1 /*
2  * Copyright (C) 2013 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #define LOG_TAG "AudioResamplerDyn"
18 //#define LOG_NDEBUG 0
19 
20 #include <malloc.h>
21 #include <string.h>
22 #include <stdlib.h>
23 #include <dlfcn.h>
24 #include <math.h>
25 
26 #include <cutils/compiler.h>
27 #include <cutils/properties.h>
28 #include <utils/Debug.h>
29 #include <utils/Log.h>
30 #include <audio_utils/primitives.h>
31 
32 #include "AudioResamplerFirOps.h" // USE_NEON, USE_SSE and USE_INLINE_ASSEMBLY defined here
33 #include "AudioResamplerFirProcess.h"
34 #include "AudioResamplerFirProcessNeon.h"
35 #include "AudioResamplerFirProcessSSE.h"
36 #include "AudioResamplerFirGen.h" // requires math.h
37 #include "AudioResamplerDyn.h"
38 
39 //#define DEBUG_RESAMPLER
40 
41 // use this for our buffer alignment.  Should be at least 32 bytes.
42 constexpr size_t CACHE_LINE_SIZE = 64;
43 
44 namespace android {
45 
46 /*
47  * InBuffer is a type agnostic input buffer.
48  *
49  * Layout of the state buffer for halfNumCoefs=8.
50  *
51  * [rrrrrrppppppppnnnnnnnnrrrrrrrrrrrrrrrrrrr.... rrrrrrr]
52  *  S            I                                R
53  *
54  * S = mState
55  * I = mImpulse
56  * R = mRingFull
57  * p = past samples, convoluted with the (p)ositive side of sinc()
58  * n = future samples, convoluted with the (n)egative side of sinc()
59  * r = extra space for implementing the ring buffer
60  */
61 
62 template<typename TC, typename TI, typename TO>
InBuffer()63 AudioResamplerDyn<TC, TI, TO>::InBuffer::InBuffer()
64     : mState(NULL), mImpulse(NULL), mRingFull(NULL), mStateCount(0)
65 {
66 }
67 
68 template<typename TC, typename TI, typename TO>
~InBuffer()69 AudioResamplerDyn<TC, TI, TO>::InBuffer::~InBuffer()
70 {
71     init();
72 }
73 
74 template<typename TC, typename TI, typename TO>
init()75 void AudioResamplerDyn<TC, TI, TO>::InBuffer::init()
76 {
77     free(mState);
78     mState = NULL;
79     mImpulse = NULL;
80     mRingFull = NULL;
81     mStateCount = 0;
82 }
83 
84 // resizes the state buffer to accommodate the appropriate filter length
85 template<typename TC, typename TI, typename TO>
resize(int CHANNELS,int halfNumCoefs)86 void AudioResamplerDyn<TC, TI, TO>::InBuffer::resize(int CHANNELS, int halfNumCoefs)
87 {
88     // calculate desired state size
89     size_t stateCount = halfNumCoefs * CHANNELS * 2 * kStateSizeMultipleOfFilterLength;
90 
91     // check if buffer needs resizing
92     if (mState
93             && stateCount == mStateCount
94             && mRingFull-mState == (ssize_t) (mStateCount-halfNumCoefs*CHANNELS)) {
95         return;
96     }
97 
98     // create new buffer
99     TI* state = NULL;
100     (void)posix_memalign(
101             reinterpret_cast<void **>(&state),
102             CACHE_LINE_SIZE /* alignment */,
103             stateCount * sizeof(*state));
104     memset(state, 0, stateCount*sizeof(*state));
105 
106     // attempt to preserve state
107     if (mState) {
108         TI* srcLo = mImpulse - halfNumCoefs*CHANNELS;
109         TI* srcHi = mImpulse + halfNumCoefs*CHANNELS;
110         TI* dst = state;
111 
112         if (srcLo < mState) {
113             dst += mState-srcLo;
114             srcLo = mState;
115         }
116         if (srcHi > mState + mStateCount) {
117             srcHi = mState + mStateCount;
118         }
119         memcpy(dst, srcLo, (srcHi - srcLo) * sizeof(*srcLo));
120         free(mState);
121     }
122 
123     // set class member vars
124     mState = state;
125     mStateCount = stateCount;
126     mImpulse = state + halfNumCoefs*CHANNELS; // actually one sample greater than needed
127     mRingFull = state + mStateCount - halfNumCoefs*CHANNELS;
128 }
129 
130 // copy in the input data into the head (impulse+halfNumCoefs) of the buffer.
131 template<typename TC, typename TI, typename TO>
132 template<int CHANNELS>
readAgain(TI * & impulse,const int halfNumCoefs,const TI * const in,const size_t inputIndex)133 void AudioResamplerDyn<TC, TI, TO>::InBuffer::readAgain(TI*& impulse, const int halfNumCoefs,
134         const TI* const in, const size_t inputIndex)
135 {
136     TI* head = impulse + halfNumCoefs*CHANNELS;
137     for (size_t i=0 ; i<CHANNELS ; i++) {
138         head[i] = in[inputIndex*CHANNELS + i];
139     }
140 }
141 
142 // advance the impulse pointer, and load in data into the head (impulse+halfNumCoefs)
143 template<typename TC, typename TI, typename TO>
144 template<int CHANNELS>
readAdvance(TI * & impulse,const int halfNumCoefs,const TI * const in,const size_t inputIndex)145 void AudioResamplerDyn<TC, TI, TO>::InBuffer::readAdvance(TI*& impulse, const int halfNumCoefs,
146         const TI* const in, const size_t inputIndex)
147 {
148     impulse += CHANNELS;
149 
150     if (CC_UNLIKELY(impulse >= mRingFull)) {
151         const size_t shiftDown = mRingFull - mState - halfNumCoefs*CHANNELS;
152         memcpy(mState, mState+shiftDown, halfNumCoefs*CHANNELS*2*sizeof(TI));
153         impulse -= shiftDown;
154     }
155     readAgain<CHANNELS>(impulse, halfNumCoefs, in, inputIndex);
156 }
157 
158 template<typename TC, typename TI, typename TO>
reset()159 void AudioResamplerDyn<TC, TI, TO>::InBuffer::reset()
160 {
161     // clear resampler state
162     if (mState != nullptr) {
163         memset(mState, 0, mStateCount * sizeof(TI));
164     }
165 }
166 
167 template<typename TC, typename TI, typename TO>
set(int L,int halfNumCoefs,int inSampleRate,int outSampleRate)168 void AudioResamplerDyn<TC, TI, TO>::Constants::set(
169         int L, int halfNumCoefs, int inSampleRate, int outSampleRate)
170 {
171     int bits = 0;
172     int lscale = inSampleRate/outSampleRate < 2 ? L - 1 :
173             static_cast<int>(static_cast<uint64_t>(L)*inSampleRate/outSampleRate);
174     for (int i=lscale; i; ++bits, i>>=1)
175         ;
176     mL = L;
177     mShift = kNumPhaseBits - bits;
178     mHalfNumCoefs = halfNumCoefs;
179 }
180 
181 template<typename TC, typename TI, typename TO>
AudioResamplerDyn(int inChannelCount,int32_t sampleRate,src_quality quality)182 AudioResamplerDyn<TC, TI, TO>::AudioResamplerDyn(
183         int inChannelCount, int32_t sampleRate, src_quality quality)
184     : AudioResampler(inChannelCount, sampleRate, quality),
185       mResampleFunc(0), mFilterSampleRate(0), mFilterQuality(DEFAULT_QUALITY),
186     mCoefBuffer(NULL)
187 {
188     mVolumeSimd[0] = mVolumeSimd[1] = 0;
189     // The AudioResampler base class assumes we are always ready for 1:1 resampling.
190     // We reset mInSampleRate to 0, so setSampleRate() will calculate filters for
191     // setSampleRate() for 1:1. (May be removed if precalculated filters are used.)
192     mInSampleRate = 0;
193     mConstants.set(128, 8, mSampleRate, mSampleRate); // TODO: set better
194 
195     // fetch property based resampling parameters
196     mPropertyEnableAtSampleRate = property_get_int32(
197             "ro.audio.resampler.psd.enable_at_samplerate", mPropertyEnableAtSampleRate);
198     mPropertyHalfFilterLength = property_get_int32(
199             "ro.audio.resampler.psd.halflength", mPropertyHalfFilterLength);
200     mPropertyStopbandAttenuation = property_get_int32(
201             "ro.audio.resampler.psd.stopband", mPropertyStopbandAttenuation);
202     mPropertyCutoffPercent = property_get_int32(
203             "ro.audio.resampler.psd.cutoff_percent", mPropertyCutoffPercent);
204     mPropertyTransitionBandwidthCheat = property_get_int32(
205             "ro.audio.resampler.psd.tbwcheat", mPropertyTransitionBandwidthCheat);
206 }
207 
208 template<typename TC, typename TI, typename TO>
~AudioResamplerDyn()209 AudioResamplerDyn<TC, TI, TO>::~AudioResamplerDyn()
210 {
211     free(mCoefBuffer);
212 }
213 
214 template<typename TC, typename TI, typename TO>
init()215 void AudioResamplerDyn<TC, TI, TO>::init()
216 {
217     mFilterSampleRate = 0; // always trigger new filter generation
218     mInBuffer.init();
219 }
220 
221 template<typename TC, typename TI, typename TO>
setVolume(float left,float right)222 void AudioResamplerDyn<TC, TI, TO>::setVolume(float left, float right)
223 {
224     AudioResampler::setVolume(left, right);
225     if (is_same<TO, float>::value || is_same<TO, double>::value) {
226         mVolumeSimd[0] = static_cast<TO>(left);
227         mVolumeSimd[1] = static_cast<TO>(right);
228     } else {  // integer requires scaling to U4_28 (rounding down)
229         // integer volumes are clamped to 0 to UNITY_GAIN so there
230         // are no issues with signed overflow.
231         mVolumeSimd[0] = u4_28_from_float(clampFloatVol(left));
232         mVolumeSimd[1] = u4_28_from_float(clampFloatVol(right));
233     }
234 }
235 
236 // TODO: update to C++11
237 
max(T a,T b)238 template<typename T> T max(T a, T b) {return a > b ? a : b;}
239 
absdiff(T a,T b)240 template<typename T> T absdiff(T a, T b) {return a > b ? a - b : b - a;}
241 
242 template<typename TC, typename TI, typename TO>
createKaiserFir(Constants & c,double stopBandAtten,int inSampleRate,int outSampleRate,double tbwCheat)243 void AudioResamplerDyn<TC, TI, TO>::createKaiserFir(Constants &c,
244         double stopBandAtten, int inSampleRate, int outSampleRate, double tbwCheat)
245 {
246     // compute the normalized transition bandwidth
247     const double tbw = firKaiserTbw(c.mHalfNumCoefs, stopBandAtten);
248     const double halfbw = tbw * 0.5;
249 
250     double fcr; // compute fcr, the 3 dB amplitude cut-off.
251     if (inSampleRate < outSampleRate) { // upsample
252         fcr = max(0.5 * tbwCheat - halfbw, halfbw);
253     } else { // downsample
254         fcr = max(0.5 * tbwCheat * outSampleRate / inSampleRate - halfbw, halfbw);
255     }
256     createKaiserFir(c, stopBandAtten, fcr);
257 }
258 
259 template<typename TC, typename TI, typename TO>
createKaiserFir(Constants & c,double stopBandAtten,double fcr)260 void AudioResamplerDyn<TC, TI, TO>::createKaiserFir(Constants &c,
261         double stopBandAtten, double fcr) {
262     // compute the normalized transition bandwidth
263     const double tbw = firKaiserTbw(c.mHalfNumCoefs, stopBandAtten);
264     const int phases = c.mL;
265     const int halfLength = c.mHalfNumCoefs;
266 
267     // create buffer
268     TC *coefs = nullptr;
269     int ret = posix_memalign(
270             reinterpret_cast<void **>(&coefs),
271             CACHE_LINE_SIZE /* alignment */,
272             (phases + 1) * halfLength * sizeof(TC));
273     LOG_ALWAYS_FATAL_IF(ret != 0, "Cannot allocate buffer memory, ret %d", ret);
274     c.mFirCoefs = coefs;
275     free(mCoefBuffer);
276     mCoefBuffer = coefs;
277 
278     // square the computed minimum passband value (extra safety).
279     double attenuation =
280             computeWindowedSincMinimumPassbandValue(stopBandAtten);
281     attenuation *= attenuation;
282 
283     // design filter
284     firKaiserGen(coefs, phases, halfLength, stopBandAtten, fcr, attenuation);
285 
286     // update the design criteria
287     mNormalizedCutoffFrequency = fcr;
288     mNormalizedTransitionBandwidth = tbw;
289     mFilterAttenuation = attenuation;
290     mStopbandAttenuationDb = stopBandAtten;
291     mPassbandRippleDb = computeWindowedSincPassbandRippleDb(stopBandAtten);
292 
293 #if 0
294     // Keep this debug code in case an app causes resampler design issues.
295     const double halfbw = tbw * 0.5;
296     // print basic filter stats
297     ALOGD("L:%d  hnc:%d  stopBandAtten:%lf  fcr:%lf  atten:%lf  tbw:%lf\n",
298             c.mL, c.mHalfNumCoefs, stopBandAtten, fcr, attenuation, tbw);
299 
300     // test the filter and report results.
301     // Since this is a polyphase filter, normalized fp and fs must be scaled.
302     const double fp = (fcr - halfbw) / phases;
303     const double fs = (fcr + halfbw) / phases;
304 
305     double passMin, passMax, passRipple;
306     double stopMax, stopRipple;
307 
308     const int32_t passSteps = 1000;
309 
310     testFir(coefs, c.mL, c.mHalfNumCoefs, fp, fs, passSteps, passSteps * c.mL /*stopSteps*/,
311             passMin, passMax, passRipple, stopMax, stopRipple);
312     ALOGD("passband(%lf, %lf): %.8lf %.8lf %.8lf\n", 0., fp, passMin, passMax, passRipple);
313     ALOGD("stopband(%lf, %lf): %.8lf %.3lf\n", fs, 0.5, stopMax, stopRipple);
314 #endif
315 }
316 
317 // recursive gcd. Using objdump, it appears the tail recursion is converted to a while loop.
gcd(int n,int m)318 static int gcd(int n, int m)
319 {
320     if (m == 0) {
321         return n;
322     }
323     return gcd(m, n % m);
324 }
325 
isClose(int32_t newSampleRate,int32_t prevSampleRate,int32_t filterSampleRate,int32_t outSampleRate)326 static bool isClose(int32_t newSampleRate, int32_t prevSampleRate,
327         int32_t filterSampleRate, int32_t outSampleRate)
328 {
329 
330     // different upsampling ratios do not need a filter change.
331     if (filterSampleRate != 0
332             && filterSampleRate < outSampleRate
333             && newSampleRate < outSampleRate)
334         return true;
335 
336     // check design criteria again if downsampling is detected.
337     int pdiff = absdiff(newSampleRate, prevSampleRate);
338     int adiff = absdiff(newSampleRate, filterSampleRate);
339 
340     // allow up to 6% relative change increments.
341     // allow up to 12% absolute change increments (from filter design)
342     return pdiff < prevSampleRate>>4 && adiff < filterSampleRate>>3;
343 }
344 
345 template<typename TC, typename TI, typename TO>
setSampleRate(int32_t inSampleRate)346 void AudioResamplerDyn<TC, TI, TO>::setSampleRate(int32_t inSampleRate)
347 {
348     if (mInSampleRate == inSampleRate) {
349         return;
350     }
351     int32_t oldSampleRate = mInSampleRate;
352     uint32_t oldPhaseWrapLimit = mConstants.mL << mConstants.mShift;
353     bool useS32 = false;
354 
355     mInSampleRate = inSampleRate;
356 
357     // TODO: Add precalculated Equiripple filters
358 
359     if (mFilterQuality != getQuality() ||
360             !isClose(inSampleRate, oldSampleRate, mFilterSampleRate, mSampleRate)) {
361         mFilterSampleRate = inSampleRate;
362         mFilterQuality = getQuality();
363 
364         double stopBandAtten;
365         double tbwCheat = 1.; // how much we "cheat" into aliasing
366         int halfLength;
367         double fcr = 0.;
368 
369         // Begin Kaiser Filter computation
370         //
371         // The quantization floor for S16 is about 96db - 10*log_10(#length) + 3dB.
372         // Keep the stop band attenuation no greater than 84-85dB for 32 length S16 filters
373         //
374         // For s32 we keep the stop band attenuation at the same as 16b resolution, about
375         // 96-98dB
376         //
377 
378         if (mPropertyEnableAtSampleRate >= 0 && mSampleRate >= mPropertyEnableAtSampleRate) {
379             // An alternative method which allows allows a greater fcr
380             // at the expense of potential aliasing.
381             halfLength = mPropertyHalfFilterLength;
382             stopBandAtten = mPropertyStopbandAttenuation;
383             useS32 = true;
384 
385             // Use either the stopband location for design (tbwCheat)
386             // or use the 3dB cutoff location for design (fcr).
387             // This choice is exclusive and based on whether fcr > 0.
388             if (mPropertyTransitionBandwidthCheat != 0) {
389                 tbwCheat = mPropertyTransitionBandwidthCheat / 100.;
390             } else {
391                 fcr = mInSampleRate <= mSampleRate
392                         ? 0.5 : 0.5 * mSampleRate / mInSampleRate;
393                 fcr *= mPropertyCutoffPercent / 100.;
394             }
395         } else {
396             // Voice quality devices have lower sampling rates
397             // (and may be a consequence of downstream AMR-WB / G.722 codecs).
398             // For these devices, we ensure a wider resampler passband
399             // at the expense of aliasing noise (stopband attenuation
400             // and stopband frequency).
401             //
402             constexpr uint32_t kVoiceDeviceSampleRate = 16000;
403 
404             if (mFilterQuality == DYN_HIGH_QUALITY) {
405                 // float or 32b coefficients
406                 useS32 = true;
407                 stopBandAtten = 98.;
408                 if (inSampleRate >= mSampleRate * 4) {
409                     halfLength = 48;
410                 } else if (inSampleRate >= mSampleRate * 2) {
411                     halfLength = 40;
412                 } else {
413                     halfLength = 32;
414                 }
415 
416                 if (mSampleRate <= kVoiceDeviceSampleRate) {
417                     if (inSampleRate >= mSampleRate * 2) {
418                         halfLength += 16;
419                     } else {
420                         halfLength += 8;
421                     }
422                     stopBandAtten = 84.;
423                     tbwCheat = 1.05;
424                 }
425             } else if (mFilterQuality == DYN_LOW_QUALITY) {
426                 // float or 16b coefficients
427                 useS32 = false;
428                 stopBandAtten = 80.;
429                 if (inSampleRate >= mSampleRate * 4) {
430                     halfLength = 24;
431                 } else if (inSampleRate >= mSampleRate * 2) {
432                     halfLength = 16;
433                 } else {
434                     halfLength = 8;
435                 }
436                 if (mSampleRate <= kVoiceDeviceSampleRate) {
437                     if (inSampleRate >= mSampleRate * 2) {
438                         halfLength += 8;
439                     }
440                     tbwCheat = 1.05;
441                 } else if (inSampleRate <= mSampleRate) {
442                     tbwCheat = 1.05;
443                 } else {
444                     tbwCheat = 1.03;
445                 }
446             } else { // DYN_MED_QUALITY
447                 // float or 16b coefficients
448                 // note: > 64 length filters with 16b coefs can have quantization noise problems
449                 useS32 = false;
450                 stopBandAtten = 84.;
451                 if (inSampleRate >= mSampleRate * 4) {
452                     halfLength = 32;
453                 } else if (inSampleRate >= mSampleRate * 2) {
454                     halfLength = 24;
455                 } else {
456                     halfLength = 16;
457                 }
458 
459                 if (mSampleRate <= kVoiceDeviceSampleRate) {
460                     if (inSampleRate >= mSampleRate * 2) {
461                         halfLength += 16;
462                     } else {
463                         halfLength += 8;
464                     }
465                     tbwCheat = 1.05;
466                 } else if (inSampleRate <= mSampleRate) {
467                     tbwCheat = 1.03;
468                 } else {
469                     tbwCheat = 1.01;
470                 }
471             }
472         }
473 
474         if (fcr > 0.) {
475             ALOGV("%s: mFilterQuality:%d inSampleRate:%d mSampleRate:%d halfLength:%d "
476                     "stopBandAtten:%lf fcr:%lf",
477                     __func__, mFilterQuality, inSampleRate, mSampleRate, halfLength,
478                     stopBandAtten, fcr);
479         } else {
480             ALOGV("%s: mFilterQuality:%d inSampleRate:%d mSampleRate:%d halfLength:%d "
481                     "stopBandAtten:%lf tbwCheat:%lf",
482                     __func__, mFilterQuality, inSampleRate, mSampleRate, halfLength,
483                     stopBandAtten, tbwCheat);
484         }
485 
486 
487         // determine the number of polyphases in the filterbank.
488         // for 16b, it is desirable to have 2^(16/2) = 256 phases.
489         // https://ccrma.stanford.edu/~jos/resample/Relation_Interpolation_Error_Quantization.html
490         //
491         // We are a bit more lax on this.
492 
493         int phases = mSampleRate / gcd(mSampleRate, inSampleRate);
494 
495         // TODO: Once dynamic sample rate change is an option, the code below
496         // should be modified to execute only when dynamic sample rate change is enabled.
497         //
498         // as above, #phases less than 63 is too few phases for accurate linear interpolation.
499         // we increase the phases to compensate, but more phases means more memory per
500         // filter and more time to compute the filter.
501         //
502         // if we know that the filter will be used for dynamic sample rate changes,
503         // that would allow us skip this part for fixed sample rate resamplers.
504         //
505         while (phases<63) {
506             phases *= 2; // this code only needed to support dynamic rate changes
507         }
508 
509         if (phases>=256) {  // too many phases, always interpolate
510             phases = 127;
511         }
512 
513         // create the filter
514         mConstants.set(phases, halfLength, inSampleRate, mSampleRate);
515         if (fcr > 0.) {
516             createKaiserFir(mConstants, stopBandAtten, fcr);
517         } else {
518             createKaiserFir(mConstants, stopBandAtten,
519                     inSampleRate, mSampleRate, tbwCheat);
520         }
521     } // End Kaiser filter
522 
523     // update phase and state based on the new filter.
524     const Constants& c(mConstants);
525     mInBuffer.resize(mChannelCount, c.mHalfNumCoefs);
526     const uint32_t phaseWrapLimit = c.mL << c.mShift;
527     // try to preserve as much of the phase fraction as possible for on-the-fly changes
528     mPhaseFraction = static_cast<unsigned long long>(mPhaseFraction)
529             * phaseWrapLimit / oldPhaseWrapLimit;
530     mPhaseFraction %= phaseWrapLimit; // should not do anything, but just in case.
531     mPhaseIncrement = static_cast<uint32_t>(static_cast<uint64_t>(phaseWrapLimit)
532             * inSampleRate / mSampleRate);
533 
534     // determine which resampler to use
535     // check if locked phase (works only if mPhaseIncrement has no "fractional phase bits")
536     int locked = (mPhaseIncrement << (sizeof(mPhaseIncrement)*8 - c.mShift)) == 0;
537     if (locked) {
538         mPhaseFraction = mPhaseFraction >> c.mShift << c.mShift; // remove fractional phase
539     }
540 
541     // stride is the minimum number of filter coefficients processed per loop iteration.
542     // We currently only allow a stride of 16 to match with SIMD processing.
543     // This means that the filter length must be a multiple of 16,
544     // or half the filter length (mHalfNumCoefs) must be a multiple of 8.
545     //
546     // Note: A stride of 2 is achieved with non-SIMD processing.
547     int stride = ((c.mHalfNumCoefs & 7) == 0) ? 16 : 2;
548     LOG_ALWAYS_FATAL_IF(stride < 16, "Resampler stride must be 16 or more");
549     LOG_ALWAYS_FATAL_IF(mChannelCount < 1 || mChannelCount > 8,
550             "Resampler channels(%d) must be between 1 to 8", mChannelCount);
551     // stride 16 (falls back to stride 2 for machines that do not support NEON)
552     if (locked) {
553         switch (mChannelCount) {
554         case 1:
555             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<1, true, 16>;
556             break;
557         case 2:
558             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<2, true, 16>;
559             break;
560         case 3:
561             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<3, true, 16>;
562             break;
563         case 4:
564             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<4, true, 16>;
565             break;
566         case 5:
567             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<5, true, 16>;
568             break;
569         case 6:
570             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<6, true, 16>;
571             break;
572         case 7:
573             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<7, true, 16>;
574             break;
575         case 8:
576             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<8, true, 16>;
577             break;
578         }
579     } else {
580         switch (mChannelCount) {
581         case 1:
582             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<1, false, 16>;
583             break;
584         case 2:
585             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<2, false, 16>;
586             break;
587         case 3:
588             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<3, false, 16>;
589             break;
590         case 4:
591             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<4, false, 16>;
592             break;
593         case 5:
594             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<5, false, 16>;
595             break;
596         case 6:
597             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<6, false, 16>;
598             break;
599         case 7:
600             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<7, false, 16>;
601             break;
602         case 8:
603             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<8, false, 16>;
604             break;
605         }
606     }
607 #ifdef DEBUG_RESAMPLER
608     printf("channels:%d  %s  stride:%d  %s  coef:%d  shift:%d\n",
609             mChannelCount, locked ? "locked" : "interpolated",
610             stride, useS32 ? "S32" : "S16", 2*c.mHalfNumCoefs, c.mShift);
611 #endif
612 }
613 
614 template<typename TC, typename TI, typename TO>
resample(int32_t * out,size_t outFrameCount,AudioBufferProvider * provider)615 size_t AudioResamplerDyn<TC, TI, TO>::resample(int32_t* out, size_t outFrameCount,
616             AudioBufferProvider* provider)
617 {
618     return (this->*mResampleFunc)(reinterpret_cast<TO*>(out), outFrameCount, provider);
619 }
620 
621 template<typename TC, typename TI, typename TO>
622 template<int CHANNELS, bool LOCKED, int STRIDE>
resample(TO * out,size_t outFrameCount,AudioBufferProvider * provider)623 size_t AudioResamplerDyn<TC, TI, TO>::resample(TO* out, size_t outFrameCount,
624         AudioBufferProvider* provider)
625 {
626     // TODO Mono -> Mono is not supported. OUTPUT_CHANNELS reflects minimum of stereo out.
627     const int OUTPUT_CHANNELS = (CHANNELS < 2) ? 2 : CHANNELS;
628     const Constants& c(mConstants);
629     const TC* const coefs = mConstants.mFirCoefs;
630     TI* impulse = mInBuffer.getImpulse();
631     size_t inputIndex = 0;
632     uint32_t phaseFraction = mPhaseFraction;
633     const uint32_t phaseIncrement = mPhaseIncrement;
634     size_t outputIndex = 0;
635     size_t outputSampleCount = outFrameCount * OUTPUT_CHANNELS;
636     const uint32_t phaseWrapLimit = c.mL << c.mShift;
637     size_t inFrameCount = (phaseIncrement * (uint64_t)outFrameCount + phaseFraction)
638             / phaseWrapLimit;
639     // sanity check that inFrameCount is in signed 32 bit integer range.
640     ALOG_ASSERT(0 <= inFrameCount && inFrameCount < (1U << 31));
641 
642     //ALOGV("inFrameCount:%d  outFrameCount:%d"
643     //        "  phaseIncrement:%u  phaseFraction:%u  phaseWrapLimit:%u",
644     //        inFrameCount, outFrameCount, phaseIncrement, phaseFraction, phaseWrapLimit);
645 
646     // NOTE: be very careful when modifying the code here. register
647     // pressure is very high and a small change might cause the compiler
648     // to generate far less efficient code.
649     // Always sanity check the result with objdump or test-resample.
650 
651     // the following logic is a bit convoluted to keep the main processing loop
652     // as tight as possible with register allocation.
653     while (outputIndex < outputSampleCount) {
654         //ALOGV("LOOP: inFrameCount:%d  outputIndex:%d  outFrameCount:%d"
655         //        "  phaseFraction:%u  phaseWrapLimit:%u",
656         //        inFrameCount, outputIndex, outFrameCount, phaseFraction, phaseWrapLimit);
657 
658         // check inputIndex overflow
659         ALOG_ASSERT(inputIndex <= mBuffer.frameCount, "inputIndex%zu > frameCount%zu",
660                 inputIndex, mBuffer.frameCount);
661         // Buffer is empty, fetch a new one if necessary (inFrameCount > 0).
662         // We may not fetch a new buffer if the existing data is sufficient.
663         while (mBuffer.frameCount == 0 && inFrameCount > 0) {
664             mBuffer.frameCount = inFrameCount;
665             provider->getNextBuffer(&mBuffer);
666             if (mBuffer.raw == NULL) {
667                 // We are either at the end of playback or in an underrun situation.
668                 // Reset buffer to prevent pop noise at the next buffer.
669                 mInBuffer.reset();
670                 goto resample_exit;
671             }
672             inFrameCount -= mBuffer.frameCount;
673             if (phaseFraction >= phaseWrapLimit) { // read in data
674                 mInBuffer.template readAdvance<CHANNELS>(
675                         impulse, c.mHalfNumCoefs,
676                         reinterpret_cast<TI*>(mBuffer.raw), inputIndex);
677                 inputIndex++;
678                 phaseFraction -= phaseWrapLimit;
679                 while (phaseFraction >= phaseWrapLimit) {
680                     if (inputIndex >= mBuffer.frameCount) {
681                         inputIndex = 0;
682                         provider->releaseBuffer(&mBuffer);
683                         break;
684                     }
685                     mInBuffer.template readAdvance<CHANNELS>(
686                             impulse, c.mHalfNumCoefs,
687                             reinterpret_cast<TI*>(mBuffer.raw), inputIndex);
688                     inputIndex++;
689                     phaseFraction -= phaseWrapLimit;
690                 }
691             }
692         }
693         const TI* const in = reinterpret_cast<const TI*>(mBuffer.raw);
694         const size_t frameCount = mBuffer.frameCount;
695         const int coefShift = c.mShift;
696         const int halfNumCoefs = c.mHalfNumCoefs;
697         const TO* const volumeSimd = mVolumeSimd;
698 
699         // main processing loop
700         while (CC_LIKELY(outputIndex < outputSampleCount)) {
701             // caution: fir() is inlined and may be large.
702             // output will be loaded with the appropriate values
703             //
704             // from the input samples in impulse[-halfNumCoefs+1]... impulse[halfNumCoefs]
705             // from the polyphase filter of (phaseFraction / phaseWrapLimit) in coefs.
706             //
707             //ALOGV("LOOP2: inFrameCount:%d  outputIndex:%d  outFrameCount:%d"
708             //        "  phaseFraction:%u  phaseWrapLimit:%u",
709             //        inFrameCount, outputIndex, outFrameCount, phaseFraction, phaseWrapLimit);
710             ALOG_ASSERT(phaseFraction < phaseWrapLimit);
711             fir<CHANNELS, LOCKED, STRIDE>(
712                     &out[outputIndex],
713                     phaseFraction, phaseWrapLimit,
714                     coefShift, halfNumCoefs, coefs,
715                     impulse, volumeSimd);
716 
717             outputIndex += OUTPUT_CHANNELS;
718 
719             phaseFraction += phaseIncrement;
720             while (phaseFraction >= phaseWrapLimit) {
721                 if (inputIndex >= frameCount) {
722                     goto done;  // need a new buffer
723                 }
724                 mInBuffer.template readAdvance<CHANNELS>(impulse, halfNumCoefs, in, inputIndex);
725                 inputIndex++;
726                 phaseFraction -= phaseWrapLimit;
727             }
728         }
729 done:
730         // We arrive here when we're finished or when the input buffer runs out.
731         // Regardless we need to release the input buffer if we've acquired it.
732         if (inputIndex > 0) {  // we've acquired a buffer (alternatively could check frameCount)
733             ALOG_ASSERT(inputIndex == frameCount, "inputIndex(%zu) != frameCount(%zu)",
734                     inputIndex, frameCount);  // must have been fully read.
735             inputIndex = 0;
736             provider->releaseBuffer(&mBuffer);
737             ALOG_ASSERT(mBuffer.frameCount == 0);
738         }
739     }
740 
741 resample_exit:
742     // inputIndex must be zero in all three cases:
743     // (1) the buffer never was been acquired; (2) the buffer was
744     // released at "done:"; or (3) getNextBuffer() failed.
745     ALOG_ASSERT(inputIndex == 0, "Releasing: inputindex:%zu frameCount:%zu  phaseFraction:%u",
746             inputIndex, mBuffer.frameCount, phaseFraction);
747     ALOG_ASSERT(mBuffer.frameCount == 0); // there must be no frames in the buffer
748     mInBuffer.setImpulse(impulse);
749     mPhaseFraction = phaseFraction;
750     return outputIndex / OUTPUT_CHANNELS;
751 }
752 
753 /* instantiate templates used by AudioResampler::create */
754 template class AudioResamplerDyn<float, float, float>;
755 template class AudioResamplerDyn<int16_t, int16_t, int32_t>;
756 template class AudioResamplerDyn<int32_t, int16_t, int32_t>;
757 
758 // ----------------------------------------------------------------------------
759 } // namespace android
760