1 /* 2 * Copyright (C) 2019 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #pragma once 18 19 #include "Stream.h" 20 21 #include <condition_variable> 22 #include <future> 23 #include <list> 24 #include <map> 25 #include <memory> 26 #include <mutex> 27 #include <unordered_set> 28 #include <vector> 29 30 #include <utils/AndroidThreads.h> 31 32 namespace android::soundpool { 33 34 // TODO: Move helper classes to a utility file, with separate test. 35 36 /** 37 * JavaThread is used like std::thread but for threads that may call the JVM. 38 * 39 * std::thread does not easily attach to the JVM. We need JVM capable threads 40 * from createThreadEtc() since android binder call optimization may attempt to 41 * call back into Java if the SoundPool runs in system server. 42 * 43 * 44 * No locking is required - the member variables are inherently thread-safe. 45 */ 46 class JavaThread { 47 public: JavaThread(std::function<void ()> f,const char * name)48 JavaThread(std::function<void()> f, const char *name) 49 : mF{std::move(f)} { 50 createThreadEtc(staticFunction, this, name); 51 } 52 53 JavaThread(JavaThread &&) = delete; // uses "this" ptr, not moveable. 54 ~JavaThread()55 ~JavaThread() { 56 join(); // manually block until the future is ready as std::future 57 // destructor doesn't block unless it comes from std::async 58 // and it is the last reference to shared state. 59 } 60 join()61 void join() const { 62 mFuture.wait(); 63 } 64 isClosed()65 bool isClosed() const { 66 return mIsClosed; 67 } 68 69 private: staticFunction(void * data)70 static int staticFunction(void *data) { 71 JavaThread *jt = static_cast<JavaThread *>(data); 72 jt->mF(); 73 jt->mIsClosed = true; // set the flag that we are closed 74 // now before we allow the destructor to execute; 75 // otherwise there may be a use after free. 76 jt->mPromise.set_value(); 77 return 0; 78 } 79 80 // No locking is provided as these variables are initialized in the constructor 81 // and the members referenced are thread-safe objects. 82 // (mFuture.wait() can block multiple threads.) 83 // Note the order of member variables is reversed for destructor. 84 const std::function<void()> mF; 85 // Used in join() to block until the thread completes. 86 // See https://en.cppreference.com/w/cpp/thread/promise for the void specialization of 87 // promise. 88 std::promise<void> mPromise; 89 std::future<void> mFuture{mPromise.get_future()}; 90 std::atomic_bool mIsClosed = false; 91 }; 92 93 /** 94 * The ThreadPool manages thread lifetimes of SoundPool worker threads. 95 * 96 * TODO: the (eventual) goal of ThreadPool is to transparently and cooperatively 97 * maximize CPU utilization while avoiding starvation of other applications. 98 * Some possibilities: 99 * 100 * We should create worker threads when we have SoundPool work and the system is idle. 101 * CPU cycles are "use-it-or-lose-it" when the system is idle. 102 * 103 * We should adjust the priority of worker threads so that the second (and subsequent) worker 104 * threads have lower priority (should we try to promote priority also?). 105 * 106 * We should throttle the spawning of new worker threads, spacing over time, to avoid 107 * creating too many new threads all at once, on initialization. 108 */ 109 class ThreadPool { 110 public: ThreadPool(size_t maxThreadCount,std::string name)111 ThreadPool(size_t maxThreadCount, std::string name) 112 : mMaxThreadCount(maxThreadCount) 113 , mName{std::move(name)} { } 114 ~ThreadPool()115 ~ThreadPool() { quit(); } 116 getActiveThreadCount()117 size_t getActiveThreadCount() const { return mActiveThreadCount; } getMaxThreadCount()118 size_t getMaxThreadCount() const { return mMaxThreadCount; } 119 quit()120 void quit() { 121 std::list<std::unique_ptr<JavaThread>> threads; 122 { 123 std::lock_guard lock(mThreadLock); 124 if (mQuit) return; // already joined. 125 mQuit = true; 126 threads = std::move(mThreads); 127 mThreads.clear(); 128 } 129 // mQuit set under lock, no more threads will be created. 130 for (auto &thread : threads) { 131 thread->join(); 132 thread.reset(); 133 } 134 LOG_ALWAYS_FATAL_IF(mActiveThreadCount != 0, 135 "Invalid Active Threads: %zu", (size_t)mActiveThreadCount); 136 } 137 138 // returns a non-zero id if successful, the id is to help logging messages. launch(std::function<void (int32_t)> f)139 int32_t launch(std::function<void(int32_t /* id */)> f) { 140 std::list<std::unique_ptr<JavaThread>> threadsToRelease; // release outside of lock. 141 std::lock_guard lock(mThreadLock); 142 if (mQuit) return 0; // ignore if we have quit 143 144 // clean up threads. 145 for (auto it = mThreads.begin(); it != mThreads.end(); ) { 146 if ((*it)->isClosed()) { 147 threadsToRelease.emplace_back(std::move(*it)); 148 it = mThreads.erase(it); 149 } else { 150 ++it; 151 } 152 } 153 154 const size_t threadCount = mThreads.size(); 155 if (threadCount < mMaxThreadCount) { 156 // if the id wraps, we don't care about collisions. it's just for logging. 157 mNextThreadId = mNextThreadId == INT32_MAX ? 1 : ++mNextThreadId; 158 const int32_t id = mNextThreadId; 159 mThreads.emplace_back(std::make_unique<JavaThread>( 160 [this, id, mf = std::move(f)] { mf(id); --mActiveThreadCount; }, 161 (mName + std::to_string(id)).c_str())); 162 ++mActiveThreadCount; 163 return id; 164 } 165 return 0; 166 } 167 168 // TODO: launch only if load average is low. 169 // This gets the load average 170 // See also std::thread::hardware_concurrency() for the concurrent capability. getLoadAvg()171 static double getLoadAvg() { 172 double loadAvg[1]; 173 if (getloadavg(loadAvg, std::size(loadAvg)) > 0) { 174 return loadAvg[0]; 175 } 176 return -1.; 177 } 178 179 private: 180 const size_t mMaxThreadCount; 181 const std::string mName; 182 183 std::atomic_size_t mActiveThreadCount = 0; 184 185 std::mutex mThreadLock; 186 bool mQuit GUARDED_BY(mThreadLock) = false; 187 int32_t mNextThreadId GUARDED_BY(mThreadLock) = 0; 188 std::list<std::unique_ptr<JavaThread>> mThreads GUARDED_BY(mThreadLock); 189 }; 190 191 /** 192 * A Perfect HashTable for IDs (key) to pointers (value). 193 * 194 * There are no collisions. Why? because we generate the IDs for you to look up :-). 195 * 196 * The goal of this hash table is to map an integer ID handle > 0 to a pointer. 197 * We give these IDs in monotonic order (though we may skip if it were to cause a collision). 198 * 199 * The size of the hashtable must be large enough to accommodate the max number of keys. 200 * We suggest 2x. 201 * 202 * Readers are lockless 203 * Single writer could be lockless, but we allow multiple writers through an internal lock. 204 * 205 * For the Key type K, valid keys generated are > 0 (signed or unsigned) 206 * For the Value type V, values are pointers - nullptr means empty. 207 */ 208 template <typename K, typename V> 209 class PerfectHash { 210 public: PerfectHash(size_t hashCapacity)211 PerfectHash(size_t hashCapacity) 212 : mHashCapacity(hashCapacity) 213 , mK2V{new std::atomic<V>[hashCapacity]()} { 214 } 215 216 // Generate a key for a value V. 217 // There is a testing function getKforV() which checks what the value reports as its key. 218 // 219 // Calls back into getKforV under lock. 220 // 221 // We expect that the hashCapacity is 2x the number of stored keys in order 222 // to have one or two tries to find an empty slot 223 K generateKey(V value, std::function<K(V)> getKforV, K oldKey = 0) { 224 std::lock_guard lock(mHashLock); 225 // try to remove the old key. 226 if (oldKey > 0) { // key valid 227 const V v = getValue(oldKey); 228 if (v != nullptr) { // value still valid 229 const K atPosition = getKforV(v); 230 if (atPosition < 0 || // invalid value 231 atPosition == oldKey || // value's key still valid and matches old key 232 ((atPosition ^ oldKey) & (mHashCapacity - 1)) != 0) { // stale key entry 233 getValue(oldKey) = nullptr; // invalidate 234 } 235 } // else if value is invalid, no need to invalidate. 236 } 237 // check if we are invalidating only. 238 if (value == nullptr) return 0; 239 // now insert the new value and return the key. 240 size_t tries = 0; 241 for (; tries < mHashCapacity; ++tries) { 242 mNextKey = mNextKey == std::numeric_limits<K>::max() ? 1 : mNextKey + 1; 243 const V v = getValue(mNextKey); 244 //ALOGD("tries: %zu, key:%d value:%p", tries, (int)mNextKey, v); 245 if (v == nullptr) break; // empty 246 const K atPosition = getKforV(v); 247 //ALOGD("tries: %zu key atPosition:%d", tries, (int)atPosition); 248 if (atPosition < 0 || // invalid value 249 ((atPosition ^ mNextKey) & (mHashCapacity - 1)) != 0) { // stale key entry 250 break; 251 } 252 } 253 LOG_ALWAYS_FATAL_IF(tries == mHashCapacity, "hash table overflow!"); 254 //ALOGD("%s: found after %zu tries", __func__, tries); 255 getValue(mNextKey) = value; 256 return mNextKey; 257 } 258 getValue(K key)259 std::atomic<V> &getValue(K key) { return mK2V[key & (mHashCapacity - 1)]; } getValue(K key)260 const std::atomic_int32_t &getValue(K key) const { return mK2V[key & (mHashCapacity - 1)]; } 261 262 private: 263 mutable std::mutex mHashLock; 264 const size_t mHashCapacity; // size of mK2V no lock needed. 265 std::unique_ptr<std::atomic<V>[]> mK2V; // no lock needed for read access. GUARDED_BY(mHashLock)266 K mNextKey GUARDED_BY(mHashLock) {}; 267 }; 268 269 /** 270 * StreamMap contains the all the valid streams available to SoundPool. 271 * 272 * There is no Lock required for this class because the streams are 273 * allocated in the constructor, the lookup is lockless, and the Streams 274 * returned are locked internally. 275 * 276 * The lookup uses a perfect hash. 277 * It is possible to use a lockless hash table or to use a stripe-locked concurrent 278 * hashmap for essentially lock-free lookup. 279 * 280 * This follows Map-Reduce parallelism model. 281 * https://en.wikipedia.org/wiki/MapReduce 282 * 283 * Conceivably the forEach could be parallelized using std::for_each with a 284 * std::execution::par policy. 285 * 286 * https://en.cppreference.com/w/cpp/algorithm/for_each 287 */ 288 class StreamMap { 289 public: 290 explicit StreamMap(int32_t streams); 291 292 // Returns the stream associated with streamID or nullptr if not found. 293 // This need not be locked. 294 // The stream ID will never migrate to another Stream, but it may change 295 // underneath you. The Stream operations that take a streamID will confirm 296 // that the streamID matches under the Stream lock before executing otherwise 297 // it ignores the command as stale. 298 Stream* findStream(int32_t streamID) const; 299 300 // Iterates through the stream pool applying the function f. 301 // Since this enumerates over every single stream, it is unlocked. 302 // 303 // See related: https://en.cppreference.com/w/cpp/algorithm/for_each forEach(std::function<void (const Stream *)> f)304 void forEach(std::function<void(const Stream *)>f) const { 305 for (size_t i = 0; i < mStreamPoolSize; ++i) { 306 f(&mStreamPool[i]); 307 } 308 } 309 forEach(std::function<void (Stream *)> f)310 void forEach(std::function<void(Stream *)>f) { 311 for (size_t i = 0; i < mStreamPoolSize; ++i) { 312 f(&mStreamPool[i]); 313 } 314 } 315 316 // Returns the pair stream for a given Stream. 317 // This need not be locked as it is a property of the pointer address. getPairStream(const Stream * stream)318 Stream* getPairStream(const Stream* stream) const { 319 const size_t index = streamPosition(stream); 320 return &mStreamPool[index ^ 1]; 321 } 322 323 // find the position of the stream in mStreamPool array. 324 size_t streamPosition(const Stream* stream) const; // no lock needed 325 getStreamMapSize()326 size_t getStreamMapSize() const { 327 return mStreamPoolSize; 328 } 329 330 // find the next valid ID for a stream and store in hash table. 331 int32_t getNextIdForStream(Stream* stream) const; 332 333 private: 334 335 // use the hash table to attempt to find the stream. 336 // nullptr is returned if the lookup fails. 337 Stream* lookupStreamFromId(int32_t streamID) const; 338 339 // The stream pool is initialized in the constructor, effectively const. 340 // no locking required for access. 341 // 342 // The constructor parameter "streams" results in streams pairs of streams. 343 // We have twice as many streams because we wish to return a streamID "handle" 344 // back to the app immediately, while we may be stopping the other stream in the 345 // pair to get its AudioTrack :-). 346 // 347 // Of the stream pair, only one of the streams may have an AudioTrack. 348 // The fixed association of a stream pair allows callbacks from the AudioTrack 349 // to be associated properly to either one or the other of the stream pair. 350 // 351 // TODO: The stream pair arrangement can be removed if we have better AudioTrack 352 // callback handling (being able to remove and change the callback after construction). 353 // 354 // Streams may be accessed anytime off of the stream pool 355 // as there is internal locking on each stream. 356 std::unique_ptr<Stream[]> mStreamPool; // no lock needed for access. 357 size_t mStreamPoolSize; // no lock needed for access. 358 359 // In order to find the Stream from a StreamID, we could do a linear lookup in mStreamPool. 360 // As an alternative, one could use stripe-locked or lock-free concurrent hashtables. 361 // 362 // When considering linear search vs hashmap, verify the typical use-case size. 363 // Linear search is faster than std::unordered_map (circa 2018) for less than 40 elements. 364 // [ Skarupke, M. (2018), "You Can Do Better than std::unordered_map: New and Recent 365 // Improvements to Hash Table Performance." C++Now 2018. cppnow.org, see 366 // https://www.youtube.com/watch?v=M2fKMP47slQ ] 367 // 368 // Here, we use a PerfectHash of Id to Stream *, since we can control the 369 // StreamID returned to the user. This allows O(1) read access to mStreamPool lock-free. 370 // 371 // We prefer that the next stream ID is monotonic for aesthetic reasons 372 // (if we didn't care about monotonicity, a simple method is to apply a generation count 373 // to each stream in the unused upper bits of its index in mStreamPool for the id). 374 // 375 std::unique_ptr<PerfectHash<int32_t, Stream *>> mPerfectHash; 376 }; 377 378 /** 379 * StreamManager is used to manage the streams (accessed by StreamID from Java). 380 * 381 * Locking order (proceeds from application to component). 382 * SoundPool mApiLock (if needed) -> StreamManager mStreamManagerLock 383 * -> pair Stream mLock -> queued Stream mLock 384 */ 385 class StreamManager : public StreamMap { 386 public: 387 // Note: the SoundPool pointer is only used for stream initialization. 388 // It is not stored in StreamManager. 389 StreamManager(int32_t streams, size_t threads, const audio_attributes_t* attributes); 390 ~StreamManager(); 391 392 // Returns positive streamID on success, 0 on failure. This is locked. 393 int32_t queueForPlay(const std::shared_ptr<Sound> &sound, 394 int32_t soundID, float leftVolume, float rightVolume, 395 int32_t priority, int32_t loop, float rate) 396 NO_THREAD_SAFETY_ANALYSIS; // uses unique_lock 397 398 /////////////////////////////////////////////////////////////////////// 399 // Called from soundpool::Stream 400 getAttributes()401 const audio_attributes_t* getAttributes() const { return &mAttributes; } 402 403 // Moves the stream to the restart queue (called upon BUFFER_END of the static track) 404 // this is locked internally. 405 // If activeStreamIDToMatch is nonzero, it will only move to the restart queue 406 // if the streamIDToMatch is found on the active queue. 407 void moveToRestartQueue(Stream* stream, int32_t activeStreamIDToMatch = 0); 408 409 private: 410 411 void run(int32_t id) NO_THREAD_SAFETY_ANALYSIS; // worker thread, takes unique_lock. 412 void dump() const; // no lock needed 413 414 // returns true if more worker threads are needed. needMoreThreads_l()415 bool needMoreThreads_l() REQUIRES(mStreamManagerLock) { 416 return mRestartStreams.size() > 0 && 417 (mThreadPool->getActiveThreadCount() == 0 418 || std::distance(mRestartStreams.begin(), 419 mRestartStreams.upper_bound(systemTime())) 420 > (ptrdiff_t)mThreadPool->getActiveThreadCount()); 421 } 422 423 // returns true if the stream was added. 424 bool moveToRestartQueue_l( 425 Stream* stream, int32_t activeStreamIDToMatch = 0) REQUIRES(mStreamManagerLock); 426 // returns number of queues the stream was removed from (should be 0 or 1); 427 // a special code of -1 is returned if activeStreamIDToMatch is > 0 and 428 // the stream wasn't found on the active queue. 429 ssize_t removeFromQueues_l( 430 Stream* stream, int32_t activeStreamIDToMatch = 0) REQUIRES(mStreamManagerLock); 431 void addToRestartQueue_l(Stream *stream) REQUIRES(mStreamManagerLock); 432 void addToActiveQueue_l(Stream *stream) REQUIRES(mStreamManagerLock); 433 void sanityCheckQueue_l() const REQUIRES(mStreamManagerLock); 434 435 const audio_attributes_t mAttributes; 436 std::unique_ptr<ThreadPool> mThreadPool; // locked internally 437 438 // mStreamManagerLock is used to lock access for transitions between the 439 // 4 stream queues by the Manager Thread or by the user initiated play(). 440 // A stream pair has exactly one stream on exactly one of the queues. 441 std::mutex mStreamManagerLock; 442 std::condition_variable mStreamManagerCondition GUARDED_BY(mStreamManagerLock); 443 444 bool mQuit GUARDED_BY(mStreamManagerLock) = false; 445 446 // There are constructor arg "streams" pairs of streams, only one of each 447 // pair on the 4 stream queues below. The other stream in the pair serves as 448 // placeholder to accumulate user changes, pending actual availability of the 449 // AudioTrack, as it may be in use, requiring stop-then-restart. 450 // 451 // The 4 queues are implemented in the appropriate STL container based on perceived 452 // optimality. 453 454 // 1) mRestartStreams: Streams awaiting stop. 455 // The paired stream may be active (but with no AudioTrack), and will be restarted 456 // with an active AudioTrack when the current stream is stopped. 457 std::multimap<int64_t /* stopTimeNs */, Stream*> 458 mRestartStreams GUARDED_BY(mStreamManagerLock); 459 460 // 2) mActiveStreams: Streams that are active. 461 // The paired stream will be inactive. 462 // This is in order of specified by kStealActiveStream_OldestFirst 463 std::list<Stream*> mActiveStreams GUARDED_BY(mStreamManagerLock); 464 465 // 3) mAvailableStreams: Streams that are inactive. 466 // The paired stream will also be inactive. 467 // No particular order. 468 std::unordered_set<Stream*> mAvailableStreams GUARDED_BY(mStreamManagerLock); 469 470 // 4) mProcessingStreams: Streams that are being processed by the ManagerThreads 471 // When on this queue, the stream and its pair are not available for stealing. 472 // Each ManagerThread will have at most one stream on the mProcessingStreams queue. 473 // The paired stream may be active or restarting. 474 // No particular order. 475 std::unordered_set<Stream*> mProcessingStreams GUARDED_BY(mStreamManagerLock); 476 }; 477 478 } // namespace android::soundpool 479