1 /* 2 * Copyright (C) 2007 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #pragma once 18 19 #include <compositionengine/LayerFE.h> 20 #include <gui/BufferQueue.h> 21 #include <gui/ISurfaceComposerClient.h> 22 #include <gui/LayerState.h> 23 #include <input/InputWindow.h> 24 #include <layerproto/LayerProtoHeader.h> 25 #include <math/vec4.h> 26 #include <renderengine/Mesh.h> 27 #include <renderengine/Texture.h> 28 #include <sys/types.h> 29 #include <ui/FloatRect.h> 30 #include <ui/FrameStats.h> 31 #include <ui/GraphicBuffer.h> 32 #include <ui/PixelFormat.h> 33 #include <ui/Region.h> 34 #include <ui/Transform.h> 35 #include <utils/RefBase.h> 36 #include <utils/Timers.h> 37 38 #include <cstdint> 39 #include <list> 40 #include <optional> 41 #include <vector> 42 43 #include "Client.h" 44 #include "ClientCache.h" 45 #include "DisplayHardware/ComposerHal.h" 46 #include "DisplayHardware/HWComposer.h" 47 #include "FrameTracker.h" 48 #include "LayerVector.h" 49 #include "MonitoredProducer.h" 50 #include "RenderArea.h" 51 #include "SurfaceFlinger.h" 52 #include "TransactionCompletedThread.h" 53 54 using namespace android::surfaceflinger; 55 56 namespace android { 57 58 // --------------------------------------------------------------------------- 59 60 class Client; 61 class Colorizer; 62 class DisplayDevice; 63 class GraphicBuffer; 64 class SurfaceFlinger; 65 class LayerDebugInfo; 66 67 namespace compositionengine { 68 class OutputLayer; 69 struct LayerFECompositionState; 70 } 71 72 namespace impl { 73 class SurfaceInterceptor; 74 } 75 76 // --------------------------------------------------------------------------- 77 78 struct LayerCreationArgs { 79 LayerCreationArgs(SurfaceFlinger*, sp<Client>, std::string name, uint32_t w, uint32_t h, 80 uint32_t flags, LayerMetadata); 81 82 SurfaceFlinger* flinger; 83 const sp<Client> client; 84 std::string name; 85 uint32_t w; 86 uint32_t h; 87 uint32_t flags; 88 LayerMetadata metadata; 89 90 pid_t callingPid; 91 uid_t callingUid; 92 uint32_t textureName; 93 }; 94 95 class Layer : public virtual RefBase, compositionengine::LayerFE { 96 static std::atomic<int32_t> sSequence; 97 // The following constants represent priority of the window. SF uses this information when 98 // deciding which window has a priority when deciding about the refresh rate of the screen. 99 // Priority 0 is considered the highest priority. -1 means that the priority is unset. 100 static constexpr int32_t PRIORITY_UNSET = -1; 101 // Windows that are in focus and voted for the preferred mode ID 102 static constexpr int32_t PRIORITY_FOCUSED_WITH_MODE = 0; 103 // // Windows that are in focus, but have not requested a specific mode ID. 104 static constexpr int32_t PRIORITY_FOCUSED_WITHOUT_MODE = 1; 105 // Windows that are not in focus, but voted for a specific mode ID. 106 static constexpr int32_t PRIORITY_NOT_FOCUSED_WITH_MODE = 2; 107 108 public: 109 mutable bool contentDirty{false}; 110 Region surfaceDamageRegion; 111 112 // Layer serial number. This gives layers an explicit ordering, so we 113 // have a stable sort order when their layer stack and Z-order are 114 // the same. 115 int32_t sequence{sSequence++}; 116 117 enum { // flags for doTransaction() 118 eDontUpdateGeometryState = 0x00000001, 119 eVisibleRegion = 0x00000002, 120 eInputInfoChanged = 0x00000004 121 }; 122 123 struct Geometry { 124 uint32_t w; 125 uint32_t h; 126 ui::Transform transform; 127 128 inline bool operator==(const Geometry& rhs) const { 129 return (w == rhs.w && h == rhs.h) && (transform.tx() == rhs.transform.tx()) && 130 (transform.ty() == rhs.transform.ty()); 131 } 132 inline bool operator!=(const Geometry& rhs) const { return !operator==(rhs); } 133 }; 134 135 struct RoundedCornerState { 136 RoundedCornerState() = default; RoundedCornerStateRoundedCornerState137 RoundedCornerState(FloatRect cropRect, float radius) 138 : cropRect(cropRect), radius(radius) {} 139 140 // Rounded rectangle in local layer coordinate space. 141 FloatRect cropRect = FloatRect(); 142 // Radius of the rounded rectangle. 143 float radius = 0.0f; 144 }; 145 146 // FrameRateCompatibility specifies how we should interpret the frame rate associated with 147 // the layer. 148 enum class FrameRateCompatibility { 149 Default, // Layer didn't specify any specific handling strategy 150 151 ExactOrMultiple, // Layer needs the exact frame rate (or a multiple of it) to present the 152 // content properly. Any other value will result in a pull down. 153 154 NoVote, // Layer doesn't have any requirements for the refresh rate and 155 // should not be considered when the display refresh rate is determined. 156 }; 157 158 // Encapsulates the frame rate and compatibility of the layer. This information will be used 159 // when the display refresh rate is determined. 160 struct FrameRate { 161 float rate; 162 FrameRateCompatibility type; 163 FrameRateFrameRate164 FrameRate() : rate(0), type(FrameRateCompatibility::Default) {} FrameRateFrameRate165 FrameRate(float rate, FrameRateCompatibility type) : rate(rate), type(type) {} 166 167 bool operator==(const FrameRate& other) const { 168 return rate == other.rate && type == other.type; 169 } 170 171 bool operator!=(const FrameRate& other) const { return !(*this == other); } 172 173 // Convert an ANATIVEWINDOW_FRAME_RATE_COMPATIBILITY_* value to a 174 // Layer::FrameRateCompatibility. Logs fatal if the compatibility value is invalid. 175 static FrameRateCompatibility convertCompatibility(int8_t compatibility); 176 }; 177 178 struct State { 179 Geometry active_legacy; 180 Geometry requested_legacy; 181 int32_t z; 182 183 // The identifier of the layer stack this layer belongs to. A layer can 184 // only be associated to a single layer stack. A layer stack is a 185 // z-ordered group of layers which can be associated to one or more 186 // displays. Using the same layer stack on different displays is a way 187 // to achieve mirroring. 188 uint32_t layerStack; 189 190 uint8_t flags; 191 uint8_t reserved[2]; 192 int32_t sequence; // changes when visible regions can change 193 bool modified; 194 195 // Crop is expressed in layer space coordinate. 196 Rect crop_legacy; 197 Rect requestedCrop_legacy; 198 199 // If set, defers this state update until the identified Layer 200 // receives a frame with the given frameNumber 201 wp<Layer> barrierLayer_legacy; 202 uint64_t frameNumber_legacy; 203 204 // the transparentRegion hint is a bit special, it's latched only 205 // when we receive a buffer -- this is because it's "content" 206 // dependent. 207 Region activeTransparentRegion_legacy; 208 Region requestedTransparentRegion_legacy; 209 210 LayerMetadata metadata; 211 212 // If non-null, a Surface this Surface's Z-order is interpreted relative to. 213 wp<Layer> zOrderRelativeOf; 214 bool isRelativeOf{false}; 215 216 // A list of surfaces whose Z-order is interpreted relative to ours. 217 SortedVector<wp<Layer>> zOrderRelatives; 218 219 half4 color; 220 float cornerRadius; 221 int backgroundBlurRadius; 222 223 bool inputInfoChanged; 224 InputWindowInfo inputInfo; 225 wp<Layer> touchableRegionCrop; 226 227 // dataspace is only used by BufferStateLayer and EffectLayer 228 ui::Dataspace dataspace; 229 230 // The fields below this point are only used by BufferStateLayer 231 uint64_t frameNumber; 232 Geometry active; 233 234 uint32_t transform; 235 bool transformToDisplayInverse; 236 237 Rect crop; 238 Region transparentRegionHint; 239 240 sp<GraphicBuffer> buffer; 241 client_cache_t clientCacheId; 242 sp<Fence> acquireFence; 243 HdrMetadata hdrMetadata; 244 Region surfaceDamageRegion; 245 int32_t api; 246 247 sp<NativeHandle> sidebandStream; 248 mat4 colorTransform; 249 bool hasColorTransform; 250 251 // pointer to background color layer that, if set, appears below the buffer state layer 252 // and the buffer state layer's children. Z order will be set to 253 // INT_MIN 254 sp<Layer> bgColorLayer; 255 256 // The deque of callback handles for this frame. The back of the deque contains the most 257 // recent callback handle. 258 std::deque<sp<CallbackHandle>> callbackHandles; 259 bool colorSpaceAgnostic; 260 nsecs_t desiredPresentTime = -1; 261 262 // Length of the cast shadow. If the radius is > 0, a shadow of length shadowRadius will 263 // be rendered around the layer. 264 float shadowRadius; 265 266 // Priority of the layer assigned by Window Manager. 267 int32_t frameRateSelectionPriority; 268 269 FrameRate frameRate; 270 271 // Indicates whether parents / children of this layer had set FrameRate 272 bool treeHasFrameRateVote; 273 274 // Set by window manager indicating the layer and all its children are 275 // in a different orientation than the display. The hint suggests that 276 // the graphic producers should receive a transform hint as if the 277 // display was in this orientation. When the display changes to match 278 // the layer orientation, the graphic producer may not need to allocate 279 // a buffer of a different size. ui::Transform::ROT_INVALID means the 280 // a fixed transform hint is not set. 281 ui::Transform::RotationFlags fixedTransformHint; 282 }; 283 284 explicit Layer(const LayerCreationArgs& args); 285 virtual ~Layer(); 286 287 void onFirstRef() override; 288 getWindowType()289 int getWindowType() const { return mWindowType; } 290 setPrimaryDisplayOnly()291 void setPrimaryDisplayOnly() { mPrimaryDisplayOnly = true; } getPrimaryDisplayOnly()292 bool getPrimaryDisplayOnly() const { return mPrimaryDisplayOnly; } 293 294 // ------------------------------------------------------------------------ 295 // Geometry setting functions. 296 // 297 // The following group of functions are used to specify the layers 298 // bounds, and the mapping of the texture on to those bounds. According 299 // to various settings changes to them may apply immediately, or be delayed until 300 // a pending resize is completed by the producer submitting a buffer. For example 301 // if we were to change the buffer size, and update the matrix ahead of the 302 // new buffer arriving, then we would be stretching the buffer to a different 303 // aspect before and after the buffer arriving, which probably isn't what we wanted. 304 // 305 // The first set of geometry functions are controlled by the scaling mode, described 306 // in window.h. The scaling mode may be set by the client, as it submits buffers. 307 // This value may be overriden through SurfaceControl, with setOverrideScalingMode. 308 // 309 // Put simply, if our scaling mode is SCALING_MODE_FREEZE, then 310 // matrix updates will not be applied while a resize is pending 311 // and the size and transform will remain in their previous state 312 // until a new buffer is submitted. If the scaling mode is another value 313 // then the old-buffer will immediately be scaled to the pending size 314 // and the new matrix will be immediately applied following this scaling 315 // transformation. 316 317 // Set the default buffer size for the assosciated Producer, in pixels. This is 318 // also the rendered size of the layer prior to any transformations. Parent 319 // or local matrix transformations will not affect the size of the buffer, 320 // but may affect it's on-screen size or clipping. 321 virtual bool setSize(uint32_t w, uint32_t h); 322 // Set a 2x2 transformation matrix on the layer. This transform 323 // will be applied after parent transforms, but before any final 324 // producer specified transform. 325 virtual bool setMatrix(const layer_state_t::matrix22_t& matrix, 326 bool allowNonRectPreservingTransforms); 327 328 // This second set of geometry attributes are controlled by 329 // setGeometryAppliesWithResize, and their default mode is to be 330 // immediate. If setGeometryAppliesWithResize is specified 331 // while a resize is pending, then update of these attributes will 332 // be delayed until the resize completes. 333 334 // setPosition operates in parent buffer space (pre parent-transform) or display 335 // space for top-level layers. 336 virtual bool setPosition(float x, float y); 337 // Buffer space 338 virtual bool setCrop_legacy(const Rect& crop); 339 340 // TODO(b/38182121): Could we eliminate the various latching modes by 341 // using the layer hierarchy? 342 // ----------------------------------------------------------------------- 343 virtual bool setLayer(int32_t z); 344 virtual bool setRelativeLayer(const sp<IBinder>& relativeToHandle, int32_t relativeZ); 345 346 virtual bool setAlpha(float alpha); setColor(const half3 &)347 virtual bool setColor(const half3& /*color*/) { return false; }; 348 349 // Set rounded corner radius for this layer and its children. 350 // 351 // We only support 1 radius per layer in the hierarchy, where parent layers have precedence. 352 // The shape of the rounded corner rectangle is specified by the crop rectangle of the layer 353 // from which we inferred the rounded corner radius. 354 virtual bool setCornerRadius(float cornerRadius); 355 // When non-zero, everything below this layer will be blurred by backgroundBlurRadius, which 356 // is specified in pixels. 357 virtual bool setBackgroundBlurRadius(int backgroundBlurRadius); 358 virtual bool setTransparentRegionHint(const Region& transparent); 359 virtual bool setFlags(uint8_t flags, uint8_t mask); 360 virtual bool setLayerStack(uint32_t layerStack); 361 virtual uint32_t getLayerStack() const; 362 virtual void deferTransactionUntil_legacy(const sp<IBinder>& barrierHandle, 363 uint64_t frameNumber); 364 virtual void deferTransactionUntil_legacy(const sp<Layer>& barrierLayer, uint64_t frameNumber); 365 virtual bool setOverrideScalingMode(int32_t overrideScalingMode); 366 virtual bool setMetadata(const LayerMetadata& data); 367 bool reparentChildren(const sp<IBinder>& newParentHandle); 368 void reparentChildren(const sp<Layer>& newParent); 369 virtual void setChildrenDrawingParent(const sp<Layer>& layer); 370 virtual bool reparent(const sp<IBinder>& newParentHandle); 371 virtual bool detachChildren(); 372 bool attachChildren(); isLayerDetached()373 bool isLayerDetached() const { return mLayerDetached; } 374 virtual bool setColorTransform(const mat4& matrix); 375 virtual mat4 getColorTransform() const; 376 virtual bool hasColorTransform() const; isColorSpaceAgnostic()377 virtual bool isColorSpaceAgnostic() const { return mDrawingState.colorSpaceAgnostic; } 378 379 // Used only to set BufferStateLayer state setTransform(uint32_t)380 virtual bool setTransform(uint32_t /*transform*/) { return false; }; setTransformToDisplayInverse(bool)381 virtual bool setTransformToDisplayInverse(bool /*transformToDisplayInverse*/) { return false; }; setCrop(const Rect &)382 virtual bool setCrop(const Rect& /*crop*/) { return false; }; setFrame(const Rect &)383 virtual bool setFrame(const Rect& /*frame*/) { return false; }; setBuffer(const sp<GraphicBuffer> &,const sp<Fence> &,nsecs_t,nsecs_t,const client_cache_t &)384 virtual bool setBuffer(const sp<GraphicBuffer>& /*buffer*/, const sp<Fence>& /*acquireFence*/, 385 nsecs_t /*postTime*/, nsecs_t /*desiredPresentTime*/, 386 const client_cache_t& /*clientCacheId*/) { 387 return false; 388 }; setAcquireFence(const sp<Fence> &)389 virtual bool setAcquireFence(const sp<Fence>& /*fence*/) { return false; }; setDataspace(ui::Dataspace)390 virtual bool setDataspace(ui::Dataspace /*dataspace*/) { return false; }; setHdrMetadata(const HdrMetadata &)391 virtual bool setHdrMetadata(const HdrMetadata& /*hdrMetadata*/) { return false; }; setSurfaceDamageRegion(const Region &)392 virtual bool setSurfaceDamageRegion(const Region& /*surfaceDamage*/) { return false; }; setApi(int32_t)393 virtual bool setApi(int32_t /*api*/) { return false; }; setSidebandStream(const sp<NativeHandle> &)394 virtual bool setSidebandStream(const sp<NativeHandle>& /*sidebandStream*/) { return false; }; setTransactionCompletedListeners(const std::vector<sp<CallbackHandle>> &)395 virtual bool setTransactionCompletedListeners( 396 const std::vector<sp<CallbackHandle>>& /*handles*/) { 397 return false; 398 }; forceSendCallbacks()399 virtual void forceSendCallbacks() {} addFrameEvent(const sp<Fence> &,nsecs_t,nsecs_t)400 virtual bool addFrameEvent(const sp<Fence>& /*acquireFence*/, nsecs_t /*postedTime*/, 401 nsecs_t /*requestedPresentTime*/) { 402 return false; 403 } 404 virtual bool setBackgroundColor(const half3& color, float alpha, ui::Dataspace dataspace); 405 virtual bool setColorSpaceAgnostic(const bool agnostic); 406 bool setShadowRadius(float shadowRadius); 407 virtual bool setFrameRateSelectionPriority(int32_t priority); 408 virtual bool setFixedTransformHint(ui::Transform::RotationFlags fixedTransformHint); 409 // If the variable is not set on the layer, it traverses up the tree to inherit the frame 410 // rate priority from its parent. 411 virtual int32_t getFrameRateSelectionPriority() const; 412 static bool isLayerFocusedBasedOnPriority(int32_t priority); 413 getDataSpace()414 virtual ui::Dataspace getDataSpace() const { return ui::Dataspace::UNKNOWN; } 415 416 // Before color management is introduced, contents on Android have to be 417 // desaturated in order to match what they appears like visually. 418 // With color management, these contents will appear desaturated, thus 419 // needed to be saturated so that they match what they are designed for 420 // visually. 421 bool isLegacyDataSpace() const; 422 423 virtual sp<compositionengine::LayerFE> getCompositionEngineLayerFE() const; 424 virtual compositionengine::LayerFECompositionState* editCompositionState(); 425 426 // If we have received a new buffer this frame, we will pass its surface 427 // damage down to hardware composer. Otherwise, we must send a region with 428 // one empty rect. useSurfaceDamage()429 virtual void useSurfaceDamage() {} useEmptyDamage()430 virtual void useEmptyDamage() {} 431 getTransactionFlags()432 uint32_t getTransactionFlags() const { return mTransactionFlags; } 433 uint32_t getTransactionFlags(uint32_t flags); 434 uint32_t setTransactionFlags(uint32_t flags); 435 436 // Deprecated, please use compositionengine::Output::belongsInOutput() 437 // instead. 438 // TODO(lpique): Move the remaining callers (screencap) to the new function. belongsToDisplay(uint32_t layerStack,bool isPrimaryDisplay)439 bool belongsToDisplay(uint32_t layerStack, bool isPrimaryDisplay) const { 440 return getLayerStack() == layerStack && (!mPrimaryDisplayOnly || isPrimaryDisplay); 441 } 442 443 FloatRect getBounds(const Region& activeTransparentRegion) const; 444 FloatRect getBounds() const; 445 446 // Compute bounds for the layer and cache the results. 447 void computeBounds(FloatRect parentBounds, ui::Transform parentTransform, float shadowRadius); 448 449 // Returns the buffer scale transform if a scaling mode is set. 450 ui::Transform getBufferScaleTransform() const; 451 452 // Get effective layer transform, taking into account all its parent transform with any 453 // scaling if the parent scaling more is not NATIVE_WINDOW_SCALING_MODE_FREEZE. 454 ui::Transform getTransformWithScale(const ui::Transform& bufferScaleTransform) const; 455 456 // Returns the bounds of the layer without any buffer scaling. 457 FloatRect getBoundsPreScaling(const ui::Transform& bufferScaleTransform) const; 458 getSequence()459 int32_t getSequence() const { return sequence; } 460 461 // For tracing. 462 // TODO: Replace with raw buffer id from buffer metadata when that becomes available. 463 // GraphicBuffer::getId() does not provide a reliable global identifier. Since the traces 464 // creates its tracks by buffer id and has no way of associating a buffer back to the process 465 // that created it, the current implementation is only sufficient for cases where a buffer is 466 // only used within a single layer. getCurrentBufferId()467 uint64_t getCurrentBufferId() const { return getBuffer() ? getBuffer()->getId() : 0; } 468 469 // ----------------------------------------------------------------------- 470 // Virtuals 471 472 // Provide unique string for each class type in the Layer hierarchy 473 virtual const char* getType() const = 0; 474 475 /* 476 * isOpaque - true if this surface is opaque 477 * 478 * This takes into account the buffer format (i.e. whether or not the 479 * pixel format includes an alpha channel) and the "opaque" flag set 480 * on the layer. It does not examine the current plane alpha value. 481 */ isOpaque(const Layer::State &)482 virtual bool isOpaque(const Layer::State&) const { return false; } 483 484 /* 485 * isSecure - true if this surface is secure, that is if it prevents 486 * screenshots or VNC servers. 487 */ 488 bool isSecure() const; 489 490 /* 491 * isVisible - true if this layer is visible, false otherwise 492 */ 493 virtual bool isVisible() const = 0; 494 495 /* 496 * isHiddenByPolicy - true if this layer has been forced invisible. 497 * just because this is false, doesn't mean isVisible() is true. 498 * For example if this layer has no active buffer, it may not be hidden by 499 * policy, but it still can not be visible. 500 */ 501 bool isHiddenByPolicy() const; 502 503 /* 504 * Returns whether this layer can receive input. 505 */ 506 virtual bool canReceiveInput() const; 507 508 /* 509 * isProtected - true if the layer may contain protected content in the 510 * GRALLOC_USAGE_PROTECTED sense. 511 */ isProtected()512 virtual bool isProtected() const { return false; } 513 514 /* 515 * isFixedSize - true if content has a fixed size 516 */ isFixedSize()517 virtual bool isFixedSize() const { return true; } 518 519 /* 520 * usesSourceCrop - true if content should use a source crop 521 */ usesSourceCrop()522 virtual bool usesSourceCrop() const { return false; } 523 524 // Most layers aren't created from the main thread, and therefore need to 525 // grab the SF state lock to access HWC, but ContainerLayer does, so we need 526 // to avoid grabbing the lock again to avoid deadlock isCreatedFromMainThread()527 virtual bool isCreatedFromMainThread() const { return false; } 528 529 bool isRemovedFromCurrentState() const; 530 531 LayerProto* writeToProto(LayersProto& layersProto, uint32_t traceFlags, 532 const DisplayDevice*) const; 533 534 // Write states that are modified by the main thread. This includes drawing 535 // state as well as buffer data. This should be called in the main or tracing 536 // thread. 537 void writeToProtoDrawingState(LayerProto* layerInfo, uint32_t traceFlags, 538 const DisplayDevice*) const; 539 // Write drawing or current state. If writing current state, the caller should hold the 540 // external mStateLock. If writing drawing state, this function should be called on the 541 // main or tracing thread. 542 void writeToProtoCommonState(LayerProto* layerInfo, LayerVector::StateSet stateSet, 543 uint32_t traceFlags = SurfaceTracing::TRACE_ALL) const; 544 getActiveGeometry(const Layer::State & s)545 virtual Geometry getActiveGeometry(const Layer::State& s) const { return s.active_legacy; } getActiveWidth(const Layer::State & s)546 virtual uint32_t getActiveWidth(const Layer::State& s) const { return s.active_legacy.w; } getActiveHeight(const Layer::State & s)547 virtual uint32_t getActiveHeight(const Layer::State& s) const { return s.active_legacy.h; } getActiveTransform(const Layer::State & s)548 virtual ui::Transform getActiveTransform(const Layer::State& s) const { 549 return s.active_legacy.transform; 550 } getActiveTransparentRegion(const Layer::State & s)551 virtual Region getActiveTransparentRegion(const Layer::State& s) const { 552 return s.activeTransparentRegion_legacy; 553 } getCrop(const Layer::State & s)554 virtual Rect getCrop(const Layer::State& s) const { return s.crop_legacy; } needsFiltering(const DisplayDevice *)555 virtual bool needsFiltering(const DisplayDevice*) const { return false; } 556 // True if this layer requires filtering 557 // This method is distinct from needsFiltering() in how the filter 558 // requirement is computed. needsFiltering() compares displayFrame and crop, 559 // where as this method transforms the displayFrame to layer-stack space 560 // first. This method should be used if there is no physical display to 561 // project onto when taking screenshots, as the filtering requirements are 562 // different. 563 // If the parent transform needs to be undone when capturing the layer, then 564 // the inverse parent transform is also required. needsFilteringForScreenshots(const DisplayDevice *,const ui::Transform &)565 virtual bool needsFilteringForScreenshots(const DisplayDevice*, const ui::Transform&) const { 566 return false; 567 } 568 569 // This layer is not a clone, but it's the parent to the cloned hierarchy. The 570 // variable mClonedChild represents the top layer that will be cloned so this 571 // layer will be the parent of mClonedChild. 572 // The layers in the cloned hierarchy will match the lifetime of the real layers. That is 573 // if the real layer is destroyed, then the clone layer will also be destroyed. 574 sp<Layer> mClonedChild; 575 576 virtual sp<Layer> createClone() = 0; 577 void updateMirrorInfo(); updateCloneBufferInfo()578 virtual void updateCloneBufferInfo(){}; 579 580 protected: 581 sp<compositionengine::LayerFE> asLayerFE() const; getClonedFrom()582 sp<Layer> getClonedFrom() { return mClonedFrom != nullptr ? mClonedFrom.promote() : nullptr; } isClone()583 bool isClone() { return mClonedFrom != nullptr; } isClonedFromAlive()584 bool isClonedFromAlive() { return getClonedFrom() != nullptr; } 585 586 virtual void setInitialValuesForClone(const sp<Layer>& clonedFrom); 587 588 void updateClonedDrawingState(std::map<sp<Layer>, sp<Layer>>& clonedLayersMap); 589 void updateClonedChildren(const sp<Layer>& mirrorRoot, 590 std::map<sp<Layer>, sp<Layer>>& clonedLayersMap); 591 void updateClonedRelatives(const std::map<sp<Layer>, sp<Layer>>& clonedLayersMap); 592 void addChildToDrawing(const sp<Layer>& layer); 593 void updateClonedInputInfo(const std::map<sp<Layer>, sp<Layer>>& clonedLayersMap); 594 virtual std::optional<compositionengine::LayerFE::LayerSettings> prepareClientComposition( 595 compositionengine::LayerFE::ClientCompositionTargetSettings&); 596 virtual std::optional<compositionengine::LayerFE::LayerSettings> prepareShadowClientComposition( 597 const LayerFE::LayerSettings& layerSettings, const Rect& displayViewport, 598 ui::Dataspace outputDataspace); 599 // Modifies the passed in layer settings to clear the contents. If the blackout flag is set, 600 // the settings clears the content with a solid black fill. 601 void prepareClearClientComposition(LayerFE::LayerSettings& layerSettings, bool blackout) const; 602 603 public: 604 /* 605 * compositionengine::LayerFE overrides 606 */ 607 const compositionengine::LayerFECompositionState* getCompositionState() const override; 608 bool onPreComposition(nsecs_t) override; 609 void prepareCompositionState(compositionengine::LayerFE::StateSubset subset) override; 610 std::vector<compositionengine::LayerFE::LayerSettings> prepareClientCompositionList( 611 compositionengine::LayerFE::ClientCompositionTargetSettings&) override; 612 void onLayerDisplayed(const sp<Fence>& releaseFence) override; 613 const char* getDebugName() const override; 614 615 protected: 616 void prepareBasicGeometryCompositionState(); 617 void prepareGeometryCompositionState(); 618 virtual void preparePerFrameCompositionState(); 619 void prepareCursorCompositionState(); 620 621 public: setDefaultBufferSize(uint32_t,uint32_t)622 virtual void setDefaultBufferSize(uint32_t /*w*/, uint32_t /*h*/) {} 623 isHdrY410()624 virtual bool isHdrY410() const { return false; } 625 shouldPresentNow(nsecs_t)626 virtual bool shouldPresentNow(nsecs_t /*expectedPresentTime*/) const { return false; } 627 628 /* 629 * called after composition. 630 * returns true if the layer latched a new buffer this frame. 631 */ onPostComposition(const DisplayDevice *,const std::shared_ptr<FenceTime> &,const std::shared_ptr<FenceTime> &,const CompositorTiming &)632 virtual bool onPostComposition(const DisplayDevice*, 633 const std::shared_ptr<FenceTime>& /*glDoneFence*/, 634 const std::shared_ptr<FenceTime>& /*presentFence*/, 635 const CompositorTiming&) { 636 return false; 637 } 638 639 // If a buffer was replaced this frame, release the former buffer releasePendingBuffer(nsecs_t)640 virtual void releasePendingBuffer(nsecs_t /*dequeueReadyTime*/) { } 641 finalizeFrameEventHistory(const std::shared_ptr<FenceTime> &,const CompositorTiming &)642 virtual void finalizeFrameEventHistory(const std::shared_ptr<FenceTime>& /*glDoneFence*/, 643 const CompositorTiming& /*compositorTiming*/) {} 644 /* 645 * doTransaction - process the transaction. This is a good place to figure 646 * out which attributes of the surface have changed. 647 */ 648 uint32_t doTransaction(uint32_t transactionFlags); 649 650 /* 651 * latchBuffer - called each time the screen is redrawn and returns whether 652 * the visible regions need to be recomputed (this is a fairly heavy 653 * operation, so this should be set only if needed). Typically this is used 654 * to figure out if the content or size of a surface has changed. 655 */ latchBuffer(bool &,nsecs_t,nsecs_t)656 virtual bool latchBuffer(bool& /*recomputeVisibleRegions*/, nsecs_t /*latchTime*/, 657 nsecs_t /*expectedPresentTime*/) { 658 return false; 659 } 660 isBufferLatched()661 virtual bool isBufferLatched() const { return false; } 662 latchAndReleaseBuffer()663 virtual void latchAndReleaseBuffer() {} 664 665 /* 666 * Remove relative z for the layer if its relative parent is not part of the 667 * provided layer tree. 668 */ 669 void removeRelativeZ(const std::vector<Layer*>& layersInTree); 670 671 /* 672 * Remove from current state and mark for removal. 673 */ 674 void removeFromCurrentState(); 675 676 /* 677 * called with the state lock from a binder thread when the layer is 678 * removed from the current list to the pending removal list 679 */ 680 void onRemovedFromCurrentState(); 681 682 /* 683 * Called when the layer is added back to the current state list. 684 */ 685 void addToCurrentState(); 686 687 /* 688 * Sets display transform hint on BufferLayerConsumer. 689 */ 690 void updateTransformHint(ui::Transform::RotationFlags); 691 692 /* 693 * returns the rectangle that crops the content of the layer and scales it 694 * to the layer's size. 695 */ getBufferCrop()696 virtual Rect getBufferCrop() const { return Rect(); } 697 698 /* 699 * Returns the transform applied to the buffer. 700 */ getBufferTransform()701 virtual uint32_t getBufferTransform() const { return 0; } 702 getBuffer()703 virtual sp<GraphicBuffer> getBuffer() const { return nullptr; } 704 getTransformHint()705 virtual ui::Transform::RotationFlags getTransformHint() const { return ui::Transform::ROT_0; } 706 707 /* 708 * Returns if a frame is ready 709 */ hasReadyFrame()710 virtual bool hasReadyFrame() const { return false; } 711 getQueuedFrameCount()712 virtual int32_t getQueuedFrameCount() const { return 0; } 713 714 // ----------------------------------------------------------------------- getDrawingState()715 inline const State& getDrawingState() const { return mDrawingState; } getCurrentState()716 inline const State& getCurrentState() const { return mCurrentState; } getCurrentState()717 inline State& getCurrentState() { return mCurrentState; } 718 719 LayerDebugInfo getLayerDebugInfo(const DisplayDevice*) const; 720 721 static void miniDumpHeader(std::string& result); 722 void miniDump(std::string& result, const DisplayDevice&) const; 723 void dumpFrameStats(std::string& result) const; 724 void dumpFrameEvents(std::string& result); 725 void dumpCallingUidPid(std::string& result) const; 726 void clearFrameStats(); 727 void logFrameStats(); 728 void getFrameStats(FrameStats* outStats) const; 729 getOccupancyHistory(bool)730 virtual std::vector<OccupancyTracker::Segment> getOccupancyHistory(bool /*forceFlush*/) { 731 return {}; 732 } 733 734 void onDisconnect(); 735 void addAndGetFrameTimestamps(const NewFrameEventsEntry* newEntry, 736 FrameEventHistoryDelta* outDelta); 737 getTransformToDisplayInverse()738 virtual bool getTransformToDisplayInverse() const { return false; } 739 740 ui::Transform getTransform() const; 741 742 // Returns the Alpha of the Surface, accounting for the Alpha 743 // of parent Surfaces in the hierarchy (alpha's will be multiplied 744 // down the hierarchy). 745 half getAlpha() const; 746 half4 getColor() const; 747 int32_t getBackgroundBlurRadius() const; drawShadows()748 bool drawShadows() const { return mEffectiveShadowRadius > 0.f; }; 749 750 // Returns the transform hint set by Window Manager on the layer or one of its parents. 751 // This traverses the current state because the data is needed when creating 752 // the layer(off drawing thread) and the hint should be available before the producer 753 // is ready to acquire a buffer. 754 ui::Transform::RotationFlags getFixedTransformHint() const; 755 756 // Returns how rounded corners should be drawn for this layer. 757 // This will traverse the hierarchy until it reaches its root, finding topmost rounded 758 // corner definition and converting it into current layer's coordinates. 759 // As of now, only 1 corner radius per display list is supported. Subsequent ones will be 760 // ignored. 761 virtual RoundedCornerState getRoundedCornerState() const; 762 763 renderengine::ShadowSettings getShadowSettings(const Rect& viewport) const; 764 765 /** 766 * Traverse this layer and it's hierarchy of children directly. Unlike traverseInZOrder 767 * which will not emit children who have relativeZOrder to another layer, this method 768 * just directly emits all children. It also emits them in no particular order. 769 * So this method is not suitable for graphical operations, as it doesn't represent 770 * the scene state, but it's also more efficient than traverseInZOrder and so useful for 771 * book-keeping. 772 */ 773 void traverse(LayerVector::StateSet stateSet, const LayerVector::Visitor& visitor); 774 void traverseInReverseZOrder(LayerVector::StateSet stateSet, 775 const LayerVector::Visitor& visitor); 776 void traverseInZOrder(LayerVector::StateSet stateSet, const LayerVector::Visitor& visitor); 777 778 /** 779 * Traverse only children in z order, ignoring relative layers that are not children of the 780 * parent. 781 */ 782 void traverseChildrenInZOrder(LayerVector::StateSet stateSet, 783 const LayerVector::Visitor& visitor); 784 785 size_t getChildrenCount() const; 786 787 // ONLY CALL THIS FROM THE LAYER DTOR! 788 // See b/141111965. We need to add current children to offscreen layers in 789 // the layer dtor so as not to dangle layers. Since the layer has not 790 // committed its transaction when the layer is destroyed, we must add 791 // current children. This is safe in the dtor as we will no longer update 792 // the current state, but should not be called anywhere else! getCurrentChildren()793 LayerVector& getCurrentChildren() { return mCurrentChildren; } 794 795 void addChild(const sp<Layer>& layer); 796 // Returns index if removed, or negative value otherwise 797 // for symmetry with Vector::remove 798 ssize_t removeChild(const sp<Layer>& layer); getParent()799 sp<Layer> getParent() const { return mCurrentParent.promote(); } hasParent()800 bool hasParent() const { return getParent() != nullptr; } 801 Rect getScreenBounds(bool reduceTransparentRegion = true) const; 802 bool setChildLayer(const sp<Layer>& childLayer, int32_t z); 803 bool setChildRelativeLayer(const sp<Layer>& childLayer, 804 const sp<IBinder>& relativeToHandle, int32_t relativeZ); 805 806 // Copy the current list of children to the drawing state. Called by 807 // SurfaceFlinger to complete a transaction. 808 void commitChildList(); 809 int32_t getZ(LayerVector::StateSet stateSet) const; 810 virtual void pushPendingState(); 811 812 /** 813 * Returns active buffer size in the correct orientation. Buffer size is determined by undoing 814 * any buffer transformations. If the layer has no buffer then return INVALID_RECT. 815 */ getBufferSize(const Layer::State &)816 virtual Rect getBufferSize(const Layer::State&) const { return Rect::INVALID_RECT; } 817 818 /** 819 * Returns the source bounds. If the bounds are not defined, it is inferred from the 820 * buffer size. Failing that, the bounds are determined from the passed in parent bounds. 821 * For the root layer, this is the display viewport size. 822 */ computeSourceBounds(const FloatRect & parentBounds)823 virtual FloatRect computeSourceBounds(const FloatRect& parentBounds) const { 824 return parentBounds; 825 } 826 827 /** 828 * Returns the cropped buffer size or the layer crop if the layer has no buffer. Return 829 * INVALID_RECT if the layer has no buffer and no crop. 830 * A layer with an invalid buffer size and no crop is considered to be boundless. The layer 831 * bounds are constrained by its parent bounds. 832 */ 833 Rect getCroppedBufferSize(const Layer::State& s) const; 834 835 bool setFrameRate(FrameRate frameRate); 836 virtual FrameRate getFrameRateForLayerTree() const; 837 static std::string frameRateCompatibilityString(FrameRateCompatibility compatibility); 838 839 protected: 840 // constant 841 sp<SurfaceFlinger> mFlinger; 842 /* 843 * Trivial class, used to ensure that mFlinger->onLayerDestroyed(mLayer) 844 * is called. 845 */ 846 class LayerCleaner { 847 sp<SurfaceFlinger> mFlinger; 848 sp<Layer> mLayer; 849 850 protected: ~LayerCleaner()851 ~LayerCleaner() { 852 // destroy client resources 853 mFlinger->onHandleDestroyed(mLayer); 854 } 855 856 public: LayerCleaner(const sp<SurfaceFlinger> & flinger,const sp<Layer> & layer)857 LayerCleaner(const sp<SurfaceFlinger>& flinger, const sp<Layer>& layer) 858 : mFlinger(flinger), mLayer(layer) {} 859 }; 860 861 friend class impl::SurfaceInterceptor; 862 863 // For unit tests 864 friend class TestableSurfaceFlinger; 865 friend class RefreshRateSelectionTest; 866 friend class SetFrameRateTest; 867 868 virtual void commitTransaction(const State& stateToCommit); 869 870 uint32_t getEffectiveUsage(uint32_t usage) const; 871 872 /** 873 * Setup rounded corners coordinates of this layer, taking into account the layer bounds and 874 * crop coordinates, transforming them into layer space. 875 */ 876 void setupRoundedCornersCropCoordinates(Rect win, const FloatRect& roundedCornersCrop) const; 877 void setParent(const sp<Layer>& layer); 878 LayerVector makeTraversalList(LayerVector::StateSet stateSet, bool* outSkipRelativeZUsers); 879 void addZOrderRelative(const wp<Layer>& relative); 880 void removeZOrderRelative(const wp<Layer>& relative); 881 882 class SyncPoint { 883 public: SyncPoint(uint64_t frameNumber,wp<Layer> requestedSyncLayer)884 explicit SyncPoint(uint64_t frameNumber, wp<Layer> requestedSyncLayer) 885 : mFrameNumber(frameNumber), 886 mFrameIsAvailable(false), 887 mTransactionIsApplied(false), 888 mRequestedSyncLayer(requestedSyncLayer) {} 889 getFrameNumber()890 uint64_t getFrameNumber() const { return mFrameNumber; } 891 frameIsAvailable()892 bool frameIsAvailable() const { return mFrameIsAvailable; } 893 setFrameAvailable()894 void setFrameAvailable() { mFrameIsAvailable = true; } 895 transactionIsApplied()896 bool transactionIsApplied() const { return mTransactionIsApplied; } 897 setTransactionApplied()898 void setTransactionApplied() { mTransactionIsApplied = true; } 899 getRequestedSyncLayer()900 sp<Layer> getRequestedSyncLayer() { return mRequestedSyncLayer.promote(); } 901 902 private: 903 const uint64_t mFrameNumber; 904 std::atomic<bool> mFrameIsAvailable; 905 std::atomic<bool> mTransactionIsApplied; 906 wp<Layer> mRequestedSyncLayer; 907 }; 908 909 // SyncPoints which will be signaled when the correct frame is at the head 910 // of the queue and dropped after the frame has been latched. Protected by 911 // mLocalSyncPointMutex. 912 Mutex mLocalSyncPointMutex; 913 std::list<std::shared_ptr<SyncPoint>> mLocalSyncPoints; 914 915 // SyncPoints which will be signaled and then dropped when the transaction 916 // is applied 917 std::list<std::shared_ptr<SyncPoint>> mRemoteSyncPoints; 918 919 // Returns false if the relevant frame has already been latched 920 bool addSyncPoint(const std::shared_ptr<SyncPoint>& point); 921 922 void popPendingState(State* stateToCommit); 923 virtual bool applyPendingStates(State* stateToCommit); 924 virtual uint32_t doTransactionResize(uint32_t flags, Layer::State* stateToCommit); 925 926 // Returns mCurrentScaling mode (originating from the 927 // Client) or mOverrideScalingMode mode (originating from 928 // the Surface Controller) if set. getEffectiveScalingMode()929 virtual uint32_t getEffectiveScalingMode() const { return 0; } 930 931 public: 932 /* 933 * The layer handle is just a BBinder object passed to the client 934 * (remote process) -- we don't keep any reference on our side such that 935 * the dtor is called when the remote side let go of its reference. 936 * 937 * LayerCleaner ensures that mFlinger->onLayerDestroyed() is called for 938 * this layer when the handle is destroyed. 939 */ 940 class Handle : public BBinder, public LayerCleaner { 941 public: Handle(const sp<SurfaceFlinger> & flinger,const sp<Layer> & layer)942 Handle(const sp<SurfaceFlinger>& flinger, const sp<Layer>& layer) 943 : LayerCleaner(flinger, layer), owner(layer) {} 944 945 wp<Layer> owner; 946 }; 947 948 // Creates a new handle each time, so we only expect 949 // this to be called once. 950 sp<IBinder> getHandle(); getName()951 const std::string& getName() const { return mName; } notifyAvailableFrames(nsecs_t)952 virtual void notifyAvailableFrames(nsecs_t /*expectedPresentTime*/) {} getPixelFormat()953 virtual PixelFormat getPixelFormat() const { return PIXEL_FORMAT_NONE; } 954 bool getPremultipledAlpha() const; 955 956 bool mPendingHWCDestroy{false}; 957 void setInputInfo(const InputWindowInfo& info); 958 959 InputWindowInfo fillInputInfo(); 960 /** 961 * Returns whether this layer has an explicitly set input-info. 962 */ 963 bool hasInputInfo() const; 964 /** 965 * Return whether this layer needs an input info. For most layer types 966 * this is only true if they explicitly set an input-info but BufferLayer 967 * overrides this so we can generate input-info for Buffered layers that don't 968 * have them (for input occlusion detection checks). 969 */ needsInputInfo()970 virtual bool needsInputInfo() const { return hasInputInfo(); } 971 972 protected: 973 compositionengine::OutputLayer* findOutputLayerForDisplay(const DisplayDevice*) const; 974 975 bool usingRelativeZ(LayerVector::StateSet stateSet) const; 976 977 bool mPremultipliedAlpha{true}; 978 const std::string mName; 979 const std::string mTransactionName{"TX - " + mName}; 980 981 bool mPrimaryDisplayOnly = false; 982 983 // These are only accessed by the main thread or the tracing thread. 984 State mDrawingState; 985 // Store a copy of the pending state so that the drawing thread can access the 986 // states without a lock. 987 Vector<State> mPendingStatesSnapshot; 988 989 // these are protected by an external lock (mStateLock) 990 State mCurrentState; 991 std::atomic<uint32_t> mTransactionFlags{0}; 992 Vector<State> mPendingStates; 993 994 // Timestamp history for UIAutomation. Thread safe. 995 FrameTracker mFrameTracker; 996 997 // Timestamp history for the consumer to query. 998 // Accessed by both consumer and producer on main and binder threads. 999 Mutex mFrameEventHistoryMutex; 1000 ConsumerFrameEventHistory mFrameEventHistory; 1001 FenceTimeline mAcquireTimeline; 1002 FenceTimeline mReleaseTimeline; 1003 1004 // main thread 1005 sp<NativeHandle> mSidebandStream; 1006 // False if the buffer and its contents have been previously used for GPU 1007 // composition, true otherwise. 1008 bool mIsActiveBufferUpdatedForGpu = true; 1009 1010 // We encode unset as -1. 1011 int32_t mOverrideScalingMode{-1}; 1012 std::atomic<uint64_t> mCurrentFrameNumber{0}; 1013 // Whether filtering is needed b/c of the drawingstate 1014 bool mNeedsFiltering{false}; 1015 1016 std::atomic<bool> mRemovedFromCurrentState{false}; 1017 1018 // page-flip thread (currently main thread) 1019 bool mProtectedByApp{false}; // application requires protected path to external sink 1020 1021 // protected by mLock 1022 mutable Mutex mLock; 1023 1024 const wp<Client> mClientRef; 1025 1026 // This layer can be a cursor on some displays. 1027 bool mPotentialCursor{false}; 1028 1029 // Child list about to be committed/used for editing. 1030 LayerVector mCurrentChildren{LayerVector::StateSet::Current}; 1031 // Child list used for rendering. 1032 LayerVector mDrawingChildren{LayerVector::StateSet::Drawing}; 1033 1034 wp<Layer> mCurrentParent; 1035 wp<Layer> mDrawingParent; 1036 1037 // Can only be accessed with the SF state lock held. 1038 bool mLayerDetached{false}; 1039 // Can only be accessed with the SF state lock held. 1040 bool mChildrenChanged{false}; 1041 1042 // Window types from WindowManager.LayoutParams 1043 const int mWindowType; 1044 1045 private: setTransformHint(ui::Transform::RotationFlags)1046 virtual void setTransformHint(ui::Transform::RotationFlags) {} 1047 1048 Hwc2::IComposerClient::Composition getCompositionType(const DisplayDevice&) const; 1049 Region getVisibleRegion(const DisplayDevice*) const; 1050 1051 /** 1052 * Returns an unsorted vector of all layers that are part of this tree. 1053 * That includes the current layer and all its descendants. 1054 */ 1055 std::vector<Layer*> getLayersInTree(LayerVector::StateSet stateSet); 1056 /** 1057 * Traverses layers that are part of this tree in the correct z order. 1058 * layersInTree must be sorted before calling this method. 1059 */ 1060 void traverseChildrenInZOrderInner(const std::vector<Layer*>& layersInTree, 1061 LayerVector::StateSet stateSet, 1062 const LayerVector::Visitor& visitor); 1063 LayerVector makeChildrenTraversalList(LayerVector::StateSet stateSet, 1064 const std::vector<Layer*>& layersInTree); 1065 1066 void updateTreeHasFrameRateVote(); 1067 1068 // Cached properties computed from drawing state 1069 // Effective transform taking into account parent transforms and any parent scaling. 1070 ui::Transform mEffectiveTransform; 1071 1072 // Bounds of the layer before any transformation is applied and before it has been cropped 1073 // by its parents. 1074 FloatRect mSourceBounds; 1075 1076 // Bounds of the layer in layer space. This is the mSourceBounds cropped by its layer crop and 1077 // its parent bounds. 1078 FloatRect mBounds; 1079 1080 // Layer bounds in screen space. 1081 FloatRect mScreenBounds; 1082 1083 void setZOrderRelativeOf(const wp<Layer>& relativeOf); 1084 1085 bool mGetHandleCalled = false; 1086 1087 void removeRemoteSyncPoints(); 1088 1089 // Tracks the process and user id of the caller when creating this layer 1090 // to help debugging. 1091 pid_t mCallingPid; 1092 uid_t mCallingUid; 1093 1094 // The current layer is a clone of mClonedFrom. This means that this layer will update it's 1095 // properties based on mClonedFrom. When mClonedFrom latches a new buffer for BufferLayers, 1096 // this layer will update it's buffer. When mClonedFrom updates it's drawing state, children, 1097 // and relatives, this layer will update as well. 1098 wp<Layer> mClonedFrom; 1099 1100 // The inherited shadow radius after taking into account the layer hierarchy. This is the 1101 // final shadow radius for this layer. If a shadow is specified for a layer, then effective 1102 // shadow radius is the set shadow radius, otherwise its the parent's shadow radius. 1103 float mEffectiveShadowRadius = 0.f; 1104 1105 // Returns true if the layer can draw shadows on its border. canDrawShadows()1106 virtual bool canDrawShadows() const { return true; } 1107 1108 // Find the root of the cloned hierarchy, this means the first non cloned parent. 1109 // This will return null if first non cloned parent is not found. 1110 sp<Layer> getClonedRoot(); 1111 1112 // Finds the top most layer in the hierarchy. This will find the root Layer where the parent is 1113 // null. 1114 sp<Layer> getRootLayer(); 1115 }; 1116 1117 } // namespace android 1118