GetBarrierKind() { return GetPackedField<BarrierKindField>(); }
7437 
7438   DECLARE_INSTRUCTION(MemoryBarrier);
7439 
7440  protected:
7441   DEFAULT_COPY_CONSTRUCTOR(MemoryBarrier);
7442 
7443  private:
7444   static constexpr size_t kFieldBarrierKind = HInstruction::kNumberOfGenericPackedBits;
7445   static constexpr size_t kFieldBarrierKindSize =
7446       MinimumBitsToStore(static_cast<size_t>(kLastBarrierKind));
7447   static constexpr size_t kNumberOfMemoryBarrierPackedBits =
7448       kFieldBarrierKind + kFieldBarrierKindSize;
7449   static_assert(kNumberOfMemoryBarrierPackedBits <= kMaxNumberOfPackedBits,
7450                 "Too many packed fields.");
7451   using BarrierKindField = BitField<MemBarrierKind, kFieldBarrierKind, kFieldBarrierKindSize>;
7452 };
7453 
7454 // A constructor fence orders all prior stores to fields that could be accessed via a final field of
7455 // the specified object(s), with respect to any subsequent store that might "publish"
7456 // (i.e. make visible) the specified object to another thread.
7457 //
7458 // JLS 17.5.1 "Semantics of final fields" states that a freeze action happens
7459 // for all final fields (that were set) at the end of the invoked constructor.
7460 //
7461 // The constructor fence models the freeze actions for the final fields of an object
7462 // being constructed (semantically at the end of the constructor). Constructor fences
7463 // have a per-object affinity; two separate objects being constructed get two separate
7464 // constructor fences.
7465 //
7466 // (Note: that if calling a super-constructor or forwarding to another constructor,
7467 // the freezes would happen at the end of *that* constructor being invoked).
7468 //
7469 // The memory model guarantees that when the object being constructed is "published" after
7470 // constructor completion (i.e. escapes the current thread via a store), then any final field
7471 // writes must be observable on other threads (once they observe that publication).
7472 //
7473 // Further, anything written before the freeze, and read by dereferencing through the final field,
7474 // must also be visible (so final object field could itself have an object with non-final fields;
7475 // yet the freeze must also extend to them).
7476 //
7477 // Constructor example:
7478 //
7479 //     class HasFinal {
7480 //        final int field;                              Optimizing IR for <init>()V:
7481 //        HasFinal() {
7482 //          field = 123;                                HInstanceFieldSet(this, HasFinal.field, 123)
7483 //          // freeze(this.field);                      HConstructorFence(this)
7484 //        }                                             HReturn
7485 //     }
7486 //
7487 // HConstructorFence can serve double duty as a fence for new-instance/new-array allocations of
7488 // already-initialized classes; in that case the allocation must act as a "default-initializer"
7489 // of the object which effectively writes the class pointer "final field".
7490 //
7491 // For example, we can model default-initialiation as roughly the equivalent of the following:
7492 //
7493 //     class Object {
7494 //       private final Class header;
7495 //     }
7496 //
7497 //  Java code:                                           Optimizing IR:
7498 //
7499 //     T new_instance<T>() {
7500 //       Object obj = allocate_memory(T.class.size);     obj = HInvoke(art_quick_alloc_object, T)
7501 //       obj.header = T.class;                           // header write is done by above call.
7502 //       // freeze(obj.header)                           HConstructorFence(obj)
7503 //       return (T)obj;
7504 //     }
7505 //
7506 // See also:
7507 // * DexCompilationUnit::RequiresConstructorBarrier
7508 // * QuasiAtomic::ThreadFenceForConstructor
7509 //
7510 class HConstructorFence final : public HVariableInputSizeInstruction {
7511                                   // A fence has variable inputs because the inputs can be removed
7512                                   // after prepare_for_register_allocation phase.
7513                                   // (TODO: In the future a fence could freeze multiple objects
7514                                   //        after merging two fences together.)
7515  public:
7516   // `fence_object` is the reference that needs to be protected for correct publication.
7517   //
7518   // It makes sense in the following situations:
7519   // * <init> constructors, it's the "this" parameter (i.e. HParameterValue, s.t. IsThis() == true).
7520   // * new-instance-like instructions, it's the return value (i.e. HNewInstance).
7521   //
7522   // After construction the `fence_object` becomes the 0th input.
7523   // This is not an input in a real sense, but just a convenient place to stash the information
7524   // about the associated object.
HConstructorFence(HInstruction * fence_object,uint32_t dex_pc,ArenaAllocator * allocator)7525   HConstructorFence(HInstruction* fence_object,
7526                     uint32_t dex_pc,
7527                     ArenaAllocator* allocator)
7528     // We strongly suspect there is not a more accurate way to describe the fine-grained reordering
7529     // constraints described in the class header. We claim that these SideEffects constraints
7530     // enforce a superset of the real constraints.
7531     //
7532     // The ordering described above is conservatively modeled with SideEffects as follows:
7533     //
7534     // * To prevent reordering of the publication stores:
7535     // ----> "Reads of objects" is the initial SideEffect.
7536     // * For every primitive final field store in the constructor:
7537     // ----> Union that field's type as a read (e.g. "Read of T") into the SideEffect.
7538     // * If there are any stores to reference final fields in the constructor:
7539     // ----> Use a more conservative "AllReads" SideEffect because any stores to any references
7540     //       that are reachable from `fence_object` also need to be prevented for reordering
7541     //       (and we do not want to do alias analysis to figure out what those stores are).
7542     //
7543     // In the implementation, this initially starts out as an "all reads" side effect; this is an
7544     // even more conservative approach than the one described above, and prevents all of the
7545     // above reordering without analyzing any of the instructions in the constructor.
7546     //
7547     // If in a later phase we discover that there are no writes to reference final fields,
7548     // we can refine the side effect to a smaller set of type reads (see above constraints).
7549       : HVariableInputSizeInstruction(kConstructorFence,
7550                                       SideEffects::AllReads(),
7551                                       dex_pc,
7552                                       allocator,
7553                                       /* number_of_inputs= */ 1,
7554                                       kArenaAllocConstructorFenceInputs) {
7555     DCHECK(fence_object != nullptr);
7556     SetRawInputAt(0, fence_object);
7557   }
7558 
7559   // The object associated with this constructor fence.
7560   //
7561   // (Note: This will be null after the prepare_for_register_allocation phase,
7562   // as all constructor fence inputs are removed there).
GetFenceObject()7563   HInstruction* GetFenceObject() const {
7564     return InputAt(0);
7565   }
7566 
7567   // Find all the HConstructorFence uses (`fence_use`) for `this` and:
7568   // - Delete `fence_use` from `this`'s use list.
7569   // - Delete `this` from `fence_use`'s inputs list.
7570   // - If the `fence_use` is dead, remove it from the graph.
7571   //
7572   // A fence is considered dead once it no longer has any uses
7573   // and all of the inputs are dead.
7574   //
7575   // This must *not* be called during/after prepare_for_register_allocation,
7576   // because that removes all the inputs to the fences but the fence is actually
7577   // still considered live.
7578   //
7579   // Returns how many HConstructorFence instructions were removed from graph.
7580   static size_t RemoveConstructorFences(HInstruction* instruction);
7581 
7582   // Combine all inputs of `this` and `other` instruction and remove
7583   // `other` from the graph.
7584   //
7585   // Inputs are unique after the merge.
7586   //
7587   // Requirement: `this` must not be the same as `other.
7588   void Merge(HConstructorFence* other);
7589 
7590   // Check if this constructor fence is protecting
7591   // an HNewInstance or HNewArray that is also the immediate
7592   // predecessor of `this`.
7593   //
7594   // If `ignore_inputs` is true, then the immediate predecessor doesn't need
7595   // to be one of the inputs of `this`.
7596   //
7597   // Returns the associated HNewArray or HNewInstance,
7598   // or null otherwise.
7599   HInstruction* GetAssociatedAllocation(bool ignore_inputs = false);
7600 
7601   DECLARE_INSTRUCTION(ConstructorFence);
7602 
7603  protected:
7604   DEFAULT_COPY_CONSTRUCTOR(ConstructorFence);
7605 };
7606 
7607 class HMonitorOperation final : public HExpression<1> {
7608  public:
7609   enum class OperationKind {
7610     kEnter,
7611     kExit,
7612     kLast = kExit
7613   };
7614 
HMonitorOperation(HInstruction * object,OperationKind kind,uint32_t dex_pc)7615   HMonitorOperation(HInstruction* object, OperationKind kind, uint32_t dex_pc)
7616     : HExpression(kMonitorOperation,
7617                   SideEffects::AllExceptGCDependency(),  // Assume write/read on all fields/arrays.
7618                   dex_pc) {
7619     SetPackedField<OperationKindField>(kind);
7620     SetRawInputAt(0, object);
7621   }
7622 
7623   // Instruction may go into runtime, so we need an environment.
NeedsEnvironment()7624   bool NeedsEnvironment() const override { return true; }
7625 
CanThrow()7626   bool CanThrow() const override {
7627     // Verifier guarantees that monitor-exit cannot throw.
7628     // This is important because it allows the HGraphBuilder to remove
7629     // a dead throw-catch loop generated for `synchronized` blocks/methods.
7630     return IsEnter();
7631   }
7632 
GetOperationKind()7633   OperationKind GetOperationKind() const { return GetPackedField<OperationKindField>(); }
IsEnter()7634   bool IsEnter() const { return GetOperationKind() == OperationKind::kEnter; }
7635 
7636   DECLARE_INSTRUCTION(MonitorOperation);
7637 
7638  protected:
7639   DEFAULT_COPY_CONSTRUCTOR(MonitorOperation);
7640 
7641  private:
7642   static constexpr size_t kFieldOperationKind = HInstruction::kNumberOfGenericPackedBits;
7643   static constexpr size_t kFieldOperationKindSize =
7644       MinimumBitsToStore(static_cast<size_t>(OperationKind::kLast));
7645   static constexpr size_t kNumberOfMonitorOperationPackedBits =
7646       kFieldOperationKind + kFieldOperationKindSize;
7647   static_assert(kNumberOfMonitorOperationPackedBits <= HInstruction::kMaxNumberOfPackedBits,
7648                 "Too many packed fields.");
7649   using OperationKindField = BitField<OperationKind, kFieldOperationKind, kFieldOperationKindSize>;
7650 };
7651 
7652 class HSelect final : public HExpression<3> {
7653  public:
HSelect(HInstruction * condition,HInstruction * true_value,HInstruction * false_value,uint32_t dex_pc)7654   HSelect(HInstruction* condition,
7655           HInstruction* true_value,
7656           HInstruction* false_value,
7657           uint32_t dex_pc)
7658       : HExpression(kSelect, HPhi::ToPhiType(true_value->GetType()), SideEffects::None(), dex_pc) {
7659     DCHECK_EQ(HPhi::ToPhiType(true_value->GetType()), HPhi::ToPhiType(false_value->GetType()));
7660 
7661     // First input must be `true_value` or `false_value` to allow codegens to
7662     // use the SameAsFirstInput allocation policy. We make it `false_value`, so
7663     // that architectures which implement HSelect as a conditional move also
7664     // will not need to invert the condition.
7665     SetRawInputAt(0, false_value);
7666     SetRawInputAt(1, true_value);
7667     SetRawInputAt(2, condition);
7668   }
7669 
IsClonable()7670   bool IsClonable() const override { return true; }
GetFalseValue()7671   HInstruction* GetFalseValue() const { return InputAt(0); }
GetTrueValue()7672   HInstruction* GetTrueValue() const { return InputAt(1); }
GetCondition()7673   HInstruction* GetCondition() const { return InputAt(2); }
7674 
CanBeMoved()7675   bool CanBeMoved() const override { return true; }
InstructionDataEquals(const HInstruction * other ATTRIBUTE_UNUSED)7676   bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
7677     return true;
7678   }
7679 
CanBeNull()7680   bool CanBeNull() const override {
7681     return GetTrueValue()->CanBeNull() || GetFalseValue()->CanBeNull();
7682   }
7683 
7684   DECLARE_INSTRUCTION(Select);
7685 
7686  protected:
7687   DEFAULT_COPY_CONSTRUCTOR(Select);
7688 };
7689 
7690 class MoveOperands : public ArenaObject<kArenaAllocMoveOperands> {
7691  public:
MoveOperands(Location source,Location destination,DataType::Type type,HInstruction * instruction)7692   MoveOperands(Location source,
7693                Location destination,
7694                DataType::Type type,
7695                HInstruction* instruction)
7696       : source_(source), destination_(destination), type_(type), instruction_(instruction) {}
7697 
GetSource()7698   Location GetSource() const { return source_; }
GetDestination()7699   Location GetDestination() const { return destination_; }
7700 
SetSource(Location value)7701   void SetSource(Location value) { source_ = value; }
SetDestination(Location value)7702   void SetDestination(Location value) { destination_ = value; }
7703 
7704   // The parallel move resolver marks moves as "in-progress" by clearing the
7705   // destination (but not the source).
MarkPending()7706   Location MarkPending() {
7707     DCHECK(!IsPending());
7708     Location dest = destination_;
7709     destination_ = Location::NoLocation();
7710     return dest;
7711   }
7712 
ClearPending(Location dest)7713   void ClearPending(Location dest) {
7714     DCHECK(IsPending());
7715     destination_ = dest;
7716   }
7717 
IsPending()7718   bool IsPending() const {
7719     DCHECK(source_.IsValid() || destination_.IsInvalid());
7720     return destination_.IsInvalid() && source_.IsValid();
7721   }
7722 
7723   // True if this blocks a move from the given location.
Blocks(Location loc)7724   bool Blocks(Location loc) const {
7725     return !IsEliminated() && source_.OverlapsWith(loc);
7726   }
7727 
7728   // A move is redundant if it's been eliminated, if its source and
7729   // destination are the same, or if its destination is unneeded.
IsRedundant()7730   bool IsRedundant() const {
7731     return IsEliminated() || destination_.IsInvalid() || source_.Equals(destination_);
7732   }
7733 
7734   // We clear both operands to indicate move that's been eliminated.
Eliminate()7735   void Eliminate() {
7736     source_ = destination_ = Location::NoLocation();
7737   }
7738 
IsEliminated()7739   bool IsEliminated() const {
7740     DCHECK(!source_.IsInvalid() || destination_.IsInvalid());
7741     return source_.IsInvalid();
7742   }
7743 
GetType()7744   DataType::Type GetType() const { return type_; }
7745 
Is64BitMove()7746   bool Is64BitMove() const {
7747     return DataType::Is64BitType(type_);
7748   }
7749 
GetInstruction()7750   HInstruction* GetInstruction() const { return instruction_; }
7751 
7752  private:
7753   Location source_;
7754   Location destination_;
7755   // The type this move is for.
7756   DataType::Type type_;
7757   // The instruction this move is assocatied with. Null when this move is
7758   // for moving an input in the expected locations of user (including a phi user).
7759   // This is only used in debug mode, to ensure we do not connect interval siblings
7760   // in the same parallel move.
7761   HInstruction* instruction_;
7762 };
7763 
7764 std::ostream& operator<<(std::ostream& os, const MoveOperands& rhs);
7765 
7766 static constexpr size_t kDefaultNumberOfMoves = 4;
7767 
7768 class HParallelMove final : public HExpression<0> {
7769  public:
7770   explicit HParallelMove(ArenaAllocator* allocator, uint32_t dex_pc = kNoDexPc)
HExpression(kParallelMove,SideEffects::None (),dex_pc)7771       : HExpression(kParallelMove, SideEffects::None(), dex_pc),
7772         moves_(allocator->Adapter(kArenaAllocMoveOperands)) {
7773     moves_.reserve(kDefaultNumberOfMoves);
7774   }
7775 
AddMove(Location source,Location destination,DataType::Type type,HInstruction * instruction)7776   void AddMove(Location source,
7777                Location destination,
7778                DataType::Type type,
7779                HInstruction* instruction) {
7780     DCHECK(source.IsValid());
7781     DCHECK(destination.IsValid());
7782     if (kIsDebugBuild) {
7783       if (instruction != nullptr) {
7784         for (const MoveOperands& move : moves_) {
7785           if (move.GetInstruction() == instruction) {
7786             // Special case the situation where the move is for the spill slot
7787             // of the instruction.
7788             if ((GetPrevious() == instruction)
7789                 || ((GetPrevious() == nullptr)
7790                     && instruction->IsPhi()
7791                     && instruction->GetBlock() == GetBlock())) {
7792               DCHECK_NE(destination.GetKind(), move.GetDestination().GetKind())
7793                   << "Doing parallel moves for the same instruction.";
7794             } else {
7795               DCHECK(false) << "Doing parallel moves for the same instruction.";
7796             }
7797           }
7798         }
7799       }
7800       for (const MoveOperands& move : moves_) {
7801         DCHECK(!destination.OverlapsWith(move.GetDestination()))
7802             << "Overlapped destination for two moves in a parallel move: "
7803             << move.GetSource() << " ==> " << move.GetDestination() << " and "
7804             << source << " ==> " << destination;
7805       }
7806     }
7807     moves_.emplace_back(source, destination, type, instruction);
7808   }
7809 
MoveOperandsAt(size_t index)7810   MoveOperands* MoveOperandsAt(size_t index) {
7811     return &moves_[index];
7812   }
7813 
NumMoves()7814   size_t NumMoves() const { return moves_.size(); }
7815 
7816   DECLARE_INSTRUCTION(ParallelMove);
7817 
7818  protected:
7819   DEFAULT_COPY_CONSTRUCTOR(ParallelMove);
7820 
7821  private:
7822   ArenaVector<MoveOperands> moves_;
7823 };
7824 
7825 // This instruction computes an intermediate address pointing in the 'middle' of an object. The
7826 // result pointer cannot be handled by GC, so extra care is taken to make sure that this value is
7827 // never used across anything that can trigger GC.
7828 // The result of this instruction is not a pointer in the sense of `DataType::Type::kreference`.
7829 // So we represent it by the type `DataType::Type::kInt`.
7830 class HIntermediateAddress final : public HExpression<2> {
7831  public:
HIntermediateAddress(HInstruction * base_address,HInstruction * offset,uint32_t dex_pc)7832   HIntermediateAddress(HInstruction* base_address, HInstruction* offset, uint32_t dex_pc)
7833       : HExpression(kIntermediateAddress,
7834                     DataType::Type::kInt32,
7835                     SideEffects::DependsOnGC(),
7836                     dex_pc) {
7837         DCHECK_EQ(DataType::Size(DataType::Type::kInt32),
7838                   DataType::Size(DataType::Type::kReference))
7839             << "kPrimInt and kPrimNot have different sizes.";
7840     SetRawInputAt(0, base_address);
7841     SetRawInputAt(1, offset);
7842   }
7843 
IsClonable()7844   bool IsClonable() const override { return true; }
CanBeMoved()7845   bool CanBeMoved() const override { return true; }
InstructionDataEquals(const HInstruction * other ATTRIBUTE_UNUSED)7846   bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
7847     return true;
7848   }
IsActualObject()7849   bool IsActualObject() const override { return false; }
7850 
GetBaseAddress()7851   HInstruction* GetBaseAddress() const { return InputAt(0); }
GetOffset()7852   HInstruction* GetOffset() const { return InputAt(1); }
7853 
7854   DECLARE_INSTRUCTION(IntermediateAddress);
7855 
7856  protected:
7857   DEFAULT_COPY_CONSTRUCTOR(IntermediateAddress);
7858 };
7859 
7860 
7861 }  // namespace art
7862 
7863 #include "nodes_vector.h"
7864 
7865 #if defined(ART_ENABLE_CODEGEN_arm) || defined(ART_ENABLE_CODEGEN_arm64)
7866 #include "nodes_shared.h"
7867 #endif
7868 #if defined(ART_ENABLE_CODEGEN_x86) || defined(ART_ENABLE_CODEGEN_x86_64)
7869 #include "nodes_x86.h"
7870 #endif
7871 
7872 namespace art {
7873 
7874 class OptimizingCompilerStats;
7875 
7876 class HGraphVisitor : public ValueObject {
7877  public:
7878   explicit HGraphVisitor(HGraph* graph, OptimizingCompilerStats* stats = nullptr)
stats_(stats)7879       : stats_(stats),
7880         graph_(graph) {}
~HGraphVisitor()7881   virtual ~HGraphVisitor() {}
7882 
VisitInstruction(HInstruction * instruction ATTRIBUTE_UNUSED)7883   virtual void VisitInstruction(HInstruction* instruction ATTRIBUTE_UNUSED) {}
7884   virtual void VisitBasicBlock(HBasicBlock* block);
7885 
7886   // Visit the graph following basic block insertion order.
7887   void VisitInsertionOrder();
7888 
7889   // Visit the graph following dominator tree reverse post-order.
7890   void VisitReversePostOrder();
7891 
GetGraph()7892   HGraph* GetGraph() const { return graph_; }
7893 
7894   // Visit functions for instruction classes.
7895 #define DECLARE_VISIT_INSTRUCTION(name, super)                                        \
7896   virtual void Visit##name(H##name* instr) { VisitInstruction(instr); }
7897 
7898   FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION)
7899 
7900 #undef DECLARE_VISIT_INSTRUCTION
7901 
7902  protected:
7903   OptimizingCompilerStats* stats_;
7904 
7905  private:
7906   HGraph* const graph_;
7907 
7908   DISALLOW_COPY_AND_ASSIGN(HGraphVisitor);
7909 };
7910 
7911 class HGraphDelegateVisitor : public HGraphVisitor {
7912  public:
7913   explicit HGraphDelegateVisitor(HGraph* graph, OptimizingCompilerStats* stats = nullptr)
HGraphVisitor(graph,stats)7914       : HGraphVisitor(graph, stats) {}
~HGraphDelegateVisitor()7915   virtual ~HGraphDelegateVisitor() {}
7916 
7917   // Visit functions that delegate to to super class.
7918 #define DECLARE_VISIT_INSTRUCTION(name, super)                                        \
7919   void Visit##name(H##name* instr) override { Visit##super(instr); }
7920 
7921   FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION)
7922 
7923 #undef DECLARE_VISIT_INSTRUCTION
7924 
7925  private:
7926   DISALLOW_COPY_AND_ASSIGN(HGraphDelegateVisitor);
7927 };
7928 
7929 // Create a clone of the instruction, insert it into the graph; replace the old one with a new
7930 // and remove the old instruction.
7931 HInstruction* ReplaceInstrOrPhiByClone(HInstruction* instr);
7932 
7933 // Create a clone for each clonable instructions/phis and replace the original with the clone.
7934 //
7935 // Used for testing individual instruction cloner.
7936 class CloneAndReplaceInstructionVisitor : public HGraphDelegateVisitor {
7937  public:
CloneAndReplaceInstructionVisitor(HGraph * graph)7938   explicit CloneAndReplaceInstructionVisitor(HGraph* graph)
7939       : HGraphDelegateVisitor(graph), instr_replaced_by_clones_count_(0) {}
7940 
VisitInstruction(HInstruction * instruction)7941   void VisitInstruction(HInstruction* instruction) override {
7942     if (instruction->IsClonable()) {
7943       ReplaceInstrOrPhiByClone(instruction);
7944       instr_replaced_by_clones_count_++;
7945     }
7946   }
7947 
GetInstrReplacedByClonesCount()7948   size_t GetInstrReplacedByClonesCount() const { return instr_replaced_by_clones_count_; }
7949 
7950  private:
7951   size_t instr_replaced_by_clones_count_;
7952 
7953   DISALLOW_COPY_AND_ASSIGN(CloneAndReplaceInstructionVisitor);
7954 };
7955 
7956 // Iterator over the blocks that art part of the loop. Includes blocks part
7957 // of an inner loop. The order in which the blocks are iterated is on their
7958 // block id.
7959 class HBlocksInLoopIterator : public ValueObject {
7960  public:
HBlocksInLoopIterator(const HLoopInformation & info)7961   explicit HBlocksInLoopIterator(const HLoopInformation& info)
7962       : blocks_in_loop_(info.GetBlocks()),
7963         blocks_(info.GetHeader()->GetGraph()->GetBlocks()),
7964         index_(0) {
7965     if (!blocks_in_loop_.IsBitSet(index_)) {
7966       Advance();
7967     }
7968   }
7969 
Done()7970   bool Done() const { return index_ == blocks_.size(); }
Current()7971   HBasicBlock* Current() const { return blocks_[index_]; }
Advance()7972   void Advance() {
7973     ++index_;
7974     for (size_t e = blocks_.size(); index_ < e; ++index_) {
7975       if (blocks_in_loop_.IsBitSet(index_)) {
7976         break;
7977       }
7978     }
7979   }
7980 
7981  private:
7982   const BitVector& blocks_in_loop_;
7983   const ArenaVector<HBasicBlock*>& blocks_;
7984   size_t index_;
7985 
7986   DISALLOW_COPY_AND_ASSIGN(HBlocksInLoopIterator);
7987 };
7988 
7989 // Iterator over the blocks that art part of the loop. Includes blocks part
7990 // of an inner loop. The order in which the blocks are iterated is reverse
7991 // post order.
7992 class HBlocksInLoopReversePostOrderIterator : public ValueObject {
7993  public:
HBlocksInLoopReversePostOrderIterator(const HLoopInformation & info)7994   explicit HBlocksInLoopReversePostOrderIterator(const HLoopInformation& info)
7995       : blocks_in_loop_(info.GetBlocks()),
7996         blocks_(info.GetHeader()->GetGraph()->GetReversePostOrder()),
7997         index_(0) {
7998     if (!blocks_in_loop_.IsBitSet(blocks_[index_]->GetBlockId())) {
7999       Advance();
8000     }
8001   }
8002 
Done()8003   bool Done() const { return index_ == blocks_.size(); }
Current()8004   HBasicBlock* Current() const { return blocks_[index_]; }
Advance()8005   void Advance() {
8006     ++index_;
8007     for (size_t e = blocks_.size(); index_ < e; ++index_) {
8008       if (blocks_in_loop_.IsBitSet(blocks_[index_]->GetBlockId())) {
8009         break;
8010       }
8011     }
8012   }
8013 
8014  private:
8015   const BitVector& blocks_in_loop_;
8016   const ArenaVector<HBasicBlock*>& blocks_;
8017   size_t index_;
8018 
8019   DISALLOW_COPY_AND_ASSIGN(HBlocksInLoopReversePostOrderIterator);
8020 };
8021 
8022 // Returns int64_t value of a properly typed constant.
Int64FromConstant(HConstant * constant)8023 inline int64_t Int64FromConstant(HConstant* constant) {
8024   if (constant->IsIntConstant()) {
8025     return constant->AsIntConstant()->GetValue();
8026   } else if (constant->IsLongConstant()) {
8027     return constant->AsLongConstant()->GetValue();
8028   } else {
8029     DCHECK(constant->IsNullConstant()) << constant->DebugName();
8030     return 0;
8031   }
8032 }
8033 
8034 // Returns true iff instruction is an integral constant (and sets value on success).
IsInt64AndGet(HInstruction * instruction,int64_t * value)8035 inline bool IsInt64AndGet(HInstruction* instruction, /*out*/ int64_t* value) {
8036   if (instruction->IsIntConstant()) {
8037     *value = instruction->AsIntConstant()->GetValue();
8038     return true;
8039   } else if (instruction->IsLongConstant()) {
8040     *value = instruction->AsLongConstant()->GetValue();
8041     return true;
8042   } else if (instruction->IsNullConstant()) {
8043     *value = 0;
8044     return true;
8045   }
8046   return false;
8047 }
8048 
8049 // Returns true iff instruction is the given integral constant.
IsInt64Value(HInstruction * instruction,int64_t value)8050 inline bool IsInt64Value(HInstruction* instruction, int64_t value) {
8051   int64_t val = 0;
8052   return IsInt64AndGet(instruction, &val) && val == value;
8053 }
8054 
8055 // Returns true iff instruction is a zero bit pattern.
IsZeroBitPattern(HInstruction * instruction)8056 inline bool IsZeroBitPattern(HInstruction* instruction) {
8057   return instruction->IsConstant() && instruction->AsConstant()->IsZeroBitPattern();
8058 }
8059 
8060 // Implement HInstruction::Is##type() for concrete instructions.
8061 #define INSTRUCTION_TYPE_CHECK(type, super)                                    \
8062   inline bool HInstruction::Is##type() const { return GetKind() == k##type; }
8063   FOR_EACH_CONCRETE_INSTRUCTION(INSTRUCTION_TYPE_CHECK)
8064 #undef INSTRUCTION_TYPE_CHECK
8065 
8066 // Implement HInstruction::Is##type() for abstract instructions.
8067 #define INSTRUCTION_TYPE_CHECK_RESULT(type, super)                             \
8068   std::is_base_of<BaseType, H##type>::value,
8069 #define INSTRUCTION_TYPE_CHECK(type, super)                                    \
8070   inline bool HInstruction::Is##type() const {                                 \
8071     DCHECK_LT(GetKind(), kLastInstructionKind);                                \
8072     using BaseType = H##type;                                                  \
8073     static constexpr bool results[] = {                                        \
8074         FOR_EACH_CONCRETE_INSTRUCTION(INSTRUCTION_TYPE_CHECK_RESULT)           \
8075     };                                                                         \
8076     return results[static_cast<size_t>(GetKind())];                            \
8077   }
8078 
FOR_EACH_ABSTRACT_INSTRUCTION(INSTRUCTION_TYPE_CHECK)8079   FOR_EACH_ABSTRACT_INSTRUCTION(INSTRUCTION_TYPE_CHECK)
8080 #undef INSTRUCTION_TYPE_CHECK
8081 #undef INSTRUCTION_TYPE_CHECK_RESULT
8082 
8083 #define INSTRUCTION_TYPE_CAST(type, super)                                     \
8084   inline const H##type* HInstruction::As##type() const {                       \
8085     return Is##type() ? down_cast<const H##type*>(this) : nullptr;             \
8086   }                                                                            \
8087   inline H##type* HInstruction::As##type() {                                   \
8088     return Is##type() ? static_cast<H##type*>(this) : nullptr;                 \
8089   }
8090 
8091   FOR_EACH_INSTRUCTION(INSTRUCTION_TYPE_CAST)
8092 #undef INSTRUCTION_TYPE_CAST
8093 
8094 
8095 // Create space in `blocks` for adding `number_of_new_blocks` entries
8096 // starting at location `at`. Blocks after `at` are moved accordingly.
8097 inline void MakeRoomFor(ArenaVector<HBasicBlock*>* blocks,
8098                         size_t number_of_new_blocks,
8099                         size_t after) {
8100   DCHECK_LT(after, blocks->size());
8101   size_t old_size = blocks->size();
8102   size_t new_size = old_size + number_of_new_blocks;
8103   blocks->resize(new_size);
8104   std::copy_backward(blocks->begin() + after + 1u, blocks->begin() + old_size, blocks->end());
8105 }
8106 
8107 /*
8108  * Hunt "under the hood" of array lengths (leading to array references),
8109  * null checks (also leading to array references), and new arrays
8110  * (leading to the actual length). This makes it more likely related
8111  * instructions become actually comparable.
8112  */
HuntForDeclaration(HInstruction * instruction)8113 inline HInstruction* HuntForDeclaration(HInstruction* instruction) {
8114   while (instruction->IsArrayLength() ||
8115          instruction->IsNullCheck() ||
8116          instruction->IsNewArray()) {
8117     instruction = instruction->IsNewArray()
8118         ? instruction->AsNewArray()->GetLength()
8119         : instruction->InputAt(0);
8120   }
8121   return instruction;
8122 }
8123 
8124 void RemoveEnvironmentUses(HInstruction* instruction);
8125 bool HasEnvironmentUsedByOthers(HInstruction* instruction);
8126 void ResetEnvironmentInputRecords(HInstruction* instruction);
8127 
8128 }  // namespace art
8129 
8130 #endif  // ART_COMPILER_OPTIMIZING_NODES_H_
8131