1 /*
2 **
3 ** Copyright 2012, The Android Open Source Project
4 **
5 ** Licensed under the Apache License, Version 2.0 (the "License");
6 ** you may not use this file except in compliance with the License.
7 ** You may obtain a copy of the License at
8 **
9 **     http://www.apache.org/licenses/LICENSE-2.0
10 **
11 ** Unless required by applicable law or agreed to in writing, software
12 ** distributed under the License is distributed on an "AS IS" BASIS,
13 ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 ** See the License for the specific language governing permissions and
15 ** limitations under the License.
16 */
17 
18 
19 #define LOG_TAG "AudioFlinger"
20 //#define LOG_NDEBUG 0
21 #define ATRACE_TAG ATRACE_TAG_AUDIO
22 
23 #include "Configuration.h"
24 #include <math.h>
25 #include <fcntl.h>
26 #include <memory>
27 #include <sstream>
28 #include <string>
29 #include <linux/futex.h>
30 #include <sys/stat.h>
31 #include <sys/syscall.h>
32 #include <cutils/properties.h>
33 #include <media/AudioContainers.h>
34 #include <media/AudioDeviceTypeAddr.h>
35 #include <media/AudioParameter.h>
36 #include <media/AudioResamplerPublic.h>
37 #include <media/RecordBufferConverter.h>
38 #include <media/TypeConverter.h>
39 #include <utils/Log.h>
40 #include <utils/Trace.h>
41 
42 #include <private/media/AudioTrackShared.h>
43 #include <private/android_filesystem_config.h>
44 #include <audio_utils/Balance.h>
45 #include <audio_utils/Metadata.h>
46 #include <audio_utils/channels.h>
47 #include <audio_utils/mono_blend.h>
48 #include <audio_utils/primitives.h>
49 #include <audio_utils/format.h>
50 #include <audio_utils/minifloat.h>
51 #include <audio_utils/safe_math.h>
52 #include <system/audio_effects/effect_ns.h>
53 #include <system/audio_effects/effect_aec.h>
54 #include <system/audio.h>
55 
56 // NBAIO implementations
57 #include <media/nbaio/AudioStreamInSource.h>
58 #include <media/nbaio/AudioStreamOutSink.h>
59 #include <media/nbaio/MonoPipe.h>
60 #include <media/nbaio/MonoPipeReader.h>
61 #include <media/nbaio/Pipe.h>
62 #include <media/nbaio/PipeReader.h>
63 #include <media/nbaio/SourceAudioBufferProvider.h>
64 #include <mediautils/BatteryNotifier.h>
65 
66 #include <audiomanager/AudioManager.h>
67 #include <powermanager/PowerManager.h>
68 
69 #include <media/audiohal/EffectsFactoryHalInterface.h>
70 #include <media/audiohal/StreamHalInterface.h>
71 
72 #include "AudioFlinger.h"
73 #include "FastMixer.h"
74 #include "FastCapture.h"
75 #include <mediautils/SchedulingPolicyService.h>
76 #include <mediautils/ServiceUtilities.h>
77 
78 #ifdef ADD_BATTERY_DATA
79 #include <media/IMediaPlayerService.h>
80 #include <media/IMediaDeathNotifier.h>
81 #endif
82 
83 #ifdef DEBUG_CPU_USAGE
84 #include <audio_utils/Statistics.h>
85 #include <cpustats/ThreadCpuUsage.h>
86 #endif
87 
88 #include "AutoPark.h"
89 
90 #include <pthread.h>
91 #include "TypedLogger.h"
92 
93 // ----------------------------------------------------------------------------
94 
95 // Note: the following macro is used for extremely verbose logging message.  In
96 // order to run with ALOG_ASSERT turned on, we need to have LOG_NDEBUG set to
97 // 0; but one side effect of this is to turn all LOGV's as well.  Some messages
98 // are so verbose that we want to suppress them even when we have ALOG_ASSERT
99 // turned on.  Do not uncomment the #def below unless you really know what you
100 // are doing and want to see all of the extremely verbose messages.
101 //#define VERY_VERY_VERBOSE_LOGGING
102 #ifdef VERY_VERY_VERBOSE_LOGGING
103 #define ALOGVV ALOGV
104 #else
105 #define ALOGVV(a...) do { } while(0)
106 #endif
107 
108 // TODO: Move these macro/inlines to a header file.
109 #define max(a, b) ((a) > (b) ? (a) : (b))
110 template <typename T>
min(const T & a,const T & b)111 static inline T min(const T& a, const T& b)
112 {
113     return a < b ? a : b;
114 }
115 
116 namespace android {
117 
118 // retry counts for buffer fill timeout
119 // 50 * ~20msecs = 1 second
120 static const int8_t kMaxTrackRetries = 50;
121 static const int8_t kMaxTrackStartupRetries = 50;
122 // allow less retry attempts on direct output thread.
123 // direct outputs can be a scarce resource in audio hardware and should
124 // be released as quickly as possible.
125 static const int8_t kMaxTrackRetriesDirect = 2;
126 
127 
128 
129 // don't warn about blocked writes or record buffer overflows more often than this
130 static const nsecs_t kWarningThrottleNs = seconds(5);
131 
132 // RecordThread loop sleep time upon application overrun or audio HAL read error
133 static const int kRecordThreadSleepUs = 5000;
134 
135 // maximum time to wait in sendConfigEvent_l() for a status to be received
136 static const nsecs_t kConfigEventTimeoutNs = seconds(2);
137 
138 // minimum sleep time for the mixer thread loop when tracks are active but in underrun
139 static const uint32_t kMinThreadSleepTimeUs = 5000;
140 // maximum divider applied to the active sleep time in the mixer thread loop
141 static const uint32_t kMaxThreadSleepTimeShift = 2;
142 
143 // minimum normal sink buffer size, expressed in milliseconds rather than frames
144 // FIXME This should be based on experimentally observed scheduling jitter
145 static const uint32_t kMinNormalSinkBufferSizeMs = 20;
146 // maximum normal sink buffer size
147 static const uint32_t kMaxNormalSinkBufferSizeMs = 24;
148 
149 // minimum capture buffer size in milliseconds to _not_ need a fast capture thread
150 // FIXME This should be based on experimentally observed scheduling jitter
151 static const uint32_t kMinNormalCaptureBufferSizeMs = 12;
152 
153 // Offloaded output thread standby delay: allows track transition without going to standby
154 static const nsecs_t kOffloadStandbyDelayNs = seconds(1);
155 
156 // Direct output thread minimum sleep time in idle or active(underrun) state
157 static const nsecs_t kDirectMinSleepTimeUs = 10000;
158 
159 // The universal constant for ubiquitous 20ms value. The value of 20ms seems to provide a good
160 // balance between power consumption and latency, and allows threads to be scheduled reliably
161 // by the CFS scheduler.
162 // FIXME Express other hardcoded references to 20ms with references to this constant and move
163 // it appropriately.
164 #define FMS_20 20
165 
166 // Whether to use fast mixer
167 static const enum {
168     FastMixer_Never,    // never initialize or use: for debugging only
169     FastMixer_Always,   // always initialize and use, even if not needed: for debugging only
170                         // normal mixer multiplier is 1
171     FastMixer_Static,   // initialize if needed, then use all the time if initialized,
172                         // multiplier is calculated based on min & max normal mixer buffer size
173     FastMixer_Dynamic,  // initialize if needed, then use dynamically depending on track load,
174                         // multiplier is calculated based on min & max normal mixer buffer size
175     // FIXME for FastMixer_Dynamic:
176     //  Supporting this option will require fixing HALs that can't handle large writes.
177     //  For example, one HAL implementation returns an error from a large write,
178     //  and another HAL implementation corrupts memory, possibly in the sample rate converter.
179     //  We could either fix the HAL implementations, or provide a wrapper that breaks
180     //  up large writes into smaller ones, and the wrapper would need to deal with scheduler.
181 } kUseFastMixer = FastMixer_Static;
182 
183 // Whether to use fast capture
184 static const enum {
185     FastCapture_Never,  // never initialize or use: for debugging only
186     FastCapture_Always, // always initialize and use, even if not needed: for debugging only
187     FastCapture_Static, // initialize if needed, then use all the time if initialized
188 } kUseFastCapture = FastCapture_Static;
189 
190 // Priorities for requestPriority
191 static const int kPriorityAudioApp = 2;
192 static const int kPriorityFastMixer = 3;
193 static const int kPriorityFastCapture = 3;
194 
195 // IAudioFlinger::createTrack() has an in/out parameter 'pFrameCount' for the total size of the
196 // track buffer in shared memory.  Zero on input means to use a default value.  For fast tracks,
197 // AudioFlinger derives the default from HAL buffer size and 'fast track multiplier'.
198 
199 // This is the default value, if not specified by property.
200 static const int kFastTrackMultiplier = 2;
201 
202 // The minimum and maximum allowed values
203 static const int kFastTrackMultiplierMin = 1;
204 static const int kFastTrackMultiplierMax = 2;
205 
206 // The actual value to use, which can be specified per-device via property af.fast_track_multiplier.
207 static int sFastTrackMultiplier = kFastTrackMultiplier;
208 
209 // See Thread::readOnlyHeap().
210 // Initially this heap is used to allocate client buffers for "fast" AudioRecord.
211 // Eventually it will be the single buffer that FastCapture writes into via HAL read(),
212 // and that all "fast" AudioRecord clients read from.  In either case, the size can be small.
213 static const size_t kRecordThreadReadOnlyHeapSize = 0xD000;
214 
215 // ----------------------------------------------------------------------------
216 
217 // TODO: move all toString helpers to audio.h
218 // under  #ifdef __cplusplus #endif
patchSinksToString(const struct audio_patch * patch)219 static std::string patchSinksToString(const struct audio_patch *patch)
220 {
221     std::stringstream ss;
222     for (size_t i = 0; i < patch->num_sinks; ++i) {
223         if (i > 0) {
224             ss << "|";
225         }
226         ss << "(" << toString(patch->sinks[i].ext.device.type)
227             << ", " << patch->sinks[i].ext.device.address << ")";
228     }
229     return ss.str();
230 }
231 
patchSourcesToString(const struct audio_patch * patch)232 static std::string patchSourcesToString(const struct audio_patch *patch)
233 {
234     std::stringstream ss;
235     for (size_t i = 0; i < patch->num_sources; ++i) {
236         if (i > 0) {
237             ss << "|";
238         }
239         ss << "(" << toString(patch->sources[i].ext.device.type)
240             << ", " << patch->sources[i].ext.device.address << ")";
241     }
242     return ss.str();
243 }
244 
245 static pthread_once_t sFastTrackMultiplierOnce = PTHREAD_ONCE_INIT;
246 
sFastTrackMultiplierInit()247 static void sFastTrackMultiplierInit()
248 {
249     char value[PROPERTY_VALUE_MAX];
250     if (property_get("af.fast_track_multiplier", value, NULL) > 0) {
251         char *endptr;
252         unsigned long ul = strtoul(value, &endptr, 0);
253         if (*endptr == '\0' && kFastTrackMultiplierMin <= ul && ul <= kFastTrackMultiplierMax) {
254             sFastTrackMultiplier = (int) ul;
255         }
256     }
257 }
258 
259 // ----------------------------------------------------------------------------
260 
261 #ifdef ADD_BATTERY_DATA
262 // To collect the amplifier usage
addBatteryData(uint32_t params)263 static void addBatteryData(uint32_t params) {
264     sp<IMediaPlayerService> service = IMediaDeathNotifier::getMediaPlayerService();
265     if (service == NULL) {
266         // it already logged
267         return;
268     }
269 
270     service->addBatteryData(params);
271 }
272 #endif
273 
274 // Track the CLOCK_BOOTTIME versus CLOCK_MONOTONIC timebase offset
275 struct {
276     // call when you acquire a partial wakelock
acquireandroid::__anonf7c4eeac0308277     void acquire(const sp<IBinder> &wakeLockToken) {
278         pthread_mutex_lock(&mLock);
279         if (wakeLockToken.get() == nullptr) {
280             adjustTimebaseOffset(&mBoottimeOffset, ExtendedTimestamp::TIMEBASE_BOOTTIME);
281         } else {
282             if (mCount == 0) {
283                 adjustTimebaseOffset(&mBoottimeOffset, ExtendedTimestamp::TIMEBASE_BOOTTIME);
284             }
285             ++mCount;
286         }
287         pthread_mutex_unlock(&mLock);
288     }
289 
290     // call when you release a partial wakelock.
releaseandroid::__anonf7c4eeac0308291     void release(const sp<IBinder> &wakeLockToken) {
292         if (wakeLockToken.get() == nullptr) {
293             return;
294         }
295         pthread_mutex_lock(&mLock);
296         if (--mCount < 0) {
297             ALOGE("negative wakelock count");
298             mCount = 0;
299         }
300         pthread_mutex_unlock(&mLock);
301     }
302 
303     // retrieves the boottime timebase offset from monotonic.
getBoottimeOffsetandroid::__anonf7c4eeac0308304     int64_t getBoottimeOffset() {
305         pthread_mutex_lock(&mLock);
306         int64_t boottimeOffset = mBoottimeOffset;
307         pthread_mutex_unlock(&mLock);
308         return boottimeOffset;
309     }
310 
311     // Adjusts the timebase offset between TIMEBASE_MONOTONIC
312     // and the selected timebase.
313     // Currently only TIMEBASE_BOOTTIME is allowed.
314     //
315     // This only needs to be called upon acquiring the first partial wakelock
316     // after all other partial wakelocks are released.
317     //
318     // We do an empirical measurement of the offset rather than parsing
319     // /proc/timer_list since the latter is not a formal kernel ABI.
adjustTimebaseOffsetandroid::__anonf7c4eeac0308320     static void adjustTimebaseOffset(int64_t *offset, ExtendedTimestamp::Timebase timebase) {
321         int clockbase;
322         switch (timebase) {
323         case ExtendedTimestamp::TIMEBASE_BOOTTIME:
324             clockbase = SYSTEM_TIME_BOOTTIME;
325             break;
326         default:
327             LOG_ALWAYS_FATAL("invalid timebase %d", timebase);
328             break;
329         }
330         // try three times to get the clock offset, choose the one
331         // with the minimum gap in measurements.
332         const int tries = 3;
333         nsecs_t bestGap, measured;
334         for (int i = 0; i < tries; ++i) {
335             const nsecs_t tmono = systemTime(SYSTEM_TIME_MONOTONIC);
336             const nsecs_t tbase = systemTime(clockbase);
337             const nsecs_t tmono2 = systemTime(SYSTEM_TIME_MONOTONIC);
338             const nsecs_t gap = tmono2 - tmono;
339             if (i == 0 || gap < bestGap) {
340                 bestGap = gap;
341                 measured = tbase - ((tmono + tmono2) >> 1);
342             }
343         }
344 
345         // to avoid micro-adjusting, we don't change the timebase
346         // unless it is significantly different.
347         //
348         // Assumption: It probably takes more than toleranceNs to
349         // suspend and resume the device.
350         static int64_t toleranceNs = 10000; // 10 us
351         if (llabs(*offset - measured) > toleranceNs) {
352             ALOGV("Adjusting timebase offset old: %lld  new: %lld",
353                     (long long)*offset, (long long)measured);
354             *offset = measured;
355         }
356     }
357 
358     pthread_mutex_t mLock;
359     int32_t mCount;
360     int64_t mBoottimeOffset;
361 } gBoottime = { PTHREAD_MUTEX_INITIALIZER, 0, 0 }; // static, so use POD initialization
362 
363 // ----------------------------------------------------------------------------
364 //      CPU Stats
365 // ----------------------------------------------------------------------------
366 
367 class CpuStats {
368 public:
369     CpuStats();
370     void sample(const String8 &title);
371 #ifdef DEBUG_CPU_USAGE
372 private:
373     ThreadCpuUsage mCpuUsage;           // instantaneous thread CPU usage in wall clock ns
374     audio_utils::Statistics<double> mWcStats; // statistics on thread CPU usage in wall clock ns
375 
376     audio_utils::Statistics<double> mHzStats; // statistics on thread CPU usage in cycles
377 
378     int mCpuNum;                        // thread's current CPU number
379     int mCpukHz;                        // frequency of thread's current CPU in kHz
380 #endif
381 };
382 
CpuStats()383 CpuStats::CpuStats()
384 #ifdef DEBUG_CPU_USAGE
385     : mCpuNum(-1), mCpukHz(-1)
386 #endif
387 {
388 }
389 
sample(const String8 & title __unused)390 void CpuStats::sample(const String8 &title
391 #ifndef DEBUG_CPU_USAGE
392                 __unused
393 #endif
394         ) {
395 #ifdef DEBUG_CPU_USAGE
396     // get current thread's delta CPU time in wall clock ns
397     double wcNs;
398     bool valid = mCpuUsage.sampleAndEnable(wcNs);
399 
400     // record sample for wall clock statistics
401     if (valid) {
402         mWcStats.add(wcNs);
403     }
404 
405     // get the current CPU number
406     int cpuNum = sched_getcpu();
407 
408     // get the current CPU frequency in kHz
409     int cpukHz = mCpuUsage.getCpukHz(cpuNum);
410 
411     // check if either CPU number or frequency changed
412     if (cpuNum != mCpuNum || cpukHz != mCpukHz) {
413         mCpuNum = cpuNum;
414         mCpukHz = cpukHz;
415         // ignore sample for purposes of cycles
416         valid = false;
417     }
418 
419     // if no change in CPU number or frequency, then record sample for cycle statistics
420     if (valid && mCpukHz > 0) {
421         const double cycles = wcNs * cpukHz * 0.000001;
422         mHzStats.add(cycles);
423     }
424 
425     const unsigned n = mWcStats.getN();
426     // mCpuUsage.elapsed() is expensive, so don't call it every loop
427     if ((n & 127) == 1) {
428         const long long elapsed = mCpuUsage.elapsed();
429         if (elapsed >= DEBUG_CPU_USAGE * 1000000000LL) {
430             const double perLoop = elapsed / (double) n;
431             const double perLoop100 = perLoop * 0.01;
432             const double perLoop1k = perLoop * 0.001;
433             const double mean = mWcStats.getMean();
434             const double stddev = mWcStats.getStdDev();
435             const double minimum = mWcStats.getMin();
436             const double maximum = mWcStats.getMax();
437             const double meanCycles = mHzStats.getMean();
438             const double stddevCycles = mHzStats.getStdDev();
439             const double minCycles = mHzStats.getMin();
440             const double maxCycles = mHzStats.getMax();
441             mCpuUsage.resetElapsed();
442             mWcStats.reset();
443             mHzStats.reset();
444             ALOGD("CPU usage for %s over past %.1f secs\n"
445                 "  (%u mixer loops at %.1f mean ms per loop):\n"
446                 "  us per mix loop: mean=%.0f stddev=%.0f min=%.0f max=%.0f\n"
447                 "  %% of wall: mean=%.1f stddev=%.1f min=%.1f max=%.1f\n"
448                 "  MHz: mean=%.1f, stddev=%.1f, min=%.1f max=%.1f",
449                     title.string(),
450                     elapsed * .000000001, n, perLoop * .000001,
451                     mean * .001,
452                     stddev * .001,
453                     minimum * .001,
454                     maximum * .001,
455                     mean / perLoop100,
456                     stddev / perLoop100,
457                     minimum / perLoop100,
458                     maximum / perLoop100,
459                     meanCycles / perLoop1k,
460                     stddevCycles / perLoop1k,
461                     minCycles / perLoop1k,
462                     maxCycles / perLoop1k);
463 
464         }
465     }
466 #endif
467 };
468 
469 // ----------------------------------------------------------------------------
470 //      ThreadBase
471 // ----------------------------------------------------------------------------
472 
473 // static
threadTypeToString(AudioFlinger::ThreadBase::type_t type)474 const char *AudioFlinger::ThreadBase::threadTypeToString(AudioFlinger::ThreadBase::type_t type)
475 {
476     switch (type) {
477     case MIXER:
478         return "MIXER";
479     case DIRECT:
480         return "DIRECT";
481     case DUPLICATING:
482         return "DUPLICATING";
483     case RECORD:
484         return "RECORD";
485     case OFFLOAD:
486         return "OFFLOAD";
487     case MMAP_PLAYBACK:
488         return "MMAP_PLAYBACK";
489     case MMAP_CAPTURE:
490         return "MMAP_CAPTURE";
491     default:
492         return "unknown";
493     }
494 }
495 
ThreadBase(const sp<AudioFlinger> & audioFlinger,audio_io_handle_t id,type_t type,bool systemReady,bool isOut)496 AudioFlinger::ThreadBase::ThreadBase(const sp<AudioFlinger>& audioFlinger, audio_io_handle_t id,
497         type_t type, bool systemReady, bool isOut)
498     :   Thread(false /*canCallJava*/),
499         mType(type),
500         mAudioFlinger(audioFlinger),
501         mThreadMetrics(std::string(AMEDIAMETRICS_KEY_PREFIX_AUDIO_THREAD) + std::to_string(id),
502                isOut),
503         mIsOut(isOut),
504         // mSampleRate, mFrameCount, mChannelMask, mChannelCount, mFrameSize, mFormat, mBufferSize
505         // are set by PlaybackThread::readOutputParameters_l() or
506         // RecordThread::readInputParameters_l()
507         //FIXME: mStandby should be true here. Is this some kind of hack?
508         mStandby(false),
509         mAudioSource(AUDIO_SOURCE_DEFAULT), mId(id),
510         // mName will be set by concrete (non-virtual) subclass
511         mDeathRecipient(new PMDeathRecipient(this)),
512         mSystemReady(systemReady),
513         mSignalPending(false)
514 {
515     mThreadMetrics.logConstructor(getpid(), threadTypeToString(type), id);
516     memset(&mPatch, 0, sizeof(struct audio_patch));
517 }
518 
~ThreadBase()519 AudioFlinger::ThreadBase::~ThreadBase()
520 {
521     // mConfigEvents should be empty, but just in case it isn't, free the memory it owns
522     mConfigEvents.clear();
523 
524     // do not lock the mutex in destructor
525     releaseWakeLock_l();
526     if (mPowerManager != 0) {
527         sp<IBinder> binder = IInterface::asBinder(mPowerManager);
528         binder->unlinkToDeath(mDeathRecipient);
529     }
530 
531     sendStatistics(true /* force */);
532 }
533 
readyToRun()534 status_t AudioFlinger::ThreadBase::readyToRun()
535 {
536     status_t status = initCheck();
537     if (status == NO_ERROR) {
538         ALOGI("AudioFlinger's thread %p tid=%d ready to run", this, getTid());
539     } else {
540         ALOGE("No working audio driver found.");
541     }
542     return status;
543 }
544 
exit()545 void AudioFlinger::ThreadBase::exit()
546 {
547     ALOGV("ThreadBase::exit");
548     // do any cleanup required for exit to succeed
549     preExit();
550     {
551         // This lock prevents the following race in thread (uniprocessor for illustration):
552         //  if (!exitPending()) {
553         //      // context switch from here to exit()
554         //      // exit() calls requestExit(), what exitPending() observes
555         //      // exit() calls signal(), which is dropped since no waiters
556         //      // context switch back from exit() to here
557         //      mWaitWorkCV.wait(...);
558         //      // now thread is hung
559         //  }
560         AutoMutex lock(mLock);
561         requestExit();
562         mWaitWorkCV.broadcast();
563     }
564     // When Thread::requestExitAndWait is made virtual and this method is renamed to
565     // "virtual status_t requestExitAndWait()", replace by "return Thread::requestExitAndWait();"
566     requestExitAndWait();
567 }
568 
setParameters(const String8 & keyValuePairs)569 status_t AudioFlinger::ThreadBase::setParameters(const String8& keyValuePairs)
570 {
571     ALOGV("ThreadBase::setParameters() %s", keyValuePairs.string());
572     Mutex::Autolock _l(mLock);
573 
574     return sendSetParameterConfigEvent_l(keyValuePairs);
575 }
576 
577 // sendConfigEvent_l() must be called with ThreadBase::mLock held
578 // Can temporarily release the lock if waiting for a reply from processConfigEvents_l().
sendConfigEvent_l(sp<ConfigEvent> & event)579 status_t AudioFlinger::ThreadBase::sendConfigEvent_l(sp<ConfigEvent>& event)
580 {
581     status_t status = NO_ERROR;
582 
583     if (event->mRequiresSystemReady && !mSystemReady) {
584         event->mWaitStatus = false;
585         mPendingConfigEvents.add(event);
586         return status;
587     }
588     mConfigEvents.add(event);
589     ALOGV("sendConfigEvent_l() num events %zu event %d", mConfigEvents.size(), event->mType);
590     mWaitWorkCV.signal();
591     mLock.unlock();
592     {
593         Mutex::Autolock _l(event->mLock);
594         while (event->mWaitStatus) {
595             if (event->mCond.waitRelative(event->mLock, kConfigEventTimeoutNs) != NO_ERROR) {
596                 event->mStatus = TIMED_OUT;
597                 event->mWaitStatus = false;
598             }
599         }
600         status = event->mStatus;
601     }
602     mLock.lock();
603     return status;
604 }
605 
sendIoConfigEvent(audio_io_config_event event,pid_t pid,audio_port_handle_t portId)606 void AudioFlinger::ThreadBase::sendIoConfigEvent(audio_io_config_event event, pid_t pid,
607                                                  audio_port_handle_t portId)
608 {
609     Mutex::Autolock _l(mLock);
610     sendIoConfigEvent_l(event, pid, portId);
611 }
612 
613 // sendIoConfigEvent_l() must be called with ThreadBase::mLock held
sendIoConfigEvent_l(audio_io_config_event event,pid_t pid,audio_port_handle_t portId)614 void AudioFlinger::ThreadBase::sendIoConfigEvent_l(audio_io_config_event event, pid_t pid,
615                                                    audio_port_handle_t portId)
616 {
617     // The audio statistics history is exponentially weighted to forget events
618     // about five or more seconds in the past.  In order to have
619     // crisper statistics for mediametrics, we reset the statistics on
620     // an IoConfigEvent, to reflect different properties for a new device.
621     mIoJitterMs.reset();
622     mLatencyMs.reset();
623     mProcessTimeMs.reset();
624     mTimestampVerifier.discontinuity();
625 
626     sp<ConfigEvent> configEvent = (ConfigEvent *)new IoConfigEvent(event, pid, portId);
627     sendConfigEvent_l(configEvent);
628 }
629 
sendPrioConfigEvent(pid_t pid,pid_t tid,int32_t prio,bool forApp)630 void AudioFlinger::ThreadBase::sendPrioConfigEvent(pid_t pid, pid_t tid, int32_t prio, bool forApp)
631 {
632     Mutex::Autolock _l(mLock);
633     sendPrioConfigEvent_l(pid, tid, prio, forApp);
634 }
635 
636 // sendPrioConfigEvent_l() must be called with ThreadBase::mLock held
sendPrioConfigEvent_l(pid_t pid,pid_t tid,int32_t prio,bool forApp)637 void AudioFlinger::ThreadBase::sendPrioConfigEvent_l(
638         pid_t pid, pid_t tid, int32_t prio, bool forApp)
639 {
640     sp<ConfigEvent> configEvent = (ConfigEvent *)new PrioConfigEvent(pid, tid, prio, forApp);
641     sendConfigEvent_l(configEvent);
642 }
643 
644 // sendSetParameterConfigEvent_l() must be called with ThreadBase::mLock held
sendSetParameterConfigEvent_l(const String8 & keyValuePair)645 status_t AudioFlinger::ThreadBase::sendSetParameterConfigEvent_l(const String8& keyValuePair)
646 {
647     sp<ConfigEvent> configEvent;
648     AudioParameter param(keyValuePair);
649     int value;
650     if (param.getInt(String8(AudioParameter::keyMonoOutput), value) == NO_ERROR) {
651         setMasterMono_l(value != 0);
652         if (param.size() == 1) {
653             return NO_ERROR; // should be a solo parameter - we don't pass down
654         }
655         param.remove(String8(AudioParameter::keyMonoOutput));
656         configEvent = new SetParameterConfigEvent(param.toString());
657     } else {
658         configEvent = new SetParameterConfigEvent(keyValuePair);
659     }
660     return sendConfigEvent_l(configEvent);
661 }
662 
sendCreateAudioPatchConfigEvent(const struct audio_patch * patch,audio_patch_handle_t * handle)663 status_t AudioFlinger::ThreadBase::sendCreateAudioPatchConfigEvent(
664                                                         const struct audio_patch *patch,
665                                                         audio_patch_handle_t *handle)
666 {
667     Mutex::Autolock _l(mLock);
668     sp<ConfigEvent> configEvent = (ConfigEvent *)new CreateAudioPatchConfigEvent(*patch, *handle);
669     status_t status = sendConfigEvent_l(configEvent);
670     if (status == NO_ERROR) {
671         CreateAudioPatchConfigEventData *data =
672                                         (CreateAudioPatchConfigEventData *)configEvent->mData.get();
673         *handle = data->mHandle;
674     }
675     return status;
676 }
677 
sendReleaseAudioPatchConfigEvent(const audio_patch_handle_t handle)678 status_t AudioFlinger::ThreadBase::sendReleaseAudioPatchConfigEvent(
679                                                                 const audio_patch_handle_t handle)
680 {
681     Mutex::Autolock _l(mLock);
682     sp<ConfigEvent> configEvent = (ConfigEvent *)new ReleaseAudioPatchConfigEvent(handle);
683     return sendConfigEvent_l(configEvent);
684 }
685 
sendUpdateOutDeviceConfigEvent(const DeviceDescriptorBaseVector & outDevices)686 status_t AudioFlinger::ThreadBase::sendUpdateOutDeviceConfigEvent(
687         const DeviceDescriptorBaseVector& outDevices)
688 {
689     if (type() != RECORD) {
690         // The update out device operation is only for record thread.
691         return INVALID_OPERATION;
692     }
693     Mutex::Autolock _l(mLock);
694     sp<ConfigEvent> configEvent = (ConfigEvent *)new UpdateOutDevicesConfigEvent(outDevices);
695     return sendConfigEvent_l(configEvent);
696 }
697 
698 
699 // post condition: mConfigEvents.isEmpty()
processConfigEvents_l()700 void AudioFlinger::ThreadBase::processConfigEvents_l()
701 {
702     bool configChanged = false;
703 
704     while (!mConfigEvents.isEmpty()) {
705         ALOGV("processConfigEvents_l() remaining events %zu", mConfigEvents.size());
706         sp<ConfigEvent> event = mConfigEvents[0];
707         mConfigEvents.removeAt(0);
708         switch (event->mType) {
709         case CFG_EVENT_PRIO: {
710             PrioConfigEventData *data = (PrioConfigEventData *)event->mData.get();
711             // FIXME Need to understand why this has to be done asynchronously
712             int err = requestPriority(data->mPid, data->mTid, data->mPrio, data->mForApp,
713                     true /*asynchronous*/);
714             if (err != 0) {
715                 ALOGW("Policy SCHED_FIFO priority %d is unavailable for pid %d tid %d; error %d",
716                       data->mPrio, data->mPid, data->mTid, err);
717             }
718         } break;
719         case CFG_EVENT_IO: {
720             IoConfigEventData *data = (IoConfigEventData *)event->mData.get();
721             ioConfigChanged(data->mEvent, data->mPid, data->mPortId);
722         } break;
723         case CFG_EVENT_SET_PARAMETER: {
724             SetParameterConfigEventData *data = (SetParameterConfigEventData *)event->mData.get();
725             if (checkForNewParameter_l(data->mKeyValuePairs, event->mStatus)) {
726                 configChanged = true;
727                 mLocalLog.log("CFG_EVENT_SET_PARAMETER: (%s) configuration changed",
728                         data->mKeyValuePairs.string());
729             }
730         } break;
731         case CFG_EVENT_CREATE_AUDIO_PATCH: {
732             const DeviceTypeSet oldDevices = getDeviceTypes();
733             CreateAudioPatchConfigEventData *data =
734                                             (CreateAudioPatchConfigEventData *)event->mData.get();
735             event->mStatus = createAudioPatch_l(&data->mPatch, &data->mHandle);
736             const DeviceTypeSet newDevices = getDeviceTypes();
737             mLocalLog.log("CFG_EVENT_CREATE_AUDIO_PATCH: old device %s (%s) new device %s (%s)",
738                     dumpDeviceTypes(oldDevices).c_str(), toString(oldDevices).c_str(),
739                     dumpDeviceTypes(newDevices).c_str(), toString(newDevices).c_str());
740         } break;
741         case CFG_EVENT_RELEASE_AUDIO_PATCH: {
742             const DeviceTypeSet oldDevices = getDeviceTypes();
743             ReleaseAudioPatchConfigEventData *data =
744                                             (ReleaseAudioPatchConfigEventData *)event->mData.get();
745             event->mStatus = releaseAudioPatch_l(data->mHandle);
746             const DeviceTypeSet newDevices = getDeviceTypes();
747             mLocalLog.log("CFG_EVENT_RELEASE_AUDIO_PATCH: old device %s (%s) new device %s (%s)",
748                     dumpDeviceTypes(oldDevices).c_str(), toString(oldDevices).c_str(),
749                     dumpDeviceTypes(newDevices).c_str(), toString(newDevices).c_str());
750         } break;
751         case CFG_EVENT_UPDATE_OUT_DEVICE: {
752             UpdateOutDevicesConfigEventData *data =
753                     (UpdateOutDevicesConfigEventData *)event->mData.get();
754             updateOutDevices(data->mOutDevices);
755         } break;
756         default:
757             ALOG_ASSERT(false, "processConfigEvents_l() unknown event type %d", event->mType);
758             break;
759         }
760         {
761             Mutex::Autolock _l(event->mLock);
762             if (event->mWaitStatus) {
763                 event->mWaitStatus = false;
764                 event->mCond.signal();
765             }
766         }
767         ALOGV_IF(mConfigEvents.isEmpty(), "processConfigEvents_l() DONE thread %p", this);
768     }
769 
770     if (configChanged) {
771         cacheParameters_l();
772     }
773 }
774 
channelMaskToString(audio_channel_mask_t mask,bool output)775 String8 channelMaskToString(audio_channel_mask_t mask, bool output) {
776     String8 s;
777     const audio_channel_representation_t representation =
778             audio_channel_mask_get_representation(mask);
779 
780     switch (representation) {
781     // Travel all single bit channel mask to convert channel mask to string.
782     case AUDIO_CHANNEL_REPRESENTATION_POSITION: {
783         if (output) {
784             if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT) s.append("front-left, ");
785             if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT) s.append("front-right, ");
786             if (mask & AUDIO_CHANNEL_OUT_FRONT_CENTER) s.append("front-center, ");
787             if (mask & AUDIO_CHANNEL_OUT_LOW_FREQUENCY) s.append("low freq, ");
788             if (mask & AUDIO_CHANNEL_OUT_BACK_LEFT) s.append("back-left, ");
789             if (mask & AUDIO_CHANNEL_OUT_BACK_RIGHT) s.append("back-right, ");
790             if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT_OF_CENTER) s.append("front-left-of-center, ");
791             if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT_OF_CENTER) s.append("front-right-of-center, ");
792             if (mask & AUDIO_CHANNEL_OUT_BACK_CENTER) s.append("back-center, ");
793             if (mask & AUDIO_CHANNEL_OUT_SIDE_LEFT) s.append("side-left, ");
794             if (mask & AUDIO_CHANNEL_OUT_SIDE_RIGHT) s.append("side-right, ");
795             if (mask & AUDIO_CHANNEL_OUT_TOP_CENTER) s.append("top-center ,");
796             if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_LEFT) s.append("top-front-left, ");
797             if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_CENTER) s.append("top-front-center, ");
798             if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_RIGHT) s.append("top-front-right, ");
799             if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_LEFT) s.append("top-back-left, ");
800             if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_CENTER) s.append("top-back-center, " );
801             if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_RIGHT) s.append("top-back-right, " );
802             if (mask & AUDIO_CHANNEL_OUT_TOP_SIDE_LEFT) s.append("top-side-left, " );
803             if (mask & AUDIO_CHANNEL_OUT_TOP_SIDE_RIGHT) s.append("top-side-right, " );
804             if (mask & AUDIO_CHANNEL_OUT_HAPTIC_B) s.append("haptic-B, " );
805             if (mask & AUDIO_CHANNEL_OUT_HAPTIC_A) s.append("haptic-A, " );
806             if (mask & ~AUDIO_CHANNEL_OUT_ALL) s.append("unknown,  ");
807         } else {
808             if (mask & AUDIO_CHANNEL_IN_LEFT) s.append("left, ");
809             if (mask & AUDIO_CHANNEL_IN_RIGHT) s.append("right, ");
810             if (mask & AUDIO_CHANNEL_IN_FRONT) s.append("front, ");
811             if (mask & AUDIO_CHANNEL_IN_BACK) s.append("back, ");
812             if (mask & AUDIO_CHANNEL_IN_LEFT_PROCESSED) s.append("left-processed, ");
813             if (mask & AUDIO_CHANNEL_IN_RIGHT_PROCESSED) s.append("right-processed, ");
814             if (mask & AUDIO_CHANNEL_IN_FRONT_PROCESSED) s.append("front-processed, ");
815             if (mask & AUDIO_CHANNEL_IN_BACK_PROCESSED) s.append("back-processed, ");
816             if (mask & AUDIO_CHANNEL_IN_PRESSURE) s.append("pressure, ");
817             if (mask & AUDIO_CHANNEL_IN_X_AXIS) s.append("X, ");
818             if (mask & AUDIO_CHANNEL_IN_Y_AXIS) s.append("Y, ");
819             if (mask & AUDIO_CHANNEL_IN_Z_AXIS) s.append("Z, ");
820             if (mask & AUDIO_CHANNEL_IN_BACK_LEFT) s.append("back-left, ");
821             if (mask & AUDIO_CHANNEL_IN_BACK_RIGHT) s.append("back-right, ");
822             if (mask & AUDIO_CHANNEL_IN_CENTER) s.append("center, ");
823             if (mask & AUDIO_CHANNEL_IN_LOW_FREQUENCY) s.append("low freq, ");
824             if (mask & AUDIO_CHANNEL_IN_TOP_LEFT) s.append("top-left, " );
825             if (mask & AUDIO_CHANNEL_IN_TOP_RIGHT) s.append("top-right, " );
826             if (mask & AUDIO_CHANNEL_IN_VOICE_UPLINK) s.append("voice-uplink, ");
827             if (mask & AUDIO_CHANNEL_IN_VOICE_DNLINK) s.append("voice-dnlink, ");
828             if (mask & ~AUDIO_CHANNEL_IN_ALL) s.append("unknown,  ");
829         }
830         const int len = s.length();
831         if (len > 2) {
832             (void) s.lockBuffer(len);      // needed?
833             s.unlockBuffer(len - 2);       // remove trailing ", "
834         }
835         return s;
836     }
837     case AUDIO_CHANNEL_REPRESENTATION_INDEX:
838         s.appendFormat("index mask, bits:%#x", audio_channel_mask_get_bits(mask));
839         return s;
840     default:
841         s.appendFormat("unknown mask, representation:%d  bits:%#x",
842                 representation, audio_channel_mask_get_bits(mask));
843         return s;
844     }
845 }
846 
dump(int fd,const Vector<String16> & args)847 void AudioFlinger::ThreadBase::dump(int fd, const Vector<String16>& args)
848 {
849     dprintf(fd, "\n%s thread %p, name %s, tid %d, type %d (%s):\n", isOutput() ? "Output" : "Input",
850             this, mThreadName, getTid(), type(), threadTypeToString(type()));
851 
852     bool locked = AudioFlinger::dumpTryLock(mLock);
853     if (!locked) {
854         dprintf(fd, "  Thread may be deadlocked\n");
855     }
856 
857     dumpBase_l(fd, args);
858     dumpInternals_l(fd, args);
859     dumpTracks_l(fd, args);
860     dumpEffectChains_l(fd, args);
861 
862     if (locked) {
863         mLock.unlock();
864     }
865 
866     dprintf(fd, "  Local log:\n");
867     mLocalLog.dump(fd, "   " /* prefix */, 40 /* lines */);
868 }
869 
dumpBase_l(int fd,const Vector<String16> & args __unused)870 void AudioFlinger::ThreadBase::dumpBase_l(int fd, const Vector<String16>& args __unused)
871 {
872     dprintf(fd, "  I/O handle: %d\n", mId);
873     dprintf(fd, "  Standby: %s\n", mStandby ? "yes" : "no");
874     dprintf(fd, "  Sample rate: %u Hz\n", mSampleRate);
875     dprintf(fd, "  HAL frame count: %zu\n", mFrameCount);
876     dprintf(fd, "  HAL format: 0x%x (%s)\n", mHALFormat, formatToString(mHALFormat).c_str());
877     dprintf(fd, "  HAL buffer size: %zu bytes\n", mBufferSize);
878     dprintf(fd, "  Channel count: %u\n", mChannelCount);
879     dprintf(fd, "  Channel mask: 0x%08x (%s)\n", mChannelMask,
880             channelMaskToString(mChannelMask, mType != RECORD).string());
881     dprintf(fd, "  Processing format: 0x%x (%s)\n", mFormat, formatToString(mFormat).c_str());
882     dprintf(fd, "  Processing frame size: %zu bytes\n", mFrameSize);
883     dprintf(fd, "  Pending config events:");
884     size_t numConfig = mConfigEvents.size();
885     if (numConfig) {
886         const size_t SIZE = 256;
887         char buffer[SIZE];
888         for (size_t i = 0; i < numConfig; i++) {
889             mConfigEvents[i]->dump(buffer, SIZE);
890             dprintf(fd, "\n    %s", buffer);
891         }
892         dprintf(fd, "\n");
893     } else {
894         dprintf(fd, " none\n");
895     }
896     // Note: output device may be used by capture threads for effects such as AEC.
897     dprintf(fd, "  Output devices: %s (%s)\n",
898             dumpDeviceTypes(outDeviceTypes()).c_str(), toString(outDeviceTypes()).c_str());
899     dprintf(fd, "  Input device: %#x (%s)\n",
900             inDeviceType(), toString(inDeviceType()).c_str());
901     dprintf(fd, "  Audio source: %d (%s)\n", mAudioSource, toString(mAudioSource).c_str());
902 
903     // Dump timestamp statistics for the Thread types that support it.
904     if (mType == RECORD
905             || mType == MIXER
906             || mType == DUPLICATING
907             || mType == DIRECT
908             || mType == OFFLOAD) {
909         dprintf(fd, "  Timestamp stats: %s\n", mTimestampVerifier.toString().c_str());
910         dprintf(fd, "  Timestamp corrected: %s\n", isTimestampCorrectionEnabled() ? "yes" : "no");
911     }
912 
913     if (mLastIoBeginNs > 0) { // MMAP may not set this
914         dprintf(fd, "  Last %s occurred (msecs): %lld\n",
915                 isOutput() ? "write" : "read",
916                 (long long) (systemTime() - mLastIoBeginNs) / NANOS_PER_MILLISECOND);
917     }
918 
919     if (mProcessTimeMs.getN() > 0) {
920         dprintf(fd, "  Process time ms stats: %s\n", mProcessTimeMs.toString().c_str());
921     }
922 
923     if (mIoJitterMs.getN() > 0) {
924         dprintf(fd, "  Hal %s jitter ms stats: %s\n",
925                 isOutput() ? "write" : "read",
926                 mIoJitterMs.toString().c_str());
927     }
928 
929     if (mLatencyMs.getN() > 0) {
930         dprintf(fd, "  Threadloop %s latency stats: %s\n",
931                 isOutput() ? "write" : "read",
932                 mLatencyMs.toString().c_str());
933     }
934 }
935 
dumpEffectChains_l(int fd,const Vector<String16> & args)936 void AudioFlinger::ThreadBase::dumpEffectChains_l(int fd, const Vector<String16>& args)
937 {
938     const size_t SIZE = 256;
939     char buffer[SIZE];
940 
941     size_t numEffectChains = mEffectChains.size();
942     snprintf(buffer, SIZE, "  %zu Effect Chains\n", numEffectChains);
943     write(fd, buffer, strlen(buffer));
944 
945     for (size_t i = 0; i < numEffectChains; ++i) {
946         sp<EffectChain> chain = mEffectChains[i];
947         if (chain != 0) {
948             chain->dump(fd, args);
949         }
950     }
951 }
952 
acquireWakeLock()953 void AudioFlinger::ThreadBase::acquireWakeLock()
954 {
955     Mutex::Autolock _l(mLock);
956     acquireWakeLock_l();
957 }
958 
getWakeLockTag()959 String16 AudioFlinger::ThreadBase::getWakeLockTag()
960 {
961     switch (mType) {
962     case MIXER:
963         return String16("AudioMix");
964     case DIRECT:
965         return String16("AudioDirectOut");
966     case DUPLICATING:
967         return String16("AudioDup");
968     case RECORD:
969         return String16("AudioIn");
970     case OFFLOAD:
971         return String16("AudioOffload");
972     case MMAP_PLAYBACK:
973         return String16("MmapPlayback");
974     case MMAP_CAPTURE:
975         return String16("MmapCapture");
976     default:
977         ALOG_ASSERT(false);
978         return String16("AudioUnknown");
979     }
980 }
981 
acquireWakeLock_l()982 void AudioFlinger::ThreadBase::acquireWakeLock_l()
983 {
984     getPowerManager_l();
985     if (mPowerManager != 0) {
986         sp<IBinder> binder = new BBinder();
987         // Uses AID_AUDIOSERVER for wakelock.  updateWakeLockUids_l() updates with client uids.
988         status_t status = mPowerManager->acquireWakeLock(POWERMANAGER_PARTIAL_WAKE_LOCK,
989                     binder,
990                     getWakeLockTag(),
991                     String16("audioserver"),
992                     true /* FIXME force oneway contrary to .aidl */);
993         if (status == NO_ERROR) {
994             mWakeLockToken = binder;
995         }
996         ALOGV("acquireWakeLock_l() %s status %d", mThreadName, status);
997     }
998 
999     gBoottime.acquire(mWakeLockToken);
1000     mTimestamp.mTimebaseOffset[ExtendedTimestamp::TIMEBASE_BOOTTIME] =
1001             gBoottime.getBoottimeOffset();
1002 }
1003 
releaseWakeLock()1004 void AudioFlinger::ThreadBase::releaseWakeLock()
1005 {
1006     Mutex::Autolock _l(mLock);
1007     releaseWakeLock_l();
1008 }
1009 
releaseWakeLock_l()1010 void AudioFlinger::ThreadBase::releaseWakeLock_l()
1011 {
1012     gBoottime.release(mWakeLockToken);
1013     if (mWakeLockToken != 0) {
1014         ALOGV("releaseWakeLock_l() %s", mThreadName);
1015         if (mPowerManager != 0) {
1016             mPowerManager->releaseWakeLock(mWakeLockToken, 0,
1017                     true /* FIXME force oneway contrary to .aidl */);
1018         }
1019         mWakeLockToken.clear();
1020     }
1021 }
1022 
getPowerManager_l()1023 void AudioFlinger::ThreadBase::getPowerManager_l() {
1024     if (mSystemReady && mPowerManager == 0) {
1025         // use checkService() to avoid blocking if power service is not up yet
1026         sp<IBinder> binder =
1027             defaultServiceManager()->checkService(String16("power"));
1028         if (binder == 0) {
1029             ALOGW("Thread %s cannot connect to the power manager service", mThreadName);
1030         } else {
1031             mPowerManager = interface_cast<IPowerManager>(binder);
1032             binder->linkToDeath(mDeathRecipient);
1033         }
1034     }
1035 }
1036 
updateWakeLockUids_l(const SortedVector<uid_t> & uids)1037 void AudioFlinger::ThreadBase::updateWakeLockUids_l(const SortedVector<uid_t> &uids) {
1038     getPowerManager_l();
1039 
1040 #if !LOG_NDEBUG
1041     std::stringstream s;
1042     for (uid_t uid : uids) {
1043         s << uid << " ";
1044     }
1045     ALOGD("updateWakeLockUids_l %s uids:%s", mThreadName, s.str().c_str());
1046 #endif
1047 
1048     if (mWakeLockToken == NULL) { // token may be NULL if AudioFlinger::systemReady() not called.
1049         if (mSystemReady) {
1050             ALOGE("no wake lock to update, but system ready!");
1051         } else {
1052             ALOGW("no wake lock to update, system not ready yet");
1053         }
1054         return;
1055     }
1056     if (mPowerManager != 0) {
1057         std::vector<int> uidsAsInt(uids.begin(), uids.end()); // powermanager expects uids as ints
1058         status_t status = mPowerManager->updateWakeLockUids(
1059                 mWakeLockToken, uidsAsInt.size(), uidsAsInt.data(),
1060                 true /* FIXME force oneway contrary to .aidl */);
1061         ALOGV("updateWakeLockUids_l() %s status %d", mThreadName, status);
1062     }
1063 }
1064 
clearPowerManager()1065 void AudioFlinger::ThreadBase::clearPowerManager()
1066 {
1067     Mutex::Autolock _l(mLock);
1068     releaseWakeLock_l();
1069     mPowerManager.clear();
1070 }
1071 
updateOutDevices(const DeviceDescriptorBaseVector & outDevices __unused)1072 void AudioFlinger::ThreadBase::updateOutDevices(
1073         const DeviceDescriptorBaseVector& outDevices __unused)
1074 {
1075     ALOGE("%s should only be called in RecordThread", __func__);
1076 }
1077 
binderDied(const wp<IBinder> & who __unused)1078 void AudioFlinger::ThreadBase::PMDeathRecipient::binderDied(const wp<IBinder>& who __unused)
1079 {
1080     sp<ThreadBase> thread = mThread.promote();
1081     if (thread != 0) {
1082         thread->clearPowerManager();
1083     }
1084     ALOGW("power manager service died !!!");
1085 }
1086 
setEffectSuspended_l(const effect_uuid_t * type,bool suspend,audio_session_t sessionId)1087 void AudioFlinger::ThreadBase::setEffectSuspended_l(
1088         const effect_uuid_t *type, bool suspend, audio_session_t sessionId)
1089 {
1090     sp<EffectChain> chain = getEffectChain_l(sessionId);
1091     if (chain != 0) {
1092         if (type != NULL) {
1093             chain->setEffectSuspended_l(type, suspend);
1094         } else {
1095             chain->setEffectSuspendedAll_l(suspend);
1096         }
1097     }
1098 
1099     updateSuspendedSessions_l(type, suspend, sessionId);
1100 }
1101 
checkSuspendOnAddEffectChain_l(const sp<EffectChain> & chain)1102 void AudioFlinger::ThreadBase::checkSuspendOnAddEffectChain_l(const sp<EffectChain>& chain)
1103 {
1104     ssize_t index = mSuspendedSessions.indexOfKey(chain->sessionId());
1105     if (index < 0) {
1106         return;
1107     }
1108 
1109     const KeyedVector <int, sp<SuspendedSessionDesc> >& sessionEffects =
1110             mSuspendedSessions.valueAt(index);
1111 
1112     for (size_t i = 0; i < sessionEffects.size(); i++) {
1113         const sp<SuspendedSessionDesc>& desc = sessionEffects.valueAt(i);
1114         for (int j = 0; j < desc->mRefCount; j++) {
1115             if (sessionEffects.keyAt(i) == EffectChain::kKeyForSuspendAll) {
1116                 chain->setEffectSuspendedAll_l(true);
1117             } else {
1118                 ALOGV("checkSuspendOnAddEffectChain_l() suspending effects %08x",
1119                     desc->mType.timeLow);
1120                 chain->setEffectSuspended_l(&desc->mType, true);
1121             }
1122         }
1123     }
1124 }
1125 
updateSuspendedSessions_l(const effect_uuid_t * type,bool suspend,audio_session_t sessionId)1126 void AudioFlinger::ThreadBase::updateSuspendedSessions_l(const effect_uuid_t *type,
1127                                                          bool suspend,
1128                                                          audio_session_t sessionId)
1129 {
1130     ssize_t index = mSuspendedSessions.indexOfKey(sessionId);
1131 
1132     KeyedVector <int, sp<SuspendedSessionDesc> > sessionEffects;
1133 
1134     if (suspend) {
1135         if (index >= 0) {
1136             sessionEffects = mSuspendedSessions.valueAt(index);
1137         } else {
1138             mSuspendedSessions.add(sessionId, sessionEffects);
1139         }
1140     } else {
1141         if (index < 0) {
1142             return;
1143         }
1144         sessionEffects = mSuspendedSessions.valueAt(index);
1145     }
1146 
1147 
1148     int key = EffectChain::kKeyForSuspendAll;
1149     if (type != NULL) {
1150         key = type->timeLow;
1151     }
1152     index = sessionEffects.indexOfKey(key);
1153 
1154     sp<SuspendedSessionDesc> desc;
1155     if (suspend) {
1156         if (index >= 0) {
1157             desc = sessionEffects.valueAt(index);
1158         } else {
1159             desc = new SuspendedSessionDesc();
1160             if (type != NULL) {
1161                 desc->mType = *type;
1162             }
1163             sessionEffects.add(key, desc);
1164             ALOGV("updateSuspendedSessions_l() suspend adding effect %08x", key);
1165         }
1166         desc->mRefCount++;
1167     } else {
1168         if (index < 0) {
1169             return;
1170         }
1171         desc = sessionEffects.valueAt(index);
1172         if (--desc->mRefCount == 0) {
1173             ALOGV("updateSuspendedSessions_l() restore removing effect %08x", key);
1174             sessionEffects.removeItemsAt(index);
1175             if (sessionEffects.isEmpty()) {
1176                 ALOGV("updateSuspendedSessions_l() restore removing session %d",
1177                                  sessionId);
1178                 mSuspendedSessions.removeItem(sessionId);
1179             }
1180         }
1181     }
1182     if (!sessionEffects.isEmpty()) {
1183         mSuspendedSessions.replaceValueFor(sessionId, sessionEffects);
1184     }
1185 }
1186 
checkSuspendOnEffectEnabled(bool enabled,audio_session_t sessionId,bool threadLocked)1187 void AudioFlinger::ThreadBase::checkSuspendOnEffectEnabled(bool enabled,
1188                                                            audio_session_t sessionId,
1189                                                            bool threadLocked) {
1190     if (!threadLocked) {
1191         mLock.lock();
1192     }
1193 
1194     if (mType != RECORD) {
1195         // suspend all effects in AUDIO_SESSION_OUTPUT_MIX when enabling any effect on
1196         // another session. This gives the priority to well behaved effect control panels
1197         // and applications not using global effects.
1198         // Enabling post processing in AUDIO_SESSION_OUTPUT_STAGE session does not affect
1199         // global effects
1200         if (!audio_is_global_session(sessionId)) {
1201             setEffectSuspended_l(NULL, enabled, AUDIO_SESSION_OUTPUT_MIX);
1202         }
1203     }
1204 
1205     if (!threadLocked) {
1206         mLock.unlock();
1207     }
1208 }
1209 
1210 // checkEffectCompatibility_l() must be called with ThreadBase::mLock held
checkEffectCompatibility_l(const effect_descriptor_t * desc,audio_session_t sessionId)1211 status_t AudioFlinger::RecordThread::checkEffectCompatibility_l(
1212         const effect_descriptor_t *desc, audio_session_t sessionId)
1213 {
1214     // No global output effect sessions on record threads
1215     if (sessionId == AUDIO_SESSION_OUTPUT_MIX
1216             || sessionId == AUDIO_SESSION_OUTPUT_STAGE) {
1217         ALOGW("checkEffectCompatibility_l(): global effect %s on record thread %s",
1218                 desc->name, mThreadName);
1219         return BAD_VALUE;
1220     }
1221     // only pre processing effects on record thread
1222     if ((desc->flags & EFFECT_FLAG_TYPE_MASK) != EFFECT_FLAG_TYPE_PRE_PROC) {
1223         ALOGW("checkEffectCompatibility_l(): non pre processing effect %s on record thread %s",
1224                 desc->name, mThreadName);
1225         return BAD_VALUE;
1226     }
1227 
1228     // always allow effects without processing load or latency
1229     if ((desc->flags & EFFECT_FLAG_NO_PROCESS_MASK) == EFFECT_FLAG_NO_PROCESS) {
1230         return NO_ERROR;
1231     }
1232 
1233     audio_input_flags_t flags = mInput->flags;
1234     if (hasFastCapture() || (flags & AUDIO_INPUT_FLAG_FAST)) {
1235         if (flags & AUDIO_INPUT_FLAG_RAW) {
1236             ALOGW("checkEffectCompatibility_l(): effect %s on record thread %s in raw mode",
1237                   desc->name, mThreadName);
1238             return BAD_VALUE;
1239         }
1240         if ((desc->flags & EFFECT_FLAG_HW_ACC_TUNNEL) == 0) {
1241             ALOGW("checkEffectCompatibility_l(): non HW effect %s on record thread %s in fast mode",
1242                   desc->name, mThreadName);
1243             return BAD_VALUE;
1244         }
1245     }
1246     return NO_ERROR;
1247 }
1248 
1249 // checkEffectCompatibility_l() must be called with ThreadBase::mLock held
checkEffectCompatibility_l(const effect_descriptor_t * desc,audio_session_t sessionId)1250 status_t AudioFlinger::PlaybackThread::checkEffectCompatibility_l(
1251         const effect_descriptor_t *desc, audio_session_t sessionId)
1252 {
1253     // no preprocessing on playback threads
1254     if ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_PRE_PROC) {
1255         ALOGW("checkEffectCompatibility_l(): pre processing effect %s created on playback"
1256                 " thread %s", desc->name, mThreadName);
1257         return BAD_VALUE;
1258     }
1259 
1260     // always allow effects without processing load or latency
1261     if ((desc->flags & EFFECT_FLAG_NO_PROCESS_MASK) == EFFECT_FLAG_NO_PROCESS) {
1262         return NO_ERROR;
1263     }
1264 
1265     switch (mType) {
1266     case MIXER: {
1267 #ifndef MULTICHANNEL_EFFECT_CHAIN
1268         // Reject any effect on mixer multichannel sinks.
1269         // TODO: fix both format and multichannel issues with effects.
1270         if (mChannelCount != FCC_2) {
1271             ALOGW("checkEffectCompatibility_l(): effect %s for multichannel(%d) on MIXER"
1272                     " thread %s", desc->name, mChannelCount, mThreadName);
1273             return BAD_VALUE;
1274         }
1275 #endif
1276         audio_output_flags_t flags = mOutput->flags;
1277         if (hasFastMixer() || (flags & AUDIO_OUTPUT_FLAG_FAST)) {
1278             if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
1279                 // global effects are applied only to non fast tracks if they are SW
1280                 if ((desc->flags & EFFECT_FLAG_HW_ACC_TUNNEL) == 0) {
1281                     break;
1282                 }
1283             } else if (sessionId == AUDIO_SESSION_OUTPUT_STAGE) {
1284                 // only post processing on output stage session
1285                 if ((desc->flags & EFFECT_FLAG_TYPE_MASK) != EFFECT_FLAG_TYPE_POST_PROC) {
1286                     ALOGW("checkEffectCompatibility_l(): non post processing effect %s not allowed"
1287                             " on output stage session", desc->name);
1288                     return BAD_VALUE;
1289                 }
1290             } else if (sessionId == AUDIO_SESSION_DEVICE) {
1291                 // only post processing on output stage session
1292                 if ((desc->flags & EFFECT_FLAG_TYPE_MASK) != EFFECT_FLAG_TYPE_POST_PROC) {
1293                     ALOGW("checkEffectCompatibility_l(): non post processing effect %s not allowed"
1294                             " on device session", desc->name);
1295                     return BAD_VALUE;
1296                 }
1297             } else {
1298                 // no restriction on effects applied on non fast tracks
1299                 if ((hasAudioSession_l(sessionId) & ThreadBase::FAST_SESSION) == 0) {
1300                     break;
1301                 }
1302             }
1303 
1304             if (flags & AUDIO_OUTPUT_FLAG_RAW) {
1305                 ALOGW("checkEffectCompatibility_l(): effect %s on playback thread in raw mode",
1306                       desc->name);
1307                 return BAD_VALUE;
1308             }
1309             if ((desc->flags & EFFECT_FLAG_HW_ACC_TUNNEL) == 0) {
1310                 ALOGW("checkEffectCompatibility_l(): non HW effect %s on playback thread"
1311                         " in fast mode", desc->name);
1312                 return BAD_VALUE;
1313             }
1314         }
1315     } break;
1316     case OFFLOAD:
1317         // nothing actionable on offload threads, if the effect:
1318         //   - is offloadable: the effect can be created
1319         //   - is NOT offloadable: the effect should still be created, but EffectHandle::enable()
1320         //     will take care of invalidating the tracks of the thread
1321         break;
1322     case DIRECT:
1323         // Reject any effect on Direct output threads for now, since the format of
1324         // mSinkBuffer is not guaranteed to be compatible with effect processing (PCM 16 stereo).
1325         ALOGW("checkEffectCompatibility_l(): effect %s on DIRECT output thread %s",
1326                 desc->name, mThreadName);
1327         return BAD_VALUE;
1328     case DUPLICATING:
1329 #ifndef MULTICHANNEL_EFFECT_CHAIN
1330         // Reject any effect on mixer multichannel sinks.
1331         // TODO: fix both format and multichannel issues with effects.
1332         if (mChannelCount != FCC_2) {
1333             ALOGW("checkEffectCompatibility_l(): effect %s for multichannel(%d)"
1334                     " on DUPLICATING thread %s", desc->name, mChannelCount, mThreadName);
1335             return BAD_VALUE;
1336         }
1337 #endif
1338         if (audio_is_global_session(sessionId)) {
1339             ALOGW("checkEffectCompatibility_l(): global effect %s on DUPLICATING"
1340                     " thread %s", desc->name, mThreadName);
1341             return BAD_VALUE;
1342         }
1343         if ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_POST_PROC) {
1344             ALOGW("checkEffectCompatibility_l(): post processing effect %s on"
1345                     " DUPLICATING thread %s", desc->name, mThreadName);
1346             return BAD_VALUE;
1347         }
1348         if ((desc->flags & EFFECT_FLAG_HW_ACC_TUNNEL) != 0) {
1349             ALOGW("checkEffectCompatibility_l(): HW tunneled effect %s on"
1350                     " DUPLICATING thread %s", desc->name, mThreadName);
1351             return BAD_VALUE;
1352         }
1353         break;
1354     default:
1355         LOG_ALWAYS_FATAL("checkEffectCompatibility_l(): wrong thread type %d", mType);
1356     }
1357 
1358     return NO_ERROR;
1359 }
1360 
1361 // ThreadBase::createEffect_l() must be called with AudioFlinger::mLock held
createEffect_l(const sp<AudioFlinger::Client> & client,const sp<IEffectClient> & effectClient,int32_t priority,audio_session_t sessionId,effect_descriptor_t * desc,int * enabled,status_t * status,bool pinned,bool probe)1362 sp<AudioFlinger::EffectHandle> AudioFlinger::ThreadBase::createEffect_l(
1363         const sp<AudioFlinger::Client>& client,
1364         const sp<IEffectClient>& effectClient,
1365         int32_t priority,
1366         audio_session_t sessionId,
1367         effect_descriptor_t *desc,
1368         int *enabled,
1369         status_t *status,
1370         bool pinned,
1371         bool probe)
1372 {
1373     sp<EffectModule> effect;
1374     sp<EffectHandle> handle;
1375     status_t lStatus;
1376     sp<EffectChain> chain;
1377     bool chainCreated = false;
1378     bool effectCreated = false;
1379     audio_unique_id_t effectId = AUDIO_UNIQUE_ID_USE_UNSPECIFIED;
1380 
1381     lStatus = initCheck();
1382     if (lStatus != NO_ERROR) {
1383         ALOGW("createEffect_l() Audio driver not initialized.");
1384         goto Exit;
1385     }
1386 
1387     ALOGV("createEffect_l() thread %p effect %s on session %d", this, desc->name, sessionId);
1388 
1389     { // scope for mLock
1390         Mutex::Autolock _l(mLock);
1391 
1392         lStatus = checkEffectCompatibility_l(desc, sessionId);
1393         if (probe || lStatus != NO_ERROR) {
1394             goto Exit;
1395         }
1396 
1397         // check for existing effect chain with the requested audio session
1398         chain = getEffectChain_l(sessionId);
1399         if (chain == 0) {
1400             // create a new chain for this session
1401             ALOGV("createEffect_l() new effect chain for session %d", sessionId);
1402             chain = new EffectChain(this, sessionId);
1403             addEffectChain_l(chain);
1404             chain->setStrategy(getStrategyForSession_l(sessionId));
1405             chainCreated = true;
1406         } else {
1407             effect = chain->getEffectFromDesc_l(desc);
1408         }
1409 
1410         ALOGV("createEffect_l() got effect %p on chain %p", effect.get(), chain.get());
1411 
1412         if (effect == 0) {
1413             effectId = mAudioFlinger->nextUniqueId(AUDIO_UNIQUE_ID_USE_EFFECT);
1414             // create a new effect module if none present in the chain
1415             lStatus = chain->createEffect_l(effect, desc, effectId, sessionId, pinned);
1416             if (lStatus != NO_ERROR) {
1417                 goto Exit;
1418             }
1419             effectCreated = true;
1420 
1421             // FIXME: use vector of device and address when effect interface is ready.
1422             effect->setDevices(outDeviceTypeAddrs());
1423             effect->setInputDevice(inDeviceTypeAddr());
1424             effect->setMode(mAudioFlinger->getMode());
1425             effect->setAudioSource(mAudioSource);
1426         }
1427         // create effect handle and connect it to effect module
1428         handle = new EffectHandle(effect, client, effectClient, priority);
1429         lStatus = handle->initCheck();
1430         if (lStatus == OK) {
1431             lStatus = effect->addHandle(handle.get());
1432         }
1433         if (enabled != NULL) {
1434             *enabled = (int)effect->isEnabled();
1435         }
1436     }
1437 
1438 Exit:
1439     if (!probe && lStatus != NO_ERROR && lStatus != ALREADY_EXISTS) {
1440         Mutex::Autolock _l(mLock);
1441         if (effectCreated) {
1442             chain->removeEffect_l(effect);
1443         }
1444         if (chainCreated) {
1445             removeEffectChain_l(chain);
1446         }
1447         // handle must be cleared by caller to avoid deadlock.
1448     }
1449 
1450     *status = lStatus;
1451     return handle;
1452 }
1453 
disconnectEffectHandle(EffectHandle * handle,bool unpinIfLast)1454 void AudioFlinger::ThreadBase::disconnectEffectHandle(EffectHandle *handle,
1455                                                       bool unpinIfLast)
1456 {
1457     bool remove = false;
1458     sp<EffectModule> effect;
1459     {
1460         Mutex::Autolock _l(mLock);
1461         sp<EffectBase> effectBase = handle->effect().promote();
1462         if (effectBase == nullptr) {
1463             return;
1464         }
1465         effect = effectBase->asEffectModule();
1466         if (effect == nullptr) {
1467             return;
1468         }
1469         // restore suspended effects if the disconnected handle was enabled and the last one.
1470         remove = (effect->removeHandle(handle) == 0) && (!effect->isPinned() || unpinIfLast);
1471         if (remove) {
1472             removeEffect_l(effect, true);
1473         }
1474     }
1475     if (remove) {
1476         mAudioFlinger->updateOrphanEffectChains(effect);
1477         if (handle->enabled()) {
1478             effect->checkSuspendOnEffectEnabled(false, false /*threadLocked*/);
1479         }
1480     }
1481 }
1482 
onEffectEnable(const sp<EffectModule> & effect)1483 void AudioFlinger::ThreadBase::onEffectEnable(const sp<EffectModule>& effect) {
1484     if (isOffloadOrMmap()) {
1485         Mutex::Autolock _l(mLock);
1486         broadcast_l();
1487     }
1488     if (!effect->isOffloadable()) {
1489         if (mType == ThreadBase::OFFLOAD) {
1490             PlaybackThread *t = (PlaybackThread *)this;
1491             t->invalidateTracks(AUDIO_STREAM_MUSIC);
1492         }
1493         if (effect->sessionId() == AUDIO_SESSION_OUTPUT_MIX) {
1494             mAudioFlinger->onNonOffloadableGlobalEffectEnable();
1495         }
1496     }
1497 }
1498 
onEffectDisable()1499 void AudioFlinger::ThreadBase::onEffectDisable() {
1500     if (isOffloadOrMmap()) {
1501         Mutex::Autolock _l(mLock);
1502         broadcast_l();
1503     }
1504 }
1505 
getEffect(audio_session_t sessionId,int effectId)1506 sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect(audio_session_t sessionId,
1507         int effectId)
1508 {
1509     Mutex::Autolock _l(mLock);
1510     return getEffect_l(sessionId, effectId);
1511 }
1512 
getEffect_l(audio_session_t sessionId,int effectId)1513 sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect_l(audio_session_t sessionId,
1514         int effectId)
1515 {
1516     sp<EffectChain> chain = getEffectChain_l(sessionId);
1517     return chain != 0 ? chain->getEffectFromId_l(effectId) : 0;
1518 }
1519 
getEffectIds_l(audio_session_t sessionId)1520 std::vector<int> AudioFlinger::ThreadBase::getEffectIds_l(audio_session_t sessionId)
1521 {
1522     sp<EffectChain> chain = getEffectChain_l(sessionId);
1523     return chain != nullptr ? chain->getEffectIds() : std::vector<int>{};
1524 }
1525 
1526 // PlaybackThread::addEffect_l() must be called with AudioFlinger::mLock and
1527 // PlaybackThread::mLock held
addEffect_l(const sp<EffectModule> & effect)1528 status_t AudioFlinger::ThreadBase::addEffect_l(const sp<EffectModule>& effect)
1529 {
1530     // check for existing effect chain with the requested audio session
1531     audio_session_t sessionId = effect->sessionId();
1532     sp<EffectChain> chain = getEffectChain_l(sessionId);
1533     bool chainCreated = false;
1534 
1535     ALOGD_IF((mType == OFFLOAD) && !effect->isOffloadable(),
1536              "addEffect_l() on offloaded thread %p: effect %s does not support offload flags %#x",
1537                     this, effect->desc().name, effect->desc().flags);
1538 
1539     if (chain == 0) {
1540         // create a new chain for this session
1541         ALOGV("addEffect_l() new effect chain for session %d", sessionId);
1542         chain = new EffectChain(this, sessionId);
1543         addEffectChain_l(chain);
1544         chain->setStrategy(getStrategyForSession_l(sessionId));
1545         chainCreated = true;
1546     }
1547     ALOGV("addEffect_l() %p chain %p effect %p", this, chain.get(), effect.get());
1548 
1549     if (chain->getEffectFromId_l(effect->id()) != 0) {
1550         ALOGW("addEffect_l() %p effect %s already present in chain %p",
1551                 this, effect->desc().name, chain.get());
1552         return BAD_VALUE;
1553     }
1554 
1555     effect->setOffloaded(mType == OFFLOAD, mId);
1556 
1557     status_t status = chain->addEffect_l(effect);
1558     if (status != NO_ERROR) {
1559         if (chainCreated) {
1560             removeEffectChain_l(chain);
1561         }
1562         return status;
1563     }
1564 
1565     effect->setDevices(outDeviceTypeAddrs());
1566     effect->setInputDevice(inDeviceTypeAddr());
1567     effect->setMode(mAudioFlinger->getMode());
1568     effect->setAudioSource(mAudioSource);
1569 
1570     return NO_ERROR;
1571 }
1572 
removeEffect_l(const sp<EffectModule> & effect,bool release)1573 void AudioFlinger::ThreadBase::removeEffect_l(const sp<EffectModule>& effect, bool release) {
1574 
1575     ALOGV("%s %p effect %p", __FUNCTION__, this, effect.get());
1576     effect_descriptor_t desc = effect->desc();
1577     if ((desc.flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
1578         detachAuxEffect_l(effect->id());
1579     }
1580 
1581     sp<EffectChain> chain = effect->callback()->chain().promote();
1582     if (chain != 0) {
1583         // remove effect chain if removing last effect
1584         if (chain->removeEffect_l(effect, release) == 0) {
1585             removeEffectChain_l(chain);
1586         }
1587     } else {
1588         ALOGW("removeEffect_l() %p cannot promote chain for effect %p", this, effect.get());
1589     }
1590 }
1591 
lockEffectChains_l(Vector<sp<AudioFlinger::EffectChain>> & effectChains)1592 void AudioFlinger::ThreadBase::lockEffectChains_l(
1593         Vector< sp<AudioFlinger::EffectChain> >& effectChains)
1594 {
1595     effectChains = mEffectChains;
1596     for (size_t i = 0; i < mEffectChains.size(); i++) {
1597         mEffectChains[i]->lock();
1598     }
1599 }
1600 
unlockEffectChains(const Vector<sp<AudioFlinger::EffectChain>> & effectChains)1601 void AudioFlinger::ThreadBase::unlockEffectChains(
1602         const Vector< sp<AudioFlinger::EffectChain> >& effectChains)
1603 {
1604     for (size_t i = 0; i < effectChains.size(); i++) {
1605         effectChains[i]->unlock();
1606     }
1607 }
1608 
getEffectChain(audio_session_t sessionId)1609 sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain(audio_session_t sessionId)
1610 {
1611     Mutex::Autolock _l(mLock);
1612     return getEffectChain_l(sessionId);
1613 }
1614 
getEffectChain_l(audio_session_t sessionId) const1615 sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain_l(audio_session_t sessionId)
1616         const
1617 {
1618     size_t size = mEffectChains.size();
1619     for (size_t i = 0; i < size; i++) {
1620         if (mEffectChains[i]->sessionId() == sessionId) {
1621             return mEffectChains[i];
1622         }
1623     }
1624     return 0;
1625 }
1626 
setMode(audio_mode_t mode)1627 void AudioFlinger::ThreadBase::setMode(audio_mode_t mode)
1628 {
1629     Mutex::Autolock _l(mLock);
1630     size_t size = mEffectChains.size();
1631     for (size_t i = 0; i < size; i++) {
1632         mEffectChains[i]->setMode_l(mode);
1633     }
1634 }
1635 
toAudioPortConfig(struct audio_port_config * config)1636 void AudioFlinger::ThreadBase::toAudioPortConfig(struct audio_port_config *config)
1637 {
1638     config->type = AUDIO_PORT_TYPE_MIX;
1639     config->ext.mix.handle = mId;
1640     config->sample_rate = mSampleRate;
1641     config->format = mFormat;
1642     config->channel_mask = mChannelMask;
1643     config->config_mask = AUDIO_PORT_CONFIG_SAMPLE_RATE|AUDIO_PORT_CONFIG_CHANNEL_MASK|
1644                             AUDIO_PORT_CONFIG_FORMAT;
1645 }
1646 
systemReady()1647 void AudioFlinger::ThreadBase::systemReady()
1648 {
1649     Mutex::Autolock _l(mLock);
1650     if (mSystemReady) {
1651         return;
1652     }
1653     mSystemReady = true;
1654 
1655     for (size_t i = 0; i < mPendingConfigEvents.size(); i++) {
1656         sendConfigEvent_l(mPendingConfigEvents.editItemAt(i));
1657     }
1658     mPendingConfigEvents.clear();
1659 }
1660 
1661 template <typename T>
add(const sp<T> & track)1662 ssize_t AudioFlinger::ThreadBase::ActiveTracks<T>::add(const sp<T> &track) {
1663     ssize_t index = mActiveTracks.indexOf(track);
1664     if (index >= 0) {
1665         ALOGW("ActiveTracks<T>::add track %p already there", track.get());
1666         return index;
1667     }
1668     logTrack("add", track);
1669     mActiveTracksGeneration++;
1670     mLatestActiveTrack = track;
1671     ++mBatteryCounter[track->uid()].second;
1672     mHasChanged = true;
1673     return mActiveTracks.add(track);
1674 }
1675 
1676 template <typename T>
remove(const sp<T> & track)1677 ssize_t AudioFlinger::ThreadBase::ActiveTracks<T>::remove(const sp<T> &track) {
1678     ssize_t index = mActiveTracks.remove(track);
1679     if (index < 0) {
1680         ALOGW("ActiveTracks<T>::remove nonexistent track %p", track.get());
1681         return index;
1682     }
1683     logTrack("remove", track);
1684     mActiveTracksGeneration++;
1685     --mBatteryCounter[track->uid()].second;
1686     // mLatestActiveTrack is not cleared even if is the same as track.
1687     mHasChanged = true;
1688 #ifdef TEE_SINK
1689     track->dumpTee(-1 /* fd */, "_REMOVE");
1690 #endif
1691     track->logEndInterval(); // log to MediaMetrics
1692     return index;
1693 }
1694 
1695 template <typename T>
clear()1696 void AudioFlinger::ThreadBase::ActiveTracks<T>::clear() {
1697     for (const sp<T> &track : mActiveTracks) {
1698         BatteryNotifier::getInstance().noteStopAudio(track->uid());
1699         logTrack("clear", track);
1700     }
1701     mLastActiveTracksGeneration = mActiveTracksGeneration;
1702     if (!mActiveTracks.empty()) { mHasChanged = true; }
1703     mActiveTracks.clear();
1704     mLatestActiveTrack.clear();
1705     mBatteryCounter.clear();
1706 }
1707 
1708 template <typename T>
updatePowerState(sp<ThreadBase> thread,bool force)1709 void AudioFlinger::ThreadBase::ActiveTracks<T>::updatePowerState(
1710         sp<ThreadBase> thread, bool force) {
1711     // Updates ActiveTracks client uids to the thread wakelock.
1712     if (mActiveTracksGeneration != mLastActiveTracksGeneration || force) {
1713         thread->updateWakeLockUids_l(getWakeLockUids());
1714         mLastActiveTracksGeneration = mActiveTracksGeneration;
1715     }
1716 
1717     // Updates BatteryNotifier uids
1718     for (auto it = mBatteryCounter.begin(); it != mBatteryCounter.end();) {
1719         const uid_t uid = it->first;
1720         ssize_t &previous = it->second.first;
1721         ssize_t &current = it->second.second;
1722         if (current > 0) {
1723             if (previous == 0) {
1724                 BatteryNotifier::getInstance().noteStartAudio(uid);
1725             }
1726             previous = current;
1727             ++it;
1728         } else if (current == 0) {
1729             if (previous > 0) {
1730                 BatteryNotifier::getInstance().noteStopAudio(uid);
1731             }
1732             it = mBatteryCounter.erase(it); // std::map<> is stable on iterator erase.
1733         } else /* (current < 0) */ {
1734             LOG_ALWAYS_FATAL("negative battery count %zd", current);
1735         }
1736     }
1737 }
1738 
1739 template <typename T>
readAndClearHasChanged()1740 bool AudioFlinger::ThreadBase::ActiveTracks<T>::readAndClearHasChanged() {
1741     const bool hasChanged = mHasChanged;
1742     mHasChanged = false;
1743     return hasChanged;
1744 }
1745 
1746 template <typename T>
logTrack(const char * funcName,const sp<T> & track) const1747 void AudioFlinger::ThreadBase::ActiveTracks<T>::logTrack(
1748         const char *funcName, const sp<T> &track) const {
1749     if (mLocalLog != nullptr) {
1750         String8 result;
1751         track->appendDump(result, false /* active */);
1752         mLocalLog->log("AT::%-10s(%p) %s", funcName, track.get(), result.string());
1753     }
1754 }
1755 
broadcast_l()1756 void AudioFlinger::ThreadBase::broadcast_l()
1757 {
1758     // Thread could be blocked waiting for async
1759     // so signal it to handle state changes immediately
1760     // If threadLoop is currently unlocked a signal of mWaitWorkCV will
1761     // be lost so we also flag to prevent it blocking on mWaitWorkCV
1762     mSignalPending = true;
1763     mWaitWorkCV.broadcast();
1764 }
1765 
1766 // Call only from threadLoop() or when it is idle.
1767 // Do not call from high performance code as this may do binder rpc to the MediaMetrics service.
sendStatistics(bool force)1768 void AudioFlinger::ThreadBase::sendStatistics(bool force)
1769 {
1770     // Do not log if we have no stats.
1771     // We choose the timestamp verifier because it is the most likely item to be present.
1772     const int64_t nstats = mTimestampVerifier.getN() - mLastRecordedTimestampVerifierN;
1773     if (nstats == 0) {
1774         return;
1775     }
1776 
1777     // Don't log more frequently than once per 12 hours.
1778     // We use BOOTTIME to include suspend time.
1779     const int64_t timeNs = systemTime(SYSTEM_TIME_BOOTTIME);
1780     const int64_t sinceNs = timeNs - mLastRecordedTimeNs; // ok if mLastRecordedTimeNs = 0
1781     if (!force && sinceNs <= 12 * NANOS_PER_HOUR) {
1782         return;
1783     }
1784 
1785     mLastRecordedTimestampVerifierN = mTimestampVerifier.getN();
1786     mLastRecordedTimeNs = timeNs;
1787 
1788     std::unique_ptr<mediametrics::Item> item(mediametrics::Item::create("audiothread"));
1789 
1790 #define MM_PREFIX "android.media.audiothread." // avoid cut-n-paste errors.
1791 
1792     // thread configuration
1793     item->setInt32(MM_PREFIX "id", (int32_t)mId); // IO handle
1794     // item->setInt32(MM_PREFIX "portId", (int32_t)mPortId);
1795     item->setCString(MM_PREFIX "type", threadTypeToString(mType));
1796     item->setInt32(MM_PREFIX "sampleRate", (int32_t)mSampleRate);
1797     item->setInt64(MM_PREFIX "channelMask", (int64_t)mChannelMask);
1798     item->setCString(MM_PREFIX "encoding", toString(mFormat).c_str());
1799     item->setInt32(MM_PREFIX "frameCount", (int32_t)mFrameCount);
1800     item->setCString(MM_PREFIX "outDevice", toString(outDeviceTypes()).c_str());
1801     item->setCString(MM_PREFIX "inDevice", toString(inDeviceType()).c_str());
1802 
1803     // thread statistics
1804     if (mIoJitterMs.getN() > 0) {
1805         item->setDouble(MM_PREFIX "ioJitterMs.mean", mIoJitterMs.getMean());
1806         item->setDouble(MM_PREFIX "ioJitterMs.std", mIoJitterMs.getStdDev());
1807     }
1808     if (mProcessTimeMs.getN() > 0) {
1809         item->setDouble(MM_PREFIX "processTimeMs.mean", mProcessTimeMs.getMean());
1810         item->setDouble(MM_PREFIX "processTimeMs.std", mProcessTimeMs.getStdDev());
1811     }
1812     const auto tsjitter = mTimestampVerifier.getJitterMs();
1813     if (tsjitter.getN() > 0) {
1814         item->setDouble(MM_PREFIX "timestampJitterMs.mean", tsjitter.getMean());
1815         item->setDouble(MM_PREFIX "timestampJitterMs.std", tsjitter.getStdDev());
1816     }
1817     if (mLatencyMs.getN() > 0) {
1818         item->setDouble(MM_PREFIX "latencyMs.mean", mLatencyMs.getMean());
1819         item->setDouble(MM_PREFIX "latencyMs.std", mLatencyMs.getStdDev());
1820     }
1821 
1822     item->selfrecord();
1823 }
1824 
1825 // ----------------------------------------------------------------------------
1826 //      Playback
1827 // ----------------------------------------------------------------------------
1828 
PlaybackThread(const sp<AudioFlinger> & audioFlinger,AudioStreamOut * output,audio_io_handle_t id,type_t type,bool systemReady)1829 AudioFlinger::PlaybackThread::PlaybackThread(const sp<AudioFlinger>& audioFlinger,
1830                                              AudioStreamOut* output,
1831                                              audio_io_handle_t id,
1832                                              type_t type,
1833                                              bool systemReady)
1834     :   ThreadBase(audioFlinger, id, type, systemReady, true /* isOut */),
1835         mNormalFrameCount(0), mSinkBuffer(NULL),
1836         mMixerBufferEnabled(AudioFlinger::kEnableExtendedPrecision),
1837         mMixerBuffer(NULL),
1838         mMixerBufferSize(0),
1839         mMixerBufferFormat(AUDIO_FORMAT_INVALID),
1840         mMixerBufferValid(false),
1841         mEffectBufferEnabled(AudioFlinger::kEnableExtendedPrecision),
1842         mEffectBuffer(NULL),
1843         mEffectBufferSize(0),
1844         mEffectBufferFormat(AUDIO_FORMAT_INVALID),
1845         mEffectBufferValid(false),
1846         mSuspended(0), mBytesWritten(0),
1847         mFramesWritten(0),
1848         mSuspendedFrames(0),
1849         mActiveTracks(&this->mLocalLog),
1850         // mStreamTypes[] initialized in constructor body
1851         mTracks(type == MIXER),
1852         mOutput(output),
1853         mNumWrites(0), mNumDelayedWrites(0), mInWrite(false),
1854         mMixerStatus(MIXER_IDLE),
1855         mMixerStatusIgnoringFastTracks(MIXER_IDLE),
1856         mStandbyDelayNs(AudioFlinger::mStandbyTimeInNsecs),
1857         mBytesRemaining(0),
1858         mCurrentWriteLength(0),
1859         mUseAsyncWrite(false),
1860         mWriteAckSequence(0),
1861         mDrainSequence(0),
1862         mScreenState(AudioFlinger::mScreenState),
1863         // index 0 is reserved for normal mixer's submix
1864         mFastTrackAvailMask(((1 << FastMixerState::sMaxFastTracks) - 1) & ~1),
1865         mHwSupportsPause(false), mHwPaused(false), mFlushPending(false),
1866         mLeftVolFloat(-1.0), mRightVolFloat(-1.0)
1867 {
1868     snprintf(mThreadName, kThreadNameLength, "AudioOut_%X", id);
1869     mNBLogWriter = audioFlinger->newWriter_l(kLogSize, mThreadName);
1870 
1871     // Assumes constructor is called by AudioFlinger with it's mLock held, but
1872     // it would be safer to explicitly pass initial masterVolume/masterMute as
1873     // parameter.
1874     //
1875     // If the HAL we are using has support for master volume or master mute,
1876     // then do not attenuate or mute during mixing (just leave the volume at 1.0
1877     // and the mute set to false).
1878     mMasterVolume = audioFlinger->masterVolume_l();
1879     mMasterMute = audioFlinger->masterMute_l();
1880     if (mOutput->audioHwDev) {
1881         if (mOutput->audioHwDev->canSetMasterVolume()) {
1882             mMasterVolume = 1.0;
1883         }
1884 
1885         if (mOutput->audioHwDev->canSetMasterMute()) {
1886             mMasterMute = false;
1887         }
1888         mIsMsdDevice = strcmp(
1889                 mOutput->audioHwDev->moduleName(), AUDIO_HARDWARE_MODULE_ID_MSD) == 0;
1890     }
1891 
1892     readOutputParameters_l();
1893 
1894     // TODO: We may also match on address as well as device type for
1895     // AUDIO_DEVICE_OUT_BUS, AUDIO_DEVICE_OUT_ALL_A2DP, AUDIO_DEVICE_OUT_REMOTE_SUBMIX
1896     if (type == MIXER || type == DIRECT || type == OFFLOAD) {
1897         // TODO: This property should be ensure that only contains one single device type.
1898         mTimestampCorrectedDevice = (audio_devices_t)property_get_int64(
1899                 "audio.timestamp.corrected_output_device",
1900                 (int64_t)(mIsMsdDevice ? AUDIO_DEVICE_OUT_BUS // turn on by default for MSD
1901                                        : AUDIO_DEVICE_NONE));
1902     }
1903 
1904     // ++ operator does not compile
1905     for (audio_stream_type_t stream = AUDIO_STREAM_MIN; stream < AUDIO_STREAM_FOR_POLICY_CNT;
1906             stream = (audio_stream_type_t) (stream + 1)) {
1907         mStreamTypes[stream].volume = 0.0f;
1908         mStreamTypes[stream].mute = mAudioFlinger->streamMute_l(stream);
1909     }
1910     // Audio patch and call assistant volume are always max
1911     mStreamTypes[AUDIO_STREAM_PATCH].volume = 1.0f;
1912     mStreamTypes[AUDIO_STREAM_PATCH].mute = false;
1913     mStreamTypes[AUDIO_STREAM_CALL_ASSISTANT].volume = 1.0f;
1914     mStreamTypes[AUDIO_STREAM_CALL_ASSISTANT].mute = false;
1915 }
1916 
~PlaybackThread()1917 AudioFlinger::PlaybackThread::~PlaybackThread()
1918 {
1919     mAudioFlinger->unregisterWriter(mNBLogWriter);
1920     free(mSinkBuffer);
1921     free(mMixerBuffer);
1922     free(mEffectBuffer);
1923 }
1924 
1925 // Thread virtuals
1926 
onFirstRef()1927 void AudioFlinger::PlaybackThread::onFirstRef()
1928 {
1929     if (mOutput == nullptr || mOutput->stream == nullptr) {
1930         ALOGE("The stream is not open yet"); // This should not happen.
1931     } else {
1932         // setEventCallback will need a strong pointer as a parameter. Calling it
1933         // here instead of constructor of PlaybackThread so that the onFirstRef
1934         // callback would not be made on an incompletely constructed object.
1935         if (mOutput->stream->setEventCallback(this) != OK) {
1936             ALOGE("Failed to add event callback");
1937         }
1938     }
1939     run(mThreadName, ANDROID_PRIORITY_URGENT_AUDIO);
1940 }
1941 
1942 // ThreadBase virtuals
preExit()1943 void AudioFlinger::PlaybackThread::preExit()
1944 {
1945     ALOGV("  preExit()");
1946     // FIXME this is using hard-coded strings but in the future, this functionality will be
1947     //       converted to use audio HAL extensions required to support tunneling
1948     status_t result = mOutput->stream->setParameters(String8("exiting=1"));
1949     ALOGE_IF(result != OK, "Error when setting parameters on exit: %d", result);
1950 }
1951 
dumpTracks_l(int fd,const Vector<String16> & args __unused)1952 void AudioFlinger::PlaybackThread::dumpTracks_l(int fd, const Vector<String16>& args __unused)
1953 {
1954     String8 result;
1955 
1956     result.appendFormat("  Stream volumes in dB: ");
1957     for (int i = 0; i < AUDIO_STREAM_CNT; ++i) {
1958         const stream_type_t *st = &mStreamTypes[i];
1959         if (i > 0) {
1960             result.appendFormat(", ");
1961         }
1962         result.appendFormat("%d:%.2g", i, 20.0 * log10(st->volume));
1963         if (st->mute) {
1964             result.append("M");
1965         }
1966     }
1967     result.append("\n");
1968     write(fd, result.string(), result.length());
1969     result.clear();
1970 
1971     // These values are "raw"; they will wrap around.  See prepareTracks_l() for a better way.
1972     FastTrackUnderruns underruns = getFastTrackUnderruns(0);
1973     dprintf(fd, "  Normal mixer raw underrun counters: partial=%u empty=%u\n",
1974             underruns.mBitFields.mPartial, underruns.mBitFields.mEmpty);
1975 
1976     size_t numtracks = mTracks.size();
1977     size_t numactive = mActiveTracks.size();
1978     dprintf(fd, "  %zu Tracks", numtracks);
1979     size_t numactiveseen = 0;
1980     const char *prefix = "    ";
1981     if (numtracks) {
1982         dprintf(fd, " of which %zu are active\n", numactive);
1983         result.append(prefix);
1984         mTracks[0]->appendDumpHeader(result);
1985         for (size_t i = 0; i < numtracks; ++i) {
1986             sp<Track> track = mTracks[i];
1987             if (track != 0) {
1988                 bool active = mActiveTracks.indexOf(track) >= 0;
1989                 if (active) {
1990                     numactiveseen++;
1991                 }
1992                 result.append(prefix);
1993                 track->appendDump(result, active);
1994             }
1995         }
1996     } else {
1997         result.append("\n");
1998     }
1999     if (numactiveseen != numactive) {
2000         // some tracks in the active list were not in the tracks list
2001         result.append("  The following tracks are in the active list but"
2002                 " not in the track list\n");
2003         result.append(prefix);
2004         mActiveTracks[0]->appendDumpHeader(result);
2005         for (size_t i = 0; i < numactive; ++i) {
2006             sp<Track> track = mActiveTracks[i];
2007             if (mTracks.indexOf(track) < 0) {
2008                 result.append(prefix);
2009                 track->appendDump(result, true /* active */);
2010             }
2011         }
2012     }
2013 
2014     write(fd, result.string(), result.size());
2015 }
2016 
dumpInternals_l(int fd,const Vector<String16> & args __unused)2017 void AudioFlinger::PlaybackThread::dumpInternals_l(int fd, const Vector<String16>& args __unused)
2018 {
2019     dprintf(fd, "  Master volume: %f\n", mMasterVolume);
2020     dprintf(fd, "  Master mute: %s\n", mMasterMute ? "on" : "off");
2021     if (mHapticChannelMask != AUDIO_CHANNEL_NONE) {
2022         dprintf(fd, "  Haptic channel mask: %#x (%s)\n", mHapticChannelMask,
2023                 channelMaskToString(mHapticChannelMask, true /* output */).c_str());
2024     }
2025     dprintf(fd, "  Normal frame count: %zu\n", mNormalFrameCount);
2026     dprintf(fd, "  Total writes: %d\n", mNumWrites);
2027     dprintf(fd, "  Delayed writes: %d\n", mNumDelayedWrites);
2028     dprintf(fd, "  Blocked in write: %s\n", mInWrite ? "yes" : "no");
2029     dprintf(fd, "  Suspend count: %d\n", mSuspended);
2030     dprintf(fd, "  Sink buffer : %p\n", mSinkBuffer);
2031     dprintf(fd, "  Mixer buffer: %p\n", mMixerBuffer);
2032     dprintf(fd, "  Effect buffer: %p\n", mEffectBuffer);
2033     dprintf(fd, "  Fast track availMask=%#x\n", mFastTrackAvailMask);
2034     dprintf(fd, "  Standby delay ns=%lld\n", (long long)mStandbyDelayNs);
2035     AudioStreamOut *output = mOutput;
2036     audio_output_flags_t flags = output != NULL ? output->flags : AUDIO_OUTPUT_FLAG_NONE;
2037     dprintf(fd, "  AudioStreamOut: %p flags %#x (%s)\n",
2038             output, flags, toString(flags).c_str());
2039     dprintf(fd, "  Frames written: %lld\n", (long long)mFramesWritten);
2040     dprintf(fd, "  Suspended frames: %lld\n", (long long)mSuspendedFrames);
2041     if (mPipeSink.get() != nullptr) {
2042         dprintf(fd, "  PipeSink frames written: %lld\n", (long long)mPipeSink->framesWritten());
2043     }
2044     if (output != nullptr) {
2045         dprintf(fd, "  Hal stream dump:\n");
2046         (void)output->stream->dump(fd);
2047     }
2048 }
2049 
2050 // PlaybackThread::createTrack_l() must be called with AudioFlinger::mLock held
createTrack_l(const sp<AudioFlinger::Client> & client,audio_stream_type_t streamType,const audio_attributes_t & attr,uint32_t * pSampleRate,audio_format_t format,audio_channel_mask_t channelMask,size_t * pFrameCount,size_t * pNotificationFrameCount,uint32_t notificationsPerBuffer,float speed,const sp<IMemory> & sharedBuffer,audio_session_t sessionId,audio_output_flags_t * flags,pid_t creatorPid,pid_t tid,uid_t uid,status_t * status,audio_port_handle_t portId,const sp<media::IAudioTrackCallback> & callback)2051 sp<AudioFlinger::PlaybackThread::Track> AudioFlinger::PlaybackThread::createTrack_l(
2052         const sp<AudioFlinger::Client>& client,
2053         audio_stream_type_t streamType,
2054         const audio_attributes_t& attr,
2055         uint32_t *pSampleRate,
2056         audio_format_t format,
2057         audio_channel_mask_t channelMask,
2058         size_t *pFrameCount,
2059         size_t *pNotificationFrameCount,
2060         uint32_t notificationsPerBuffer,
2061         float speed,
2062         const sp<IMemory>& sharedBuffer,
2063         audio_session_t sessionId,
2064         audio_output_flags_t *flags,
2065         pid_t creatorPid,
2066         pid_t tid,
2067         uid_t uid,
2068         status_t *status,
2069         audio_port_handle_t portId,
2070         const sp<media::IAudioTrackCallback>& callback)
2071 {
2072     size_t frameCount = *pFrameCount;
2073     size_t notificationFrameCount = *pNotificationFrameCount;
2074     sp<Track> track;
2075     status_t lStatus;
2076     audio_output_flags_t outputFlags = mOutput->flags;
2077     audio_output_flags_t requestedFlags = *flags;
2078     uint32_t sampleRate;
2079 
2080     if (sharedBuffer != 0 && checkIMemory(sharedBuffer) != NO_ERROR) {
2081         lStatus = BAD_VALUE;
2082         goto Exit;
2083     }
2084 
2085     if (*pSampleRate == 0) {
2086         *pSampleRate = mSampleRate;
2087     }
2088     sampleRate = *pSampleRate;
2089 
2090     // special case for FAST flag considered OK if fast mixer is present
2091     if (hasFastMixer()) {
2092         outputFlags = (audio_output_flags_t)(outputFlags | AUDIO_OUTPUT_FLAG_FAST);
2093     }
2094 
2095     // Check if requested flags are compatible with output stream flags
2096     if ((*flags & outputFlags) != *flags) {
2097         ALOGW("createTrack_l(): mismatch between requested flags (%08x) and output flags (%08x)",
2098               *flags, outputFlags);
2099         *flags = (audio_output_flags_t)(*flags & outputFlags);
2100     }
2101 
2102     // client expresses a preference for FAST, but we get the final say
2103     if (*flags & AUDIO_OUTPUT_FLAG_FAST) {
2104       if (
2105             // PCM data
2106             audio_is_linear_pcm(format) &&
2107             // TODO: extract as a data library function that checks that a computationally
2108             // expensive downmixer is not required: isFastOutputChannelConversion()
2109             (channelMask == (mChannelMask | mHapticChannelMask) ||
2110                     mChannelMask != AUDIO_CHANNEL_OUT_STEREO ||
2111                     (channelMask == AUDIO_CHANNEL_OUT_MONO
2112                             /* && mChannelMask == AUDIO_CHANNEL_OUT_STEREO */)) &&
2113             // hardware sample rate
2114             (sampleRate == mSampleRate) &&
2115             // normal mixer has an associated fast mixer
2116             hasFastMixer() &&
2117             // there are sufficient fast track slots available
2118             (mFastTrackAvailMask != 0)
2119             // FIXME test that MixerThread for this fast track has a capable output HAL
2120             // FIXME add a permission test also?
2121         ) {
2122         // static tracks can have any nonzero framecount, streaming tracks check against minimum.
2123         if (sharedBuffer == 0) {
2124             // read the fast track multiplier property the first time it is needed
2125             int ok = pthread_once(&sFastTrackMultiplierOnce, sFastTrackMultiplierInit);
2126             if (ok != 0) {
2127                 ALOGE("%s pthread_once failed: %d", __func__, ok);
2128             }
2129             frameCount = max(frameCount, mFrameCount * sFastTrackMultiplier); // incl framecount 0
2130         }
2131 
2132         // check compatibility with audio effects.
2133         { // scope for mLock
2134             Mutex::Autolock _l(mLock);
2135             for (audio_session_t session : {
2136                     AUDIO_SESSION_DEVICE,
2137                     AUDIO_SESSION_OUTPUT_STAGE,
2138                     AUDIO_SESSION_OUTPUT_MIX,
2139                     sessionId,
2140                 }) {
2141                 sp<EffectChain> chain = getEffectChain_l(session);
2142                 if (chain.get() != nullptr) {
2143                     audio_output_flags_t old = *flags;
2144                     chain->checkOutputFlagCompatibility(flags);
2145                     if (old != *flags) {
2146                         ALOGV("AUDIO_OUTPUT_FLAGS denied by effect, session=%d old=%#x new=%#x",
2147                                 (int)session, (int)old, (int)*flags);
2148                     }
2149                 }
2150             }
2151         }
2152         ALOGV_IF((*flags & AUDIO_OUTPUT_FLAG_FAST) != 0,
2153                  "AUDIO_OUTPUT_FLAG_FAST accepted: frameCount=%zu mFrameCount=%zu",
2154                  frameCount, mFrameCount);
2155       } else {
2156         ALOGV("AUDIO_OUTPUT_FLAG_FAST denied: sharedBuffer=%p frameCount=%zu "
2157                 "mFrameCount=%zu format=%#x mFormat=%#x isLinear=%d channelMask=%#x "
2158                 "sampleRate=%u mSampleRate=%u "
2159                 "hasFastMixer=%d tid=%d fastTrackAvailMask=%#x",
2160                 sharedBuffer.get(), frameCount, mFrameCount, format, mFormat,
2161                 audio_is_linear_pcm(format),
2162                 channelMask, sampleRate, mSampleRate, hasFastMixer(), tid, mFastTrackAvailMask);
2163         *flags = (audio_output_flags_t)(*flags & ~AUDIO_OUTPUT_FLAG_FAST);
2164       }
2165     }
2166 
2167     if (!audio_has_proportional_frames(format)) {
2168         if (sharedBuffer != 0) {
2169             // Same comment as below about ignoring frameCount parameter for set()
2170             frameCount = sharedBuffer->size();
2171         } else if (frameCount == 0) {
2172             frameCount = mNormalFrameCount;
2173         }
2174         if (notificationFrameCount != frameCount) {
2175             notificationFrameCount = frameCount;
2176         }
2177     } else if (sharedBuffer != 0) {
2178         // FIXME: Ensure client side memory buffers need
2179         // not have additional alignment beyond sample
2180         // (e.g. 16 bit stereo accessed as 32 bit frame).
2181         size_t alignment = audio_bytes_per_sample(format);
2182         if (alignment & 1) {
2183             // for AUDIO_FORMAT_PCM_24_BIT_PACKED (not exposed through Java).
2184             alignment = 1;
2185         }
2186         uint32_t channelCount = audio_channel_count_from_out_mask(channelMask);
2187         size_t frameSize = channelCount * audio_bytes_per_sample(format);
2188         if (channelCount > 1) {
2189             // More than 2 channels does not require stronger alignment than stereo
2190             alignment <<= 1;
2191         }
2192         if (((uintptr_t)sharedBuffer->unsecurePointer() & (alignment - 1)) != 0) {
2193             ALOGE("Invalid buffer alignment: address %p, channel count %u",
2194                   sharedBuffer->unsecurePointer(), channelCount);
2195             lStatus = BAD_VALUE;
2196             goto Exit;
2197         }
2198 
2199         // When initializing a shared buffer AudioTrack via constructors,
2200         // there's no frameCount parameter.
2201         // But when initializing a shared buffer AudioTrack via set(),
2202         // there _is_ a frameCount parameter.  We silently ignore it.
2203         frameCount = sharedBuffer->size() / frameSize;
2204     } else {
2205         size_t minFrameCount = 0;
2206         // For fast tracks we try to respect the application's request for notifications per buffer.
2207         if (*flags & AUDIO_OUTPUT_FLAG_FAST) {
2208             if (notificationsPerBuffer > 0) {
2209                 // Avoid possible arithmetic overflow during multiplication.
2210                 if (notificationsPerBuffer > SIZE_MAX / mFrameCount) {
2211                     ALOGE("Requested notificationPerBuffer=%u ignored for HAL frameCount=%zu",
2212                           notificationsPerBuffer, mFrameCount);
2213                 } else {
2214                     minFrameCount = mFrameCount * notificationsPerBuffer;
2215                 }
2216             }
2217         } else {
2218             // For normal PCM streaming tracks, update minimum frame count.
2219             // Buffer depth is forced to be at least 2 x the normal mixer frame count and
2220             // cover audio hardware latency.
2221             // This is probably too conservative, but legacy application code may depend on it.
2222             // If you change this calculation, also review the start threshold which is related.
2223             uint32_t latencyMs = latency_l();
2224             if (latencyMs == 0) {
2225                 ALOGE("Error when retrieving output stream latency");
2226                 lStatus = UNKNOWN_ERROR;
2227                 goto Exit;
2228             }
2229 
2230             minFrameCount = AudioSystem::calculateMinFrameCount(latencyMs, mNormalFrameCount,
2231                                 mSampleRate, sampleRate, speed /*, 0 mNotificationsPerBufferReq*/);
2232 
2233         }
2234         if (frameCount < minFrameCount) {
2235             frameCount = minFrameCount;
2236         }
2237     }
2238 
2239     // Make sure that application is notified with sufficient margin before underrun.
2240     // The client can divide the AudioTrack buffer into sub-buffers,
2241     // and expresses its desire to server as the notification frame count.
2242     if (sharedBuffer == 0 && audio_is_linear_pcm(format)) {
2243         size_t maxNotificationFrames;
2244         if (*flags & AUDIO_OUTPUT_FLAG_FAST) {
2245             // notify every HAL buffer, regardless of the size of the track buffer
2246             maxNotificationFrames = mFrameCount;
2247         } else {
2248             // Triple buffer the notification period for a triple buffered mixer period;
2249             // otherwise, double buffering for the notification period is fine.
2250             //
2251             // TODO: This should be moved to AudioTrack to modify the notification period
2252             // on AudioTrack::setBufferSizeInFrames() changes.
2253             const int nBuffering =
2254                     (uint64_t{frameCount} * mSampleRate)
2255                             / (uint64_t{mNormalFrameCount} * sampleRate) == 3 ? 3 : 2;
2256 
2257             maxNotificationFrames = frameCount / nBuffering;
2258             // If client requested a fast track but this was denied, then use the smaller maximum.
2259             if (requestedFlags & AUDIO_OUTPUT_FLAG_FAST) {
2260                 size_t maxNotificationFramesFastDenied = FMS_20 * sampleRate / 1000;
2261                 if (maxNotificationFrames > maxNotificationFramesFastDenied) {
2262                     maxNotificationFrames = maxNotificationFramesFastDenied;
2263                 }
2264             }
2265         }
2266         if (notificationFrameCount == 0 || notificationFrameCount > maxNotificationFrames) {
2267             if (notificationFrameCount == 0) {
2268                 ALOGD("Client defaulted notificationFrames to %zu for frameCount %zu",
2269                     maxNotificationFrames, frameCount);
2270             } else {
2271                 ALOGW("Client adjusted notificationFrames from %zu to %zu for frameCount %zu",
2272                       notificationFrameCount, maxNotificationFrames, frameCount);
2273             }
2274             notificationFrameCount = maxNotificationFrames;
2275         }
2276     }
2277 
2278     *pFrameCount = frameCount;
2279     *pNotificationFrameCount = notificationFrameCount;
2280 
2281     switch (mType) {
2282 
2283     case DIRECT:
2284         if (audio_is_linear_pcm(format)) { // TODO maybe use audio_has_proportional_frames()?
2285             if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
2286                 ALOGE("createTrack_l() Bad parameter: sampleRate %u format %#x, channelMask 0x%08x "
2287                         "for output %p with format %#x",
2288                         sampleRate, format, channelMask, mOutput, mFormat);
2289                 lStatus = BAD_VALUE;
2290                 goto Exit;
2291             }
2292         }
2293         break;
2294 
2295     case OFFLOAD:
2296         if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
2297             ALOGE("createTrack_l() Bad parameter: sampleRate %d format %#x, channelMask 0x%08x \""
2298                     "for output %p with format %#x",
2299                     sampleRate, format, channelMask, mOutput, mFormat);
2300             lStatus = BAD_VALUE;
2301             goto Exit;
2302         }
2303         break;
2304 
2305     default:
2306         if (!audio_is_linear_pcm(format)) {
2307                 ALOGE("createTrack_l() Bad parameter: format %#x \""
2308                         "for output %p with format %#x",
2309                         format, mOutput, mFormat);
2310                 lStatus = BAD_VALUE;
2311                 goto Exit;
2312         }
2313         if (sampleRate > mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX) {
2314             ALOGE("Sample rate out of range: %u mSampleRate %u", sampleRate, mSampleRate);
2315             lStatus = BAD_VALUE;
2316             goto Exit;
2317         }
2318         break;
2319 
2320     }
2321 
2322     lStatus = initCheck();
2323     if (lStatus != NO_ERROR) {
2324         ALOGE("createTrack_l() audio driver not initialized");
2325         goto Exit;
2326     }
2327 
2328     { // scope for mLock
2329         Mutex::Autolock _l(mLock);
2330 
2331         // all tracks in same audio session must share the same routing strategy otherwise
2332         // conflicts will happen when tracks are moved from one output to another by audio policy
2333         // manager
2334         uint32_t strategy = AudioSystem::getStrategyForStream(streamType);
2335         for (size_t i = 0; i < mTracks.size(); ++i) {
2336             sp<Track> t = mTracks[i];
2337             if (t != 0 && t->isExternalTrack()) {
2338                 uint32_t actual = AudioSystem::getStrategyForStream(t->streamType());
2339                 if (sessionId == t->sessionId() && strategy != actual) {
2340                     ALOGE("createTrack_l() mismatched strategy; expected %u but found %u",
2341                             strategy, actual);
2342                     lStatus = BAD_VALUE;
2343                     goto Exit;
2344                 }
2345             }
2346         }
2347 
2348         track = new Track(this, client, streamType, attr, sampleRate, format,
2349                           channelMask, frameCount,
2350                           nullptr /* buffer */, (size_t)0 /* bufferSize */, sharedBuffer,
2351                           sessionId, creatorPid, uid, *flags, TrackBase::TYPE_DEFAULT, portId);
2352 
2353         lStatus = track != 0 ? track->initCheck() : (status_t) NO_MEMORY;
2354         if (lStatus != NO_ERROR) {
2355             ALOGE("createTrack_l() initCheck failed %d; no control block?", lStatus);
2356             // track must be cleared from the caller as the caller has the AF lock
2357             goto Exit;
2358         }
2359         mTracks.add(track);
2360         {
2361             Mutex::Autolock _atCbL(mAudioTrackCbLock);
2362             if (callback.get() != nullptr) {
2363                 mAudioTrackCallbacks.emplace(callback);
2364             }
2365         }
2366 
2367         sp<EffectChain> chain = getEffectChain_l(sessionId);
2368         if (chain != 0) {
2369             ALOGV("createTrack_l() setting main buffer %p", chain->inBuffer());
2370             track->setMainBuffer(chain->inBuffer());
2371             chain->setStrategy(AudioSystem::getStrategyForStream(track->streamType()));
2372             chain->incTrackCnt();
2373         }
2374 
2375         if ((*flags & AUDIO_OUTPUT_FLAG_FAST) && (tid != -1)) {
2376             pid_t callingPid = IPCThreadState::self()->getCallingPid();
2377             // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
2378             // so ask activity manager to do this on our behalf
2379             sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp, true /*forApp*/);
2380         }
2381     }
2382 
2383     lStatus = NO_ERROR;
2384 
2385 Exit:
2386     *status = lStatus;
2387     return track;
2388 }
2389 
2390 template<typename T>
remove(const sp<T> & track)2391 ssize_t AudioFlinger::PlaybackThread::Tracks<T>::remove(const sp<T> &track)
2392 {
2393     const int trackId = track->id();
2394     const ssize_t index = mTracks.remove(track);
2395     if (index >= 0) {
2396         if (mSaveDeletedTrackIds) {
2397             // We can't directly access mAudioMixer since the caller may be outside of threadLoop.
2398             // Instead, we add to mDeletedTrackIds which is solely used for mAudioMixer update,
2399             // to be handled when MixerThread::prepareTracks_l() next changes mAudioMixer.
2400             mDeletedTrackIds.emplace(trackId);
2401         }
2402     }
2403     return index;
2404 }
2405 
correctLatency_l(uint32_t latency) const2406 uint32_t AudioFlinger::PlaybackThread::correctLatency_l(uint32_t latency) const
2407 {
2408     return latency;
2409 }
2410 
latency() const2411 uint32_t AudioFlinger::PlaybackThread::latency() const
2412 {
2413     Mutex::Autolock _l(mLock);
2414     return latency_l();
2415 }
latency_l() const2416 uint32_t AudioFlinger::PlaybackThread::latency_l() const
2417 {
2418     uint32_t latency;
2419     if (initCheck() == NO_ERROR && mOutput->stream->getLatency(&latency) == OK) {
2420         return correctLatency_l(latency);
2421     }
2422     return 0;
2423 }
2424 
setMasterVolume(float value)2425 void AudioFlinger::PlaybackThread::setMasterVolume(float value)
2426 {
2427     Mutex::Autolock _l(mLock);
2428     // Don't apply master volume in SW if our HAL can do it for us.
2429     if (mOutput && mOutput->audioHwDev &&
2430         mOutput->audioHwDev->canSetMasterVolume()) {
2431         mMasterVolume = 1.0;
2432     } else {
2433         mMasterVolume = value;
2434     }
2435 }
2436 
setMasterBalance(float balance)2437 void AudioFlinger::PlaybackThread::setMasterBalance(float balance)
2438 {
2439     mMasterBalance.store(balance);
2440 }
2441 
setMasterMute(bool muted)2442 void AudioFlinger::PlaybackThread::setMasterMute(bool muted)
2443 {
2444     if (isDuplicating()) {
2445         return;
2446     }
2447     Mutex::Autolock _l(mLock);
2448     // Don't apply master mute in SW if our HAL can do it for us.
2449     if (mOutput && mOutput->audioHwDev &&
2450         mOutput->audioHwDev->canSetMasterMute()) {
2451         mMasterMute = false;
2452     } else {
2453         mMasterMute = muted;
2454     }
2455 }
2456 
setStreamVolume(audio_stream_type_t stream,float value)2457 void AudioFlinger::PlaybackThread::setStreamVolume(audio_stream_type_t stream, float value)
2458 {
2459     Mutex::Autolock _l(mLock);
2460     mStreamTypes[stream].volume = value;
2461     broadcast_l();
2462 }
2463 
setStreamMute(audio_stream_type_t stream,bool muted)2464 void AudioFlinger::PlaybackThread::setStreamMute(audio_stream_type_t stream, bool muted)
2465 {
2466     Mutex::Autolock _l(mLock);
2467     mStreamTypes[stream].mute = muted;
2468     broadcast_l();
2469 }
2470 
streamVolume(audio_stream_type_t stream) const2471 float AudioFlinger::PlaybackThread::streamVolume(audio_stream_type_t stream) const
2472 {
2473     Mutex::Autolock _l(mLock);
2474     return mStreamTypes[stream].volume;
2475 }
2476 
setVolumeForOutput_l(float left,float right) const2477 void AudioFlinger::PlaybackThread::setVolumeForOutput_l(float left, float right) const
2478 {
2479     mOutput->stream->setVolume(left, right);
2480 }
2481 
2482 // addTrack_l() must be called with ThreadBase::mLock held
addTrack_l(const sp<Track> & track)2483 status_t AudioFlinger::PlaybackThread::addTrack_l(const sp<Track>& track)
2484 {
2485     status_t status = ALREADY_EXISTS;
2486 
2487     if (mActiveTracks.indexOf(track) < 0) {
2488         // the track is newly added, make sure it fills up all its
2489         // buffers before playing. This is to ensure the client will
2490         // effectively get the latency it requested.
2491         if (track->isExternalTrack()) {
2492             TrackBase::track_state state = track->mState;
2493             mLock.unlock();
2494             status = AudioSystem::startOutput(track->portId());
2495             mLock.lock();
2496             // abort track was stopped/paused while we released the lock
2497             if (state != track->mState) {
2498                 if (status == NO_ERROR) {
2499                     mLock.unlock();
2500                     AudioSystem::stopOutput(track->portId());
2501                     mLock.lock();
2502                 }
2503                 return INVALID_OPERATION;
2504             }
2505             // abort if start is rejected by audio policy manager
2506             if (status != NO_ERROR) {
2507                 return PERMISSION_DENIED;
2508             }
2509 #ifdef ADD_BATTERY_DATA
2510             // to track the speaker usage
2511             addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStart);
2512 #endif
2513             sendIoConfigEvent_l(AUDIO_CLIENT_STARTED, track->creatorPid(), track->portId());
2514         }
2515 
2516         // set retry count for buffer fill
2517         if (track->isOffloaded()) {
2518             if (track->isStopping_1()) {
2519                 track->mRetryCount = kMaxTrackStopRetriesOffload;
2520             } else {
2521                 track->mRetryCount = kMaxTrackStartupRetriesOffload;
2522             }
2523             track->mFillingUpStatus = mStandby ? Track::FS_FILLING : Track::FS_FILLED;
2524         } else {
2525             track->mRetryCount = kMaxTrackStartupRetries;
2526             track->mFillingUpStatus =
2527                     track->sharedBuffer() != 0 ? Track::FS_FILLED : Track::FS_FILLING;
2528         }
2529 
2530         if ((track->channelMask() & AUDIO_CHANNEL_HAPTIC_ALL) != AUDIO_CHANNEL_NONE
2531                 && mHapticChannelMask != AUDIO_CHANNEL_NONE) {
2532             // Unlock due to VibratorService will lock for this call and will
2533             // call Tracks.mute/unmute which also require thread's lock.
2534             mLock.unlock();
2535             const int intensity = AudioFlinger::onExternalVibrationStart(
2536                     track->getExternalVibration());
2537             mLock.lock();
2538             track->setHapticIntensity(static_cast<AudioMixer::haptic_intensity_t>(intensity));
2539             // Haptic playback should be enabled by vibrator service.
2540             if (track->getHapticPlaybackEnabled()) {
2541                 // Disable haptic playback of all active track to ensure only
2542                 // one track playing haptic if current track should play haptic.
2543                 for (const auto &t : mActiveTracks) {
2544                     t->setHapticPlaybackEnabled(false);
2545                 }
2546             }
2547         }
2548 
2549         track->mResetDone = false;
2550         track->mPresentationCompleteFrames = 0;
2551         mActiveTracks.add(track);
2552         sp<EffectChain> chain = getEffectChain_l(track->sessionId());
2553         if (chain != 0) {
2554             ALOGV("addTrack_l() starting track on chain %p for session %d", chain.get(),
2555                     track->sessionId());
2556             chain->incActiveTrackCnt();
2557         }
2558 
2559         track->logBeginInterval(patchSinksToString(&mPatch)); // log to MediaMetrics
2560         status = NO_ERROR;
2561     }
2562 
2563     onAddNewTrack_l();
2564     return status;
2565 }
2566 
destroyTrack_l(const sp<Track> & track)2567 bool AudioFlinger::PlaybackThread::destroyTrack_l(const sp<Track>& track)
2568 {
2569     track->terminate();
2570     // active tracks are removed by threadLoop()
2571     bool trackActive = (mActiveTracks.indexOf(track) >= 0);
2572     track->mState = TrackBase::STOPPED;
2573     if (!trackActive) {
2574         removeTrack_l(track);
2575     } else if (track->isFastTrack() || track->isOffloaded() || track->isDirect()) {
2576         track->mState = TrackBase::STOPPING_1;
2577     }
2578 
2579     return trackActive;
2580 }
2581 
removeTrack_l(const sp<Track> & track)2582 void AudioFlinger::PlaybackThread::removeTrack_l(const sp<Track>& track)
2583 {
2584     track->triggerEvents(AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE);
2585 
2586     String8 result;
2587     track->appendDump(result, false /* active */);
2588     mLocalLog.log("removeTrack_l (%p) %s", track.get(), result.string());
2589 
2590     mTracks.remove(track);
2591     if (track->isFastTrack()) {
2592         int index = track->mFastIndex;
2593         ALOG_ASSERT(0 < index && index < (int)FastMixerState::sMaxFastTracks);
2594         ALOG_ASSERT(!(mFastTrackAvailMask & (1 << index)));
2595         mFastTrackAvailMask |= 1 << index;
2596         // redundant as track is about to be destroyed, for dumpsys only
2597         track->mFastIndex = -1;
2598     }
2599     sp<EffectChain> chain = getEffectChain_l(track->sessionId());
2600     if (chain != 0) {
2601         chain->decTrackCnt();
2602     }
2603 }
2604 
getParameters(const String8 & keys)2605 String8 AudioFlinger::PlaybackThread::getParameters(const String8& keys)
2606 {
2607     Mutex::Autolock _l(mLock);
2608     String8 out_s8;
2609     if (initCheck() == NO_ERROR && mOutput->stream->getParameters(keys, &out_s8) == OK) {
2610         return out_s8;
2611     }
2612     return String8();
2613 }
2614 
selectPresentation(int presentationId,int programId)2615 status_t AudioFlinger::DirectOutputThread::selectPresentation(int presentationId, int programId) {
2616     Mutex::Autolock _l(mLock);
2617     if (mOutput == nullptr || mOutput->stream == nullptr) {
2618         return NO_INIT;
2619     }
2620     return mOutput->stream->selectPresentation(presentationId, programId);
2621 }
2622 
ioConfigChanged(audio_io_config_event event,pid_t pid,audio_port_handle_t portId)2623 void AudioFlinger::PlaybackThread::ioConfigChanged(audio_io_config_event event, pid_t pid,
2624                                                    audio_port_handle_t portId) {
2625     sp<AudioIoDescriptor> desc = new AudioIoDescriptor();
2626     ALOGV("PlaybackThread::ioConfigChanged, thread %p, event %d", this, event);
2627 
2628     desc->mIoHandle = mId;
2629 
2630     switch (event) {
2631     case AUDIO_OUTPUT_OPENED:
2632     case AUDIO_OUTPUT_REGISTERED:
2633     case AUDIO_OUTPUT_CONFIG_CHANGED:
2634         desc->mPatch = mPatch;
2635         desc->mChannelMask = mChannelMask;
2636         desc->mSamplingRate = mSampleRate;
2637         desc->mFormat = mFormat;
2638         desc->mFrameCount = mNormalFrameCount; // FIXME see
2639                                              // AudioFlinger::frameCount(audio_io_handle_t)
2640         desc->mFrameCountHAL = mFrameCount;
2641         desc->mLatency = latency_l();
2642         break;
2643     case AUDIO_CLIENT_STARTED:
2644         desc->mPatch = mPatch;
2645         desc->mPortId = portId;
2646         break;
2647     case AUDIO_OUTPUT_CLOSED:
2648     default:
2649         break;
2650     }
2651     mAudioFlinger->ioConfigChanged(event, desc, pid);
2652 }
2653 
onWriteReady()2654 void AudioFlinger::PlaybackThread::onWriteReady()
2655 {
2656     mCallbackThread->resetWriteBlocked();
2657 }
2658 
onDrainReady()2659 void AudioFlinger::PlaybackThread::onDrainReady()
2660 {
2661     mCallbackThread->resetDraining();
2662 }
2663 
onError()2664 void AudioFlinger::PlaybackThread::onError()
2665 {
2666     mCallbackThread->setAsyncError();
2667 }
2668 
onCodecFormatChanged(const std::basic_string<uint8_t> & metadataBs)2669 void AudioFlinger::PlaybackThread::onCodecFormatChanged(
2670         const std::basic_string<uint8_t>& metadataBs)
2671 {
2672     std::thread([this, metadataBs]() {
2673             audio_utils::metadata::Data metadata =
2674                     audio_utils::metadata::dataFromByteString(metadataBs);
2675             if (metadata.empty()) {
2676                 ALOGW("Can not transform the buffer to audio metadata, %s, %d",
2677                       reinterpret_cast<char*>(const_cast<uint8_t*>(metadataBs.data())),
2678                       (int)metadataBs.size());
2679                 return;
2680             }
2681 
2682             audio_utils::metadata::ByteString metaDataStr =
2683                     audio_utils::metadata::byteStringFromData(metadata);
2684             std::vector metadataVec(metaDataStr.begin(), metaDataStr.end());
2685             Mutex::Autolock _l(mAudioTrackCbLock);
2686             for (const auto& callback : mAudioTrackCallbacks) {
2687                 callback->onCodecFormatChanged(metadataVec);
2688             }
2689     }).detach();
2690 }
2691 
resetWriteBlocked(uint32_t sequence)2692 void AudioFlinger::PlaybackThread::resetWriteBlocked(uint32_t sequence)
2693 {
2694     Mutex::Autolock _l(mLock);
2695     // reject out of sequence requests
2696     if ((mWriteAckSequence & 1) && (sequence == mWriteAckSequence)) {
2697         mWriteAckSequence &= ~1;
2698         mWaitWorkCV.signal();
2699     }
2700 }
2701 
resetDraining(uint32_t sequence)2702 void AudioFlinger::PlaybackThread::resetDraining(uint32_t sequence)
2703 {
2704     Mutex::Autolock _l(mLock);
2705     // reject out of sequence requests
2706     if ((mDrainSequence & 1) && (sequence == mDrainSequence)) {
2707         // Register discontinuity when HW drain is completed because that can cause
2708         // the timestamp frame position to reset to 0 for direct and offload threads.
2709         // (Out of sequence requests are ignored, since the discontinuity would be handled
2710         // elsewhere, e.g. in flush).
2711         mTimestampVerifier.discontinuity();
2712         mDrainSequence &= ~1;
2713         mWaitWorkCV.signal();
2714     }
2715 }
2716 
readOutputParameters_l()2717 void AudioFlinger::PlaybackThread::readOutputParameters_l()
2718 {
2719     // unfortunately we have no way of recovering from errors here, hence the LOG_ALWAYS_FATAL
2720     mSampleRate = mOutput->getSampleRate();
2721     mChannelMask = mOutput->getChannelMask();
2722     if (!audio_is_output_channel(mChannelMask)) {
2723         LOG_ALWAYS_FATAL("HAL channel mask %#x not valid for output", mChannelMask);
2724     }
2725     if ((mType == MIXER || mType == DUPLICATING)
2726             && !isValidPcmSinkChannelMask(mChannelMask)) {
2727         LOG_ALWAYS_FATAL("HAL channel mask %#x not supported for mixed output",
2728                 mChannelMask);
2729     }
2730     mChannelCount = audio_channel_count_from_out_mask(mChannelMask);
2731     mBalance.setChannelMask(mChannelMask);
2732 
2733     // Get actual HAL format.
2734     status_t result = mOutput->stream->getFormat(&mHALFormat);
2735     LOG_ALWAYS_FATAL_IF(result != OK, "Error when retrieving output stream format: %d", result);
2736     // Get format from the shim, which will be different than the HAL format
2737     // if playing compressed audio over HDMI passthrough.
2738     mFormat = mOutput->getFormat();
2739     if (!audio_is_valid_format(mFormat)) {
2740         LOG_ALWAYS_FATAL("HAL format %#x not valid for output", mFormat);
2741     }
2742     if ((mType == MIXER || mType == DUPLICATING)
2743             && !isValidPcmSinkFormat(mFormat)) {
2744         LOG_FATAL("HAL format %#x not supported for mixed output",
2745                 mFormat);
2746     }
2747     mFrameSize = mOutput->getFrameSize();
2748     result = mOutput->stream->getBufferSize(&mBufferSize);
2749     LOG_ALWAYS_FATAL_IF(result != OK,
2750             "Error when retrieving output stream buffer size: %d", result);
2751     mFrameCount = mBufferSize / mFrameSize;
2752     if ((mType == MIXER || mType == DUPLICATING) && (mFrameCount & 15)) {
2753         ALOGW("HAL output buffer size is %zu frames but AudioMixer requires multiples of 16 frames",
2754                 mFrameCount);
2755     }
2756 
2757     if (mOutput->flags & AUDIO_OUTPUT_FLAG_NON_BLOCKING) {
2758         if (mOutput->stream->setCallback(this) == OK) {
2759             mUseAsyncWrite = true;
2760             mCallbackThread = new AudioFlinger::AsyncCallbackThread(this);
2761         }
2762     }
2763 
2764     mHwSupportsPause = false;
2765     if (mOutput->flags & AUDIO_OUTPUT_FLAG_DIRECT) {
2766         bool supportsPause = false, supportsResume = false;
2767         if (mOutput->stream->supportsPauseAndResume(&supportsPause, &supportsResume) == OK) {
2768             if (supportsPause && supportsResume) {
2769                 mHwSupportsPause = true;
2770             } else if (supportsPause) {
2771                 ALOGW("direct output implements pause but not resume");
2772             } else if (supportsResume) {
2773                 ALOGW("direct output implements resume but not pause");
2774             }
2775         }
2776     }
2777     if (!mHwSupportsPause && mOutput->flags & AUDIO_OUTPUT_FLAG_HW_AV_SYNC) {
2778         LOG_ALWAYS_FATAL("HW_AV_SYNC requested but HAL does not implement pause and resume");
2779     }
2780 
2781     if (mType == DUPLICATING && mMixerBufferEnabled && mEffectBufferEnabled) {
2782         // For best precision, we use float instead of the associated output
2783         // device format (typically PCM 16 bit).
2784 
2785         mFormat = AUDIO_FORMAT_PCM_FLOAT;
2786         mFrameSize = mChannelCount * audio_bytes_per_sample(mFormat);
2787         mBufferSize = mFrameSize * mFrameCount;
2788 
2789         // TODO: We currently use the associated output device channel mask and sample rate.
2790         // (1) Perhaps use the ORed channel mask of all downstream MixerThreads
2791         // (if a valid mask) to avoid premature downmix.
2792         // (2) Perhaps use the maximum sample rate of all downstream MixerThreads
2793         // instead of the output device sample rate to avoid loss of high frequency information.
2794         // This may need to be updated as MixerThread/OutputTracks are added and not here.
2795     }
2796 
2797     // Calculate size of normal sink buffer relative to the HAL output buffer size
2798     double multiplier = 1.0;
2799     if (mType == MIXER && (kUseFastMixer == FastMixer_Static ||
2800             kUseFastMixer == FastMixer_Dynamic)) {
2801         size_t minNormalFrameCount = (kMinNormalSinkBufferSizeMs * mSampleRate) / 1000;
2802         size_t maxNormalFrameCount = (kMaxNormalSinkBufferSizeMs * mSampleRate) / 1000;
2803 
2804         // round up minimum and round down maximum to nearest 16 frames to satisfy AudioMixer
2805         minNormalFrameCount = (minNormalFrameCount + 15) & ~15;
2806         maxNormalFrameCount = maxNormalFrameCount & ~15;
2807         if (maxNormalFrameCount < minNormalFrameCount) {
2808             maxNormalFrameCount = minNormalFrameCount;
2809         }
2810         multiplier = (double) minNormalFrameCount / (double) mFrameCount;
2811         if (multiplier <= 1.0) {
2812             multiplier = 1.0;
2813         } else if (multiplier <= 2.0) {
2814             if (2 * mFrameCount <= maxNormalFrameCount) {
2815                 multiplier = 2.0;
2816             } else {
2817                 multiplier = (double) maxNormalFrameCount / (double) mFrameCount;
2818             }
2819         } else {
2820             multiplier = floor(multiplier);
2821         }
2822     }
2823     mNormalFrameCount = multiplier * mFrameCount;
2824     // round up to nearest 16 frames to satisfy AudioMixer
2825     if (mType == MIXER || mType == DUPLICATING) {
2826         mNormalFrameCount = (mNormalFrameCount + 15) & ~15;
2827     }
2828     ALOGI("HAL output buffer size %zu frames, normal sink buffer size %zu frames", mFrameCount,
2829             mNormalFrameCount);
2830 
2831     // Check if we want to throttle the processing to no more than 2x normal rate
2832     mThreadThrottle = property_get_bool("af.thread.throttle", true /* default_value */);
2833     mThreadThrottleTimeMs = 0;
2834     mThreadThrottleEndMs = 0;
2835     mHalfBufferMs = mNormalFrameCount * 1000 / (2 * mSampleRate);
2836 
2837     // mSinkBuffer is the sink buffer.  Size is always multiple-of-16 frames.
2838     // Originally this was int16_t[] array, need to remove legacy implications.
2839     free(mSinkBuffer);
2840     mSinkBuffer = NULL;
2841     // For sink buffer size, we use the frame size from the downstream sink to avoid problems
2842     // with non PCM formats for compressed music, e.g. AAC, and Offload threads.
2843     const size_t sinkBufferSize = mNormalFrameCount * mFrameSize;
2844     (void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize);
2845 
2846     // We resize the mMixerBuffer according to the requirements of the sink buffer which
2847     // drives the output.
2848     free(mMixerBuffer);
2849     mMixerBuffer = NULL;
2850     if (mMixerBufferEnabled) {
2851         mMixerBufferFormat = AUDIO_FORMAT_PCM_FLOAT; // no longer valid: AUDIO_FORMAT_PCM_16_BIT.
2852         mMixerBufferSize = mNormalFrameCount * mChannelCount
2853                 * audio_bytes_per_sample(mMixerBufferFormat);
2854         (void)posix_memalign(&mMixerBuffer, 32, mMixerBufferSize);
2855     }
2856     free(mEffectBuffer);
2857     mEffectBuffer = NULL;
2858     if (mEffectBufferEnabled) {
2859         mEffectBufferFormat = EFFECT_BUFFER_FORMAT;
2860         mEffectBufferSize = mNormalFrameCount * mChannelCount
2861                 * audio_bytes_per_sample(mEffectBufferFormat);
2862         (void)posix_memalign(&mEffectBuffer, 32, mEffectBufferSize);
2863     }
2864 
2865     mHapticChannelMask = mChannelMask & AUDIO_CHANNEL_HAPTIC_ALL;
2866     mChannelMask &= ~mHapticChannelMask;
2867     mHapticChannelCount = audio_channel_count_from_out_mask(mHapticChannelMask);
2868     mChannelCount -= mHapticChannelCount;
2869 
2870     // force reconfiguration of effect chains and engines to take new buffer size and audio
2871     // parameters into account
2872     // Note that mLock is not held when readOutputParameters_l() is called from the constructor
2873     // but in this case nothing is done below as no audio sessions have effect yet so it doesn't
2874     // matter.
2875     // create a copy of mEffectChains as calling moveEffectChain_l() can reorder some effect chains
2876     Vector< sp<EffectChain> > effectChains = mEffectChains;
2877     for (size_t i = 0; i < effectChains.size(); i ++) {
2878         mAudioFlinger->moveEffectChain_l(effectChains[i]->sessionId(),
2879             this/* srcThread */, this/* dstThread */);
2880     }
2881 
2882     audio_output_flags_t flags = mOutput->flags;
2883     mediametrics::LogItem item(mThreadMetrics.getMetricsId()); // TODO: method in ThreadMetrics?
2884     item.set(AMEDIAMETRICS_PROP_EVENT, AMEDIAMETRICS_PROP_EVENT_VALUE_READPARAMETERS)
2885         .set(AMEDIAMETRICS_PROP_ENCODING, formatToString(mFormat).c_str())
2886         .set(AMEDIAMETRICS_PROP_SAMPLERATE, (int32_t)mSampleRate)
2887         .set(AMEDIAMETRICS_PROP_CHANNELMASK, (int32_t)mChannelMask)
2888         .set(AMEDIAMETRICS_PROP_CHANNELCOUNT, (int32_t)mChannelCount)
2889         .set(AMEDIAMETRICS_PROP_FRAMECOUNT, (int32_t)mNormalFrameCount)
2890         .set(AMEDIAMETRICS_PROP_FLAGS, toString(flags).c_str())
2891         .set(AMEDIAMETRICS_PROP_PREFIX_HAPTIC AMEDIAMETRICS_PROP_CHANNELMASK,
2892                 (int32_t)mHapticChannelMask)
2893         .set(AMEDIAMETRICS_PROP_PREFIX_HAPTIC AMEDIAMETRICS_PROP_CHANNELCOUNT,
2894                 (int32_t)mHapticChannelCount)
2895         .set(AMEDIAMETRICS_PROP_PREFIX_HAL    AMEDIAMETRICS_PROP_ENCODING,
2896                 formatToString(mHALFormat).c_str())
2897         .set(AMEDIAMETRICS_PROP_PREFIX_HAL    AMEDIAMETRICS_PROP_FRAMECOUNT,
2898                 (int32_t)mFrameCount) // sic - added HAL
2899         ;
2900     uint32_t latencyMs;
2901     if (mOutput->stream->getLatency(&latencyMs) == NO_ERROR) {
2902         item.set(AMEDIAMETRICS_PROP_PREFIX_HAL AMEDIAMETRICS_PROP_LATENCYMS, (double)latencyMs);
2903     }
2904     item.record();
2905 }
2906 
updateMetadata_l()2907 void AudioFlinger::PlaybackThread::updateMetadata_l()
2908 {
2909     if (mOutput == nullptr || mOutput->stream == nullptr ) {
2910         return; // That should not happen
2911     }
2912     bool hasChanged = mActiveTracks.readAndClearHasChanged();
2913     for (const sp<Track> &track : mActiveTracks) {
2914         // Do not short-circuit as all hasChanged states must be reset
2915         // as all the metadata are going to be sent
2916         hasChanged |= track->readAndClearHasChanged();
2917     }
2918     if (!hasChanged) {
2919         return; // nothing to do
2920     }
2921     StreamOutHalInterface::SourceMetadata metadata;
2922     auto backInserter = std::back_inserter(metadata.tracks);
2923     for (const sp<Track> &track : mActiveTracks) {
2924         // No track is invalid as this is called after prepareTrack_l in the same critical section
2925         track->copyMetadataTo(backInserter);
2926     }
2927     sendMetadataToBackend_l(metadata);
2928 }
2929 
sendMetadataToBackend_l(const StreamOutHalInterface::SourceMetadata & metadata)2930 void AudioFlinger::PlaybackThread::sendMetadataToBackend_l(
2931         const StreamOutHalInterface::SourceMetadata& metadata)
2932 {
2933     mOutput->stream->updateSourceMetadata(metadata);
2934 };
2935 
getRenderPosition(uint32_t * halFrames,uint32_t * dspFrames)2936 status_t AudioFlinger::PlaybackThread::getRenderPosition(uint32_t *halFrames, uint32_t *dspFrames)
2937 {
2938     if (halFrames == NULL || dspFrames == NULL) {
2939         return BAD_VALUE;
2940     }
2941     Mutex::Autolock _l(mLock);
2942     if (initCheck() != NO_ERROR) {
2943         return INVALID_OPERATION;
2944     }
2945     int64_t framesWritten = mBytesWritten / mFrameSize;
2946     *halFrames = framesWritten;
2947 
2948     if (isSuspended()) {
2949         // return an estimation of rendered frames when the output is suspended
2950         size_t latencyFrames = (latency_l() * mSampleRate) / 1000;
2951         *dspFrames = (uint32_t)
2952                 (framesWritten >= (int64_t)latencyFrames ? framesWritten - latencyFrames : 0);
2953         return NO_ERROR;
2954     } else {
2955         status_t status;
2956         uint32_t frames;
2957         status = mOutput->getRenderPosition(&frames);
2958         *dspFrames = (size_t)frames;
2959         return status;
2960     }
2961 }
2962 
getStrategyForSession_l(audio_session_t sessionId)2963 uint32_t AudioFlinger::PlaybackThread::getStrategyForSession_l(audio_session_t sessionId)
2964 {
2965     // session AUDIO_SESSION_OUTPUT_MIX is placed in same strategy as MUSIC stream so that
2966     // it is moved to correct output by audio policy manager when A2DP is connected or disconnected
2967     if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
2968         return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC);
2969     }
2970     for (size_t i = 0; i < mTracks.size(); i++) {
2971         sp<Track> track = mTracks[i];
2972         if (sessionId == track->sessionId() && !track->isInvalid()) {
2973             return AudioSystem::getStrategyForStream(track->streamType());
2974         }
2975     }
2976     return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC);
2977 }
2978 
2979 
getOutput() const2980 AudioStreamOut* AudioFlinger::PlaybackThread::getOutput() const
2981 {
2982     Mutex::Autolock _l(mLock);
2983     return mOutput;
2984 }
2985 
clearOutput()2986 AudioStreamOut* AudioFlinger::PlaybackThread::clearOutput()
2987 {
2988     Mutex::Autolock _l(mLock);
2989     AudioStreamOut *output = mOutput;
2990     mOutput = NULL;
2991     // FIXME FastMixer might also have a raw ptr to mOutputSink;
2992     //       must push a NULL and wait for ack
2993     mOutputSink.clear();
2994     mPipeSink.clear();
2995     mNormalSink.clear();
2996     return output;
2997 }
2998 
2999 // this method must always be called either with ThreadBase mLock held or inside the thread loop
stream() const3000 sp<StreamHalInterface> AudioFlinger::PlaybackThread::stream() const
3001 {
3002     if (mOutput == NULL) {
3003         return NULL;
3004     }
3005     return mOutput->stream;
3006 }
3007 
activeSleepTimeUs() const3008 uint32_t AudioFlinger::PlaybackThread::activeSleepTimeUs() const
3009 {
3010     return (uint32_t)((uint32_t)((mNormalFrameCount * 1000) / mSampleRate) * 1000);
3011 }
3012 
setSyncEvent(const sp<SyncEvent> & event)3013 status_t AudioFlinger::PlaybackThread::setSyncEvent(const sp<SyncEvent>& event)
3014 {
3015     if (!isValidSyncEvent(event)) {
3016         return BAD_VALUE;
3017     }
3018 
3019     Mutex::Autolock _l(mLock);
3020 
3021     for (size_t i = 0; i < mTracks.size(); ++i) {
3022         sp<Track> track = mTracks[i];
3023         if (event->triggerSession() == track->sessionId()) {
3024             (void) track->setSyncEvent(event);
3025             return NO_ERROR;
3026         }
3027     }
3028 
3029     return NAME_NOT_FOUND;
3030 }
3031 
isValidSyncEvent(const sp<SyncEvent> & event) const3032 bool AudioFlinger::PlaybackThread::isValidSyncEvent(const sp<SyncEvent>& event) const
3033 {
3034     return event->type() == AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE;
3035 }
3036 
threadLoop_removeTracks(const Vector<sp<Track>> & tracksToRemove)3037 void AudioFlinger::PlaybackThread::threadLoop_removeTracks(
3038         const Vector< sp<Track> >& tracksToRemove)
3039 {
3040     // Miscellaneous track cleanup when removed from the active list,
3041     // called without Thread lock but synchronized with threadLoop processing.
3042 #ifdef ADD_BATTERY_DATA
3043     for (const auto& track : tracksToRemove) {
3044         if (track->isExternalTrack()) {
3045             // to track the speaker usage
3046             addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStop);
3047         }
3048     }
3049 #else
3050     (void)tracksToRemove; // suppress unused warning
3051 #endif
3052 }
3053 
checkSilentMode_l()3054 void AudioFlinger::PlaybackThread::checkSilentMode_l()
3055 {
3056     if (!mMasterMute) {
3057         char value[PROPERTY_VALUE_MAX];
3058         if (mOutDeviceTypeAddrs.empty()) {
3059             ALOGD("ro.audio.silent is ignored since no output device is set");
3060             return;
3061         }
3062         if (isSingleDeviceType(outDeviceTypes(), AUDIO_DEVICE_OUT_REMOTE_SUBMIX)) {
3063             ALOGD("ro.audio.silent will be ignored for threads on AUDIO_DEVICE_OUT_REMOTE_SUBMIX");
3064             return;
3065         }
3066         if (property_get("ro.audio.silent", value, "0") > 0) {
3067             char *endptr;
3068             unsigned long ul = strtoul(value, &endptr, 0);
3069             if (*endptr == '\0' && ul != 0) {
3070                 ALOGD("Silence is golden");
3071                 // The setprop command will not allow a property to be changed after
3072                 // the first time it is set, so we don't have to worry about un-muting.
3073                 setMasterMute_l(true);
3074             }
3075         }
3076     }
3077 }
3078 
3079 // shared by MIXER and DIRECT, overridden by DUPLICATING
threadLoop_write()3080 ssize_t AudioFlinger::PlaybackThread::threadLoop_write()
3081 {
3082     LOG_HIST_TS();
3083     mInWrite = true;
3084     ssize_t bytesWritten;
3085     const size_t offset = mCurrentWriteLength - mBytesRemaining;
3086 
3087     // If an NBAIO sink is present, use it to write the normal mixer's submix
3088     if (mNormalSink != 0) {
3089 
3090         const size_t count = mBytesRemaining / mFrameSize;
3091 
3092         ATRACE_BEGIN("write");
3093         // update the setpoint when AudioFlinger::mScreenState changes
3094         uint32_t screenState = AudioFlinger::mScreenState;
3095         if (screenState != mScreenState) {
3096             mScreenState = screenState;
3097             MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
3098             if (pipe != NULL) {
3099                 pipe->setAvgFrames((mScreenState & 1) ?
3100                         (pipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
3101             }
3102         }
3103         ssize_t framesWritten = mNormalSink->write((char *)mSinkBuffer + offset, count);
3104         ATRACE_END();
3105         if (framesWritten > 0) {
3106             bytesWritten = framesWritten * mFrameSize;
3107 #ifdef TEE_SINK
3108             mTee.write((char *)mSinkBuffer + offset, framesWritten);
3109 #endif
3110         } else {
3111             bytesWritten = framesWritten;
3112         }
3113     // otherwise use the HAL / AudioStreamOut directly
3114     } else {
3115         // Direct output and offload threads
3116 
3117         if (mUseAsyncWrite) {
3118             ALOGW_IF(mWriteAckSequence & 1, "threadLoop_write(): out of sequence write request");
3119             mWriteAckSequence += 2;
3120             mWriteAckSequence |= 1;
3121             ALOG_ASSERT(mCallbackThread != 0);
3122             mCallbackThread->setWriteBlocked(mWriteAckSequence);
3123         }
3124         ATRACE_BEGIN("write");
3125         // FIXME We should have an implementation of timestamps for direct output threads.
3126         // They are used e.g for multichannel PCM playback over HDMI.
3127         bytesWritten = mOutput->write((char *)mSinkBuffer + offset, mBytesRemaining);
3128         ATRACE_END();
3129 
3130         if (mUseAsyncWrite &&
3131                 ((bytesWritten < 0) || (bytesWritten == (ssize_t)mBytesRemaining))) {
3132             // do not wait for async callback in case of error of full write
3133             mWriteAckSequence &= ~1;
3134             ALOG_ASSERT(mCallbackThread != 0);
3135             mCallbackThread->setWriteBlocked(mWriteAckSequence);
3136         }
3137     }
3138 
3139     mNumWrites++;
3140     mInWrite = false;
3141     if (mStandby) {
3142         mThreadMetrics.logBeginInterval();
3143         mStandby = false;
3144     }
3145     return bytesWritten;
3146 }
3147 
threadLoop_drain()3148 void AudioFlinger::PlaybackThread::threadLoop_drain()
3149 {
3150     bool supportsDrain = false;
3151     if (mOutput->stream->supportsDrain(&supportsDrain) == OK && supportsDrain) {
3152         ALOGV("draining %s", (mMixerStatus == MIXER_DRAIN_TRACK) ? "early" : "full");
3153         if (mUseAsyncWrite) {
3154             ALOGW_IF(mDrainSequence & 1, "threadLoop_drain(): out of sequence drain request");
3155             mDrainSequence |= 1;
3156             ALOG_ASSERT(mCallbackThread != 0);
3157             mCallbackThread->setDraining(mDrainSequence);
3158         }
3159         status_t result = mOutput->stream->drain(mMixerStatus == MIXER_DRAIN_TRACK);
3160         ALOGE_IF(result != OK, "Error when draining stream: %d", result);
3161     }
3162 }
3163 
threadLoop_exit()3164 void AudioFlinger::PlaybackThread::threadLoop_exit()
3165 {
3166     {
3167         Mutex::Autolock _l(mLock);
3168         for (size_t i = 0; i < mTracks.size(); i++) {
3169             sp<Track> track = mTracks[i];
3170             track->invalidate();
3171         }
3172         // Clear ActiveTracks to update BatteryNotifier in case active tracks remain.
3173         // After we exit there are no more track changes sent to BatteryNotifier
3174         // because that requires an active threadLoop.
3175         // TODO: should we decActiveTrackCnt() of the cleared track effect chain?
3176         mActiveTracks.clear();
3177     }
3178 }
3179 
3180 /*
3181 The derived values that are cached:
3182  - mSinkBufferSize from frame count * frame size
3183  - mActiveSleepTimeUs from activeSleepTimeUs()
3184  - mIdleSleepTimeUs from idleSleepTimeUs()
3185  - mStandbyDelayNs from mActiveSleepTimeUs (DIRECT only) or forced to at least
3186    kDefaultStandbyTimeInNsecs when connected to an A2DP device.
3187  - maxPeriod from frame count and sample rate (MIXER only)
3188 
3189 The parameters that affect these derived values are:
3190  - frame count
3191  - frame size
3192  - sample rate
3193  - device type: A2DP or not
3194  - device latency
3195  - format: PCM or not
3196  - active sleep time
3197  - idle sleep time
3198 */
3199 
cacheParameters_l()3200 void AudioFlinger::PlaybackThread::cacheParameters_l()
3201 {
3202     mSinkBufferSize = mNormalFrameCount * mFrameSize;
3203     mActiveSleepTimeUs = activeSleepTimeUs();
3204     mIdleSleepTimeUs = idleSleepTimeUs();
3205 
3206     // make sure standby delay is not too short when connected to an A2DP sink to avoid
3207     // truncating audio when going to standby.
3208     mStandbyDelayNs = AudioFlinger::mStandbyTimeInNsecs;
3209     if (!Intersection(outDeviceTypes(),  getAudioDeviceOutAllA2dpSet()).empty()) {
3210         if (mStandbyDelayNs < kDefaultStandbyTimeInNsecs) {
3211             mStandbyDelayNs = kDefaultStandbyTimeInNsecs;
3212         }
3213     }
3214 }
3215 
invalidateTracks_l(audio_stream_type_t streamType)3216 bool AudioFlinger::PlaybackThread::invalidateTracks_l(audio_stream_type_t streamType)
3217 {
3218     ALOGV("MixerThread::invalidateTracks() mixer %p, streamType %d, mTracks.size %zu",
3219             this,  streamType, mTracks.size());
3220     bool trackMatch = false;
3221     size_t size = mTracks.size();
3222     for (size_t i = 0; i < size; i++) {
3223         sp<Track> t = mTracks[i];
3224         if (t->streamType() == streamType && t->isExternalTrack()) {
3225             t->invalidate();
3226             trackMatch = true;
3227         }
3228     }
3229     return trackMatch;
3230 }
3231 
invalidateTracks(audio_stream_type_t streamType)3232 void AudioFlinger::PlaybackThread::invalidateTracks(audio_stream_type_t streamType)
3233 {
3234     Mutex::Autolock _l(mLock);
3235     invalidateTracks_l(streamType);
3236 }
3237 
addEffectChain_l(const sp<EffectChain> & chain)3238 status_t AudioFlinger::PlaybackThread::addEffectChain_l(const sp<EffectChain>& chain)
3239 {
3240     audio_session_t session = chain->sessionId();
3241     sp<EffectBufferHalInterface> halInBuffer, halOutBuffer;
3242     status_t result = mAudioFlinger->mEffectsFactoryHal->mirrorBuffer(
3243             mEffectBufferEnabled ? mEffectBuffer : mSinkBuffer,
3244             mEffectBufferEnabled ? mEffectBufferSize : mSinkBufferSize,
3245             &halInBuffer);
3246     if (result != OK) return result;
3247     halOutBuffer = halInBuffer;
3248     effect_buffer_t *buffer = reinterpret_cast<effect_buffer_t*>(halInBuffer->externalData());
3249     ALOGV("addEffectChain_l() %p on thread %p for session %d", chain.get(), this, session);
3250     if (!audio_is_global_session(session)) {
3251         // Only one effect chain can be present in direct output thread and it uses
3252         // the sink buffer as input
3253         if (mType != DIRECT) {
3254             size_t numSamples = mNormalFrameCount * (mChannelCount + mHapticChannelCount);
3255             status_t result = mAudioFlinger->mEffectsFactoryHal->allocateBuffer(
3256                     numSamples * sizeof(effect_buffer_t),
3257                     &halInBuffer);
3258             if (result != OK) return result;
3259 #ifdef FLOAT_EFFECT_CHAIN
3260             buffer = halInBuffer->audioBuffer()->f32;
3261 #else
3262             buffer = halInBuffer->audioBuffer()->s16;
3263 #endif
3264             ALOGV("addEffectChain_l() creating new input buffer %p session %d",
3265                     buffer, session);
3266         }
3267 
3268         // Attach all tracks with same session ID to this chain.
3269         for (size_t i = 0; i < mTracks.size(); ++i) {
3270             sp<Track> track = mTracks[i];
3271             if (session == track->sessionId()) {
3272                 ALOGV("addEffectChain_l() track->setMainBuffer track %p buffer %p", track.get(),
3273                         buffer);
3274                 track->setMainBuffer(buffer);
3275                 chain->incTrackCnt();
3276             }
3277         }
3278 
3279         // indicate all active tracks in the chain
3280         for (const sp<Track> &track : mActiveTracks) {
3281             if (session == track->sessionId()) {
3282                 ALOGV("addEffectChain_l() activating track %p on session %d", track.get(), session);
3283                 chain->incActiveTrackCnt();
3284             }
3285         }
3286     }
3287     chain->setThread(this);
3288     chain->setInBuffer(halInBuffer);
3289     chain->setOutBuffer(halOutBuffer);
3290     // Effect chain for session AUDIO_SESSION_DEVICE is inserted at end of effect
3291     // chains list in order to be processed last as it contains output device effects.
3292     // Effect chain for session AUDIO_SESSION_OUTPUT_STAGE is inserted just before to apply post
3293     // processing effects specific to an output stream before effects applied to all streams
3294     // routed to a given device.
3295     // Effect chain for session AUDIO_SESSION_OUTPUT_MIX is inserted before
3296     // session AUDIO_SESSION_OUTPUT_STAGE to be processed
3297     // after track specific effects and before output stage.
3298     // It is therefore mandatory that AUDIO_SESSION_OUTPUT_MIX == 0 and
3299     // that AUDIO_SESSION_OUTPUT_STAGE < AUDIO_SESSION_OUTPUT_MIX.
3300     // Effect chain for other sessions are inserted at beginning of effect
3301     // chains list to be processed before output mix effects. Relative order between other
3302     // sessions is not important.
3303     static_assert(AUDIO_SESSION_OUTPUT_MIX == 0 &&
3304             AUDIO_SESSION_OUTPUT_STAGE < AUDIO_SESSION_OUTPUT_MIX &&
3305             AUDIO_SESSION_DEVICE < AUDIO_SESSION_OUTPUT_STAGE,
3306             "audio_session_t constants misdefined");
3307     size_t size = mEffectChains.size();
3308     size_t i = 0;
3309     for (i = 0; i < size; i++) {
3310         if (mEffectChains[i]->sessionId() < session) {
3311             break;
3312         }
3313     }
3314     mEffectChains.insertAt(chain, i);
3315     checkSuspendOnAddEffectChain_l(chain);
3316 
3317     return NO_ERROR;
3318 }
3319 
removeEffectChain_l(const sp<EffectChain> & chain)3320 size_t AudioFlinger::PlaybackThread::removeEffectChain_l(const sp<EffectChain>& chain)
3321 {
3322     audio_session_t session = chain->sessionId();
3323 
3324     ALOGV("removeEffectChain_l() %p from thread %p for session %d", chain.get(), this, session);
3325 
3326     for (size_t i = 0; i < mEffectChains.size(); i++) {
3327         if (chain == mEffectChains[i]) {
3328             mEffectChains.removeAt(i);
3329             // detach all active tracks from the chain
3330             for (const sp<Track> &track : mActiveTracks) {
3331                 if (session == track->sessionId()) {
3332                     ALOGV("removeEffectChain_l(): stopping track on chain %p for session Id: %d",
3333                             chain.get(), session);
3334                     chain->decActiveTrackCnt();
3335                 }
3336             }
3337 
3338             // detach all tracks with same session ID from this chain
3339             for (size_t i = 0; i < mTracks.size(); ++i) {
3340                 sp<Track> track = mTracks[i];
3341                 if (session == track->sessionId()) {
3342                     track->setMainBuffer(reinterpret_cast<effect_buffer_t*>(mSinkBuffer));
3343                     chain->decTrackCnt();
3344                 }
3345             }
3346             break;
3347         }
3348     }
3349     return mEffectChains.size();
3350 }
3351 
attachAuxEffect(const sp<AudioFlinger::PlaybackThread::Track> & track,int EffectId)3352 status_t AudioFlinger::PlaybackThread::attachAuxEffect(
3353         const sp<AudioFlinger::PlaybackThread::Track>& track, int EffectId)
3354 {
3355     Mutex::Autolock _l(mLock);
3356     return attachAuxEffect_l(track, EffectId);
3357 }
3358 
attachAuxEffect_l(const sp<AudioFlinger::PlaybackThread::Track> & track,int EffectId)3359 status_t AudioFlinger::PlaybackThread::attachAuxEffect_l(
3360         const sp<AudioFlinger::PlaybackThread::Track>& track, int EffectId)
3361 {
3362     status_t status = NO_ERROR;
3363 
3364     if (EffectId == 0) {
3365         track->setAuxBuffer(0, NULL);
3366     } else {
3367         // Auxiliary effects are always in audio session AUDIO_SESSION_OUTPUT_MIX
3368         sp<EffectModule> effect = getEffect_l(AUDIO_SESSION_OUTPUT_MIX, EffectId);
3369         if (effect != 0) {
3370             if ((effect->desc().flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
3371                 track->setAuxBuffer(EffectId, (int32_t *)effect->inBuffer());
3372             } else {
3373                 status = INVALID_OPERATION;
3374             }
3375         } else {
3376             status = BAD_VALUE;
3377         }
3378     }
3379     return status;
3380 }
3381 
detachAuxEffect_l(int effectId)3382 void AudioFlinger::PlaybackThread::detachAuxEffect_l(int effectId)
3383 {
3384     for (size_t i = 0; i < mTracks.size(); ++i) {
3385         sp<Track> track = mTracks[i];
3386         if (track->auxEffectId() == effectId) {
3387             attachAuxEffect_l(track, 0);
3388         }
3389     }
3390 }
3391 
threadLoop()3392 bool AudioFlinger::PlaybackThread::threadLoop()
3393 {
3394     tlNBLogWriter = mNBLogWriter.get();
3395 
3396     Vector< sp<Track> > tracksToRemove;
3397 
3398     mStandbyTimeNs = systemTime();
3399     int64_t lastLoopCountWritten = -2; // never matches "previous" loop, when loopCount = 0.
3400     int64_t lastFramesWritten = -1;    // track changes in timestamp server frames written
3401 
3402     // MIXER
3403     nsecs_t lastWarning = 0;
3404 
3405     // DUPLICATING
3406     // FIXME could this be made local to while loop?
3407     writeFrames = 0;
3408 
3409     cacheParameters_l();
3410     mSleepTimeUs = mIdleSleepTimeUs;
3411 
3412     if (mType == MIXER) {
3413         sleepTimeShift = 0;
3414     }
3415 
3416     CpuStats cpuStats;
3417     const String8 myName(String8::format("thread %p type %d TID %d", this, mType, gettid()));
3418 
3419     acquireWakeLock();
3420 
3421     // mNBLogWriter logging APIs can only be called by a single thread, typically the
3422     // thread associated with this PlaybackThread.
3423     // If you want to share the mNBLogWriter with other threads (for example, binder threads)
3424     // then all such threads must agree to hold a common mutex before logging.
3425     // So if you need to log when mutex is unlocked, set logString to a non-NULL string,
3426     // and then that string will be logged at the next convenient opportunity.
3427     // See reference to logString below.
3428     const char *logString = NULL;
3429 
3430     // Estimated time for next buffer to be written to hal. This is used only on
3431     // suspended mode (for now) to help schedule the wait time until next iteration.
3432     nsecs_t timeLoopNextNs = 0;
3433 
3434     checkSilentMode_l();
3435 
3436     // DIRECT and OFFLOAD threads should reset frame count to zero on stop/flush
3437     // TODO: add confirmation checks:
3438     // 1) DIRECT threads and linear PCM format really resets to 0?
3439     // 2) Is frame count really valid if not linear pcm?
3440     // 3) Are all 64 bits of position returned, not just lowest 32 bits?
3441     if (mType == OFFLOAD || mType == DIRECT) {
3442         mTimestampVerifier.setDiscontinuityMode(mTimestampVerifier.DISCONTINUITY_MODE_ZERO);
3443     }
3444     audio_patch_handle_t lastDownstreamPatchHandle = AUDIO_PATCH_HANDLE_NONE;
3445 
3446     // loopCount is used for statistics and diagnostics.
3447     for (int64_t loopCount = 0; !exitPending(); ++loopCount)
3448     {
3449         // Log merge requests are performed during AudioFlinger binder transactions, but
3450         // that does not cover audio playback. It's requested here for that reason.
3451         mAudioFlinger->requestLogMerge();
3452 
3453         cpuStats.sample(myName);
3454 
3455         Vector< sp<EffectChain> > effectChains;
3456         audio_session_t activeHapticSessionId = AUDIO_SESSION_NONE;
3457         std::vector<sp<Track>> activeTracks;
3458 
3459         // If the device is AUDIO_DEVICE_OUT_BUS, check for downstream latency.
3460         //
3461         // Note: we access outDeviceTypes() outside of mLock.
3462         if (isMsdDevice() && outDeviceTypes().count(AUDIO_DEVICE_OUT_BUS) != 0) {
3463             // Here, we try for the AF lock, but do not block on it as the latency
3464             // is more informational.
3465             if (mAudioFlinger->mLock.tryLock() == NO_ERROR) {
3466                 std::vector<PatchPanel::SoftwarePatch> swPatches;
3467                 double latencyMs;
3468                 status_t status = INVALID_OPERATION;
3469                 audio_patch_handle_t downstreamPatchHandle = AUDIO_PATCH_HANDLE_NONE;
3470                 if (mAudioFlinger->mPatchPanel.getDownstreamSoftwarePatches(id(), &swPatches) == OK
3471                         && swPatches.size() > 0) {
3472                         status = swPatches[0].getLatencyMs_l(&latencyMs);
3473                         downstreamPatchHandle = swPatches[0].getPatchHandle();
3474                 }
3475                 if (downstreamPatchHandle != lastDownstreamPatchHandle) {
3476                     mDownstreamLatencyStatMs.reset();
3477                     lastDownstreamPatchHandle = downstreamPatchHandle;
3478                 }
3479                 if (status == OK) {
3480                     // verify downstream latency (we assume a max reasonable
3481                     // latency of 5 seconds).
3482                     const double minLatency = 0., maxLatency = 5000.;
3483                     if (latencyMs >= minLatency && latencyMs <= maxLatency) {
3484                         ALOGV("new downstream latency %lf ms", latencyMs);
3485                     } else {
3486                         ALOGD("out of range downstream latency %lf ms", latencyMs);
3487                         if (latencyMs < minLatency) latencyMs = minLatency;
3488                         else if (latencyMs > maxLatency) latencyMs = maxLatency;
3489                     }
3490                     mDownstreamLatencyStatMs.add(latencyMs);
3491                 }
3492                 mAudioFlinger->mLock.unlock();
3493             }
3494         } else {
3495             if (lastDownstreamPatchHandle != AUDIO_PATCH_HANDLE_NONE) {
3496                 // our device is no longer AUDIO_DEVICE_OUT_BUS, reset patch handle and stats.
3497                 mDownstreamLatencyStatMs.reset();
3498                 lastDownstreamPatchHandle = AUDIO_PATCH_HANDLE_NONE;
3499             }
3500         }
3501 
3502         { // scope for mLock
3503 
3504             Mutex::Autolock _l(mLock);
3505 
3506             processConfigEvents_l();
3507 
3508             // See comment at declaration of logString for why this is done under mLock
3509             if (logString != NULL) {
3510                 mNBLogWriter->logTimestamp();
3511                 mNBLogWriter->log(logString);
3512                 logString = NULL;
3513             }
3514 
3515             // Collect timestamp statistics for the Playback Thread types that support it.
3516             if (mType == MIXER
3517                     || mType == DUPLICATING
3518                     || mType == DIRECT
3519                     || mType == OFFLOAD) { // no indentation
3520             // Gather the framesReleased counters for all active tracks,
3521             // and associate with the sink frames written out.  We need
3522             // this to convert the sink timestamp to the track timestamp.
3523             bool kernelLocationUpdate = false;
3524             ExtendedTimestamp timestamp; // use private copy to fetch
3525             if (mStandby) {
3526                 mTimestampVerifier.discontinuity();
3527             } else if (threadloop_getHalTimestamp_l(&timestamp) == OK) {
3528                 mTimestampVerifier.add(timestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL],
3529                         timestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL],
3530                         mSampleRate);
3531 
3532                 if (isTimestampCorrectionEnabled()) {
3533                     ALOGV("TS_BEFORE: %d %lld %lld", id(),
3534                             (long long)timestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL],
3535                             (long long)timestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL]);
3536                     auto correctedTimestamp = mTimestampVerifier.getLastCorrectedTimestamp();
3537                     timestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL]
3538                             = correctedTimestamp.mFrames;
3539                     timestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL]
3540                             = correctedTimestamp.mTimeNs;
3541                     ALOGV("TS_AFTER: %d %lld %lld", id(),
3542                             (long long)timestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL],
3543                             (long long)timestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL]);
3544 
3545                     // Note: Downstream latency only added if timestamp correction enabled.
3546                     if (mDownstreamLatencyStatMs.getN() > 0) { // we have latency info.
3547                         const int64_t newPosition =
3548                                 timestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL]
3549                                 - int64_t(mDownstreamLatencyStatMs.getMean() * mSampleRate * 1e-3);
3550                         // prevent retrograde
3551                         timestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL] = max(
3552                                 newPosition,
3553                                 (mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL]
3554                                         - mSuspendedFrames));
3555                     }
3556                 }
3557 
3558                 // We always fetch the timestamp here because often the downstream
3559                 // sink will block while writing.
3560 
3561                 // We keep track of the last valid kernel position in case we are in underrun
3562                 // and the normal mixer period is the same as the fast mixer period, or there
3563                 // is some error from the HAL.
3564                 if (mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] >= 0) {
3565                     mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL_LASTKERNELOK] =
3566                             mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL];
3567                     mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL_LASTKERNELOK] =
3568                             mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL];
3569 
3570                     mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER_LASTKERNELOK] =
3571                             mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER];
3572                     mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER_LASTKERNELOK] =
3573                             mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER];
3574                 }
3575 
3576                 if (timestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] >= 0) {
3577                     kernelLocationUpdate = true;
3578                 } else {
3579                     ALOGVV("getTimestamp error - no valid kernel position");
3580                 }
3581 
3582                 // copy over kernel info
3583                 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL] =
3584                         timestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL]
3585                         + mSuspendedFrames; // add frames discarded when suspended
3586                 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] =
3587                         timestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL];
3588             } else {
3589                 mTimestampVerifier.error();
3590             }
3591 
3592             // mFramesWritten for non-offloaded tracks are contiguous
3593             // even after standby() is called. This is useful for the track frame
3594             // to sink frame mapping.
3595             bool serverLocationUpdate = false;
3596             if (mFramesWritten != lastFramesWritten) {
3597                 serverLocationUpdate = true;
3598                 lastFramesWritten = mFramesWritten;
3599             }
3600             // Only update timestamps if there is a meaningful change.
3601             // Either the kernel timestamp must be valid or we have written something.
3602             if (kernelLocationUpdate || serverLocationUpdate) {
3603                 if (serverLocationUpdate) {
3604                     // use the time before we called the HAL write - it is a bit more accurate
3605                     // to when the server last read data than the current time here.
3606                     //
3607                     // If we haven't written anything, mLastIoBeginNs will be -1
3608                     // and we use systemTime().
3609                     mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER] = mFramesWritten;
3610                     mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER] = mLastIoBeginNs == -1
3611                             ? systemTime() : mLastIoBeginNs;
3612                 }
3613 
3614                 for (const sp<Track> &t : mActiveTracks) {
3615                     if (!t->isFastTrack()) {
3616                         t->updateTrackFrameInfo(
3617                                 t->mAudioTrackServerProxy->framesReleased(),
3618                                 mFramesWritten,
3619                                 mSampleRate,
3620                                 mTimestamp);
3621                     }
3622                 }
3623             }
3624 
3625             if (audio_has_proportional_frames(mFormat)) {
3626                 const double latencyMs = mTimestamp.getOutputServerLatencyMs(mSampleRate);
3627                 if (latencyMs != 0.) { // note 0. means timestamp is empty.
3628                     mLatencyMs.add(latencyMs);
3629                 }
3630             }
3631 
3632             } // if (mType ... ) { // no indentation
3633 #if 0
3634             // logFormat example
3635             if (z % 100 == 0) {
3636                 timespec ts;
3637                 clock_gettime(CLOCK_MONOTONIC, &ts);
3638                 LOGT("This is an integer %d, this is a float %f, this is my "
3639                     "pid %p %% %s %t", 42, 3.14, "and this is a timestamp", ts);
3640                 LOGT("A deceptive null-terminated string %\0");
3641             }
3642             ++z;
3643 #endif
3644             saveOutputTracks();
3645             if (mSignalPending) {
3646                 // A signal was raised while we were unlocked
3647                 mSignalPending = false;
3648             } else if (waitingAsyncCallback_l()) {
3649                 if (exitPending()) {
3650                     break;
3651                 }
3652                 bool released = false;
3653                 if (!keepWakeLock()) {
3654                     releaseWakeLock_l();
3655                     released = true;
3656                 }
3657 
3658                 const int64_t waitNs = computeWaitTimeNs_l();
3659                 ALOGV("wait async completion (wait time: %lld)", (long long)waitNs);
3660                 status_t status = mWaitWorkCV.waitRelative(mLock, waitNs);
3661                 if (status == TIMED_OUT) {
3662                     mSignalPending = true; // if timeout recheck everything
3663                 }
3664                 ALOGV("async completion/wake");
3665                 if (released) {
3666                     acquireWakeLock_l();
3667                 }
3668                 mStandbyTimeNs = systemTime() + mStandbyDelayNs;
3669                 mSleepTimeUs = 0;
3670 
3671                 continue;
3672             }
3673             if ((mActiveTracks.isEmpty() && systemTime() > mStandbyTimeNs) ||
3674                                    isSuspended()) {
3675                 // put audio hardware into standby after short delay
3676                 if (shouldStandby_l()) {
3677 
3678                     threadLoop_standby();
3679 
3680                     // This is where we go into standby
3681                     if (!mStandby) {
3682                         LOG_AUDIO_STATE();
3683                         mThreadMetrics.logEndInterval();
3684                         mStandby = true;
3685                     }
3686                     sendStatistics(false /* force */);
3687                 }
3688 
3689                 if (mActiveTracks.isEmpty() && mConfigEvents.isEmpty()) {
3690                     // we're about to wait, flush the binder command buffer
3691                     IPCThreadState::self()->flushCommands();
3692 
3693                     clearOutputTracks();
3694 
3695                     if (exitPending()) {
3696                         break;
3697                     }
3698 
3699                     releaseWakeLock_l();
3700                     // wait until we have something to do...
3701                     ALOGV("%s going to sleep", myName.string());
3702                     mWaitWorkCV.wait(mLock);
3703                     ALOGV("%s waking up", myName.string());
3704                     acquireWakeLock_l();
3705 
3706                     mMixerStatus = MIXER_IDLE;
3707                     mMixerStatusIgnoringFastTracks = MIXER_IDLE;
3708                     mBytesWritten = 0;
3709                     mBytesRemaining = 0;
3710                     checkSilentMode_l();
3711 
3712                     mStandbyTimeNs = systemTime() + mStandbyDelayNs;
3713                     mSleepTimeUs = mIdleSleepTimeUs;
3714                     if (mType == MIXER) {
3715                         sleepTimeShift = 0;
3716                     }
3717 
3718                     continue;
3719                 }
3720             }
3721             // mMixerStatusIgnoringFastTracks is also updated internally
3722             mMixerStatus = prepareTracks_l(&tracksToRemove);
3723 
3724             mActiveTracks.updatePowerState(this);
3725 
3726             updateMetadata_l();
3727 
3728             // prevent any changes in effect chain list and in each effect chain
3729             // during mixing and effect process as the audio buffers could be deleted
3730             // or modified if an effect is created or deleted
3731             lockEffectChains_l(effectChains);
3732 
3733             // Determine which session to pick up haptic data.
3734             // This must be done under the same lock as prepareTracks_l().
3735             // TODO: Write haptic data directly to sink buffer when mixing.
3736             if (mHapticChannelCount > 0 && effectChains.size() > 0) {
3737                 for (const auto& track : mActiveTracks) {
3738                     if (track->getHapticPlaybackEnabled()) {
3739                         activeHapticSessionId = track->sessionId();
3740                         break;
3741                     }
3742                 }
3743             }
3744 
3745             // Acquire a local copy of active tracks with lock (release w/o lock).
3746             //
3747             // Control methods on the track acquire the ThreadBase lock (e.g. start()
3748             // stop(), pause(), etc.), but the threadLoop is entitled to call audio
3749             // data / buffer methods on tracks from activeTracks without the ThreadBase lock.
3750             activeTracks.insert(activeTracks.end(), mActiveTracks.begin(), mActiveTracks.end());
3751         } // mLock scope ends
3752 
3753         if (mBytesRemaining == 0) {
3754             mCurrentWriteLength = 0;
3755             if (mMixerStatus == MIXER_TRACKS_READY) {
3756                 // threadLoop_mix() sets mCurrentWriteLength
3757                 threadLoop_mix();
3758             } else if ((mMixerStatus != MIXER_DRAIN_TRACK)
3759                         && (mMixerStatus != MIXER_DRAIN_ALL)) {
3760                 // threadLoop_sleepTime sets mSleepTimeUs to 0 if data
3761                 // must be written to HAL
3762                 threadLoop_sleepTime();
3763                 if (mSleepTimeUs == 0) {
3764                     mCurrentWriteLength = mSinkBufferSize;
3765 
3766                     // Tally underrun frames as we are inserting 0s here.
3767                     for (const auto& track : activeTracks) {
3768                         if (track->mFillingUpStatus == Track::FS_ACTIVE
3769                                 && !track->isStopped()
3770                                 && !track->isPaused()
3771                                 && !track->isTerminated()) {
3772                             ALOGV("%s: track(%d) %s underrun due to thread sleep of %zu frames",
3773                                     __func__, track->id(), track->getTrackStateAsString(),
3774                                     mNormalFrameCount);
3775                             track->mAudioTrackServerProxy->tallyUnderrunFrames(mNormalFrameCount);
3776                         }
3777                     }
3778                 }
3779             }
3780             // Either threadLoop_mix() or threadLoop_sleepTime() should have set
3781             // mMixerBuffer with data if mMixerBufferValid is true and mSleepTimeUs == 0.
3782             // Merge mMixerBuffer data into mEffectBuffer (if any effects are valid)
3783             // or mSinkBuffer (if there are no effects).
3784             //
3785             // This is done pre-effects computation; if effects change to
3786             // support higher precision, this needs to move.
3787             //
3788             // mMixerBufferValid is only set true by MixerThread::prepareTracks_l().
3789             // TODO use mSleepTimeUs == 0 as an additional condition.
3790             if (mMixerBufferValid) {
3791                 void *buffer = mEffectBufferValid ? mEffectBuffer : mSinkBuffer;
3792                 audio_format_t format = mEffectBufferValid ? mEffectBufferFormat : mFormat;
3793 
3794                 // mono blend occurs for mixer threads only (not direct or offloaded)
3795                 // and is handled here if we're going directly to the sink.
3796                 if (requireMonoBlend() && !mEffectBufferValid) {
3797                     mono_blend(mMixerBuffer, mMixerBufferFormat, mChannelCount, mNormalFrameCount,
3798                                true /*limit*/);
3799                 }
3800 
3801                 if (!hasFastMixer()) {
3802                     // Balance must take effect after mono conversion.
3803                     // We do it here if there is no FastMixer.
3804                     // mBalance detects zero balance within the class for speed (not needed here).
3805                     mBalance.setBalance(mMasterBalance.load());
3806                     mBalance.process((float *)mMixerBuffer, mNormalFrameCount);
3807                 }
3808 
3809                 memcpy_by_audio_format(buffer, format, mMixerBuffer, mMixerBufferFormat,
3810                         mNormalFrameCount * (mChannelCount + mHapticChannelCount));
3811 
3812                 // If we're going directly to the sink and there are haptic channels,
3813                 // we should adjust channels as the sample data is partially interleaved
3814                 // in this case.
3815                 if (!mEffectBufferValid && mHapticChannelCount > 0) {
3816                     adjust_channels_non_destructive(buffer, mChannelCount, buffer,
3817                             mChannelCount + mHapticChannelCount,
3818                             audio_bytes_per_sample(format),
3819                             audio_bytes_per_frame(mChannelCount, format) * mNormalFrameCount);
3820                 }
3821             }
3822 
3823             mBytesRemaining = mCurrentWriteLength;
3824             if (isSuspended()) {
3825                 // Simulate write to HAL when suspended (e.g. BT SCO phone call).
3826                 mSleepTimeUs = suspendSleepTimeUs(); // assumes full buffer.
3827                 const size_t framesRemaining = mBytesRemaining / mFrameSize;
3828                 mBytesWritten += mBytesRemaining;
3829                 mFramesWritten += framesRemaining;
3830                 mSuspendedFrames += framesRemaining; // to adjust kernel HAL position
3831                 mBytesRemaining = 0;
3832             }
3833 
3834             // only process effects if we're going to write
3835             if (mSleepTimeUs == 0 && mType != OFFLOAD) {
3836                 for (size_t i = 0; i < effectChains.size(); i ++) {
3837                     effectChains[i]->process_l();
3838                     // TODO: Write haptic data directly to sink buffer when mixing.
3839                     if (activeHapticSessionId != AUDIO_SESSION_NONE
3840                             && activeHapticSessionId == effectChains[i]->sessionId()) {
3841                         // Haptic data is active in this case, copy it directly from
3842                         // in buffer to out buffer.
3843                         const size_t audioBufferSize = mNormalFrameCount
3844                                 * audio_bytes_per_frame(mChannelCount, EFFECT_BUFFER_FORMAT);
3845                         memcpy_by_audio_format(
3846                                 (uint8_t*)effectChains[i]->outBuffer() + audioBufferSize,
3847                                 EFFECT_BUFFER_FORMAT,
3848                                 (const uint8_t*)effectChains[i]->inBuffer() + audioBufferSize,
3849                                 EFFECT_BUFFER_FORMAT, mNormalFrameCount * mHapticChannelCount);
3850                     }
3851                 }
3852             }
3853         }
3854         // Process effect chains for offloaded thread even if no audio
3855         // was read from audio track: process only updates effect state
3856         // and thus does have to be synchronized with audio writes but may have
3857         // to be called while waiting for async write callback
3858         if (mType == OFFLOAD) {
3859             for (size_t i = 0; i < effectChains.size(); i ++) {
3860                 effectChains[i]->process_l();
3861             }
3862         }
3863 
3864         // Only if the Effects buffer is enabled and there is data in the
3865         // Effects buffer (buffer valid), we need to
3866         // copy into the sink buffer.
3867         // TODO use mSleepTimeUs == 0 as an additional condition.
3868         if (mEffectBufferValid) {
3869             //ALOGV("writing effect buffer to sink buffer format %#x", mFormat);
3870 
3871             if (requireMonoBlend()) {
3872                 mono_blend(mEffectBuffer, mEffectBufferFormat, mChannelCount, mNormalFrameCount,
3873                            true /*limit*/);
3874             }
3875 
3876             if (!hasFastMixer()) {
3877                 // Balance must take effect after mono conversion.
3878                 // We do it here if there is no FastMixer.
3879                 // mBalance detects zero balance within the class for speed (not needed here).
3880                 mBalance.setBalance(mMasterBalance.load());
3881                 mBalance.process((float *)mEffectBuffer, mNormalFrameCount);
3882             }
3883 
3884             memcpy_by_audio_format(mSinkBuffer, mFormat, mEffectBuffer, mEffectBufferFormat,
3885                     mNormalFrameCount * (mChannelCount + mHapticChannelCount));
3886             // The sample data is partially interleaved when haptic channels exist,
3887             // we need to adjust channels here.
3888             if (mHapticChannelCount > 0) {
3889                 adjust_channels_non_destructive(mSinkBuffer, mChannelCount, mSinkBuffer,
3890                         mChannelCount + mHapticChannelCount,
3891                         audio_bytes_per_sample(mFormat),
3892                         audio_bytes_per_frame(mChannelCount, mFormat) * mNormalFrameCount);
3893             }
3894         }
3895 
3896         // enable changes in effect chain
3897         unlockEffectChains(effectChains);
3898 
3899         if (!waitingAsyncCallback()) {
3900             // mSleepTimeUs == 0 means we must write to audio hardware
3901             if (mSleepTimeUs == 0) {
3902                 ssize_t ret = 0;
3903                 // writePeriodNs is updated >= 0 when ret > 0.
3904                 int64_t writePeriodNs = -1;
3905                 if (mBytesRemaining) {
3906                     // FIXME rewrite to reduce number of system calls
3907                     const int64_t lastIoBeginNs = systemTime();
3908                     ret = threadLoop_write();
3909                     const int64_t lastIoEndNs = systemTime();
3910                     if (ret < 0) {
3911                         mBytesRemaining = 0;
3912                     } else if (ret > 0) {
3913                         mBytesWritten += ret;
3914                         mBytesRemaining -= ret;
3915                         const int64_t frames = ret / mFrameSize;
3916                         mFramesWritten += frames;
3917 
3918                         writePeriodNs = lastIoEndNs - mLastIoEndNs;
3919                         // process information relating to write time.
3920                         if (audio_has_proportional_frames(mFormat)) {
3921                             // we are in a continuous mixing cycle
3922                             if (mMixerStatus == MIXER_TRACKS_READY &&
3923                                     loopCount == lastLoopCountWritten + 1) {
3924 
3925                                 const double jitterMs =
3926                                         TimestampVerifier<int64_t, int64_t>::computeJitterMs(
3927                                                 {frames, writePeriodNs},
3928                                                 {0, 0} /* lastTimestamp */, mSampleRate);
3929                                 const double processMs =
3930                                        (lastIoBeginNs - mLastIoEndNs) * 1e-6;
3931 
3932                                 Mutex::Autolock _l(mLock);
3933                                 mIoJitterMs.add(jitterMs);
3934                                 mProcessTimeMs.add(processMs);
3935                             }
3936 
3937                             // write blocked detection
3938                             const int64_t deltaWriteNs = lastIoEndNs - lastIoBeginNs;
3939                             if (mType == MIXER && deltaWriteNs > maxPeriod) {
3940                                 mNumDelayedWrites++;
3941                                 if ((lastIoEndNs - lastWarning) > kWarningThrottleNs) {
3942                                     ATRACE_NAME("underrun");
3943                                     ALOGW("write blocked for %lld msecs, "
3944                                             "%d delayed writes, thread %d",
3945                                             (long long)deltaWriteNs / NANOS_PER_MILLISECOND,
3946                                             mNumDelayedWrites, mId);
3947                                     lastWarning = lastIoEndNs;
3948                                 }
3949                             }
3950                         }
3951                         // update timing info.
3952                         mLastIoBeginNs = lastIoBeginNs;
3953                         mLastIoEndNs = lastIoEndNs;
3954                         lastLoopCountWritten = loopCount;
3955                     }
3956                 } else if ((mMixerStatus == MIXER_DRAIN_TRACK) ||
3957                         (mMixerStatus == MIXER_DRAIN_ALL)) {
3958                     threadLoop_drain();
3959                 }
3960                 if (mType == MIXER && !mStandby) {
3961 
3962                     if (mThreadThrottle
3963                             && mMixerStatus == MIXER_TRACKS_READY // we are mixing (active tracks)
3964                             && writePeriodNs > 0) {               // we have write period info
3965                         // Limit MixerThread data processing to no more than twice the
3966                         // expected processing rate.
3967                         //
3968                         // This helps prevent underruns with NuPlayer and other applications
3969                         // which may set up buffers that are close to the minimum size, or use
3970                         // deep buffers, and rely on a double-buffering sleep strategy to fill.
3971                         //
3972                         // The throttle smooths out sudden large data drains from the device,
3973                         // e.g. when it comes out of standby, which often causes problems with
3974                         // (1) mixer threads without a fast mixer (which has its own warm-up)
3975                         // (2) minimum buffer sized tracks (even if the track is full,
3976                         //     the app won't fill fast enough to handle the sudden draw).
3977                         //
3978                         // Total time spent in last processing cycle equals time spent in
3979                         // 1. threadLoop_write, as well as time spent in
3980                         // 2. threadLoop_mix (significant for heavy mixing, especially
3981                         //                    on low tier processors)
3982 
3983                         // it's OK if deltaMs is an overestimate.
3984 
3985                         const int32_t deltaMs = writePeriodNs / NANOS_PER_MILLISECOND;
3986 
3987                         const int32_t throttleMs = (int32_t)mHalfBufferMs - deltaMs;
3988                         if ((signed)mHalfBufferMs >= throttleMs && throttleMs > 0) {
3989                             mThreadMetrics.logThrottleMs((double)throttleMs);
3990 
3991                             usleep(throttleMs * 1000);
3992                             // notify of throttle start on verbose log
3993                             ALOGV_IF(mThreadThrottleEndMs == mThreadThrottleTimeMs,
3994                                     "mixer(%p) throttle begin:"
3995                                     " ret(%zd) deltaMs(%d) requires sleep %d ms",
3996                                     this, ret, deltaMs, throttleMs);
3997                             mThreadThrottleTimeMs += throttleMs;
3998                             // Throttle must be attributed to the previous mixer loop's write time
3999                             // to allow back-to-back throttling.
4000                             // This also ensures proper timing statistics.
4001                             mLastIoEndNs = systemTime();  // we fetch the write end time again.
4002                         } else {
4003                             uint32_t diff = mThreadThrottleTimeMs - mThreadThrottleEndMs;
4004                             if (diff > 0) {
4005                                 // notify of throttle end on debug log
4006                                 // but prevent spamming for bluetooth
4007                                 ALOGD_IF(!isSingleDeviceType(
4008                                                  outDeviceTypes(), audio_is_a2dp_out_device) &&
4009                                          !isSingleDeviceType(
4010                                                  outDeviceTypes(), audio_is_hearing_aid_out_device),
4011                                         "mixer(%p) throttle end: throttle time(%u)", this, diff);
4012                                 mThreadThrottleEndMs = mThreadThrottleTimeMs;
4013                             }
4014                         }
4015                     }
4016                 }
4017 
4018             } else {
4019                 ATRACE_BEGIN("sleep");
4020                 Mutex::Autolock _l(mLock);
4021                 // suspended requires accurate metering of sleep time.
4022                 if (isSuspended()) {
4023                     // advance by expected sleepTime
4024                     timeLoopNextNs += microseconds((nsecs_t)mSleepTimeUs);
4025                     const nsecs_t nowNs = systemTime();
4026 
4027                     // compute expected next time vs current time.
4028                     // (negative deltas are treated as delays).
4029                     nsecs_t deltaNs = timeLoopNextNs - nowNs;
4030                     if (deltaNs < -kMaxNextBufferDelayNs) {
4031                         // Delays longer than the max allowed trigger a reset.
4032                         ALOGV("DelayNs: %lld, resetting timeLoopNextNs", (long long) deltaNs);
4033                         deltaNs = microseconds((nsecs_t)mSleepTimeUs);
4034                         timeLoopNextNs = nowNs + deltaNs;
4035                     } else if (deltaNs < 0) {
4036                         // Delays within the max delay allowed: zero the delta/sleepTime
4037                         // to help the system catch up in the next iteration(s)
4038                         ALOGV("DelayNs: %lld, catching-up", (long long) deltaNs);
4039                         deltaNs = 0;
4040                     }
4041                     // update sleep time (which is >= 0)
4042                     mSleepTimeUs = deltaNs / 1000;
4043                 }
4044                 if (!mSignalPending && mConfigEvents.isEmpty() && !exitPending()) {
4045                     mWaitWorkCV.waitRelative(mLock, microseconds((nsecs_t)mSleepTimeUs));
4046                 }
4047                 ATRACE_END();
4048             }
4049         }
4050 
4051         // Finally let go of removed track(s), without the lock held
4052         // since we can't guarantee the destructors won't acquire that
4053         // same lock.  This will also mutate and push a new fast mixer state.
4054         threadLoop_removeTracks(tracksToRemove);
4055         tracksToRemove.clear();
4056 
4057         // FIXME I don't understand the need for this here;
4058         //       it was in the original code but maybe the
4059         //       assignment in saveOutputTracks() makes this unnecessary?
4060         clearOutputTracks();
4061 
4062         // Effect chains will be actually deleted here if they were removed from
4063         // mEffectChains list during mixing or effects processing
4064         effectChains.clear();
4065 
4066         // FIXME Note that the above .clear() is no longer necessary since effectChains
4067         // is now local to this block, but will keep it for now (at least until merge done).
4068     }
4069 
4070     threadLoop_exit();
4071 
4072     if (!mStandby) {
4073         threadLoop_standby();
4074         mStandby = true;
4075     }
4076 
4077     releaseWakeLock();
4078 
4079     ALOGV("Thread %p type %d exiting", this, mType);
4080     return false;
4081 }
4082 
4083 // removeTracks_l() must be called with ThreadBase::mLock held
removeTracks_l(const Vector<sp<Track>> & tracksToRemove)4084 void AudioFlinger::PlaybackThread::removeTracks_l(const Vector< sp<Track> >& tracksToRemove)
4085 {
4086     for (const auto& track : tracksToRemove) {
4087         mActiveTracks.remove(track);
4088         ALOGV("%s(%d): removing track on session %d", __func__, track->id(), track->sessionId());
4089         sp<EffectChain> chain = getEffectChain_l(track->sessionId());
4090         if (chain != 0) {
4091             ALOGV("%s(%d): stopping track on chain %p for session Id: %d",
4092                     __func__, track->id(), chain.get(), track->sessionId());
4093             chain->decActiveTrackCnt();
4094         }
4095         // If an external client track, inform APM we're no longer active, and remove if needed.
4096         // We do this under lock so that the state is consistent if the Track is destroyed.
4097         if (track->isExternalTrack()) {
4098             AudioSystem::stopOutput(track->portId());
4099             if (track->isTerminated()) {
4100                 AudioSystem::releaseOutput(track->portId());
4101             }
4102         }
4103         if (track->isTerminated()) {
4104             // remove from our tracks vector
4105             removeTrack_l(track);
4106         }
4107         if ((track->channelMask() & AUDIO_CHANNEL_HAPTIC_ALL) != AUDIO_CHANNEL_NONE
4108                 && mHapticChannelCount > 0) {
4109             mLock.unlock();
4110             // Unlock due to VibratorService will lock for this call and will
4111             // call Tracks.mute/unmute which also require thread's lock.
4112             AudioFlinger::onExternalVibrationStop(track->getExternalVibration());
4113             mLock.lock();
4114         }
4115     }
4116 }
4117 
getTimestamp_l(AudioTimestamp & timestamp)4118 status_t AudioFlinger::PlaybackThread::getTimestamp_l(AudioTimestamp& timestamp)
4119 {
4120     if (mNormalSink != 0) {
4121         ExtendedTimestamp ets;
4122         status_t status = mNormalSink->getTimestamp(ets);
4123         if (status == NO_ERROR) {
4124             status = ets.getBestTimestamp(&timestamp);
4125         }
4126         return status;
4127     }
4128     if ((mType == OFFLOAD || mType == DIRECT) && mOutput != NULL) {
4129         uint64_t position64;
4130         if (mOutput->getPresentationPosition(&position64, &timestamp.mTime) == OK) {
4131             timestamp.mPosition = (uint32_t)position64;
4132             if (mDownstreamLatencyStatMs.getN() > 0) {
4133                 const uint32_t positionOffset =
4134                     (uint32_t)(mDownstreamLatencyStatMs.getMean() * mSampleRate * 1e-3);
4135                 if (positionOffset > timestamp.mPosition) {
4136                     timestamp.mPosition = 0;
4137                 } else {
4138                     timestamp.mPosition -= positionOffset;
4139                 }
4140             }
4141             return NO_ERROR;
4142         }
4143     }
4144     return INVALID_OPERATION;
4145 }
4146 
4147 // For dedicated VoIP outputs, let the HAL apply the stream volume. Track volume is
4148 // still applied by the mixer.
4149 // All tracks attached to a mixer with flag VOIP_RX are tied to the same
4150 // stream type STREAM_VOICE_CALL so this will only change the HAL volume once even
4151 // if more than one track are active
handleVoipVolume_l(float * volume)4152 status_t AudioFlinger::PlaybackThread::handleVoipVolume_l(float *volume)
4153 {
4154     status_t result = NO_ERROR;
4155     if ((mOutput->flags & AUDIO_OUTPUT_FLAG_VOIP_RX) != 0) {
4156         if (*volume != mLeftVolFloat) {
4157             result = mOutput->stream->setVolume(*volume, *volume);
4158             ALOGE_IF(result != OK,
4159                      "Error when setting output stream volume: %d", result);
4160             if (result == NO_ERROR) {
4161                 mLeftVolFloat = *volume;
4162             }
4163         }
4164         // if stream volume was successfully sent to the HAL, mLeftVolFloat == v here and we
4165         // remove stream volume contribution from software volume.
4166         if (mLeftVolFloat == *volume) {
4167             *volume = 1.0f;
4168         }
4169     }
4170     return result;
4171 }
4172 
createAudioPatch_l(const struct audio_patch * patch,audio_patch_handle_t * handle)4173 status_t AudioFlinger::MixerThread::createAudioPatch_l(const struct audio_patch *patch,
4174                                                           audio_patch_handle_t *handle)
4175 {
4176     status_t status;
4177     if (property_get_bool("af.patch_park", false /* default_value */)) {
4178         // Park FastMixer to avoid potential DOS issues with writing to the HAL
4179         // or if HAL does not properly lock against access.
4180         AutoPark<FastMixer> park(mFastMixer);
4181         status = PlaybackThread::createAudioPatch_l(patch, handle);
4182     } else {
4183         status = PlaybackThread::createAudioPatch_l(patch, handle);
4184     }
4185     return status;
4186 }
4187 
createAudioPatch_l(const struct audio_patch * patch,audio_patch_handle_t * handle)4188 status_t AudioFlinger::PlaybackThread::createAudioPatch_l(const struct audio_patch *patch,
4189                                                           audio_patch_handle_t *handle)
4190 {
4191     status_t status = NO_ERROR;
4192 
4193     // store new device and send to effects
4194     audio_devices_t type = AUDIO_DEVICE_NONE;
4195     AudioDeviceTypeAddrVector deviceTypeAddrs;
4196     for (unsigned int i = 0; i < patch->num_sinks; i++) {
4197         LOG_ALWAYS_FATAL_IF(popcount(patch->sinks[i].ext.device.type) > 1
4198                             && !mOutput->audioHwDev->supportsAudioPatches(),
4199                             "Enumerated device type(%#x) must not be used "
4200                             "as it does not support audio patches",
4201                             patch->sinks[i].ext.device.type);
4202         type |= patch->sinks[i].ext.device.type;
4203         deviceTypeAddrs.push_back(AudioDeviceTypeAddr(patch->sinks[i].ext.device.type,
4204                 patch->sinks[i].ext.device.address));
4205     }
4206 
4207     audio_port_handle_t sinkPortId = patch->sinks[0].id;
4208 #ifdef ADD_BATTERY_DATA
4209     // when changing the audio output device, call addBatteryData to notify
4210     // the change
4211     if (outDeviceTypes() != deviceTypes) {
4212         uint32_t params = 0;
4213         // check whether speaker is on
4214         if (deviceTypes.count(AUDIO_DEVICE_OUT_SPEAKER) > 0) {
4215             params |= IMediaPlayerService::kBatteryDataSpeakerOn;
4216         }
4217 
4218         // check if any other device (except speaker) is on
4219         if (!isSingleDeviceType(deviceTypes, AUDIO_DEVICE_OUT_SPEAKER)) {
4220             params |= IMediaPlayerService::kBatteryDataOtherAudioDeviceOn;
4221         }
4222 
4223         if (params != 0) {
4224             addBatteryData(params);
4225         }
4226     }
4227 #endif
4228 
4229     for (size_t i = 0; i < mEffectChains.size(); i++) {
4230         mEffectChains[i]->setDevices_l(deviceTypeAddrs);
4231     }
4232 
4233     // mPatch.num_sinks is not set when the thread is created so that
4234     // the first patch creation triggers an ioConfigChanged callback
4235     bool configChanged = (mPatch.num_sinks == 0) ||
4236                          (mPatch.sinks[0].id != sinkPortId);
4237     mPatch = *patch;
4238     mOutDeviceTypeAddrs = deviceTypeAddrs;
4239     checkSilentMode_l();
4240 
4241     if (mOutput->audioHwDev->supportsAudioPatches()) {
4242         sp<DeviceHalInterface> hwDevice = mOutput->audioHwDev->hwDevice();
4243         status = hwDevice->createAudioPatch(patch->num_sources,
4244                                             patch->sources,
4245                                             patch->num_sinks,
4246                                             patch->sinks,
4247                                             handle);
4248     } else {
4249         char *address;
4250         if (strcmp(patch->sinks[0].ext.device.address, "") != 0) {
4251             //FIXME: we only support address on first sink with HAL version < 3.0
4252             address = audio_device_address_to_parameter(
4253                                                         patch->sinks[0].ext.device.type,
4254                                                         patch->sinks[0].ext.device.address);
4255         } else {
4256             address = (char *)calloc(1, 1);
4257         }
4258         AudioParameter param = AudioParameter(String8(address));
4259         free(address);
4260         param.addInt(String8(AudioParameter::keyRouting), (int)type);
4261         status = mOutput->stream->setParameters(param.toString());
4262         *handle = AUDIO_PATCH_HANDLE_NONE;
4263     }
4264     const std::string patchSinksAsString = patchSinksToString(patch);
4265 
4266     mThreadMetrics.logEndInterval();
4267     mThreadMetrics.logCreatePatch(/* inDevices */ {}, patchSinksAsString);
4268     mThreadMetrics.logBeginInterval();
4269     // also dispatch to active AudioTracks for MediaMetrics
4270     for (const auto &track : mActiveTracks) {
4271         track->logEndInterval();
4272         track->logBeginInterval(patchSinksAsString);
4273     }
4274 
4275     if (configChanged) {
4276         sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
4277     }
4278     return status;
4279 }
4280 
releaseAudioPatch_l(const audio_patch_handle_t handle)4281 status_t AudioFlinger::MixerThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
4282 {
4283     status_t status;
4284     if (property_get_bool("af.patch_park", false /* default_value */)) {
4285         // Park FastMixer to avoid potential DOS issues with writing to the HAL
4286         // or if HAL does not properly lock against access.
4287         AutoPark<FastMixer> park(mFastMixer);
4288         status = PlaybackThread::releaseAudioPatch_l(handle);
4289     } else {
4290         status = PlaybackThread::releaseAudioPatch_l(handle);
4291     }
4292     return status;
4293 }
4294 
releaseAudioPatch_l(const audio_patch_handle_t handle)4295 status_t AudioFlinger::PlaybackThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
4296 {
4297     status_t status = NO_ERROR;
4298 
4299     mPatch = audio_patch{};
4300     mOutDeviceTypeAddrs.clear();
4301 
4302     if (mOutput->audioHwDev->supportsAudioPatches()) {
4303         sp<DeviceHalInterface> hwDevice = mOutput->audioHwDev->hwDevice();
4304         status = hwDevice->releaseAudioPatch(handle);
4305     } else {
4306         AudioParameter param;
4307         param.addInt(String8(AudioParameter::keyRouting), 0);
4308         status = mOutput->stream->setParameters(param.toString());
4309     }
4310     return status;
4311 }
4312 
addPatchTrack(const sp<PatchTrack> & track)4313 void AudioFlinger::PlaybackThread::addPatchTrack(const sp<PatchTrack>& track)
4314 {
4315     Mutex::Autolock _l(mLock);
4316     mTracks.add(track);
4317 }
4318 
deletePatchTrack(const sp<PatchTrack> & track)4319 void AudioFlinger::PlaybackThread::deletePatchTrack(const sp<PatchTrack>& track)
4320 {
4321     Mutex::Autolock _l(mLock);
4322     destroyTrack_l(track);
4323 }
4324 
toAudioPortConfig(struct audio_port_config * config)4325 void AudioFlinger::PlaybackThread::toAudioPortConfig(struct audio_port_config *config)
4326 {
4327     ThreadBase::toAudioPortConfig(config);
4328     config->role = AUDIO_PORT_ROLE_SOURCE;
4329     config->ext.mix.hw_module = mOutput->audioHwDev->handle();
4330     config->ext.mix.usecase.stream = AUDIO_STREAM_DEFAULT;
4331     if (mOutput && mOutput->flags != AUDIO_OUTPUT_FLAG_NONE) {
4332         config->config_mask |= AUDIO_PORT_CONFIG_FLAGS;
4333         config->flags.output = mOutput->flags;
4334     }
4335 }
4336 
4337 // ----------------------------------------------------------------------------
4338 
MixerThread(const sp<AudioFlinger> & audioFlinger,AudioStreamOut * output,audio_io_handle_t id,bool systemReady,type_t type)4339 AudioFlinger::MixerThread::MixerThread(const sp<AudioFlinger>& audioFlinger, AudioStreamOut* output,
4340         audio_io_handle_t id, bool systemReady, type_t type)
4341     :   PlaybackThread(audioFlinger, output, id, type, systemReady),
4342         // mAudioMixer below
4343         // mFastMixer below
4344         mFastMixerFutex(0),
4345         mMasterMono(false)
4346         // mOutputSink below
4347         // mPipeSink below
4348         // mNormalSink below
4349 {
4350     setMasterBalance(audioFlinger->getMasterBalance_l());
4351     ALOGV("MixerThread() id=%d type=%d", id, type);
4352     ALOGV("mSampleRate=%u, mChannelMask=%#x, mChannelCount=%u, mFormat=%#x, mFrameSize=%zu, "
4353             "mFrameCount=%zu, mNormalFrameCount=%zu",
4354             mSampleRate, mChannelMask, mChannelCount, mFormat, mFrameSize, mFrameCount,
4355             mNormalFrameCount);
4356     mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
4357 
4358     if (type == DUPLICATING) {
4359         // The Duplicating thread uses the AudioMixer and delivers data to OutputTracks
4360         // (downstream MixerThreads) in DuplicatingThread::threadLoop_write().
4361         // Do not create or use mFastMixer, mOutputSink, mPipeSink, or mNormalSink.
4362         return;
4363     }
4364     // create an NBAIO sink for the HAL output stream, and negotiate
4365     mOutputSink = new AudioStreamOutSink(output->stream);
4366     size_t numCounterOffers = 0;
4367     const NBAIO_Format offers[1] = {Format_from_SR_C(
4368             mSampleRate, mChannelCount + mHapticChannelCount, mFormat)};
4369 #if !LOG_NDEBUG
4370     ssize_t index =
4371 #else
4372     (void)
4373 #endif
4374             mOutputSink->negotiate(offers, 1, NULL, numCounterOffers);
4375     ALOG_ASSERT(index == 0);
4376 
4377     // initialize fast mixer depending on configuration
4378     bool initFastMixer;
4379     switch (kUseFastMixer) {
4380     case FastMixer_Never:
4381         initFastMixer = false;
4382         break;
4383     case FastMixer_Always:
4384         initFastMixer = true;
4385         break;
4386     case FastMixer_Static:
4387     case FastMixer_Dynamic:
4388         // FastMixer was designed to operate with a HAL that pulls at a regular rate,
4389         // where the period is less than an experimentally determined threshold that can be
4390         // scheduled reliably with CFS. However, the BT A2DP HAL is
4391         // bursty (does not pull at a regular rate) and so cannot operate with FastMixer.
4392         initFastMixer = mFrameCount < mNormalFrameCount
4393                 && Intersection(outDeviceTypes(), getAudioDeviceOutAllA2dpSet()).empty();
4394         break;
4395     }
4396     ALOGW_IF(initFastMixer == false && mFrameCount < mNormalFrameCount,
4397             "FastMixer is preferred for this sink as frameCount %zu is less than threshold %zu",
4398             mFrameCount, mNormalFrameCount);
4399     if (initFastMixer) {
4400         audio_format_t fastMixerFormat;
4401         if (mMixerBufferEnabled && mEffectBufferEnabled) {
4402             fastMixerFormat = AUDIO_FORMAT_PCM_FLOAT;
4403         } else {
4404             fastMixerFormat = AUDIO_FORMAT_PCM_16_BIT;
4405         }
4406         if (mFormat != fastMixerFormat) {
4407             // change our Sink format to accept our intermediate precision
4408             mFormat = fastMixerFormat;
4409             free(mSinkBuffer);
4410             mFrameSize = audio_bytes_per_frame(mChannelCount + mHapticChannelCount, mFormat);
4411             const size_t sinkBufferSize = mNormalFrameCount * mFrameSize;
4412             (void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize);
4413         }
4414 
4415         // create a MonoPipe to connect our submix to FastMixer
4416         NBAIO_Format format = mOutputSink->format();
4417 
4418         // adjust format to match that of the Fast Mixer
4419         ALOGV("format changed from %#x to %#x", format.mFormat, fastMixerFormat);
4420         format.mFormat = fastMixerFormat;
4421         format.mFrameSize = audio_bytes_per_sample(format.mFormat) * format.mChannelCount;
4422 
4423         // This pipe depth compensates for scheduling latency of the normal mixer thread.
4424         // When it wakes up after a maximum latency, it runs a few cycles quickly before
4425         // finally blocking.  Note the pipe implementation rounds up the request to a power of 2.
4426         MonoPipe *monoPipe = new MonoPipe(mNormalFrameCount * 4, format, true /*writeCanBlock*/);
4427         const NBAIO_Format offers[1] = {format};
4428         size_t numCounterOffers = 0;
4429 #if !LOG_NDEBUG
4430         ssize_t index =
4431 #else
4432         (void)
4433 #endif
4434                 monoPipe->negotiate(offers, 1, NULL, numCounterOffers);
4435         ALOG_ASSERT(index == 0);
4436         monoPipe->setAvgFrames((mScreenState & 1) ?
4437                 (monoPipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
4438         mPipeSink = monoPipe;
4439 
4440         // create fast mixer and configure it initially with just one fast track for our submix
4441         mFastMixer = new FastMixer(mId);
4442         FastMixerStateQueue *sq = mFastMixer->sq();
4443 #ifdef STATE_QUEUE_DUMP
4444         sq->setObserverDump(&mStateQueueObserverDump);
4445         sq->setMutatorDump(&mStateQueueMutatorDump);
4446 #endif
4447         FastMixerState *state = sq->begin();
4448         FastTrack *fastTrack = &state->mFastTracks[0];
4449         // wrap the source side of the MonoPipe to make it an AudioBufferProvider
4450         fastTrack->mBufferProvider = new SourceAudioBufferProvider(new MonoPipeReader(monoPipe));
4451         fastTrack->mVolumeProvider = NULL;
4452         fastTrack->mChannelMask = mChannelMask | mHapticChannelMask; // mPipeSink channel mask for
4453                                                                      // audio to FastMixer
4454         fastTrack->mFormat = mFormat; // mPipeSink format for audio to FastMixer
4455         fastTrack->mHapticPlaybackEnabled = mHapticChannelMask != AUDIO_CHANNEL_NONE;
4456         fastTrack->mHapticIntensity = AudioMixer::HAPTIC_SCALE_NONE;
4457         fastTrack->mGeneration++;
4458         state->mFastTracksGen++;
4459         state->mTrackMask = 1;
4460         // fast mixer will use the HAL output sink
4461         state->mOutputSink = mOutputSink.get();
4462         state->mOutputSinkGen++;
4463         state->mFrameCount = mFrameCount;
4464         // specify sink channel mask when haptic channel mask present as it can not
4465         // be calculated directly from channel count
4466         state->mSinkChannelMask = mHapticChannelMask == AUDIO_CHANNEL_NONE
4467                 ? AUDIO_CHANNEL_NONE : mChannelMask | mHapticChannelMask;
4468         state->mCommand = FastMixerState::COLD_IDLE;
4469         // already done in constructor initialization list
4470         //mFastMixerFutex = 0;
4471         state->mColdFutexAddr = &mFastMixerFutex;
4472         state->mColdGen++;
4473         state->mDumpState = &mFastMixerDumpState;
4474         mFastMixerNBLogWriter = audioFlinger->newWriter_l(kFastMixerLogSize, "FastMixer");
4475         state->mNBLogWriter = mFastMixerNBLogWriter.get();
4476         sq->end();
4477         sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
4478 
4479         NBLog::thread_info_t info;
4480         info.id = mId;
4481         info.type = NBLog::FASTMIXER;
4482         mFastMixerNBLogWriter->log<NBLog::EVENT_THREAD_INFO>(info);
4483 
4484         // start the fast mixer
4485         mFastMixer->run("FastMixer", PRIORITY_URGENT_AUDIO);
4486         pid_t tid = mFastMixer->getTid();
4487         sendPrioConfigEvent(getpid(), tid, kPriorityFastMixer, false /*forApp*/);
4488         stream()->setHalThreadPriority(kPriorityFastMixer);
4489 
4490 #ifdef AUDIO_WATCHDOG
4491         // create and start the watchdog
4492         mAudioWatchdog = new AudioWatchdog();
4493         mAudioWatchdog->setDump(&mAudioWatchdogDump);
4494         mAudioWatchdog->run("AudioWatchdog", PRIORITY_URGENT_AUDIO);
4495         tid = mAudioWatchdog->getTid();
4496         sendPrioConfigEvent(getpid(), tid, kPriorityFastMixer, false /*forApp*/);
4497 #endif
4498     } else {
4499 #ifdef TEE_SINK
4500         // Only use the MixerThread tee if there is no FastMixer.
4501         mTee.set(mOutputSink->format(), NBAIO_Tee::TEE_FLAG_OUTPUT_THREAD);
4502         mTee.setId(std::string("_") + std::to_string(mId) + "_M");
4503 #endif
4504     }
4505 
4506     switch (kUseFastMixer) {
4507     case FastMixer_Never:
4508     case FastMixer_Dynamic:
4509         mNormalSink = mOutputSink;
4510         break;
4511     case FastMixer_Always:
4512         mNormalSink = mPipeSink;
4513         break;
4514     case FastMixer_Static:
4515         mNormalSink = initFastMixer ? mPipeSink : mOutputSink;
4516         break;
4517     }
4518 }
4519 
~MixerThread()4520 AudioFlinger::MixerThread::~MixerThread()
4521 {
4522     if (mFastMixer != 0) {
4523         FastMixerStateQueue *sq = mFastMixer->sq();
4524         FastMixerState *state = sq->begin();
4525         if (state->mCommand == FastMixerState::COLD_IDLE) {
4526             int32_t old = android_atomic_inc(&mFastMixerFutex);
4527             if (old == -1) {
4528                 (void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
4529             }
4530         }
4531         state->mCommand = FastMixerState::EXIT;
4532         sq->end();
4533         sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
4534         mFastMixer->join();
4535         // Though the fast mixer thread has exited, it's state queue is still valid.
4536         // We'll use that extract the final state which contains one remaining fast track
4537         // corresponding to our sub-mix.
4538         state = sq->begin();
4539         ALOG_ASSERT(state->mTrackMask == 1);
4540         FastTrack *fastTrack = &state->mFastTracks[0];
4541         ALOG_ASSERT(fastTrack->mBufferProvider != NULL);
4542         delete fastTrack->mBufferProvider;
4543         sq->end(false /*didModify*/);
4544         mFastMixer.clear();
4545 #ifdef AUDIO_WATCHDOG
4546         if (mAudioWatchdog != 0) {
4547             mAudioWatchdog->requestExit();
4548             mAudioWatchdog->requestExitAndWait();
4549             mAudioWatchdog.clear();
4550         }
4551 #endif
4552     }
4553     mAudioFlinger->unregisterWriter(mFastMixerNBLogWriter);
4554     delete mAudioMixer;
4555 }
4556 
4557 
correctLatency_l(uint32_t latency) const4558 uint32_t AudioFlinger::MixerThread::correctLatency_l(uint32_t latency) const
4559 {
4560     if (mFastMixer != 0) {
4561         MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
4562         latency += (pipe->getAvgFrames() * 1000) / mSampleRate;
4563     }
4564     return latency;
4565 }
4566 
threadLoop_write()4567 ssize_t AudioFlinger::MixerThread::threadLoop_write()
4568 {
4569     // FIXME we should only do one push per cycle; confirm this is true
4570     // Start the fast mixer if it's not already running
4571     if (mFastMixer != 0) {
4572         FastMixerStateQueue *sq = mFastMixer->sq();
4573         FastMixerState *state = sq->begin();
4574         if (state->mCommand != FastMixerState::MIX_WRITE &&
4575                 (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)) {
4576             if (state->mCommand == FastMixerState::COLD_IDLE) {
4577 
4578                 // FIXME workaround for first HAL write being CPU bound on some devices
4579                 ATRACE_BEGIN("write");
4580                 mOutput->write((char *)mSinkBuffer, 0);
4581                 ATRACE_END();
4582 
4583                 int32_t old = android_atomic_inc(&mFastMixerFutex);
4584                 if (old == -1) {
4585                     (void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
4586                 }
4587 #ifdef AUDIO_WATCHDOG
4588                 if (mAudioWatchdog != 0) {
4589                     mAudioWatchdog->resume();
4590                 }
4591 #endif
4592             }
4593             state->mCommand = FastMixerState::MIX_WRITE;
4594 #ifdef FAST_THREAD_STATISTICS
4595             mFastMixerDumpState.increaseSamplingN(mAudioFlinger->isLowRamDevice() ?
4596                 FastThreadDumpState::kSamplingNforLowRamDevice : FastThreadDumpState::kSamplingN);
4597 #endif
4598             sq->end();
4599             sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
4600             if (kUseFastMixer == FastMixer_Dynamic) {
4601                 mNormalSink = mPipeSink;
4602             }
4603         } else {
4604             sq->end(false /*didModify*/);
4605         }
4606     }
4607     return PlaybackThread::threadLoop_write();
4608 }
4609 
threadLoop_standby()4610 void AudioFlinger::MixerThread::threadLoop_standby()
4611 {
4612     // Idle the fast mixer if it's currently running
4613     if (mFastMixer != 0) {
4614         FastMixerStateQueue *sq = mFastMixer->sq();
4615         FastMixerState *state = sq->begin();
4616         if (!(state->mCommand & FastMixerState::IDLE)) {
4617             // Report any frames trapped in the Monopipe
4618             MonoPipe *monoPipe = (MonoPipe *)mPipeSink.get();
4619             const long long pipeFrames = monoPipe->maxFrames() - monoPipe->availableToWrite();
4620             mLocalLog.log("threadLoop_standby: framesWritten:%lld  suspendedFrames:%lld  "
4621                     "monoPipeWritten:%lld  monoPipeLeft:%lld",
4622                     (long long)mFramesWritten, (long long)mSuspendedFrames,
4623                     (long long)mPipeSink->framesWritten(), pipeFrames);
4624             mLocalLog.log("threadLoop_standby: %s", mTimestamp.toString().c_str());
4625 
4626             state->mCommand = FastMixerState::COLD_IDLE;
4627             state->mColdFutexAddr = &mFastMixerFutex;
4628             state->mColdGen++;
4629             mFastMixerFutex = 0;
4630             sq->end();
4631             // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now
4632             sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
4633             if (kUseFastMixer == FastMixer_Dynamic) {
4634                 mNormalSink = mOutputSink;
4635             }
4636 #ifdef AUDIO_WATCHDOG
4637             if (mAudioWatchdog != 0) {
4638                 mAudioWatchdog->pause();
4639             }
4640 #endif
4641         } else {
4642             sq->end(false /*didModify*/);
4643         }
4644     }
4645     PlaybackThread::threadLoop_standby();
4646 }
4647 
waitingAsyncCallback_l()4648 bool AudioFlinger::PlaybackThread::waitingAsyncCallback_l()
4649 {
4650     return false;
4651 }
4652 
shouldStandby_l()4653 bool AudioFlinger::PlaybackThread::shouldStandby_l()
4654 {
4655     return !mStandby;
4656 }
4657 
waitingAsyncCallback()4658 bool AudioFlinger::PlaybackThread::waitingAsyncCallback()
4659 {
4660     Mutex::Autolock _l(mLock);
4661     return waitingAsyncCallback_l();
4662 }
4663 
4664 // shared by MIXER and DIRECT, overridden by DUPLICATING
threadLoop_standby()4665 void AudioFlinger::PlaybackThread::threadLoop_standby()
4666 {
4667     ALOGV("Audio hardware entering standby, mixer %p, suspend count %d", this, mSuspended);
4668     mOutput->standby();
4669     if (mUseAsyncWrite != 0) {
4670         // discard any pending drain or write ack by incrementing sequence
4671         mWriteAckSequence = (mWriteAckSequence + 2) & ~1;
4672         mDrainSequence = (mDrainSequence + 2) & ~1;
4673         ALOG_ASSERT(mCallbackThread != 0);
4674         mCallbackThread->setWriteBlocked(mWriteAckSequence);
4675         mCallbackThread->setDraining(mDrainSequence);
4676     }
4677     mHwPaused = false;
4678 }
4679 
onAddNewTrack_l()4680 void AudioFlinger::PlaybackThread::onAddNewTrack_l()
4681 {
4682     ALOGV("signal playback thread");
4683     broadcast_l();
4684 }
4685 
onAsyncError()4686 void AudioFlinger::PlaybackThread::onAsyncError()
4687 {
4688     for (int i = AUDIO_STREAM_SYSTEM; i < (int)AUDIO_STREAM_CNT; i++) {
4689         invalidateTracks((audio_stream_type_t)i);
4690     }
4691 }
4692 
threadLoop_mix()4693 void AudioFlinger::MixerThread::threadLoop_mix()
4694 {
4695     // mix buffers...
4696     mAudioMixer->process();
4697     mCurrentWriteLength = mSinkBufferSize;
4698     // increase sleep time progressively when application underrun condition clears.
4699     // Only increase sleep time if the mixer is ready for two consecutive times to avoid
4700     // that a steady state of alternating ready/not ready conditions keeps the sleep time
4701     // such that we would underrun the audio HAL.
4702     if ((mSleepTimeUs == 0) && (sleepTimeShift > 0)) {
4703         sleepTimeShift--;
4704     }
4705     mSleepTimeUs = 0;
4706     mStandbyTimeNs = systemTime() + mStandbyDelayNs;
4707     //TODO: delay standby when effects have a tail
4708 
4709 }
4710 
threadLoop_sleepTime()4711 void AudioFlinger::MixerThread::threadLoop_sleepTime()
4712 {
4713     // If no tracks are ready, sleep once for the duration of an output
4714     // buffer size, then write 0s to the output
4715     if (mSleepTimeUs == 0) {
4716         if (mMixerStatus == MIXER_TRACKS_ENABLED) {
4717             if (mPipeSink.get() != nullptr && mPipeSink == mNormalSink) {
4718                 // Using the Monopipe availableToWrite, we estimate the
4719                 // sleep time to retry for more data (before we underrun).
4720                 MonoPipe *monoPipe = static_cast<MonoPipe *>(mPipeSink.get());
4721                 const ssize_t availableToWrite = mPipeSink->availableToWrite();
4722                 const size_t pipeFrames = monoPipe->maxFrames();
4723                 const size_t framesLeft = pipeFrames - max(availableToWrite, 0);
4724                 // HAL_framecount <= framesDelay ~ framesLeft / 2 <= Normal_Mixer_framecount
4725                 const size_t framesDelay = std::min(
4726                         mNormalFrameCount, max(framesLeft / 2, mFrameCount));
4727                 ALOGV("pipeFrames:%zu framesLeft:%zu framesDelay:%zu",
4728                         pipeFrames, framesLeft, framesDelay);
4729                 mSleepTimeUs = framesDelay * MICROS_PER_SECOND / mSampleRate;
4730             } else {
4731                 mSleepTimeUs = mActiveSleepTimeUs >> sleepTimeShift;
4732                 if (mSleepTimeUs < kMinThreadSleepTimeUs) {
4733                     mSleepTimeUs = kMinThreadSleepTimeUs;
4734                 }
4735                 // reduce sleep time in case of consecutive application underruns to avoid
4736                 // starving the audio HAL. As activeSleepTimeUs() is larger than a buffer
4737                 // duration we would end up writing less data than needed by the audio HAL if
4738                 // the condition persists.
4739                 if (sleepTimeShift < kMaxThreadSleepTimeShift) {
4740                     sleepTimeShift++;
4741                 }
4742             }
4743         } else {
4744             mSleepTimeUs = mIdleSleepTimeUs;
4745         }
4746     } else if (mBytesWritten != 0 || (mMixerStatus == MIXER_TRACKS_ENABLED)) {
4747         // clear out mMixerBuffer or mSinkBuffer, to ensure buffers are cleared
4748         // before effects processing or output.
4749         if (mMixerBufferValid) {
4750             memset(mMixerBuffer, 0, mMixerBufferSize);
4751         } else {
4752             memset(mSinkBuffer, 0, mSinkBufferSize);
4753         }
4754         mSleepTimeUs = 0;
4755         ALOGV_IF(mBytesWritten == 0 && (mMixerStatus == MIXER_TRACKS_ENABLED),
4756                 "anticipated start");
4757     }
4758     // TODO add standby time extension fct of effect tail
4759 }
4760 
4761 // prepareTracks_l() must be called with ThreadBase::mLock held
prepareTracks_l(Vector<sp<Track>> * tracksToRemove)4762 AudioFlinger::PlaybackThread::mixer_state AudioFlinger::MixerThread::prepareTracks_l(
4763         Vector< sp<Track> > *tracksToRemove)
4764 {
4765     // clean up deleted track ids in AudioMixer before allocating new tracks
4766     (void)mTracks.processDeletedTrackIds([this](int trackId) {
4767         // for each trackId, destroy it in the AudioMixer
4768         if (mAudioMixer->exists(trackId)) {
4769             mAudioMixer->destroy(trackId);
4770         }
4771     });
4772     mTracks.clearDeletedTrackIds();
4773 
4774     mixer_state mixerStatus = MIXER_IDLE;
4775     // find out which tracks need to be processed
4776     size_t count = mActiveTracks.size();
4777     size_t mixedTracks = 0;
4778     size_t tracksWithEffect = 0;
4779     // counts only _active_ fast tracks
4780     size_t fastTracks = 0;
4781     uint32_t resetMask = 0; // bit mask of fast tracks that need to be reset
4782 
4783     float masterVolume = mMasterVolume;
4784     bool masterMute = mMasterMute;
4785 
4786     if (masterMute) {
4787         masterVolume = 0;
4788     }
4789     // Delegate master volume control to effect in output mix effect chain if needed
4790     sp<EffectChain> chain = getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX);
4791     if (chain != 0) {
4792         uint32_t v = (uint32_t)(masterVolume * (1 << 24));
4793         chain->setVolume_l(&v, &v);
4794         masterVolume = (float)((v + (1 << 23)) >> 24);
4795         chain.clear();
4796     }
4797 
4798     // prepare a new state to push
4799     FastMixerStateQueue *sq = NULL;
4800     FastMixerState *state = NULL;
4801     bool didModify = false;
4802     FastMixerStateQueue::block_t block = FastMixerStateQueue::BLOCK_UNTIL_PUSHED;
4803     bool coldIdle = false;
4804     if (mFastMixer != 0) {
4805         sq = mFastMixer->sq();
4806         state = sq->begin();
4807         coldIdle = state->mCommand == FastMixerState::COLD_IDLE;
4808     }
4809 
4810     mMixerBufferValid = false;  // mMixerBuffer has no valid data until appropriate tracks found.
4811     mEffectBufferValid = false; // mEffectBuffer has no valid data until tracks found.
4812 
4813     // DeferredOperations handles statistics after setting mixerStatus.
4814     class DeferredOperations {
4815     public:
4816         DeferredOperations(mixer_state *mixerStatus, ThreadMetrics *threadMetrics)
4817             : mMixerStatus(mixerStatus)
4818             , mThreadMetrics(threadMetrics) {}
4819 
4820         // when leaving scope, tally frames properly.
4821         ~DeferredOperations() {
4822             // Tally underrun frames only if we are actually mixing (MIXER_TRACKS_READY)
4823             // because that is when the underrun occurs.
4824             // We do not distinguish between FastTracks and NormalTracks here.
4825             size_t maxUnderrunFrames = 0;
4826             if (*mMixerStatus == MIXER_TRACKS_READY && mUnderrunFrames.size() > 0) {
4827                 for (const auto &underrun : mUnderrunFrames) {
4828                     underrun.first->tallyUnderrunFrames(underrun.second);
4829                     maxUnderrunFrames = max(underrun.second, maxUnderrunFrames);
4830                 }
4831             }
4832             // send the max underrun frames for this mixer period
4833             mThreadMetrics->logUnderrunFrames(maxUnderrunFrames);
4834         }
4835 
4836         // tallyUnderrunFrames() is called to update the track counters
4837         // with the number of underrun frames for a particular mixer period.
4838         // We defer tallying until we know the final mixer status.
4839         void tallyUnderrunFrames(sp<Track> track, size_t underrunFrames) {
4840             mUnderrunFrames.emplace_back(track, underrunFrames);
4841         }
4842 
4843     private:
4844         const mixer_state * const mMixerStatus;
4845         ThreadMetrics * const mThreadMetrics;
4846         std::vector<std::pair<sp<Track>, size_t>> mUnderrunFrames;
4847     } deferredOperations(&mixerStatus, &mThreadMetrics);
4848     // implicit nested scope for variable capture
4849 
4850     bool noFastHapticTrack = true;
4851     for (size_t i=0 ; i<count ; i++) {
4852         const sp<Track> t = mActiveTracks[i];
4853 
4854         // this const just means the local variable doesn't change
4855         Track* const track = t.get();
4856 
4857         // process fast tracks
4858         if (track->isFastTrack()) {
4859             LOG_ALWAYS_FATAL_IF(mFastMixer.get() == nullptr,
4860                     "%s(%d): FastTrack(%d) present without FastMixer",
4861                      __func__, id(), track->id());
4862 
4863             if (track->getHapticPlaybackEnabled()) {
4864                 noFastHapticTrack = false;
4865             }
4866 
4867             // It's theoretically possible (though unlikely) for a fast track to be created
4868             // and then removed within the same normal mix cycle.  This is not a problem, as
4869             // the track never becomes active so it's fast mixer slot is never touched.
4870             // The converse, of removing an (active) track and then creating a new track
4871             // at the identical fast mixer slot within the same normal mix cycle,
4872             // is impossible because the slot isn't marked available until the end of each cycle.
4873             int j = track->mFastIndex;
4874             ALOG_ASSERT(0 < j && j < (int)FastMixerState::sMaxFastTracks);
4875             ALOG_ASSERT(!(mFastTrackAvailMask & (1 << j)));
4876             FastTrack *fastTrack = &state->mFastTracks[j];
4877 
4878             // Determine whether the track is currently in underrun condition,
4879             // and whether it had a recent underrun.
4880             FastTrackDump *ftDump = &mFastMixerDumpState.mTracks[j];
4881             FastTrackUnderruns underruns = ftDump->mUnderruns;
4882             uint32_t recentFull = (underruns.mBitFields.mFull -
4883                     track->mObservedUnderruns.mBitFields.mFull) & UNDERRUN_MASK;
4884             uint32_t recentPartial = (underruns.mBitFields.mPartial -
4885                     track->mObservedUnderruns.mBitFields.mPartial) & UNDERRUN_MASK;
4886             uint32_t recentEmpty = (underruns.mBitFields.mEmpty -
4887                     track->mObservedUnderruns.mBitFields.mEmpty) & UNDERRUN_MASK;
4888             uint32_t recentUnderruns = recentPartial + recentEmpty;
4889             track->mObservedUnderruns = underruns;
4890             // don't count underruns that occur while stopping or pausing
4891             // or stopped which can occur when flush() is called while active
4892             size_t underrunFrames = 0;
4893             if (!(track->isStopping() || track->isPausing() || track->isStopped()) &&
4894                     recentUnderruns > 0) {
4895                 // FIXME fast mixer will pull & mix partial buffers, but we count as a full underrun
4896                 underrunFrames = recentUnderruns * mFrameCount;
4897             }
4898             // Immediately account for FastTrack underruns.
4899             track->mAudioTrackServerProxy->tallyUnderrunFrames(underrunFrames);
4900 
4901             // This is similar to the state machine for normal tracks,
4902             // with a few modifications for fast tracks.
4903             bool isActive = true;
4904             switch (track->mState) {
4905             case TrackBase::STOPPING_1:
4906                 // track stays active in STOPPING_1 state until first underrun
4907                 if (recentUnderruns > 0 || track->isTerminated()) {
4908                     track->mState = TrackBase::STOPPING_2;
4909                 }
4910                 break;
4911             case TrackBase::PAUSING:
4912                 // ramp down is not yet implemented
4913                 track->setPaused();
4914                 break;
4915             case TrackBase::RESUMING:
4916                 // ramp up is not yet implemented
4917                 track->mState = TrackBase::ACTIVE;
4918                 break;
4919             case TrackBase::ACTIVE:
4920                 if (recentFull > 0 || recentPartial > 0) {
4921                     // track has provided at least some frames recently: reset retry count
4922                     track->mRetryCount = kMaxTrackRetries;
4923                 }
4924                 if (recentUnderruns == 0) {
4925                     // no recent underruns: stay active
4926                     break;
4927                 }
4928                 // there has recently been an underrun of some kind
4929                 if (track->sharedBuffer() == 0) {
4930                     // were any of the recent underruns "empty" (no frames available)?
4931                     if (recentEmpty == 0) {
4932                         // no, then ignore the partial underruns as they are allowed indefinitely
4933                         break;
4934                     }
4935                     // there has recently been an "empty" underrun: decrement the retry counter
4936                     if (--(track->mRetryCount) > 0) {
4937                         break;
4938                     }
4939                     // indicate to client process that the track was disabled because of underrun;
4940                     // it will then automatically call start() when data is available
4941                     track->disable();
4942                     // remove from active list, but state remains ACTIVE [confusing but true]
4943                     isActive = false;
4944                     break;
4945                 }
4946                 FALLTHROUGH_INTENDED;
4947             case TrackBase::STOPPING_2:
4948             case TrackBase::PAUSED:
4949             case TrackBase::STOPPED:
4950             case TrackBase::FLUSHED:   // flush() while active
4951                 // Check for presentation complete if track is inactive
4952                 // We have consumed all the buffers of this track.
4953                 // This would be incomplete if we auto-paused on underrun
4954                 {
4955                     uint32_t latency = 0;
4956                     status_t result = mOutput->stream->getLatency(&latency);
4957                     ALOGE_IF(result != OK,
4958                             "Error when retrieving output stream latency: %d", result);
4959                     size_t audioHALFrames = (latency * mSampleRate) / 1000;
4960                     int64_t framesWritten = mBytesWritten / mFrameSize;
4961                     if (!(mStandby || track->presentationComplete(framesWritten, audioHALFrames))) {
4962                         // track stays in active list until presentation is complete
4963                         break;
4964                     }
4965                 }
4966                 if (track->isStopping_2()) {
4967                     track->mState = TrackBase::STOPPED;
4968                 }
4969                 if (track->isStopped()) {
4970                     // Can't reset directly, as fast mixer is still polling this track
4971                     //   track->reset();
4972                     // So instead mark this track as needing to be reset after push with ack
4973                     resetMask |= 1 << i;
4974                 }
4975                 isActive = false;
4976                 break;
4977             case TrackBase::IDLE:
4978             default:
4979                 LOG_ALWAYS_FATAL("unexpected track state %d", track->mState);
4980             }
4981 
4982             if (isActive) {
4983                 // was it previously inactive?
4984                 if (!(state->mTrackMask & (1 << j))) {
4985                     ExtendedAudioBufferProvider *eabp = track;
4986                     VolumeProvider *vp = track;
4987                     fastTrack->mBufferProvider = eabp;
4988                     fastTrack->mVolumeProvider = vp;
4989                     fastTrack->mChannelMask = track->mChannelMask;
4990                     fastTrack->mFormat = track->mFormat;
4991                     fastTrack->mHapticPlaybackEnabled = track->getHapticPlaybackEnabled();
4992                     fastTrack->mHapticIntensity = track->getHapticIntensity();
4993                     fastTrack->mGeneration++;
4994                     state->mTrackMask |= 1 << j;
4995                     didModify = true;
4996                     // no acknowledgement required for newly active tracks
4997                 }
4998                 sp<AudioTrackServerProxy> proxy = track->mAudioTrackServerProxy;
4999                 float volume;
5000                 if (track->isPlaybackRestricted() || mStreamTypes[track->streamType()].mute) {
5001                     volume = 0.f;
5002                 } else {
5003                     volume = masterVolume * mStreamTypes[track->streamType()].volume;
5004                 }
5005 
5006                 handleVoipVolume_l(&volume);
5007 
5008                 // cache the combined master volume and stream type volume for fast mixer; this
5009                 // lacks any synchronization or barrier so VolumeProvider may read a stale value
5010                 const float vh = track->getVolumeHandler()->getVolume(
5011                     proxy->framesReleased()).first;
5012                 volume *= vh;
5013                 track->mCachedVolume = volume;
5014                 gain_minifloat_packed_t vlr = proxy->getVolumeLR();
5015                 float vlf = volume * float_from_gain(gain_minifloat_unpack_left(vlr));
5016                 float vrf = volume * float_from_gain(gain_minifloat_unpack_right(vlr));
5017 
5018                 track->setFinalVolume((vlf + vrf) / 2.f);
5019                 ++fastTracks;
5020             } else {
5021                 // was it previously active?
5022                 if (state->mTrackMask & (1 << j)) {
5023                     fastTrack->mBufferProvider = NULL;
5024                     fastTrack->mGeneration++;
5025                     state->mTrackMask &= ~(1 << j);
5026                     didModify = true;
5027                     // If any fast tracks were removed, we must wait for acknowledgement
5028                     // because we're about to decrement the last sp<> on those tracks.
5029                     block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
5030                 } else {
5031                     // ALOGW rather than LOG_ALWAYS_FATAL because it seems there are cases where an
5032                     // AudioTrack may start (which may not be with a start() but with a write()
5033                     // after underrun) and immediately paused or released.  In that case the
5034                     // FastTrack state hasn't had time to update.
5035                     // TODO Remove the ALOGW when this theory is confirmed.
5036                     ALOGW("fast track %d should have been active; "
5037                             "mState=%d, mTrackMask=%#x, recentUnderruns=%u, isShared=%d",
5038                             j, track->mState, state->mTrackMask, recentUnderruns,
5039                             track->sharedBuffer() != 0);
5040                     // Since the FastMixer state already has the track inactive, do nothing here.
5041                 }
5042                 tracksToRemove->add(track);
5043                 // Avoids a misleading display in dumpsys
5044                 track->mObservedUnderruns.mBitFields.mMostRecent = UNDERRUN_FULL;
5045             }
5046             if (fastTrack->mHapticPlaybackEnabled != track->getHapticPlaybackEnabled()) {
5047                 fastTrack->mHapticPlaybackEnabled = track->getHapticPlaybackEnabled();
5048                 didModify = true;
5049             }
5050             continue;
5051         }
5052 
5053         {   // local variable scope to avoid goto warning
5054 
5055         audio_track_cblk_t* cblk = track->cblk();
5056 
5057         // The first time a track is added we wait
5058         // for all its buffers to be filled before processing it
5059         const int trackId = track->id();
5060 
5061         // if an active track doesn't exist in the AudioMixer, create it.
5062         // use the trackId as the AudioMixer name.
5063         if (!mAudioMixer->exists(trackId)) {
5064             status_t status = mAudioMixer->create(
5065                     trackId,
5066                     track->mChannelMask,
5067                     track->mFormat,
5068                     track->mSessionId);
5069             if (status != OK) {
5070                 ALOGW("%s(): AudioMixer cannot create track(%d)"
5071                         " mask %#x, format %#x, sessionId %d",
5072                         __func__, trackId,
5073                         track->mChannelMask, track->mFormat, track->mSessionId);
5074                 tracksToRemove->add(track);
5075                 track->invalidate(); // consider it dead.
5076                 continue;
5077             }
5078         }
5079 
5080         // make sure that we have enough frames to mix one full buffer.
5081         // enforce this condition only once to enable draining the buffer in case the client
5082         // app does not call stop() and relies on underrun to stop:
5083         // hence the test on (mMixerStatus == MIXER_TRACKS_READY) meaning the track was mixed
5084         // during last round
5085         size_t desiredFrames;
5086         const uint32_t sampleRate = track->mAudioTrackServerProxy->getSampleRate();
5087         AudioPlaybackRate playbackRate = track->mAudioTrackServerProxy->getPlaybackRate();
5088 
5089         desiredFrames = sourceFramesNeededWithTimestretch(
5090                 sampleRate, mNormalFrameCount, mSampleRate, playbackRate.mSpeed);
5091         // TODO: ONLY USED FOR LEGACY RESAMPLERS, remove when they are removed.
5092         // add frames already consumed but not yet released by the resampler
5093         // because mAudioTrackServerProxy->framesReady() will include these frames
5094         desiredFrames += mAudioMixer->getUnreleasedFrames(trackId);
5095 
5096         uint32_t minFrames = 1;
5097         if ((track->sharedBuffer() == 0) && !track->isStopped() && !track->isPausing() &&
5098                 (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY)) {
5099             minFrames = desiredFrames;
5100         }
5101 
5102         size_t framesReady = track->framesReady();
5103         if (ATRACE_ENABLED()) {
5104             // I wish we had formatted trace names
5105             std::string traceName("nRdy");
5106             traceName += std::to_string(trackId);
5107             ATRACE_INT(traceName.c_str(), framesReady);
5108         }
5109         if ((framesReady >= minFrames) && track->isReady() &&
5110                 !track->isPaused() && !track->isTerminated())
5111         {
5112             ALOGVV("track(%d) s=%08x [OK] on thread %p", trackId, cblk->mServer, this);
5113 
5114             mixedTracks++;
5115 
5116             // track->mainBuffer() != mSinkBuffer or mMixerBuffer means
5117             // there is an effect chain connected to the track
5118             chain.clear();
5119             if (track->mainBuffer() != mSinkBuffer &&
5120                     track->mainBuffer() != mMixerBuffer) {
5121                 if (mEffectBufferEnabled) {
5122                     mEffectBufferValid = true; // Later can set directly.
5123                 }
5124                 chain = getEffectChain_l(track->sessionId());
5125                 // Delegate volume control to effect in track effect chain if needed
5126                 if (chain != 0) {
5127                     tracksWithEffect++;
5128                 } else {
5129                     ALOGW("prepareTracks_l(): track(%d) attached to effect but no chain found on "
5130                             "session %d",
5131                             trackId, track->sessionId());
5132                 }
5133             }
5134 
5135 
5136             int param = AudioMixer::VOLUME;
5137             if (track->mFillingUpStatus == Track::FS_FILLED) {
5138                 // no ramp for the first volume setting
5139                 track->mFillingUpStatus = Track::FS_ACTIVE;
5140                 if (track->mState == TrackBase::RESUMING) {
5141                     track->mState = TrackBase::ACTIVE;
5142                     // If a new track is paused immediately after start, do not ramp on resume.
5143                     if (cblk->mServer != 0) {
5144                         param = AudioMixer::RAMP_VOLUME;
5145                     }
5146                 }
5147                 mAudioMixer->setParameter(trackId, AudioMixer::RESAMPLE, AudioMixer::RESET, NULL);
5148                 mLeftVolFloat = -1.0;
5149             // FIXME should not make a decision based on mServer
5150             } else if (cblk->mServer != 0) {
5151                 // If the track is stopped before the first frame was mixed,
5152                 // do not apply ramp
5153                 param = AudioMixer::RAMP_VOLUME;
5154             }
5155 
5156             // compute volume for this track
5157             uint32_t vl, vr;       // in U8.24 integer format
5158             float vlf, vrf, vaf;   // in [0.0, 1.0] float format
5159             // read original volumes with volume control
5160             float v = masterVolume * mStreamTypes[track->streamType()].volume;
5161             // Always fetch volumeshaper volume to ensure state is updated.
5162             const sp<AudioTrackServerProxy> proxy = track->mAudioTrackServerProxy;
5163             const float vh = track->getVolumeHandler()->getVolume(
5164                     track->mAudioTrackServerProxy->framesReleased()).first;
5165 
5166             if (mStreamTypes[track->streamType()].mute || track->isPlaybackRestricted()) {
5167                 v = 0;
5168             }
5169 
5170             handleVoipVolume_l(&v);
5171 
5172             if (track->isPausing()) {
5173                 vl = vr = 0;
5174                 vlf = vrf = vaf = 0.;
5175                 track->setPaused();
5176             } else {
5177                 gain_minifloat_packed_t vlr = proxy->getVolumeLR();
5178                 vlf = float_from_gain(gain_minifloat_unpack_left(vlr));
5179                 vrf = float_from_gain(gain_minifloat_unpack_right(vlr));
5180                 // track volumes come from shared memory, so can't be trusted and must be clamped
5181                 if (vlf > GAIN_FLOAT_UNITY) {
5182                     ALOGV("Track left volume out of range: %.3g", vlf);
5183                     vlf = GAIN_FLOAT_UNITY;
5184                 }
5185                 if (vrf > GAIN_FLOAT_UNITY) {
5186                     ALOGV("Track right volume out of range: %.3g", vrf);
5187                     vrf = GAIN_FLOAT_UNITY;
5188                 }
5189                 // now apply the master volume and stream type volume and shaper volume
5190                 vlf *= v * vh;
5191                 vrf *= v * vh;
5192                 // assuming master volume and stream type volume each go up to 1.0,
5193                 // then derive vl and vr as U8.24 versions for the effect chain
5194                 const float scaleto8_24 = MAX_GAIN_INT * MAX_GAIN_INT;
5195                 vl = (uint32_t) (scaleto8_24 * vlf);
5196                 vr = (uint32_t) (scaleto8_24 * vrf);
5197                 // vl and vr are now in U8.24 format
5198                 uint16_t sendLevel = proxy->getSendLevel_U4_12();
5199                 // send level comes from shared memory and so may be corrupt
5200                 if (sendLevel > MAX_GAIN_INT) {
5201                     ALOGV("Track send level out of range: %04X", sendLevel);
5202                     sendLevel = MAX_GAIN_INT;
5203                 }
5204                 // vaf is represented as [0.0, 1.0] float by rescaling sendLevel
5205                 vaf = v * sendLevel * (1. / MAX_GAIN_INT);
5206             }
5207 
5208             track->setFinalVolume((vrf + vlf) / 2.f);
5209 
5210             // Delegate volume control to effect in track effect chain if needed
5211             if (chain != 0 && chain->setVolume_l(&vl, &vr)) {
5212                 // Do not ramp volume if volume is controlled by effect
5213                 param = AudioMixer::VOLUME;
5214                 // Update remaining floating point volume levels
5215                 vlf = (float)vl / (1 << 24);
5216                 vrf = (float)vr / (1 << 24);
5217                 track->mHasVolumeController = true;
5218             } else {
5219                 // force no volume ramp when volume controller was just disabled or removed
5220                 // from effect chain to avoid volume spike
5221                 if (track->mHasVolumeController) {
5222                     param = AudioMixer::VOLUME;
5223                 }
5224                 track->mHasVolumeController = false;
5225             }
5226 
5227             // XXX: these things DON'T need to be done each time
5228             mAudioMixer->setBufferProvider(trackId, track);
5229             mAudioMixer->enable(trackId);
5230 
5231             mAudioMixer->setParameter(trackId, param, AudioMixer::VOLUME0, &vlf);
5232             mAudioMixer->setParameter(trackId, param, AudioMixer::VOLUME1, &vrf);
5233             mAudioMixer->setParameter(trackId, param, AudioMixer::AUXLEVEL, &vaf);
5234             mAudioMixer->setParameter(
5235                 trackId,
5236                 AudioMixer::TRACK,
5237                 AudioMixer::FORMAT, (void *)track->format());
5238             mAudioMixer->setParameter(
5239                 trackId,
5240                 AudioMixer::TRACK,
5241                 AudioMixer::CHANNEL_MASK, (void *)(uintptr_t)track->channelMask());
5242             mAudioMixer->setParameter(
5243                 trackId,
5244                 AudioMixer::TRACK,
5245                 AudioMixer::MIXER_CHANNEL_MASK,
5246                 (void *)(uintptr_t)(mChannelMask | mHapticChannelMask));
5247             // limit track sample rate to 2 x output sample rate, which changes at re-configuration
5248             uint32_t maxSampleRate = mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX;
5249             uint32_t reqSampleRate = proxy->getSampleRate();
5250             if (reqSampleRate == 0) {
5251                 reqSampleRate = mSampleRate;
5252             } else if (reqSampleRate > maxSampleRate) {
5253                 reqSampleRate = maxSampleRate;
5254             }
5255             mAudioMixer->setParameter(
5256                 trackId,
5257                 AudioMixer::RESAMPLE,
5258                 AudioMixer::SAMPLE_RATE,
5259                 (void *)(uintptr_t)reqSampleRate);
5260 
5261             AudioPlaybackRate playbackRate = proxy->getPlaybackRate();
5262             mAudioMixer->setParameter(
5263                 trackId,
5264                 AudioMixer::TIMESTRETCH,
5265                 AudioMixer::PLAYBACK_RATE,
5266                 &playbackRate);
5267 
5268             /*
5269              * Select the appropriate output buffer for the track.
5270              *
5271              * Tracks with effects go into their own effects chain buffer
5272              * and from there into either mEffectBuffer or mSinkBuffer.
5273              *
5274              * Other tracks can use mMixerBuffer for higher precision
5275              * channel accumulation.  If this buffer is enabled
5276              * (mMixerBufferEnabled true), then selected tracks will accumulate
5277              * into it.
5278              *
5279              */
5280             if (mMixerBufferEnabled
5281                     && (track->mainBuffer() == mSinkBuffer
5282                             || track->mainBuffer() == mMixerBuffer)) {
5283                 mAudioMixer->setParameter(
5284                         trackId,
5285                         AudioMixer::TRACK,
5286                         AudioMixer::MIXER_FORMAT, (void *)mMixerBufferFormat);
5287                 mAudioMixer->setParameter(
5288                         trackId,
5289                         AudioMixer::TRACK,
5290                         AudioMixer::MAIN_BUFFER, (void *)mMixerBuffer);
5291                 // TODO: override track->mainBuffer()?
5292                 mMixerBufferValid = true;
5293             } else {
5294                 mAudioMixer->setParameter(
5295                         trackId,
5296                         AudioMixer::TRACK,
5297                         AudioMixer::MIXER_FORMAT, (void *)EFFECT_BUFFER_FORMAT);
5298                 mAudioMixer->setParameter(
5299                         trackId,
5300                         AudioMixer::TRACK,
5301                         AudioMixer::MAIN_BUFFER, (void *)track->mainBuffer());
5302             }
5303             mAudioMixer->setParameter(
5304                 trackId,
5305                 AudioMixer::TRACK,
5306                 AudioMixer::AUX_BUFFER, (void *)track->auxBuffer());
5307             mAudioMixer->setParameter(
5308                 trackId,
5309                 AudioMixer::TRACK,
5310                 AudioMixer::HAPTIC_ENABLED, (void *)(uintptr_t)track->getHapticPlaybackEnabled());
5311             mAudioMixer->setParameter(
5312                 trackId,
5313                 AudioMixer::TRACK,
5314                 AudioMixer::HAPTIC_INTENSITY, (void *)(uintptr_t)track->getHapticIntensity());
5315 
5316             // reset retry count
5317             track->mRetryCount = kMaxTrackRetries;
5318 
5319             // If one track is ready, set the mixer ready if:
5320             //  - the mixer was not ready during previous round OR
5321             //  - no other track is not ready
5322             if (mMixerStatusIgnoringFastTracks != MIXER_TRACKS_READY ||
5323                     mixerStatus != MIXER_TRACKS_ENABLED) {
5324                 mixerStatus = MIXER_TRACKS_READY;
5325             }
5326 
5327             // Enable the next few lines to instrument a test for underrun log handling.
5328             // TODO: Remove when we have a better way of testing the underrun log.
5329 #if 0
5330             static int i;
5331             if ((++i & 0xf) == 0) {
5332                 deferredOperations.tallyUnderrunFrames(track, 10 /* underrunFrames */);
5333             }
5334 #endif
5335         } else {
5336             size_t underrunFrames = 0;
5337             if (framesReady < desiredFrames && !track->isStopped() && !track->isPaused()) {
5338                 ALOGV("track(%d) underrun, track state %s  framesReady(%zu) < framesDesired(%zd)",
5339                         trackId, track->getTrackStateAsString(), framesReady, desiredFrames);
5340                 underrunFrames = desiredFrames;
5341             }
5342             deferredOperations.tallyUnderrunFrames(track, underrunFrames);
5343 
5344             // clear effect chain input buffer if an active track underruns to avoid sending
5345             // previous audio buffer again to effects
5346             chain = getEffectChain_l(track->sessionId());
5347             if (chain != 0) {
5348                 chain->clearInputBuffer();
5349             }
5350 
5351             ALOGVV("track(%d) s=%08x [NOT READY] on thread %p", trackId, cblk->mServer, this);
5352             if ((track->sharedBuffer() != 0) || track->isTerminated() ||
5353                     track->isStopped() || track->isPaused()) {
5354                 // We have consumed all the buffers of this track.
5355                 // Remove it from the list of active tracks.
5356                 // TODO: use actual buffer filling status instead of latency when available from
5357                 // audio HAL
5358                 size_t audioHALFrames = (latency_l() * mSampleRate) / 1000;
5359                 int64_t framesWritten = mBytesWritten / mFrameSize;
5360                 if (mStandby || track->presentationComplete(framesWritten, audioHALFrames)) {
5361                     if (track->isStopped()) {
5362                         track->reset();
5363                     }
5364                     tracksToRemove->add(track);
5365                 }
5366             } else {
5367                 // No buffers for this track. Give it a few chances to
5368                 // fill a buffer, then remove it from active list.
5369                 if (--(track->mRetryCount) <= 0) {
5370                     ALOGI("BUFFER TIMEOUT: remove(%d) from active list on thread %p",
5371                             trackId, this);
5372                     tracksToRemove->add(track);
5373                     // indicate to client process that the track was disabled because of underrun;
5374                     // it will then automatically call start() when data is available
5375                     track->disable();
5376                 // If one track is not ready, mark the mixer also not ready if:
5377                 //  - the mixer was ready during previous round OR
5378                 //  - no other track is ready
5379                 } else if (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY ||
5380                                 mixerStatus != MIXER_TRACKS_READY) {
5381                     mixerStatus = MIXER_TRACKS_ENABLED;
5382                 }
5383             }
5384             mAudioMixer->disable(trackId);
5385         }
5386 
5387         }   // local variable scope to avoid goto warning
5388 
5389     }
5390 
5391     if (mHapticChannelMask != AUDIO_CHANNEL_NONE && sq != NULL) {
5392         // When there is no fast track playing haptic and FastMixer exists,
5393         // enabling the first FastTrack, which provides mixed data from normal
5394         // tracks, to play haptic data.
5395         FastTrack *fastTrack = &state->mFastTracks[0];
5396         if (fastTrack->mHapticPlaybackEnabled != noFastHapticTrack) {
5397             fastTrack->mHapticPlaybackEnabled = noFastHapticTrack;
5398             didModify = true;
5399         }
5400     }
5401 
5402     // Push the new FastMixer state if necessary
5403     bool pauseAudioWatchdog = false;
5404     if (didModify) {
5405         state->mFastTracksGen++;
5406         // if the fast mixer was active, but now there are no fast tracks, then put it in cold idle
5407         if (kUseFastMixer == FastMixer_Dynamic &&
5408                 state->mCommand == FastMixerState::MIX_WRITE && state->mTrackMask <= 1) {
5409             state->mCommand = FastMixerState::COLD_IDLE;
5410             state->mColdFutexAddr = &mFastMixerFutex;
5411             state->mColdGen++;
5412             mFastMixerFutex = 0;
5413             if (kUseFastMixer == FastMixer_Dynamic) {
5414                 mNormalSink = mOutputSink;
5415             }
5416             // If we go into cold idle, need to wait for acknowledgement
5417             // so that fast mixer stops doing I/O.
5418             block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
5419             pauseAudioWatchdog = true;
5420         }
5421     }
5422     if (sq != NULL) {
5423         sq->end(didModify);
5424         // No need to block if the FastMixer is in COLD_IDLE as the FastThread
5425         // is not active. (We BLOCK_UNTIL_ACKED when entering COLD_IDLE
5426         // when bringing the output sink into standby.)
5427         //
5428         // We will get the latest FastMixer state when we come out of COLD_IDLE.
5429         //
5430         // This occurs with BT suspend when we idle the FastMixer with
5431         // active tracks, which may be added or removed.
5432         sq->push(coldIdle ? FastMixerStateQueue::BLOCK_NEVER : block);
5433     }
5434 #ifdef AUDIO_WATCHDOG
5435     if (pauseAudioWatchdog && mAudioWatchdog != 0) {
5436         mAudioWatchdog->pause();
5437     }
5438 #endif
5439 
5440     // Now perform the deferred reset on fast tracks that have stopped
5441     while (resetMask != 0) {
5442         size_t i = __builtin_ctz(resetMask);
5443         ALOG_ASSERT(i < count);
5444         resetMask &= ~(1 << i);
5445         sp<Track> track = mActiveTracks[i];
5446         ALOG_ASSERT(track->isFastTrack() && track->isStopped());
5447         track->reset();
5448     }
5449 
5450     // Track destruction may occur outside of threadLoop once it is removed from active tracks.
5451     // Ensure the AudioMixer doesn't have a raw "buffer provider" pointer to the track if
5452     // it ceases to be active, to allow safe removal from the AudioMixer at the start
5453     // of prepareTracks_l(); this releases any outstanding buffer back to the track.
5454     // See also the implementation of destroyTrack_l().
5455     for (const auto &track : *tracksToRemove) {
5456         const int trackId = track->id();
5457         if (mAudioMixer->exists(trackId)) { // Normal tracks here, fast tracks in FastMixer.
5458             mAudioMixer->setBufferProvider(trackId, nullptr /* bufferProvider */);
5459         }
5460     }
5461 
5462     // remove all the tracks that need to be...
5463     removeTracks_l(*tracksToRemove);
5464 
5465     if (getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX) != 0) {
5466         mEffectBufferValid = true;
5467     }
5468 
5469     if (mEffectBufferValid) {
5470         // as long as there are effects we should clear the effects buffer, to avoid
5471         // passing a non-clean buffer to the effect chain
5472         memset(mEffectBuffer, 0, mEffectBufferSize);
5473     }
5474     // sink or mix buffer must be cleared if all tracks are connected to an
5475     // effect chain as in this case the mixer will not write to the sink or mix buffer
5476     // and track effects will accumulate into it
5477     if ((mBytesRemaining == 0) && ((mixedTracks != 0 && mixedTracks == tracksWithEffect) ||
5478             (mixedTracks == 0 && fastTracks > 0))) {
5479         // FIXME as a performance optimization, should remember previous zero status
5480         if (mMixerBufferValid) {
5481             memset(mMixerBuffer, 0, mMixerBufferSize);
5482             // TODO: In testing, mSinkBuffer below need not be cleared because
5483             // the PlaybackThread::threadLoop() copies mMixerBuffer into mSinkBuffer
5484             // after mixing.
5485             //
5486             // To enforce this guarantee:
5487             // ((mixedTracks != 0 && mixedTracks == tracksWithEffect) ||
5488             // (mixedTracks == 0 && fastTracks > 0))
5489             // must imply MIXER_TRACKS_READY.
5490             // Later, we may clear buffers regardless, and skip much of this logic.
5491         }
5492         // FIXME as a performance optimization, should remember previous zero status
5493         memset(mSinkBuffer, 0, mNormalFrameCount * mFrameSize);
5494     }
5495 
5496     // if any fast tracks, then status is ready
5497     mMixerStatusIgnoringFastTracks = mixerStatus;
5498     if (fastTracks > 0) {
5499         mixerStatus = MIXER_TRACKS_READY;
5500     }
5501     return mixerStatus;
5502 }
5503 
5504 // trackCountForUid_l() must be called with ThreadBase::mLock held
trackCountForUid_l(uid_t uid) const5505 uint32_t AudioFlinger::PlaybackThread::trackCountForUid_l(uid_t uid) const
5506 {
5507     uint32_t trackCount = 0;
5508     for (size_t i = 0; i < mTracks.size() ; i++) {
5509         if (mTracks[i]->uid() == uid) {
5510             trackCount++;
5511         }
5512     }
5513     return trackCount;
5514 }
5515 
5516 // isTrackAllowed_l() must be called with ThreadBase::mLock held
isTrackAllowed_l(audio_channel_mask_t channelMask,audio_format_t format,audio_session_t sessionId,uid_t uid) const5517 bool AudioFlinger::MixerThread::isTrackAllowed_l(
5518         audio_channel_mask_t channelMask, audio_format_t format,
5519         audio_session_t sessionId, uid_t uid) const
5520 {
5521     if (!PlaybackThread::isTrackAllowed_l(channelMask, format, sessionId, uid)) {
5522         return false;
5523     }
5524     // Check validity as we don't call AudioMixer::create() here.
5525     if (!mAudioMixer->isValidFormat(format)) {
5526         ALOGW("%s: invalid format: %#x", __func__, format);
5527         return false;
5528     }
5529     if (!mAudioMixer->isValidChannelMask(channelMask)) {
5530         ALOGW("%s: invalid channelMask: %#x", __func__, channelMask);
5531         return false;
5532     }
5533     return true;
5534 }
5535 
5536 // checkForNewParameter_l() must be called with ThreadBase::mLock held
checkForNewParameter_l(const String8 & keyValuePair,status_t & status)5537 bool AudioFlinger::MixerThread::checkForNewParameter_l(const String8& keyValuePair,
5538                                                        status_t& status)
5539 {
5540     bool reconfig = false;
5541     bool a2dpDeviceChanged = false;
5542 
5543     status = NO_ERROR;
5544 
5545     AutoPark<FastMixer> park(mFastMixer);
5546 
5547     AudioParameter param = AudioParameter(keyValuePair);
5548     int value;
5549     if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
5550         reconfig = true;
5551     }
5552     if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
5553         if (!isValidPcmSinkFormat((audio_format_t) value)) {
5554             status = BAD_VALUE;
5555         } else {
5556             // no need to save value, since it's constant
5557             reconfig = true;
5558         }
5559     }
5560     if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
5561         if (!isValidPcmSinkChannelMask((audio_channel_mask_t) value)) {
5562             status = BAD_VALUE;
5563         } else {
5564             // no need to save value, since it's constant
5565             reconfig = true;
5566         }
5567     }
5568     if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
5569         // do not accept frame count changes if tracks are open as the track buffer
5570         // size depends on frame count and correct behavior would not be guaranteed
5571         // if frame count is changed after track creation
5572         if (!mTracks.isEmpty()) {
5573             status = INVALID_OPERATION;
5574         } else {
5575             reconfig = true;
5576         }
5577     }
5578     if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
5579         LOG_FATAL("Should not set routing device in MixerThread");
5580     }
5581 
5582     if (status == NO_ERROR) {
5583         status = mOutput->stream->setParameters(keyValuePair);
5584         if (!mStandby && status == INVALID_OPERATION) {
5585             mOutput->standby();
5586             if (!mStandby) {
5587                 mThreadMetrics.logEndInterval();
5588                 mStandby = true;
5589             }
5590             mBytesWritten = 0;
5591             status = mOutput->stream->setParameters(keyValuePair);
5592         }
5593         if (status == NO_ERROR && reconfig) {
5594             readOutputParameters_l();
5595             delete mAudioMixer;
5596             mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
5597             for (const auto &track : mTracks) {
5598                 const int trackId = track->id();
5599                 status_t status = mAudioMixer->create(
5600                         trackId,
5601                         track->mChannelMask,
5602                         track->mFormat,
5603                         track->mSessionId);
5604                 ALOGW_IF(status != NO_ERROR,
5605                         "%s(): AudioMixer cannot create track(%d)"
5606                         " mask %#x, format %#x, sessionId %d",
5607                         __func__,
5608                         trackId, track->mChannelMask, track->mFormat, track->mSessionId);
5609             }
5610             sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
5611         }
5612     }
5613 
5614     return reconfig || a2dpDeviceChanged;
5615 }
5616 
5617 
dumpInternals_l(int fd,const Vector<String16> & args)5618 void AudioFlinger::MixerThread::dumpInternals_l(int fd, const Vector<String16>& args)
5619 {
5620     PlaybackThread::dumpInternals_l(fd, args);
5621     dprintf(fd, "  Thread throttle time (msecs): %u\n", mThreadThrottleTimeMs);
5622     dprintf(fd, "  AudioMixer tracks: %s\n", mAudioMixer->trackNames().c_str());
5623     dprintf(fd, "  Master mono: %s\n", mMasterMono ? "on" : "off");
5624     dprintf(fd, "  Master balance: %f (%s)\n", mMasterBalance.load(),
5625             (hasFastMixer() ? std::to_string(mFastMixer->getMasterBalance())
5626                             : mBalance.toString()).c_str());
5627     if (hasFastMixer()) {
5628         dprintf(fd, "  FastMixer thread %p tid=%d", mFastMixer.get(), mFastMixer->getTid());
5629 
5630         // Make a non-atomic copy of fast mixer dump state so it won't change underneath us
5631         // while we are dumping it.  It may be inconsistent, but it won't mutate!
5632         // This is a large object so we place it on the heap.
5633         // FIXME 25972958: Need an intelligent copy constructor that does not touch unused pages.
5634         const std::unique_ptr<FastMixerDumpState> copy =
5635                 std::make_unique<FastMixerDumpState>(mFastMixerDumpState);
5636         copy->dump(fd);
5637 
5638 #ifdef STATE_QUEUE_DUMP
5639         // Similar for state queue
5640         StateQueueObserverDump observerCopy = mStateQueueObserverDump;
5641         observerCopy.dump(fd);
5642         StateQueueMutatorDump mutatorCopy = mStateQueueMutatorDump;
5643         mutatorCopy.dump(fd);
5644 #endif
5645 
5646 #ifdef AUDIO_WATCHDOG
5647         if (mAudioWatchdog != 0) {
5648             // Make a non-atomic copy of audio watchdog dump so it won't change underneath us
5649             AudioWatchdogDump wdCopy = mAudioWatchdogDump;
5650             wdCopy.dump(fd);
5651         }
5652 #endif
5653 
5654     } else {
5655         dprintf(fd, "  No FastMixer\n");
5656     }
5657 }
5658 
idleSleepTimeUs() const5659 uint32_t AudioFlinger::MixerThread::idleSleepTimeUs() const
5660 {
5661     return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000) / 2;
5662 }
5663 
suspendSleepTimeUs() const5664 uint32_t AudioFlinger::MixerThread::suspendSleepTimeUs() const
5665 {
5666     return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000);
5667 }
5668 
cacheParameters_l()5669 void AudioFlinger::MixerThread::cacheParameters_l()
5670 {
5671     PlaybackThread::cacheParameters_l();
5672 
5673     // FIXME: Relaxed timing because of a certain device that can't meet latency
5674     // Should be reduced to 2x after the vendor fixes the driver issue
5675     // increase threshold again due to low power audio mode. The way this warning
5676     // threshold is calculated and its usefulness should be reconsidered anyway.
5677     maxPeriod = seconds(mNormalFrameCount) / mSampleRate * 15;
5678 }
5679 
5680 // ----------------------------------------------------------------------------
5681 
DirectOutputThread(const sp<AudioFlinger> & audioFlinger,AudioStreamOut * output,audio_io_handle_t id,ThreadBase::type_t type,bool systemReady)5682 AudioFlinger::DirectOutputThread::DirectOutputThread(const sp<AudioFlinger>& audioFlinger,
5683         AudioStreamOut* output, audio_io_handle_t id, ThreadBase::type_t type, bool systemReady)
5684     :   PlaybackThread(audioFlinger, output, id, type, systemReady)
5685 {
5686     setMasterBalance(audioFlinger->getMasterBalance_l());
5687 }
5688 
~DirectOutputThread()5689 AudioFlinger::DirectOutputThread::~DirectOutputThread()
5690 {
5691 }
5692 
dumpInternals_l(int fd,const Vector<String16> & args)5693 void AudioFlinger::DirectOutputThread::dumpInternals_l(int fd, const Vector<String16>& args)
5694 {
5695     PlaybackThread::dumpInternals_l(fd, args);
5696     dprintf(fd, "  Master balance: %f  Left: %f  Right: %f\n",
5697             mMasterBalance.load(), mMasterBalanceLeft, mMasterBalanceRight);
5698 }
5699 
setMasterBalance(float balance)5700 void AudioFlinger::DirectOutputThread::setMasterBalance(float balance)
5701 {
5702     Mutex::Autolock _l(mLock);
5703     if (mMasterBalance != balance) {
5704         mMasterBalance.store(balance);
5705         mBalance.computeStereoBalance(balance, &mMasterBalanceLeft, &mMasterBalanceRight);
5706         broadcast_l();
5707     }
5708 }
5709 
processVolume_l(Track * track,bool lastTrack)5710 void AudioFlinger::DirectOutputThread::processVolume_l(Track *track, bool lastTrack)
5711 {
5712     float left, right;
5713 
5714     // Ensure volumeshaper state always advances even when muted.
5715     const sp<AudioTrackServerProxy> proxy = track->mAudioTrackServerProxy;
5716     const auto [shaperVolume, shaperActive] = track->getVolumeHandler()->getVolume(
5717             proxy->framesReleased());
5718     mVolumeShaperActive = shaperActive;
5719 
5720     if (mMasterMute || mStreamTypes[track->streamType()].mute || track->isPlaybackRestricted()) {
5721         left = right = 0;
5722     } else {
5723         float typeVolume = mStreamTypes[track->streamType()].volume;
5724         const float v = mMasterVolume * typeVolume * shaperVolume;
5725 
5726         gain_minifloat_packed_t vlr = proxy->getVolumeLR();
5727         left = float_from_gain(gain_minifloat_unpack_left(vlr));
5728         if (left > GAIN_FLOAT_UNITY) {
5729             left = GAIN_FLOAT_UNITY;
5730         }
5731         left *= v * mMasterBalanceLeft; // DirectOutputThread balance applied as track volume
5732         right = float_from_gain(gain_minifloat_unpack_right(vlr));
5733         if (right > GAIN_FLOAT_UNITY) {
5734             right = GAIN_FLOAT_UNITY;
5735         }
5736         right *= v * mMasterBalanceRight;
5737     }
5738 
5739     if (lastTrack) {
5740         track->setFinalVolume((left + right) / 2.f);
5741         if (left != mLeftVolFloat || right != mRightVolFloat) {
5742             mLeftVolFloat = left;
5743             mRightVolFloat = right;
5744 
5745             // Delegate volume control to effect in track effect chain if needed
5746             // only one effect chain can be present on DirectOutputThread, so if
5747             // there is one, the track is connected to it
5748             if (!mEffectChains.isEmpty()) {
5749                 // if effect chain exists, volume is handled by it.
5750                 // Convert volumes from float to 8.24
5751                 uint32_t vl = (uint32_t)(left * (1 << 24));
5752                 uint32_t vr = (uint32_t)(right * (1 << 24));
5753                 // Direct/Offload effect chains set output volume in setVolume_l().
5754                 (void)mEffectChains[0]->setVolume_l(&vl, &vr);
5755             } else {
5756                 // otherwise we directly set the volume.
5757                 setVolumeForOutput_l(left, right);
5758             }
5759         }
5760     }
5761 }
5762 
onAddNewTrack_l()5763 void AudioFlinger::DirectOutputThread::onAddNewTrack_l()
5764 {
5765     sp<Track> previousTrack = mPreviousTrack.promote();
5766     sp<Track> latestTrack = mActiveTracks.getLatest();
5767 
5768     if (previousTrack != 0 && latestTrack != 0) {
5769         if (mType == DIRECT) {
5770             if (previousTrack.get() != latestTrack.get()) {
5771                 mFlushPending = true;
5772             }
5773         } else /* mType == OFFLOAD */ {
5774             if (previousTrack->sessionId() != latestTrack->sessionId()) {
5775                 mFlushPending = true;
5776             }
5777         }
5778     } else if (previousTrack == 0) {
5779         // there could be an old track added back during track transition for direct
5780         // output, so always issues flush to flush data of the previous track if it
5781         // was already destroyed with HAL paused, then flush can resume the playback
5782         mFlushPending = true;
5783     }
5784     PlaybackThread::onAddNewTrack_l();
5785 }
5786 
prepareTracks_l(Vector<sp<Track>> * tracksToRemove)5787 AudioFlinger::PlaybackThread::mixer_state AudioFlinger::DirectOutputThread::prepareTracks_l(
5788     Vector< sp<Track> > *tracksToRemove
5789 )
5790 {
5791     size_t count = mActiveTracks.size();
5792     mixer_state mixerStatus = MIXER_IDLE;
5793     bool doHwPause = false;
5794     bool doHwResume = false;
5795 
5796     // find out which tracks need to be processed
5797     for (const sp<Track> &t : mActiveTracks) {
5798         if (t->isInvalid()) {
5799             ALOGW("An invalidated track shouldn't be in active list");
5800             tracksToRemove->add(t);
5801             continue;
5802         }
5803 
5804         Track* const track = t.get();
5805 #ifdef VERY_VERY_VERBOSE_LOGGING
5806         audio_track_cblk_t* cblk = track->cblk();
5807 #endif
5808         // Only consider last track started for volume and mixer state control.
5809         // In theory an older track could underrun and restart after the new one starts
5810         // but as we only care about the transition phase between two tracks on a
5811         // direct output, it is not a problem to ignore the underrun case.
5812         sp<Track> l = mActiveTracks.getLatest();
5813         bool last = l.get() == track;
5814 
5815         if (track->isPausing()) {
5816             track->setPaused();
5817             if (mHwSupportsPause && last && !mHwPaused) {
5818                 doHwPause = true;
5819                 mHwPaused = true;
5820             }
5821         } else if (track->isFlushPending()) {
5822             track->flushAck();
5823             if (last) {
5824                 mFlushPending = true;
5825             }
5826         } else if (track->isResumePending()) {
5827             track->resumeAck();
5828             if (last) {
5829                 mLeftVolFloat = mRightVolFloat = -1.0;
5830                 if (mHwPaused) {
5831                     doHwResume = true;
5832                     mHwPaused = false;
5833                 }
5834             }
5835         }
5836 
5837         // The first time a track is added we wait
5838         // for all its buffers to be filled before processing it.
5839         // Allow draining the buffer in case the client
5840         // app does not call stop() and relies on underrun to stop:
5841         // hence the test on (track->mRetryCount > 1).
5842         // If retryCount<=1 then track is about to underrun and be removed.
5843         // Do not use a high threshold for compressed audio.
5844         uint32_t minFrames;
5845         if ((track->sharedBuffer() == 0) && !track->isStopping_1() && !track->isPausing()
5846             && (track->mRetryCount > 1) && audio_has_proportional_frames(mFormat)) {
5847             minFrames = mNormalFrameCount;
5848         } else {
5849             minFrames = 1;
5850         }
5851 
5852         const size_t framesReady = track->framesReady();
5853         const int trackId = track->id();
5854         if (ATRACE_ENABLED()) {
5855             std::string traceName("nRdy");
5856             traceName += std::to_string(trackId);
5857             ATRACE_INT(traceName.c_str(), framesReady);
5858         }
5859         if ((framesReady >= minFrames) && track->isReady() && !track->isPaused() &&
5860                 !track->isStopping_2() && !track->isStopped())
5861         {
5862             ALOGVV("track(%d) s=%08x [OK]", trackId, cblk->mServer);
5863 
5864             if (track->mFillingUpStatus == Track::FS_FILLED) {
5865                 track->mFillingUpStatus = Track::FS_ACTIVE;
5866                 if (last) {
5867                     // make sure processVolume_l() will apply new volume even if 0
5868                     mLeftVolFloat = mRightVolFloat = -1.0;
5869                 }
5870                 if (!mHwSupportsPause) {
5871                     track->resumeAck();
5872                 }
5873             }
5874 
5875             // compute volume for this track
5876             processVolume_l(track, last);
5877             if (last) {
5878                 sp<Track> previousTrack = mPreviousTrack.promote();
5879                 if (previousTrack != 0) {
5880                     if (track != previousTrack.get()) {
5881                         // Flush any data still being written from last track
5882                         mBytesRemaining = 0;
5883                         // Invalidate previous track to force a seek when resuming.
5884                         previousTrack->invalidate();
5885                     }
5886                 }
5887                 mPreviousTrack = track;
5888 
5889                 // reset retry count
5890                 track->mRetryCount = kMaxTrackRetriesDirect;
5891                 mActiveTrack = t;
5892                 mixerStatus = MIXER_TRACKS_READY;
5893                 if (mHwPaused) {
5894                     doHwResume = true;
5895                     mHwPaused = false;
5896                 }
5897             }
5898         } else {
5899             // clear effect chain input buffer if the last active track started underruns
5900             // to avoid sending previous audio buffer again to effects
5901             if (!mEffectChains.isEmpty() && last) {
5902                 mEffectChains[0]->clearInputBuffer();
5903             }
5904             if (track->isStopping_1()) {
5905                 track->mState = TrackBase::STOPPING_2;
5906                 if (last && mHwPaused) {
5907                      doHwResume = true;
5908                      mHwPaused = false;
5909                  }
5910             }
5911             if ((track->sharedBuffer() != 0) || track->isStopped() ||
5912                     track->isStopping_2() || track->isPaused()) {
5913                 // We have consumed all the buffers of this track.
5914                 // Remove it from the list of active tracks.
5915                 size_t audioHALFrames;
5916                 if (audio_has_proportional_frames(mFormat)) {
5917                     audioHALFrames = (latency_l() * mSampleRate) / 1000;
5918                 } else {
5919                     audioHALFrames = 0;
5920                 }
5921 
5922                 int64_t framesWritten = mBytesWritten / mFrameSize;
5923                 if (mStandby || !last ||
5924                         track->presentationComplete(framesWritten, audioHALFrames) ||
5925                         track->isPaused() || mHwPaused) {
5926                     if (track->isStopping_2()) {
5927                         track->mState = TrackBase::STOPPED;
5928                     }
5929                     if (track->isStopped()) {
5930                         track->reset();
5931                     }
5932                     tracksToRemove->add(track);
5933                 }
5934             } else {
5935                 // No buffers for this track. Give it a few chances to
5936                 // fill a buffer, then remove it from active list.
5937                 // Only consider last track started for mixer state control
5938                 if (--(track->mRetryCount) <= 0) {
5939                     ALOGV("BUFFER TIMEOUT: remove track(%d) from active list", trackId);
5940                     tracksToRemove->add(track);
5941                     // indicate to client process that the track was disabled because of underrun;
5942                     // it will then automatically call start() when data is available
5943                     track->disable();
5944                 } else if (last) {
5945                     ALOGW("pause because of UNDERRUN, framesReady = %zu,"
5946                             "minFrames = %u, mFormat = %#x",
5947                             framesReady, minFrames, mFormat);
5948                     mixerStatus = MIXER_TRACKS_ENABLED;
5949                     if (mHwSupportsPause && !mHwPaused && !mStandby) {
5950                         doHwPause = true;
5951                         mHwPaused = true;
5952                     }
5953                 }
5954             }
5955         }
5956     }
5957 
5958     // if an active track did not command a flush, check for pending flush on stopped tracks
5959     if (!mFlushPending) {
5960         for (size_t i = 0; i < mTracks.size(); i++) {
5961             if (mTracks[i]->isFlushPending()) {
5962                 mTracks[i]->flushAck();
5963                 mFlushPending = true;
5964             }
5965         }
5966     }
5967 
5968     // make sure the pause/flush/resume sequence is executed in the right order.
5969     // If a flush is pending and a track is active but the HW is not paused, force a HW pause
5970     // before flush and then resume HW. This can happen in case of pause/flush/resume
5971     // if resume is received before pause is executed.
5972     if (mHwSupportsPause && !mStandby &&
5973             (doHwPause || (mFlushPending && !mHwPaused && (count != 0)))) {
5974         status_t result = mOutput->stream->pause();
5975         ALOGE_IF(result != OK, "Error when pausing output stream: %d", result);
5976     }
5977     if (mFlushPending) {
5978         flushHw_l();
5979     }
5980     if (mHwSupportsPause && !mStandby && doHwResume) {
5981         status_t result = mOutput->stream->resume();
5982         ALOGE_IF(result != OK, "Error when resuming output stream: %d", result);
5983     }
5984     // remove all the tracks that need to be...
5985     removeTracks_l(*tracksToRemove);
5986 
5987     return mixerStatus;
5988 }
5989 
threadLoop_mix()5990 void AudioFlinger::DirectOutputThread::threadLoop_mix()
5991 {
5992     size_t frameCount = mFrameCount;
5993     int8_t *curBuf = (int8_t *)mSinkBuffer;
5994     // output audio to hardware
5995     while (frameCount) {
5996         AudioBufferProvider::Buffer buffer;
5997         buffer.frameCount = frameCount;
5998         status_t status = mActiveTrack->getNextBuffer(&buffer);
5999         if (status != NO_ERROR || buffer.raw == NULL) {
6000             // no need to pad with 0 for compressed audio
6001             if (audio_has_proportional_frames(mFormat)) {
6002                 memset(curBuf, 0, frameCount * mFrameSize);
6003             }
6004             break;
6005         }
6006         memcpy(curBuf, buffer.raw, buffer.frameCount * mFrameSize);
6007         frameCount -= buffer.frameCount;
6008         curBuf += buffer.frameCount * mFrameSize;
6009         mActiveTrack->releaseBuffer(&buffer);
6010     }
6011     mCurrentWriteLength = curBuf - (int8_t *)mSinkBuffer;
6012     mSleepTimeUs = 0;
6013     mStandbyTimeNs = systemTime() + mStandbyDelayNs;
6014     mActiveTrack.clear();
6015 }
6016 
threadLoop_sleepTime()6017 void AudioFlinger::DirectOutputThread::threadLoop_sleepTime()
6018 {
6019     // do not write to HAL when paused
6020     if (mHwPaused || (usesHwAvSync() && mStandby)) {
6021         mSleepTimeUs = mIdleSleepTimeUs;
6022         return;
6023     }
6024     if (mSleepTimeUs == 0) {
6025         if (mMixerStatus == MIXER_TRACKS_ENABLED) {
6026             mSleepTimeUs = mActiveSleepTimeUs;
6027         } else {
6028             mSleepTimeUs = mIdleSleepTimeUs;
6029         }
6030     } else if (mBytesWritten != 0 && audio_has_proportional_frames(mFormat)) {
6031         memset(mSinkBuffer, 0, mFrameCount * mFrameSize);
6032         mSleepTimeUs = 0;
6033     }
6034 }
6035 
threadLoop_exit()6036 void AudioFlinger::DirectOutputThread::threadLoop_exit()
6037 {
6038     {
6039         Mutex::Autolock _l(mLock);
6040         for (size_t i = 0; i < mTracks.size(); i++) {
6041             if (mTracks[i]->isFlushPending()) {
6042                 mTracks[i]->flushAck();
6043                 mFlushPending = true;
6044             }
6045         }
6046         if (mFlushPending) {
6047             flushHw_l();
6048         }
6049     }
6050     PlaybackThread::threadLoop_exit();
6051 }
6052 
6053 // must be called with thread mutex locked
shouldStandby_l()6054 bool AudioFlinger::DirectOutputThread::shouldStandby_l()
6055 {
6056     bool trackPaused = false;
6057     bool trackStopped = false;
6058 
6059     // do not put the HAL in standby when paused. AwesomePlayer clear the offloaded AudioTrack
6060     // after a timeout and we will enter standby then.
6061     if (mTracks.size() > 0) {
6062         trackPaused = mTracks[mTracks.size() - 1]->isPaused();
6063         trackStopped = mTracks[mTracks.size() - 1]->isStopped() ||
6064                            mTracks[mTracks.size() - 1]->mState == TrackBase::IDLE;
6065     }
6066 
6067     return !mStandby && !(trackPaused || (mHwPaused && !trackStopped));
6068 }
6069 
6070 // checkForNewParameter_l() must be called with ThreadBase::mLock held
checkForNewParameter_l(const String8 & keyValuePair,status_t & status)6071 bool AudioFlinger::DirectOutputThread::checkForNewParameter_l(const String8& keyValuePair,
6072                                                               status_t& status)
6073 {
6074     bool reconfig = false;
6075     bool a2dpDeviceChanged = false;
6076 
6077     status = NO_ERROR;
6078 
6079     AudioParameter param = AudioParameter(keyValuePair);
6080     int value;
6081     if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
6082         LOG_FATAL("Should not set routing device in DirectOutputThread");
6083     }
6084     if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
6085         // do not accept frame count changes if tracks are open as the track buffer
6086         // size depends on frame count and correct behavior would not be garantied
6087         // if frame count is changed after track creation
6088         if (!mTracks.isEmpty()) {
6089             status = INVALID_OPERATION;
6090         } else {
6091             reconfig = true;
6092         }
6093     }
6094     if (status == NO_ERROR) {
6095         status = mOutput->stream->setParameters(keyValuePair);
6096         if (!mStandby && status == INVALID_OPERATION) {
6097             mOutput->standby();
6098             if (!mStandby) {
6099                 mThreadMetrics.logEndInterval();
6100                 mStandby = true;
6101             }
6102             mBytesWritten = 0;
6103             status = mOutput->stream->setParameters(keyValuePair);
6104         }
6105         if (status == NO_ERROR && reconfig) {
6106             readOutputParameters_l();
6107             sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
6108         }
6109     }
6110 
6111     return reconfig || a2dpDeviceChanged;
6112 }
6113 
activeSleepTimeUs() const6114 uint32_t AudioFlinger::DirectOutputThread::activeSleepTimeUs() const
6115 {
6116     uint32_t time;
6117     if (audio_has_proportional_frames(mFormat)) {
6118         time = PlaybackThread::activeSleepTimeUs();
6119     } else {
6120         time = kDirectMinSleepTimeUs;
6121     }
6122     return time;
6123 }
6124 
idleSleepTimeUs() const6125 uint32_t AudioFlinger::DirectOutputThread::idleSleepTimeUs() const
6126 {
6127     uint32_t time;
6128     if (audio_has_proportional_frames(mFormat)) {
6129         time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000) / 2;
6130     } else {
6131         time = kDirectMinSleepTimeUs;
6132     }
6133     return time;
6134 }
6135 
suspendSleepTimeUs() const6136 uint32_t AudioFlinger::DirectOutputThread::suspendSleepTimeUs() const
6137 {
6138     uint32_t time;
6139     if (audio_has_proportional_frames(mFormat)) {
6140         time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000);
6141     } else {
6142         time = kDirectMinSleepTimeUs;
6143     }
6144     return time;
6145 }
6146 
cacheParameters_l()6147 void AudioFlinger::DirectOutputThread::cacheParameters_l()
6148 {
6149     PlaybackThread::cacheParameters_l();
6150 
6151     // use shorter standby delay as on normal output to release
6152     // hardware resources as soon as possible
6153     // no delay on outputs with HW A/V sync
6154     if (usesHwAvSync()) {
6155         mStandbyDelayNs = 0;
6156     } else if ((mType == OFFLOAD) && !audio_has_proportional_frames(mFormat)) {
6157         mStandbyDelayNs = kOffloadStandbyDelayNs;
6158     } else {
6159         mStandbyDelayNs = microseconds(mActiveSleepTimeUs*2);
6160     }
6161 }
6162 
flushHw_l()6163 void AudioFlinger::DirectOutputThread::flushHw_l()
6164 {
6165     mOutput->flush();
6166     mHwPaused = false;
6167     mFlushPending = false;
6168     mTimestampVerifier.discontinuity(); // DIRECT and OFFLOADED flush resets frame count.
6169     mTimestamp.clear();
6170 }
6171 
computeWaitTimeNs_l() const6172 int64_t AudioFlinger::DirectOutputThread::computeWaitTimeNs_l() const {
6173     // If a VolumeShaper is active, we must wake up periodically to update volume.
6174     const int64_t NS_PER_MS = 1000000;
6175     return mVolumeShaperActive ?
6176             kMinNormalSinkBufferSizeMs * NS_PER_MS : PlaybackThread::computeWaitTimeNs_l();
6177 }
6178 
6179 // ----------------------------------------------------------------------------
6180 
AsyncCallbackThread(const wp<AudioFlinger::PlaybackThread> & playbackThread)6181 AudioFlinger::AsyncCallbackThread::AsyncCallbackThread(
6182         const wp<AudioFlinger::PlaybackThread>& playbackThread)
6183     :   Thread(false /*canCallJava*/),
6184         mPlaybackThread(playbackThread),
6185         mWriteAckSequence(0),
6186         mDrainSequence(0),
6187         mAsyncError(false)
6188 {
6189 }
6190 
~AsyncCallbackThread()6191 AudioFlinger::AsyncCallbackThread::~AsyncCallbackThread()
6192 {
6193 }
6194 
onFirstRef()6195 void AudioFlinger::AsyncCallbackThread::onFirstRef()
6196 {
6197     run("Offload Cbk", ANDROID_PRIORITY_URGENT_AUDIO);
6198 }
6199 
threadLoop()6200 bool AudioFlinger::AsyncCallbackThread::threadLoop()
6201 {
6202     while (!exitPending()) {
6203         uint32_t writeAckSequence;
6204         uint32_t drainSequence;
6205         bool asyncError;
6206 
6207         {
6208             Mutex::Autolock _l(mLock);
6209             while (!((mWriteAckSequence & 1) ||
6210                      (mDrainSequence & 1) ||
6211                      mAsyncError ||
6212                      exitPending())) {
6213                 mWaitWorkCV.wait(mLock);
6214             }
6215 
6216             if (exitPending()) {
6217                 break;
6218             }
6219             ALOGV("AsyncCallbackThread mWriteAckSequence %d mDrainSequence %d",
6220                   mWriteAckSequence, mDrainSequence);
6221             writeAckSequence = mWriteAckSequence;
6222             mWriteAckSequence &= ~1;
6223             drainSequence = mDrainSequence;
6224             mDrainSequence &= ~1;
6225             asyncError = mAsyncError;
6226             mAsyncError = false;
6227         }
6228         {
6229             sp<AudioFlinger::PlaybackThread> playbackThread = mPlaybackThread.promote();
6230             if (playbackThread != 0) {
6231                 if (writeAckSequence & 1) {
6232                     playbackThread->resetWriteBlocked(writeAckSequence >> 1);
6233                 }
6234                 if (drainSequence & 1) {
6235                     playbackThread->resetDraining(drainSequence >> 1);
6236                 }
6237                 if (asyncError) {
6238                     playbackThread->onAsyncError();
6239                 }
6240             }
6241         }
6242     }
6243     return false;
6244 }
6245 
exit()6246 void AudioFlinger::AsyncCallbackThread::exit()
6247 {
6248     ALOGV("AsyncCallbackThread::exit");
6249     Mutex::Autolock _l(mLock);
6250     requestExit();
6251     mWaitWorkCV.broadcast();
6252 }
6253 
setWriteBlocked(uint32_t sequence)6254 void AudioFlinger::AsyncCallbackThread::setWriteBlocked(uint32_t sequence)
6255 {
6256     Mutex::Autolock _l(mLock);
6257     // bit 0 is cleared
6258     mWriteAckSequence = sequence << 1;
6259 }
6260 
resetWriteBlocked()6261 void AudioFlinger::AsyncCallbackThread::resetWriteBlocked()
6262 {
6263     Mutex::Autolock _l(mLock);
6264     // ignore unexpected callbacks
6265     if (mWriteAckSequence & 2) {
6266         mWriteAckSequence |= 1;
6267         mWaitWorkCV.signal();
6268     }
6269 }
6270 
setDraining(uint32_t sequence)6271 void AudioFlinger::AsyncCallbackThread::setDraining(uint32_t sequence)
6272 {
6273     Mutex::Autolock _l(mLock);
6274     // bit 0 is cleared
6275     mDrainSequence = sequence << 1;
6276 }
6277 
resetDraining()6278 void AudioFlinger::AsyncCallbackThread::resetDraining()
6279 {
6280     Mutex::Autolock _l(mLock);
6281     // ignore unexpected callbacks
6282     if (mDrainSequence & 2) {
6283         mDrainSequence |= 1;
6284         mWaitWorkCV.signal();
6285     }
6286 }
6287 
setAsyncError()6288 void AudioFlinger::AsyncCallbackThread::setAsyncError()
6289 {
6290     Mutex::Autolock _l(mLock);
6291     mAsyncError = true;
6292     mWaitWorkCV.signal();
6293 }
6294 
6295 
6296 // ----------------------------------------------------------------------------
OffloadThread(const sp<AudioFlinger> & audioFlinger,AudioStreamOut * output,audio_io_handle_t id,bool systemReady)6297 AudioFlinger::OffloadThread::OffloadThread(const sp<AudioFlinger>& audioFlinger,
6298         AudioStreamOut* output, audio_io_handle_t id, bool systemReady)
6299     :   DirectOutputThread(audioFlinger, output, id, OFFLOAD, systemReady),
6300         mPausedWriteLength(0), mPausedBytesRemaining(0), mKeepWakeLock(true),
6301         mOffloadUnderrunPosition(~0LL)
6302 {
6303     //FIXME: mStandby should be set to true by ThreadBase constructo
6304     mStandby = true;
6305     mKeepWakeLock = property_get_bool("ro.audio.offload_wakelock", true /* default_value */);
6306 }
6307 
threadLoop_exit()6308 void AudioFlinger::OffloadThread::threadLoop_exit()
6309 {
6310     if (mFlushPending || mHwPaused) {
6311         // If a flush is pending or track was paused, just discard buffered data
6312         flushHw_l();
6313     } else {
6314         mMixerStatus = MIXER_DRAIN_ALL;
6315         threadLoop_drain();
6316     }
6317     if (mUseAsyncWrite) {
6318         ALOG_ASSERT(mCallbackThread != 0);
6319         mCallbackThread->exit();
6320     }
6321     PlaybackThread::threadLoop_exit();
6322 }
6323 
prepareTracks_l(Vector<sp<Track>> * tracksToRemove)6324 AudioFlinger::PlaybackThread::mixer_state AudioFlinger::OffloadThread::prepareTracks_l(
6325     Vector< sp<Track> > *tracksToRemove
6326 )
6327 {
6328     size_t count = mActiveTracks.size();
6329 
6330     mixer_state mixerStatus = MIXER_IDLE;
6331     bool doHwPause = false;
6332     bool doHwResume = false;
6333 
6334     ALOGV("OffloadThread::prepareTracks_l active tracks %zu", count);
6335 
6336     // find out which tracks need to be processed
6337     for (const sp<Track> &t : mActiveTracks) {
6338         Track* const track = t.get();
6339 #ifdef VERY_VERY_VERBOSE_LOGGING
6340         audio_track_cblk_t* cblk = track->cblk();
6341 #endif
6342         // Only consider last track started for volume and mixer state control.
6343         // In theory an older track could underrun and restart after the new one starts
6344         // but as we only care about the transition phase between two tracks on a
6345         // direct output, it is not a problem to ignore the underrun case.
6346         sp<Track> l = mActiveTracks.getLatest();
6347         bool last = l.get() == track;
6348 
6349         if (track->isInvalid()) {
6350             ALOGW("An invalidated track shouldn't be in active list");
6351             tracksToRemove->add(track);
6352             continue;
6353         }
6354 
6355         if (track->mState == TrackBase::IDLE) {
6356             ALOGW("An idle track shouldn't be in active list");
6357             continue;
6358         }
6359 
6360         if (track->isPausing()) {
6361             track->setPaused();
6362             if (last) {
6363                 if (mHwSupportsPause && !mHwPaused) {
6364                     doHwPause = true;
6365                     mHwPaused = true;
6366                 }
6367                 // If we were part way through writing the mixbuffer to
6368                 // the HAL we must save this until we resume
6369                 // BUG - this will be wrong if a different track is made active,
6370                 // in that case we want to discard the pending data in the
6371                 // mixbuffer and tell the client to present it again when the
6372                 // track is resumed
6373                 mPausedWriteLength = mCurrentWriteLength;
6374                 mPausedBytesRemaining = mBytesRemaining;
6375                 mBytesRemaining = 0;    // stop writing
6376             }
6377             tracksToRemove->add(track);
6378         } else if (track->isFlushPending()) {
6379             if (track->isStopping_1()) {
6380                 track->mRetryCount = kMaxTrackStopRetriesOffload;
6381             } else {
6382                 track->mRetryCount = kMaxTrackRetriesOffload;
6383             }
6384             track->flushAck();
6385             if (last) {
6386                 mFlushPending = true;
6387             }
6388         } else if (track->isResumePending()){
6389             track->resumeAck();
6390             if (last) {
6391                 if (mPausedBytesRemaining) {
6392                     // Need to continue write that was interrupted
6393                     mCurrentWriteLength = mPausedWriteLength;
6394                     mBytesRemaining = mPausedBytesRemaining;
6395                     mPausedBytesRemaining = 0;
6396                 }
6397                 if (mHwPaused) {
6398                     doHwResume = true;
6399                     mHwPaused = false;
6400                     // threadLoop_mix() will handle the case that we need to
6401                     // resume an interrupted write
6402                 }
6403                 // enable write to audio HAL
6404                 mSleepTimeUs = 0;
6405 
6406                 mLeftVolFloat = mRightVolFloat = -1.0;
6407 
6408                 // Do not handle new data in this iteration even if track->framesReady()
6409                 mixerStatus = MIXER_TRACKS_ENABLED;
6410             }
6411         }  else if (track->framesReady() && track->isReady() &&
6412                 !track->isPaused() && !track->isTerminated() && !track->isStopping_2()) {
6413             ALOGVV("OffloadThread: track(%d) s=%08x [OK]", track->id(), cblk->mServer);
6414             if (track->mFillingUpStatus == Track::FS_FILLED) {
6415                 track->mFillingUpStatus = Track::FS_ACTIVE;
6416                 if (last) {
6417                     // make sure processVolume_l() will apply new volume even if 0
6418                     mLeftVolFloat = mRightVolFloat = -1.0;
6419                 }
6420             }
6421 
6422             if (last) {
6423                 sp<Track> previousTrack = mPreviousTrack.promote();
6424                 if (previousTrack != 0) {
6425                     if (track != previousTrack.get()) {
6426                         // Flush any data still being written from last track
6427                         mBytesRemaining = 0;
6428                         if (mPausedBytesRemaining) {
6429                             // Last track was paused so we also need to flush saved
6430                             // mixbuffer state and invalidate track so that it will
6431                             // re-submit that unwritten data when it is next resumed
6432                             mPausedBytesRemaining = 0;
6433                             // Invalidate is a bit drastic - would be more efficient
6434                             // to have a flag to tell client that some of the
6435                             // previously written data was lost
6436                             previousTrack->invalidate();
6437                         }
6438                         // flush data already sent to the DSP if changing audio session as audio
6439                         // comes from a different source. Also invalidate previous track to force a
6440                         // seek when resuming.
6441                         if (previousTrack->sessionId() != track->sessionId()) {
6442                             previousTrack->invalidate();
6443                         }
6444                     }
6445                 }
6446                 mPreviousTrack = track;
6447                 // reset retry count
6448                 if (track->isStopping_1()) {
6449                     track->mRetryCount = kMaxTrackStopRetriesOffload;
6450                 } else {
6451                     track->mRetryCount = kMaxTrackRetriesOffload;
6452                 }
6453                 mActiveTrack = t;
6454                 mixerStatus = MIXER_TRACKS_READY;
6455             }
6456         } else {
6457             ALOGVV("OffloadThread: track(%d) s=%08x [NOT READY]", track->id(), cblk->mServer);
6458             if (track->isStopping_1()) {
6459                 if (--(track->mRetryCount) <= 0) {
6460                     // Hardware buffer can hold a large amount of audio so we must
6461                     // wait for all current track's data to drain before we say
6462                     // that the track is stopped.
6463                     if (mBytesRemaining == 0) {
6464                         // Only start draining when all data in mixbuffer
6465                         // has been written
6466                         ALOGV("OffloadThread: underrun and STOPPING_1 -> draining, STOPPING_2");
6467                         track->mState = TrackBase::STOPPING_2; // so presentation completes after
6468                         // drain do not drain if no data was ever sent to HAL (mStandby == true)
6469                         if (last && !mStandby) {
6470                             // do not modify drain sequence if we are already draining. This happens
6471                             // when resuming from pause after drain.
6472                             if ((mDrainSequence & 1) == 0) {
6473                                 mSleepTimeUs = 0;
6474                                 mStandbyTimeNs = systemTime() + mStandbyDelayNs;
6475                                 mixerStatus = MIXER_DRAIN_TRACK;
6476                                 mDrainSequence += 2;
6477                             }
6478                             if (mHwPaused) {
6479                                 // It is possible to move from PAUSED to STOPPING_1 without
6480                                 // a resume so we must ensure hardware is running
6481                                 doHwResume = true;
6482                                 mHwPaused = false;
6483                             }
6484                         }
6485                     }
6486                 } else if (last) {
6487                     ALOGV("stopping1 underrun retries left %d", track->mRetryCount);
6488                     mixerStatus = MIXER_TRACKS_ENABLED;
6489                 }
6490             } else if (track->isStopping_2()) {
6491                 // Drain has completed or we are in standby, signal presentation complete
6492                 if (!(mDrainSequence & 1) || !last || mStandby) {
6493                     track->mState = TrackBase::STOPPED;
6494                     uint32_t latency = 0;
6495                     status_t result = mOutput->stream->getLatency(&latency);
6496                     ALOGE_IF(result != OK,
6497                             "Error when retrieving output stream latency: %d", result);
6498                     size_t audioHALFrames = (latency * mSampleRate) / 1000;
6499                     int64_t framesWritten =
6500                             mBytesWritten / mOutput->getFrameSize();
6501                     track->presentationComplete(framesWritten, audioHALFrames);
6502                     track->reset();
6503                     tracksToRemove->add(track);
6504                     // DIRECT and OFFLOADED stop resets frame counts.
6505                     if (!mUseAsyncWrite) {
6506                         // If we don't get explicit drain notification we must
6507                         // register discontinuity regardless of whether this is
6508                         // the previous (!last) or the upcoming (last) track
6509                         // to avoid skipping the discontinuity.
6510                         mTimestampVerifier.discontinuity();
6511                     }
6512                 }
6513             } else {
6514                 // No buffers for this track. Give it a few chances to
6515                 // fill a buffer, then remove it from active list.
6516                 if (--(track->mRetryCount) <= 0) {
6517                     bool running = false;
6518                     uint64_t position = 0;
6519                     struct timespec unused;
6520                     // The running check restarts the retry counter at least once.
6521                     status_t ret = mOutput->stream->getPresentationPosition(&position, &unused);
6522                     if (ret == NO_ERROR && position != mOffloadUnderrunPosition) {
6523                         running = true;
6524                         mOffloadUnderrunPosition = position;
6525                     }
6526                     if (ret == NO_ERROR) {
6527                         ALOGVV("underrun counter, running(%d): %lld vs %lld", running,
6528                                 (long long)position, (long long)mOffloadUnderrunPosition);
6529                     }
6530                     if (running) { // still running, give us more time.
6531                         track->mRetryCount = kMaxTrackRetriesOffload;
6532                     } else {
6533                         ALOGV("OffloadThread: BUFFER TIMEOUT: remove track(%d) from active list",
6534                                 track->id());
6535                         tracksToRemove->add(track);
6536                         // tell client process that the track was disabled because of underrun;
6537                         // it will then automatically call start() when data is available
6538                         track->disable();
6539                     }
6540                 } else if (last){
6541                     mixerStatus = MIXER_TRACKS_ENABLED;
6542                 }
6543             }
6544         }
6545         // compute volume for this track
6546         if (track->isReady()) {  // check ready to prevent premature start.
6547             processVolume_l(track, last);
6548         }
6549     }
6550 
6551     // make sure the pause/flush/resume sequence is executed in the right order.
6552     // If a flush is pending and a track is active but the HW is not paused, force a HW pause
6553     // before flush and then resume HW. This can happen in case of pause/flush/resume
6554     // if resume is received before pause is executed.
6555     if (!mStandby && (doHwPause || (mFlushPending && !mHwPaused && (count != 0)))) {
6556         status_t result = mOutput->stream->pause();
6557         ALOGE_IF(result != OK, "Error when pausing output stream: %d", result);
6558     }
6559     if (mFlushPending) {
6560         flushHw_l();
6561     }
6562     if (!mStandby && doHwResume) {
6563         status_t result = mOutput->stream->resume();
6564         ALOGE_IF(result != OK, "Error when resuming output stream: %d", result);
6565     }
6566 
6567     // remove all the tracks that need to be...
6568     removeTracks_l(*tracksToRemove);
6569 
6570     return mixerStatus;
6571 }
6572 
6573 // must be called with thread mutex locked
waitingAsyncCallback_l()6574 bool AudioFlinger::OffloadThread::waitingAsyncCallback_l()
6575 {
6576     ALOGVV("waitingAsyncCallback_l mWriteAckSequence %d mDrainSequence %d",
6577           mWriteAckSequence, mDrainSequence);
6578     if (mUseAsyncWrite && ((mWriteAckSequence & 1) || (mDrainSequence & 1))) {
6579         return true;
6580     }
6581     return false;
6582 }
6583 
waitingAsyncCallback()6584 bool AudioFlinger::OffloadThread::waitingAsyncCallback()
6585 {
6586     Mutex::Autolock _l(mLock);
6587     return waitingAsyncCallback_l();
6588 }
6589 
flushHw_l()6590 void AudioFlinger::OffloadThread::flushHw_l()
6591 {
6592     DirectOutputThread::flushHw_l();
6593     // Flush anything still waiting in the mixbuffer
6594     mCurrentWriteLength = 0;
6595     mBytesRemaining = 0;
6596     mPausedWriteLength = 0;
6597     mPausedBytesRemaining = 0;
6598     // reset bytes written count to reflect that DSP buffers are empty after flush.
6599     mBytesWritten = 0;
6600     mOffloadUnderrunPosition = ~0LL;
6601 
6602     if (mUseAsyncWrite) {
6603         // discard any pending drain or write ack by incrementing sequence
6604         mWriteAckSequence = (mWriteAckSequence + 2) & ~1;
6605         mDrainSequence = (mDrainSequence + 2) & ~1;
6606         ALOG_ASSERT(mCallbackThread != 0);
6607         mCallbackThread->setWriteBlocked(mWriteAckSequence);
6608         mCallbackThread->setDraining(mDrainSequence);
6609     }
6610 }
6611 
invalidateTracks(audio_stream_type_t streamType)6612 void AudioFlinger::OffloadThread::invalidateTracks(audio_stream_type_t streamType)
6613 {
6614     Mutex::Autolock _l(mLock);
6615     if (PlaybackThread::invalidateTracks_l(streamType)) {
6616         mFlushPending = true;
6617     }
6618 }
6619 
6620 // ----------------------------------------------------------------------------
6621 
DuplicatingThread(const sp<AudioFlinger> & audioFlinger,AudioFlinger::MixerThread * mainThread,audio_io_handle_t id,bool systemReady)6622 AudioFlinger::DuplicatingThread::DuplicatingThread(const sp<AudioFlinger>& audioFlinger,
6623         AudioFlinger::MixerThread* mainThread, audio_io_handle_t id, bool systemReady)
6624     :   MixerThread(audioFlinger, mainThread->getOutput(), id,
6625                     systemReady, DUPLICATING),
6626         mWaitTimeMs(UINT_MAX)
6627 {
6628     addOutputTrack(mainThread);
6629 }
6630 
~DuplicatingThread()6631 AudioFlinger::DuplicatingThread::~DuplicatingThread()
6632 {
6633     for (size_t i = 0; i < mOutputTracks.size(); i++) {
6634         mOutputTracks[i]->destroy();
6635     }
6636 }
6637 
threadLoop_mix()6638 void AudioFlinger::DuplicatingThread::threadLoop_mix()
6639 {
6640     // mix buffers...
6641     if (outputsReady(outputTracks)) {
6642         mAudioMixer->process();
6643     } else {
6644         if (mMixerBufferValid) {
6645             memset(mMixerBuffer, 0, mMixerBufferSize);
6646         } else {
6647             memset(mSinkBuffer, 0, mSinkBufferSize);
6648         }
6649     }
6650     mSleepTimeUs = 0;
6651     writeFrames = mNormalFrameCount;
6652     mCurrentWriteLength = mSinkBufferSize;
6653     mStandbyTimeNs = systemTime() + mStandbyDelayNs;
6654 }
6655 
threadLoop_sleepTime()6656 void AudioFlinger::DuplicatingThread::threadLoop_sleepTime()
6657 {
6658     if (mSleepTimeUs == 0) {
6659         if (mMixerStatus == MIXER_TRACKS_ENABLED) {
6660             mSleepTimeUs = mActiveSleepTimeUs;
6661         } else {
6662             mSleepTimeUs = mIdleSleepTimeUs;
6663         }
6664     } else if (mBytesWritten != 0) {
6665         if (mMixerStatus == MIXER_TRACKS_ENABLED) {
6666             writeFrames = mNormalFrameCount;
6667             memset(mSinkBuffer, 0, mSinkBufferSize);
6668         } else {
6669             // flush remaining overflow buffers in output tracks
6670             writeFrames = 0;
6671         }
6672         mSleepTimeUs = 0;
6673     }
6674 }
6675 
threadLoop_write()6676 ssize_t AudioFlinger::DuplicatingThread::threadLoop_write()
6677 {
6678     for (size_t i = 0; i < outputTracks.size(); i++) {
6679         const ssize_t actualWritten = outputTracks[i]->write(mSinkBuffer, writeFrames);
6680 
6681         // Consider the first OutputTrack for timestamp and frame counting.
6682 
6683         // The threadLoop() generally assumes writing a full sink buffer size at a time.
6684         // Here, we correct for writeFrames of 0 (a stop) or underruns because
6685         // we always claim success.
6686         if (i == 0) {
6687             const ssize_t correction = mSinkBufferSize / mFrameSize - actualWritten;
6688             ALOGD_IF(correction != 0 && writeFrames != 0,
6689                     "%s: writeFrames:%u  actualWritten:%zd  correction:%zd  mFramesWritten:%lld",
6690                     __func__, writeFrames, actualWritten, correction, (long long)mFramesWritten);
6691             mFramesWritten -= correction;
6692         }
6693 
6694         // TODO: Report correction for the other output tracks and show in the dump.
6695     }
6696     if (mStandby) {
6697         mThreadMetrics.logBeginInterval();
6698         mStandby = false;
6699     }
6700     return (ssize_t)mSinkBufferSize;
6701 }
6702 
threadLoop_standby()6703 void AudioFlinger::DuplicatingThread::threadLoop_standby()
6704 {
6705     // DuplicatingThread implements standby by stopping all tracks
6706     for (size_t i = 0; i < outputTracks.size(); i++) {
6707         outputTracks[i]->stop();
6708     }
6709 }
6710 
dumpInternals_l(int fd,const Vector<String16> & args __unused)6711 void AudioFlinger::DuplicatingThread::dumpInternals_l(int fd, const Vector<String16>& args __unused)
6712 {
6713     MixerThread::dumpInternals_l(fd, args);
6714 
6715     std::stringstream ss;
6716     const size_t numTracks = mOutputTracks.size();
6717     ss << "  " << numTracks << " OutputTracks";
6718     if (numTracks > 0) {
6719         ss << ":";
6720         for (const auto &track : mOutputTracks) {
6721             const sp<ThreadBase> thread = track->thread().promote();
6722             ss << " (" << track->id() << " : ";
6723             if (thread.get() != nullptr) {
6724                 ss << thread.get() << ", " << thread->id();
6725             } else {
6726                 ss << "null";
6727             }
6728             ss << ")";
6729         }
6730     }
6731     ss << "\n";
6732     std::string result = ss.str();
6733     write(fd, result.c_str(), result.size());
6734 }
6735 
saveOutputTracks()6736 void AudioFlinger::DuplicatingThread::saveOutputTracks()
6737 {
6738     outputTracks = mOutputTracks;
6739 }
6740 
clearOutputTracks()6741 void AudioFlinger::DuplicatingThread::clearOutputTracks()
6742 {
6743     outputTracks.clear();
6744 }
6745 
addOutputTrack(MixerThread * thread)6746 void AudioFlinger::DuplicatingThread::addOutputTrack(MixerThread *thread)
6747 {
6748     Mutex::Autolock _l(mLock);
6749     // The downstream MixerThread consumes thread->frameCount() amount of frames per mix pass.
6750     // Adjust for thread->sampleRate() to determine minimum buffer frame count.
6751     // Then triple buffer because Threads do not run synchronously and may not be clock locked.
6752     const size_t frameCount =
6753             3 * sourceFramesNeeded(mSampleRate, thread->frameCount(), thread->sampleRate());
6754     // TODO: Consider asynchronous sample rate conversion to handle clock disparity
6755     // from different OutputTracks and their associated MixerThreads (e.g. one may
6756     // nearly empty and the other may be dropping data).
6757 
6758     sp<OutputTrack> outputTrack = new OutputTrack(thread,
6759                                             this,
6760                                             mSampleRate,
6761                                             mFormat,
6762                                             mChannelMask,
6763                                             frameCount,
6764                                             IPCThreadState::self()->getCallingUid());
6765     status_t status = outputTrack != 0 ? outputTrack->initCheck() : (status_t) NO_MEMORY;
6766     if (status != NO_ERROR) {
6767         ALOGE("addOutputTrack() initCheck failed %d", status);
6768         return;
6769     }
6770     thread->setStreamVolume(AUDIO_STREAM_PATCH, 1.0f);
6771     mOutputTracks.add(outputTrack);
6772     ALOGV("addOutputTrack() track %p, on thread %p", outputTrack.get(), thread);
6773     updateWaitTime_l();
6774 }
6775 
removeOutputTrack(MixerThread * thread)6776 void AudioFlinger::DuplicatingThread::removeOutputTrack(MixerThread *thread)
6777 {
6778     Mutex::Autolock _l(mLock);
6779     for (size_t i = 0; i < mOutputTracks.size(); i++) {
6780         if (mOutputTracks[i]->thread() == thread) {
6781             mOutputTracks[i]->destroy();
6782             mOutputTracks.removeAt(i);
6783             updateWaitTime_l();
6784             if (thread->getOutput() == mOutput) {
6785                 mOutput = NULL;
6786             }
6787             return;
6788         }
6789     }
6790     ALOGV("removeOutputTrack(): unknown thread: %p", thread);
6791 }
6792 
6793 // caller must hold mLock
updateWaitTime_l()6794 void AudioFlinger::DuplicatingThread::updateWaitTime_l()
6795 {
6796     mWaitTimeMs = UINT_MAX;
6797     for (size_t i = 0; i < mOutputTracks.size(); i++) {
6798         sp<ThreadBase> strong = mOutputTracks[i]->thread().promote();
6799         if (strong != 0) {
6800             uint32_t waitTimeMs = (strong->frameCount() * 2 * 1000) / strong->sampleRate();
6801             if (waitTimeMs < mWaitTimeMs) {
6802                 mWaitTimeMs = waitTimeMs;
6803             }
6804         }
6805     }
6806 }
6807 
6808 
outputsReady(const SortedVector<sp<OutputTrack>> & outputTracks)6809 bool AudioFlinger::DuplicatingThread::outputsReady(
6810         const SortedVector< sp<OutputTrack> > &outputTracks)
6811 {
6812     for (size_t i = 0; i < outputTracks.size(); i++) {
6813         sp<ThreadBase> thread = outputTracks[i]->thread().promote();
6814         if (thread == 0) {
6815             ALOGW("DuplicatingThread::outputsReady() could not promote thread on output track %p",
6816                     outputTracks[i].get());
6817             return false;
6818         }
6819         PlaybackThread *playbackThread = (PlaybackThread *)thread.get();
6820         // see note at standby() declaration
6821         if (playbackThread->standby() && !playbackThread->isSuspended()) {
6822             ALOGV("DuplicatingThread output track %p on thread %p Not Ready", outputTracks[i].get(),
6823                     thread.get());
6824             return false;
6825         }
6826     }
6827     return true;
6828 }
6829 
sendMetadataToBackend_l(const StreamOutHalInterface::SourceMetadata & metadata)6830 void AudioFlinger::DuplicatingThread::sendMetadataToBackend_l(
6831         const StreamOutHalInterface::SourceMetadata& metadata)
6832 {
6833     for (auto& outputTrack : outputTracks) { // not mOutputTracks
6834         outputTrack->setMetadatas(metadata.tracks);
6835     }
6836 }
6837 
activeSleepTimeUs() const6838 uint32_t AudioFlinger::DuplicatingThread::activeSleepTimeUs() const
6839 {
6840     return (mWaitTimeMs * 1000) / 2;
6841 }
6842 
cacheParameters_l()6843 void AudioFlinger::DuplicatingThread::cacheParameters_l()
6844 {
6845     // updateWaitTime_l() sets mWaitTimeMs, which affects activeSleepTimeUs(), so call it first
6846     updateWaitTime_l();
6847 
6848     MixerThread::cacheParameters_l();
6849 }
6850 
6851 
6852 // ----------------------------------------------------------------------------
6853 //      Record
6854 // ----------------------------------------------------------------------------
6855 
RecordThread(const sp<AudioFlinger> & audioFlinger,AudioStreamIn * input,audio_io_handle_t id,bool systemReady)6856 AudioFlinger::RecordThread::RecordThread(const sp<AudioFlinger>& audioFlinger,
6857                                          AudioStreamIn *input,
6858                                          audio_io_handle_t id,
6859                                          bool systemReady
6860                                          ) :
6861     ThreadBase(audioFlinger, id, RECORD, systemReady, false /* isOut */),
6862     mInput(input),
6863     mSource(mInput),
6864     mActiveTracks(&this->mLocalLog),
6865     mRsmpInBuffer(NULL),
6866     // mRsmpInFrames, mRsmpInFramesP2, and mRsmpInFramesOA are set by readInputParameters_l()
6867     mRsmpInRear(0)
6868     , mReadOnlyHeap(new MemoryDealer(kRecordThreadReadOnlyHeapSize,
6869             "RecordThreadRO", MemoryHeapBase::READ_ONLY))
6870     // mFastCapture below
6871     , mFastCaptureFutex(0)
6872     // mInputSource
6873     // mPipeSink
6874     // mPipeSource
6875     , mPipeFramesP2(0)
6876     // mPipeMemory
6877     // mFastCaptureNBLogWriter
6878     , mFastTrackAvail(false)
6879     , mBtNrecSuspended(false)
6880 {
6881     snprintf(mThreadName, kThreadNameLength, "AudioIn_%X", id);
6882     mNBLogWriter = audioFlinger->newWriter_l(kLogSize, mThreadName);
6883 
6884     if (mInput != nullptr && mInput->audioHwDev != nullptr) {
6885         mIsMsdDevice = strcmp(
6886                 mInput->audioHwDev->moduleName(), AUDIO_HARDWARE_MODULE_ID_MSD) == 0;
6887     }
6888 
6889     readInputParameters_l();
6890 
6891     // TODO: We may also match on address as well as device type for
6892     // AUDIO_DEVICE_IN_BUS, AUDIO_DEVICE_IN_BLUETOOTH_A2DP, AUDIO_DEVICE_IN_REMOTE_SUBMIX
6893     // TODO: This property should be ensure that only contains one single device type.
6894     mTimestampCorrectedDevice = (audio_devices_t)property_get_int64(
6895             "audio.timestamp.corrected_input_device",
6896             (int64_t)(mIsMsdDevice ? AUDIO_DEVICE_IN_BUS // turn on by default for MSD
6897                                    : AUDIO_DEVICE_NONE));
6898 
6899     // create an NBAIO source for the HAL input stream, and negotiate
6900     mInputSource = new AudioStreamInSource(input->stream);
6901     size_t numCounterOffers = 0;
6902     const NBAIO_Format offers[1] = {Format_from_SR_C(mSampleRate, mChannelCount, mFormat)};
6903 #if !LOG_NDEBUG
6904     ssize_t index =
6905 #else
6906     (void)
6907 #endif
6908             mInputSource->negotiate(offers, 1, NULL, numCounterOffers);
6909     ALOG_ASSERT(index == 0);
6910 
6911     // initialize fast capture depending on configuration
6912     bool initFastCapture;
6913     switch (kUseFastCapture) {
6914     case FastCapture_Never:
6915         initFastCapture = false;
6916         ALOGV("%p kUseFastCapture = Never, initFastCapture = false", this);
6917         break;
6918     case FastCapture_Always:
6919         initFastCapture = true;
6920         ALOGV("%p kUseFastCapture = Always, initFastCapture = true", this);
6921         break;
6922     case FastCapture_Static:
6923         initFastCapture = (mFrameCount * 1000) / mSampleRate < kMinNormalCaptureBufferSizeMs;
6924         ALOGV("%p kUseFastCapture = Static, (%lld * 1000) / %u vs %u, initFastCapture = %d",
6925                 this, (long long)mFrameCount, mSampleRate, kMinNormalCaptureBufferSizeMs,
6926                 initFastCapture);
6927         break;
6928     // case FastCapture_Dynamic:
6929     }
6930 
6931     if (initFastCapture) {
6932         // create a Pipe for FastCapture to write to, and for us and fast tracks to read from
6933         NBAIO_Format format = mInputSource->format();
6934         // quadruple-buffering of 20 ms each; this ensures we can sleep for 20ms in RecordThread
6935         size_t pipeFramesP2 = roundup(4 * FMS_20 * mSampleRate / 1000);
6936         size_t pipeSize = pipeFramesP2 * Format_frameSize(format);
6937         void *pipeBuffer = nullptr;
6938         const sp<MemoryDealer> roHeap(readOnlyHeap());
6939         sp<IMemory> pipeMemory;
6940         if ((roHeap == 0) ||
6941                 (pipeMemory = roHeap->allocate(pipeSize)) == 0 ||
6942                 (pipeBuffer = pipeMemory->unsecurePointer()) == nullptr) {
6943             ALOGE("not enough memory for pipe buffer size=%zu; "
6944                     "roHeap=%p, pipeMemory=%p, pipeBuffer=%p; roHeapSize: %lld",
6945                     pipeSize, roHeap.get(), pipeMemory.get(), pipeBuffer,
6946                     (long long)kRecordThreadReadOnlyHeapSize);
6947             goto failed;
6948         }
6949         // pipe will be shared directly with fast clients, so clear to avoid leaking old information
6950         memset(pipeBuffer, 0, pipeSize);
6951         Pipe *pipe = new Pipe(pipeFramesP2, format, pipeBuffer);
6952         const NBAIO_Format offers[1] = {format};
6953         size_t numCounterOffers = 0;
6954         ssize_t index = pipe->negotiate(offers, 1, NULL, numCounterOffers);
6955         ALOG_ASSERT(index == 0);
6956         mPipeSink = pipe;
6957         PipeReader *pipeReader = new PipeReader(*pipe);
6958         numCounterOffers = 0;
6959         index = pipeReader->negotiate(offers, 1, NULL, numCounterOffers);
6960         ALOG_ASSERT(index == 0);
6961         mPipeSource = pipeReader;
6962         mPipeFramesP2 = pipeFramesP2;
6963         mPipeMemory = pipeMemory;
6964 
6965         // create fast capture
6966         mFastCapture = new FastCapture();
6967         FastCaptureStateQueue *sq = mFastCapture->sq();
6968 #ifdef STATE_QUEUE_DUMP
6969         // FIXME
6970 #endif
6971         FastCaptureState *state = sq->begin();
6972         state->mCblk = NULL;
6973         state->mInputSource = mInputSource.get();
6974         state->mInputSourceGen++;
6975         state->mPipeSink = pipe;
6976         state->mPipeSinkGen++;
6977         state->mFrameCount = mFrameCount;
6978         state->mCommand = FastCaptureState::COLD_IDLE;
6979         // already done in constructor initialization list
6980         //mFastCaptureFutex = 0;
6981         state->mColdFutexAddr = &mFastCaptureFutex;
6982         state->mColdGen++;
6983         state->mDumpState = &mFastCaptureDumpState;
6984 #ifdef TEE_SINK
6985         // FIXME
6986 #endif
6987         mFastCaptureNBLogWriter = audioFlinger->newWriter_l(kFastCaptureLogSize, "FastCapture");
6988         state->mNBLogWriter = mFastCaptureNBLogWriter.get();
6989         sq->end();
6990         sq->push(FastCaptureStateQueue::BLOCK_UNTIL_PUSHED);
6991 
6992         // start the fast capture
6993         mFastCapture->run("FastCapture", ANDROID_PRIORITY_URGENT_AUDIO);
6994         pid_t tid = mFastCapture->getTid();
6995         sendPrioConfigEvent(getpid(), tid, kPriorityFastCapture, false /*forApp*/);
6996         stream()->setHalThreadPriority(kPriorityFastCapture);
6997 #ifdef AUDIO_WATCHDOG
6998         // FIXME
6999 #endif
7000 
7001         mFastTrackAvail = true;
7002     }
7003 #ifdef TEE_SINK
7004     mTee.set(mInputSource->format(), NBAIO_Tee::TEE_FLAG_INPUT_THREAD);
7005     mTee.setId(std::string("_") + std::to_string(mId) + "_C");
7006 #endif
7007 failed: ;
7008 
7009     // FIXME mNormalSource
7010 }
7011 
~RecordThread()7012 AudioFlinger::RecordThread::~RecordThread()
7013 {
7014     if (mFastCapture != 0) {
7015         FastCaptureStateQueue *sq = mFastCapture->sq();
7016         FastCaptureState *state = sq->begin();
7017         if (state->mCommand == FastCaptureState::COLD_IDLE) {
7018             int32_t old = android_atomic_inc(&mFastCaptureFutex);
7019             if (old == -1) {
7020                 (void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1);
7021             }
7022         }
7023         state->mCommand = FastCaptureState::EXIT;
7024         sq->end();
7025         sq->push(FastCaptureStateQueue::BLOCK_UNTIL_PUSHED);
7026         mFastCapture->join();
7027         mFastCapture.clear();
7028     }
7029     mAudioFlinger->unregisterWriter(mFastCaptureNBLogWriter);
7030     mAudioFlinger->unregisterWriter(mNBLogWriter);
7031     free(mRsmpInBuffer);
7032 }
7033 
onFirstRef()7034 void AudioFlinger::RecordThread::onFirstRef()
7035 {
7036     run(mThreadName, PRIORITY_URGENT_AUDIO);
7037 }
7038 
preExit()7039 void AudioFlinger::RecordThread::preExit()
7040 {
7041     ALOGV("  preExit()");
7042     Mutex::Autolock _l(mLock);
7043     for (size_t i = 0; i < mTracks.size(); i++) {
7044         sp<RecordTrack> track = mTracks[i];
7045         track->invalidate();
7046     }
7047     mActiveTracks.clear();
7048     mStartStopCond.broadcast();
7049 }
7050 
threadLoop()7051 bool AudioFlinger::RecordThread::threadLoop()
7052 {
7053     nsecs_t lastWarning = 0;
7054 
7055     inputStandBy();
7056 
7057 reacquire_wakelock:
7058     sp<RecordTrack> activeTrack;
7059     {
7060         Mutex::Autolock _l(mLock);
7061         acquireWakeLock_l();
7062     }
7063 
7064     // used to request a deferred sleep, to be executed later while mutex is unlocked
7065     uint32_t sleepUs = 0;
7066 
7067     int64_t lastLoopCountRead = -2;  // never matches "previous" loop, when loopCount = 0.
7068 
7069     // loop while there is work to do
7070     for (int64_t loopCount = 0;; ++loopCount) {  // loopCount used for statistics tracking
7071         Vector< sp<EffectChain> > effectChains;
7072 
7073         // activeTracks accumulates a copy of a subset of mActiveTracks
7074         Vector< sp<RecordTrack> > activeTracks;
7075 
7076         // reference to the (first and only) active fast track
7077         sp<RecordTrack> fastTrack;
7078 
7079         // reference to a fast track which is about to be removed
7080         sp<RecordTrack> fastTrackToRemove;
7081 
7082         bool silenceFastCapture = false;
7083 
7084         { // scope for mLock
7085             Mutex::Autolock _l(mLock);
7086 
7087             processConfigEvents_l();
7088 
7089             // check exitPending here because checkForNewParameters_l() and
7090             // checkForNewParameters_l() can temporarily release mLock
7091             if (exitPending()) {
7092                 break;
7093             }
7094 
7095             // sleep with mutex unlocked
7096             if (sleepUs > 0) {
7097                 ATRACE_BEGIN("sleepC");
7098                 mWaitWorkCV.waitRelative(mLock, microseconds((nsecs_t)sleepUs));
7099                 ATRACE_END();
7100                 sleepUs = 0;
7101                 continue;
7102             }
7103 
7104             // if no active track(s), then standby and release wakelock
7105             size_t size = mActiveTracks.size();
7106             if (size == 0) {
7107                 standbyIfNotAlreadyInStandby();
7108                 // exitPending() can't become true here
7109                 releaseWakeLock_l();
7110                 ALOGV("RecordThread: loop stopping");
7111                 // go to sleep
7112                 mWaitWorkCV.wait(mLock);
7113                 ALOGV("RecordThread: loop starting");
7114                 goto reacquire_wakelock;
7115             }
7116 
7117             bool doBroadcast = false;
7118             bool allStopped = true;
7119             for (size_t i = 0; i < size; ) {
7120 
7121                 activeTrack = mActiveTracks[i];
7122                 if (activeTrack->isTerminated()) {
7123                     if (activeTrack->isFastTrack()) {
7124                         ALOG_ASSERT(fastTrackToRemove == 0);
7125                         fastTrackToRemove = activeTrack;
7126                     }
7127                     removeTrack_l(activeTrack);
7128                     mActiveTracks.remove(activeTrack);
7129                     size--;
7130                     continue;
7131                 }
7132 
7133                 TrackBase::track_state activeTrackState = activeTrack->mState;
7134                 switch (activeTrackState) {
7135 
7136                 case TrackBase::PAUSING:
7137                     mActiveTracks.remove(activeTrack);
7138                     activeTrack->mState = TrackBase::PAUSED;
7139                     doBroadcast = true;
7140                     size--;
7141                     continue;
7142 
7143                 case TrackBase::STARTING_1:
7144                     sleepUs = 10000;
7145                     i++;
7146                     allStopped = false;
7147                     continue;
7148 
7149                 case TrackBase::STARTING_2:
7150                     doBroadcast = true;
7151                     if (mStandby) {
7152                         mThreadMetrics.logBeginInterval();
7153                         mStandby = false;
7154                     }
7155                     activeTrack->mState = TrackBase::ACTIVE;
7156                     allStopped = false;
7157                     break;
7158 
7159                 case TrackBase::ACTIVE:
7160                     allStopped = false;
7161                     break;
7162 
7163                 case TrackBase::IDLE:    // cannot be on ActiveTracks if idle
7164                 case TrackBase::PAUSED:  // cannot be on ActiveTracks if paused
7165                 case TrackBase::STOPPED: // cannot be on ActiveTracks if destroyed/terminated
7166                 default:
7167                     LOG_ALWAYS_FATAL("%s: Unexpected active track state:%d, id:%d, tracks:%zu",
7168                             __func__, activeTrackState, activeTrack->id(), size);
7169                 }
7170 
7171                 if (activeTrack->isFastTrack()) {
7172                     ALOG_ASSERT(!mFastTrackAvail);
7173                     ALOG_ASSERT(fastTrack == 0);
7174                     // if the active fast track is silenced either:
7175                     // 1) silence the whole capture from fast capture buffer if this is
7176                     //    the only active track
7177                     // 2) invalidate this track: this will cause the client to reconnect and possibly
7178                     //    be invalidated again until unsilenced
7179                     if (activeTrack->isSilenced()) {
7180                         if (size > 1) {
7181                             activeTrack->invalidate();
7182                             ALOG_ASSERT(fastTrackToRemove == 0);
7183                             fastTrackToRemove = activeTrack;
7184                             removeTrack_l(activeTrack);
7185                             mActiveTracks.remove(activeTrack);
7186                             size--;
7187                             continue;
7188                         } else {
7189                             silenceFastCapture = true;
7190                         }
7191                     }
7192                     fastTrack = activeTrack;
7193                 }
7194 
7195                 activeTracks.add(activeTrack);
7196                 i++;
7197 
7198             }
7199 
7200             mActiveTracks.updatePowerState(this);
7201 
7202             updateMetadata_l();
7203 
7204             if (allStopped) {
7205                 standbyIfNotAlreadyInStandby();
7206             }
7207             if (doBroadcast) {
7208                 mStartStopCond.broadcast();
7209             }
7210 
7211             // sleep if there are no active tracks to process
7212             if (activeTracks.isEmpty()) {
7213                 if (sleepUs == 0) {
7214                     sleepUs = kRecordThreadSleepUs;
7215                 }
7216                 continue;
7217             }
7218             sleepUs = 0;
7219 
7220             lockEffectChains_l(effectChains);
7221         }
7222 
7223         // thread mutex is now unlocked, mActiveTracks unknown, activeTracks.size() > 0
7224 
7225         size_t size = effectChains.size();
7226         for (size_t i = 0; i < size; i++) {
7227             // thread mutex is not locked, but effect chain is locked
7228             effectChains[i]->process_l();
7229         }
7230 
7231         // Push a new fast capture state if fast capture is not already running, or cblk change
7232         if (mFastCapture != 0) {
7233             FastCaptureStateQueue *sq = mFastCapture->sq();
7234             FastCaptureState *state = sq->begin();
7235             bool didModify = false;
7236             FastCaptureStateQueue::block_t block = FastCaptureStateQueue::BLOCK_UNTIL_PUSHED;
7237             if (state->mCommand != FastCaptureState::READ_WRITE /* FIXME &&
7238                     (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)*/) {
7239                 if (state->mCommand == FastCaptureState::COLD_IDLE) {
7240                     int32_t old = android_atomic_inc(&mFastCaptureFutex);
7241                     if (old == -1) {
7242                         (void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1);
7243                     }
7244                 }
7245                 state->mCommand = FastCaptureState::READ_WRITE;
7246 #if 0   // FIXME
7247                 mFastCaptureDumpState.increaseSamplingN(mAudioFlinger->isLowRamDevice() ?
7248                         FastThreadDumpState::kSamplingNforLowRamDevice :
7249                         FastThreadDumpState::kSamplingN);
7250 #endif
7251                 didModify = true;
7252             }
7253             audio_track_cblk_t *cblkOld = state->mCblk;
7254             audio_track_cblk_t *cblkNew = fastTrack != 0 ? fastTrack->cblk() : NULL;
7255             if (cblkNew != cblkOld) {
7256                 state->mCblk = cblkNew;
7257                 // block until acked if removing a fast track
7258                 if (cblkOld != NULL) {
7259                     block = FastCaptureStateQueue::BLOCK_UNTIL_ACKED;
7260                 }
7261                 didModify = true;
7262             }
7263             AudioBufferProvider* abp = (fastTrack != 0 && fastTrack->isPatchTrack()) ?
7264                     reinterpret_cast<AudioBufferProvider*>(fastTrack.get()) : nullptr;
7265             if (state->mFastPatchRecordBufferProvider != abp) {
7266                 state->mFastPatchRecordBufferProvider = abp;
7267                 state->mFastPatchRecordFormat = fastTrack == 0 ?
7268                         AUDIO_FORMAT_INVALID : fastTrack->format();
7269                 didModify = true;
7270             }
7271             if (state->mSilenceCapture != silenceFastCapture) {
7272                 state->mSilenceCapture = silenceFastCapture;
7273                 didModify = true;
7274             }
7275             sq->end(didModify);
7276             if (didModify) {
7277                 sq->push(block);
7278 #if 0
7279                 if (kUseFastCapture == FastCapture_Dynamic) {
7280                     mNormalSource = mPipeSource;
7281                 }
7282 #endif
7283             }
7284         }
7285 
7286         // now run the fast track destructor with thread mutex unlocked
7287         fastTrackToRemove.clear();
7288 
7289         // Read from HAL to keep up with fastest client if multiple active tracks, not slowest one.
7290         // Only the client(s) that are too slow will overrun. But if even the fastest client is too
7291         // slow, then this RecordThread will overrun by not calling HAL read often enough.
7292         // If destination is non-contiguous, first read past the nominal end of buffer, then
7293         // copy to the right place.  Permitted because mRsmpInBuffer was over-allocated.
7294 
7295         int32_t rear = mRsmpInRear & (mRsmpInFramesP2 - 1);
7296         ssize_t framesRead;
7297         const int64_t lastIoBeginNs = systemTime(); // start IO timing
7298 
7299         // If an NBAIO source is present, use it to read the normal capture's data
7300         if (mPipeSource != 0) {
7301             size_t framesToRead = min(mRsmpInFramesOA - rear, mRsmpInFramesP2 / 2);
7302 
7303             // The audio fifo read() returns OVERRUN on overflow, and advances the read pointer
7304             // to the full buffer point (clearing the overflow condition).  Upon OVERRUN error,
7305             // we immediately retry the read() to get data and prevent another overflow.
7306             for (int retries = 0; retries <= 2; ++retries) {
7307                 ALOGW_IF(retries > 0, "overrun on read from pipe, retry #%d", retries);
7308                 framesRead = mPipeSource->read((uint8_t*)mRsmpInBuffer + rear * mFrameSize,
7309                         framesToRead);
7310                 if (framesRead != OVERRUN) break;
7311             }
7312 
7313             const ssize_t availableToRead = mPipeSource->availableToRead();
7314             if (availableToRead >= 0) {
7315                 // PipeSource is the master clock.  It is up to the AudioRecord client to keep up.
7316                 LOG_ALWAYS_FATAL_IF((size_t)availableToRead > mPipeFramesP2,
7317                         "more frames to read than fifo size, %zd > %zu",
7318                         availableToRead, mPipeFramesP2);
7319                 const size_t pipeFramesFree = mPipeFramesP2 - availableToRead;
7320                 const size_t sleepFrames = min(pipeFramesFree, mRsmpInFramesP2) / 2;
7321                 ALOGVV("mPipeFramesP2:%zu mRsmpInFramesP2:%zu sleepFrames:%zu availableToRead:%zd",
7322                         mPipeFramesP2, mRsmpInFramesP2, sleepFrames, availableToRead);
7323                 sleepUs = (sleepFrames * 1000000LL) / mSampleRate;
7324             }
7325             if (framesRead < 0) {
7326                 status_t status = (status_t) framesRead;
7327                 switch (status) {
7328                 case OVERRUN:
7329                     ALOGW("overrun on read from pipe");
7330                     framesRead = 0;
7331                     break;
7332                 case NEGOTIATE:
7333                     ALOGE("re-negotiation is needed");
7334                     framesRead = -1;  // Will cause an attempt to recover.
7335                     break;
7336                 default:
7337                     ALOGE("unknown error %d on read from pipe", status);
7338                     break;
7339                 }
7340             }
7341         // otherwise use the HAL / AudioStreamIn directly
7342         } else {
7343             ATRACE_BEGIN("read");
7344             size_t bytesRead;
7345             status_t result = mSource->read(
7346                     (uint8_t*)mRsmpInBuffer + rear * mFrameSize, mBufferSize, &bytesRead);
7347             ATRACE_END();
7348             if (result < 0) {
7349                 framesRead = result;
7350             } else {
7351                 framesRead = bytesRead / mFrameSize;
7352             }
7353         }
7354 
7355         const int64_t lastIoEndNs = systemTime(); // end IO timing
7356 
7357         // Update server timestamp with server stats
7358         // systemTime() is optional if the hardware supports timestamps.
7359         if (framesRead >= 0) {
7360             mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER] += framesRead;
7361             mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER] = lastIoEndNs;
7362         }
7363 
7364         // Update server timestamp with kernel stats
7365         if (mPipeSource.get() == nullptr /* don't obtain for FastCapture, could block */) {
7366             int64_t position, time;
7367             if (mStandby) {
7368                 mTimestampVerifier.discontinuity();
7369             } else if (mSource->getCapturePosition(&position, &time) == NO_ERROR
7370                     && time > mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL]) {
7371 
7372                 mTimestampVerifier.add(position, time, mSampleRate);
7373 
7374                 // Correct timestamps
7375                 if (isTimestampCorrectionEnabled()) {
7376                     ALOGV("TS_BEFORE: %d %lld %lld",
7377                             id(), (long long)time, (long long)position);
7378                     auto correctedTimestamp = mTimestampVerifier.getLastCorrectedTimestamp();
7379                     position = correctedTimestamp.mFrames;
7380                     time = correctedTimestamp.mTimeNs;
7381                     ALOGV("TS_AFTER: %d %lld %lld",
7382                             id(), (long long)time, (long long)position);
7383                 }
7384 
7385                 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL] = position;
7386                 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] = time;
7387                 // Note: In general record buffers should tend to be empty in
7388                 // a properly running pipeline.
7389                 //
7390                 // Also, it is not advantageous to call get_presentation_position during the read
7391                 // as the read obtains a lock, preventing the timestamp call from executing.
7392             } else {
7393                 mTimestampVerifier.error();
7394             }
7395         }
7396 
7397         // From the timestamp, input read latency is negative output write latency.
7398         const audio_input_flags_t flags = mInput != NULL ? mInput->flags : AUDIO_INPUT_FLAG_NONE;
7399         const double latencyMs = RecordTrack::checkServerLatencySupported(mFormat, flags)
7400                 ? - mTimestamp.getOutputServerLatencyMs(mSampleRate) : 0.;
7401         if (latencyMs != 0.) { // note 0. means timestamp is empty.
7402             mLatencyMs.add(latencyMs);
7403         }
7404 
7405         // Use this to track timestamp information
7406         // ALOGD("%s", mTimestamp.toString().c_str());
7407 
7408         if (framesRead < 0 || (framesRead == 0 && mPipeSource == 0)) {
7409             ALOGE("read failed: framesRead=%zd", framesRead);
7410             // Force input into standby so that it tries to recover at next read attempt
7411             inputStandBy();
7412             sleepUs = kRecordThreadSleepUs;
7413         }
7414         if (framesRead <= 0) {
7415             goto unlock;
7416         }
7417         ALOG_ASSERT(framesRead > 0);
7418         mFramesRead += framesRead;
7419 
7420 #ifdef TEE_SINK
7421         (void)mTee.write((uint8_t*)mRsmpInBuffer + rear * mFrameSize, framesRead);
7422 #endif
7423         // If destination is non-contiguous, we now correct for reading past end of buffer.
7424         {
7425             size_t part1 = mRsmpInFramesP2 - rear;
7426             if ((size_t) framesRead > part1) {
7427                 memcpy(mRsmpInBuffer, (uint8_t*)mRsmpInBuffer + mRsmpInFramesP2 * mFrameSize,
7428                         (framesRead - part1) * mFrameSize);
7429             }
7430         }
7431         rear = mRsmpInRear += framesRead;
7432 
7433         size = activeTracks.size();
7434 
7435         // loop over each active track
7436         for (size_t i = 0; i < size; i++) {
7437             activeTrack = activeTracks[i];
7438 
7439             // skip fast tracks, as those are handled directly by FastCapture
7440             if (activeTrack->isFastTrack()) {
7441                 continue;
7442             }
7443 
7444             // TODO: This code probably should be moved to RecordTrack.
7445             // TODO: Update the activeTrack buffer converter in case of reconfigure.
7446 
7447             enum {
7448                 OVERRUN_UNKNOWN,
7449                 OVERRUN_TRUE,
7450                 OVERRUN_FALSE
7451             } overrun = OVERRUN_UNKNOWN;
7452 
7453             // loop over getNextBuffer to handle circular sink
7454             for (;;) {
7455 
7456                 activeTrack->mSink.frameCount = ~0;
7457                 status_t status = activeTrack->getNextBuffer(&activeTrack->mSink);
7458                 size_t framesOut = activeTrack->mSink.frameCount;
7459                 LOG_ALWAYS_FATAL_IF((status == OK) != (framesOut > 0));
7460 
7461                 // check available frames and handle overrun conditions
7462                 // if the record track isn't draining fast enough.
7463                 bool hasOverrun;
7464                 size_t framesIn;
7465                 activeTrack->mResamplerBufferProvider->sync(&framesIn, &hasOverrun);
7466                 if (hasOverrun) {
7467                     overrun = OVERRUN_TRUE;
7468                 }
7469                 if (framesOut == 0 || framesIn == 0) {
7470                     break;
7471                 }
7472 
7473                 // Don't allow framesOut to be larger than what is possible with resampling
7474                 // from framesIn.
7475                 // This isn't strictly necessary but helps limit buffer resizing in
7476                 // RecordBufferConverter.  TODO: remove when no longer needed.
7477                 framesOut = min(framesOut,
7478                         destinationFramesPossible(
7479                                 framesIn, mSampleRate, activeTrack->mSampleRate));
7480 
7481                 if (activeTrack->isDirect()) {
7482                     // No RecordBufferConverter used for direct streams. Pass
7483                     // straight from RecordThread buffer to RecordTrack buffer.
7484                     AudioBufferProvider::Buffer buffer;
7485                     buffer.frameCount = framesOut;
7486                     status_t status = activeTrack->mResamplerBufferProvider->getNextBuffer(&buffer);
7487                     if (status == OK && buffer.frameCount != 0) {
7488                         ALOGV_IF(buffer.frameCount != framesOut,
7489                                 "%s() read less than expected (%zu vs %zu)",
7490                                 __func__, buffer.frameCount, framesOut);
7491                         framesOut = buffer.frameCount;
7492                         memcpy(activeTrack->mSink.raw, buffer.raw, buffer.frameCount * mFrameSize);
7493                         activeTrack->mResamplerBufferProvider->releaseBuffer(&buffer);
7494                     } else {
7495                         framesOut = 0;
7496                         ALOGE("%s() cannot fill request, status: %d, frameCount: %zu",
7497                             __func__, status, buffer.frameCount);
7498                     }
7499                 } else {
7500                     // process frames from the RecordThread buffer provider to the RecordTrack
7501                     // buffer
7502                     framesOut = activeTrack->mRecordBufferConverter->convert(
7503                             activeTrack->mSink.raw,
7504                             activeTrack->mResamplerBufferProvider,
7505                             framesOut);
7506                 }
7507 
7508                 if (framesOut > 0 && (overrun == OVERRUN_UNKNOWN)) {
7509                     overrun = OVERRUN_FALSE;
7510                 }
7511 
7512                 if (activeTrack->mFramesToDrop == 0) {
7513                     if (framesOut > 0) {
7514                         activeTrack->mSink.frameCount = framesOut;
7515                         // Sanitize before releasing if the track has no access to the source data
7516                         // An idle UID receives silence from non virtual devices until active
7517                         if (activeTrack->isSilenced()) {
7518                             memset(activeTrack->mSink.raw, 0, framesOut * activeTrack->frameSize());
7519                         }
7520                         activeTrack->releaseBuffer(&activeTrack->mSink);
7521                     }
7522                 } else {
7523                     // FIXME could do a partial drop of framesOut
7524                     if (activeTrack->mFramesToDrop > 0) {
7525                         activeTrack->mFramesToDrop -= (ssize_t)framesOut;
7526                         if (activeTrack->mFramesToDrop <= 0) {
7527                             activeTrack->clearSyncStartEvent();
7528                         }
7529                     } else {
7530                         activeTrack->mFramesToDrop += framesOut;
7531                         if (activeTrack->mFramesToDrop >= 0 || activeTrack->mSyncStartEvent == 0 ||
7532                                 activeTrack->mSyncStartEvent->isCancelled()) {
7533                             ALOGW("Synced record %s, session %d, trigger session %d",
7534                                   (activeTrack->mFramesToDrop >= 0) ? "timed out" : "cancelled",
7535                                   activeTrack->sessionId(),
7536                                   (activeTrack->mSyncStartEvent != 0) ?
7537                                           activeTrack->mSyncStartEvent->triggerSession() :
7538                                           AUDIO_SESSION_NONE);
7539                             activeTrack->clearSyncStartEvent();
7540                         }
7541                     }
7542                 }
7543 
7544                 if (framesOut == 0) {
7545                     break;
7546                 }
7547             }
7548 
7549             switch (overrun) {
7550             case OVERRUN_TRUE:
7551                 // client isn't retrieving buffers fast enough
7552                 if (!activeTrack->setOverflow()) {
7553                     nsecs_t now = systemTime();
7554                     // FIXME should lastWarning per track?
7555                     if ((now - lastWarning) > kWarningThrottleNs) {
7556                         ALOGW("RecordThread: buffer overflow");
7557                         lastWarning = now;
7558                     }
7559                 }
7560                 break;
7561             case OVERRUN_FALSE:
7562                 activeTrack->clearOverflow();
7563                 break;
7564             case OVERRUN_UNKNOWN:
7565                 break;
7566             }
7567 
7568             // update frame information and push timestamp out
7569             activeTrack->updateTrackFrameInfo(
7570                     activeTrack->mServerProxy->framesReleased(),
7571                     mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER],
7572                     mSampleRate, mTimestamp);
7573         }
7574 
7575 unlock:
7576         // enable changes in effect chain
7577         unlockEffectChains(effectChains);
7578         // effectChains doesn't need to be cleared, since it is cleared by destructor at scope end
7579         if (audio_has_proportional_frames(mFormat)
7580             && loopCount == lastLoopCountRead + 1) {
7581             const int64_t readPeriodNs = lastIoEndNs - mLastIoEndNs;
7582             const double jitterMs =
7583                 TimestampVerifier<int64_t, int64_t>::computeJitterMs(
7584                     {framesRead, readPeriodNs},
7585                     {0, 0} /* lastTimestamp */, mSampleRate);
7586             const double processMs = (lastIoBeginNs - mLastIoEndNs) * 1e-6;
7587 
7588             Mutex::Autolock _l(mLock);
7589             mIoJitterMs.add(jitterMs);
7590             mProcessTimeMs.add(processMs);
7591         }
7592         // update timing info.
7593         mLastIoBeginNs = lastIoBeginNs;
7594         mLastIoEndNs = lastIoEndNs;
7595         lastLoopCountRead = loopCount;
7596     }
7597 
7598     standbyIfNotAlreadyInStandby();
7599 
7600     {
7601         Mutex::Autolock _l(mLock);
7602         for (size_t i = 0; i < mTracks.size(); i++) {
7603             sp<RecordTrack> track = mTracks[i];
7604             track->invalidate();
7605         }
7606         mActiveTracks.clear();
7607         mStartStopCond.broadcast();
7608     }
7609 
7610     releaseWakeLock();
7611 
7612     ALOGV("RecordThread %p exiting", this);
7613     return false;
7614 }
7615 
standbyIfNotAlreadyInStandby()7616 void AudioFlinger::RecordThread::standbyIfNotAlreadyInStandby()
7617 {
7618     if (!mStandby) {
7619         inputStandBy();
7620         mThreadMetrics.logEndInterval();
7621         mStandby = true;
7622     }
7623 }
7624 
inputStandBy()7625 void AudioFlinger::RecordThread::inputStandBy()
7626 {
7627     // Idle the fast capture if it's currently running
7628     if (mFastCapture != 0) {
7629         FastCaptureStateQueue *sq = mFastCapture->sq();
7630         FastCaptureState *state = sq->begin();
7631         if (!(state->mCommand & FastCaptureState::IDLE)) {
7632             state->mCommand = FastCaptureState::COLD_IDLE;
7633             state->mColdFutexAddr = &mFastCaptureFutex;
7634             state->mColdGen++;
7635             mFastCaptureFutex = 0;
7636             sq->end();
7637             // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now
7638             sq->push(FastCaptureStateQueue::BLOCK_UNTIL_ACKED);
7639 #if 0
7640             if (kUseFastCapture == FastCapture_Dynamic) {
7641                 // FIXME
7642             }
7643 #endif
7644 #ifdef AUDIO_WATCHDOG
7645             // FIXME
7646 #endif
7647         } else {
7648             sq->end(false /*didModify*/);
7649         }
7650     }
7651     status_t result = mSource->standby();
7652     ALOGE_IF(result != OK, "Error when putting input stream into standby: %d", result);
7653 
7654     // If going into standby, flush the pipe source.
7655     if (mPipeSource.get() != nullptr) {
7656         const ssize_t flushed = mPipeSource->flush();
7657         if (flushed > 0) {
7658             ALOGV("Input standby flushed PipeSource %zd frames", flushed);
7659             mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER] += flushed;
7660             mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER] = systemTime();
7661         }
7662     }
7663 }
7664 
7665 // RecordThread::createRecordTrack_l() must be called with AudioFlinger::mLock held
createRecordTrack_l(const sp<AudioFlinger::Client> & client,const audio_attributes_t & attr,uint32_t * pSampleRate,audio_format_t format,audio_channel_mask_t channelMask,size_t * pFrameCount,audio_session_t sessionId,size_t * pNotificationFrameCount,pid_t creatorPid,uid_t uid,audio_input_flags_t * flags,pid_t tid,status_t * status,audio_port_handle_t portId,const String16 & opPackageName)7666 sp<AudioFlinger::RecordThread::RecordTrack> AudioFlinger::RecordThread::createRecordTrack_l(
7667         const sp<AudioFlinger::Client>& client,
7668         const audio_attributes_t& attr,
7669         uint32_t *pSampleRate,
7670         audio_format_t format,
7671         audio_channel_mask_t channelMask,
7672         size_t *pFrameCount,
7673         audio_session_t sessionId,
7674         size_t *pNotificationFrameCount,
7675         pid_t creatorPid,
7676         uid_t uid,
7677         audio_input_flags_t *flags,
7678         pid_t tid,
7679         status_t *status,
7680         audio_port_handle_t portId,
7681         const String16& opPackageName)
7682 {
7683     size_t frameCount = *pFrameCount;
7684     size_t notificationFrameCount = *pNotificationFrameCount;
7685     sp<RecordTrack> track;
7686     status_t lStatus;
7687     audio_input_flags_t inputFlags = mInput->flags;
7688     audio_input_flags_t requestedFlags = *flags;
7689     uint32_t sampleRate;
7690 
7691     lStatus = initCheck();
7692     if (lStatus != NO_ERROR) {
7693         ALOGE("createRecordTrack_l() audio driver not initialized");
7694         goto Exit;
7695     }
7696 
7697     if (!audio_is_linear_pcm(mFormat) && (*flags & AUDIO_INPUT_FLAG_DIRECT) == 0) {
7698         ALOGE("createRecordTrack_l() on an encoded stream requires AUDIO_INPUT_FLAG_DIRECT");
7699         lStatus = BAD_VALUE;
7700         goto Exit;
7701     }
7702 
7703     if (*pSampleRate == 0) {
7704         *pSampleRate = mSampleRate;
7705     }
7706     sampleRate = *pSampleRate;
7707 
7708     // special case for FAST flag considered OK if fast capture is present
7709     if (hasFastCapture()) {
7710         inputFlags = (audio_input_flags_t)(inputFlags | AUDIO_INPUT_FLAG_FAST);
7711     }
7712 
7713     // Check if requested flags are compatible with input stream flags
7714     if ((*flags & inputFlags) != *flags) {
7715         ALOGW("createRecordTrack_l(): mismatch between requested flags (%08x) and"
7716                 " input flags (%08x)",
7717               *flags, inputFlags);
7718         *flags = (audio_input_flags_t)(*flags & inputFlags);
7719     }
7720 
7721     // client expresses a preference for FAST, but we get the final say
7722     if (*flags & AUDIO_INPUT_FLAG_FAST) {
7723       if (
7724             // we formerly checked for a callback handler (non-0 tid),
7725             // but that is no longer required for TRANSFER_OBTAIN mode
7726             //
7727             // Frame count is not specified (0), or is less than or equal the pipe depth.
7728             // It is OK to provide a higher capacity than requested.
7729             // We will force it to mPipeFramesP2 below.
7730             (frameCount <= mPipeFramesP2) &&
7731             // PCM data
7732             audio_is_linear_pcm(format) &&
7733             // hardware format
7734             (format == mFormat) &&
7735             // hardware channel mask
7736             (channelMask == mChannelMask) &&
7737             // hardware sample rate
7738             (sampleRate == mSampleRate) &&
7739             // record thread has an associated fast capture
7740             hasFastCapture() &&
7741             // there are sufficient fast track slots available
7742             mFastTrackAvail
7743         ) {
7744           // check compatibility with audio effects.
7745           Mutex::Autolock _l(mLock);
7746           // Do not accept FAST flag if the session has software effects
7747           sp<EffectChain> chain = getEffectChain_l(sessionId);
7748           if (chain != 0) {
7749               audio_input_flags_t old = *flags;
7750               chain->checkInputFlagCompatibility(flags);
7751               if (old != *flags) {
7752                   ALOGV("%p AUDIO_INPUT_FLAGS denied by effect old=%#x new=%#x",
7753                           this, (int)old, (int)*flags);
7754               }
7755           }
7756           ALOGV_IF((*flags & AUDIO_INPUT_FLAG_FAST) != 0,
7757                    "%p AUDIO_INPUT_FLAG_FAST accepted: frameCount=%zu mFrameCount=%zu",
7758                    this, frameCount, mFrameCount);
7759       } else {
7760         ALOGV("%p AUDIO_INPUT_FLAG_FAST denied: frameCount=%zu mFrameCount=%zu mPipeFramesP2=%zu "
7761                 "format=%#x isLinear=%d mFormat=%#x channelMask=%#x sampleRate=%u mSampleRate=%u "
7762                 "hasFastCapture=%d tid=%d mFastTrackAvail=%d",
7763                 this, frameCount, mFrameCount, mPipeFramesP2,
7764                 format, audio_is_linear_pcm(format), mFormat, channelMask, sampleRate, mSampleRate,
7765                 hasFastCapture(), tid, mFastTrackAvail);
7766         *flags = (audio_input_flags_t)(*flags & ~AUDIO_INPUT_FLAG_FAST);
7767       }
7768     }
7769 
7770     // If FAST or RAW flags were corrected, ask caller to request new input from audio policy
7771     if ((*flags & AUDIO_INPUT_FLAG_FAST) !=
7772             (requestedFlags & AUDIO_INPUT_FLAG_FAST)) {
7773         *flags = (audio_input_flags_t) (*flags & ~(AUDIO_INPUT_FLAG_FAST | AUDIO_INPUT_FLAG_RAW));
7774         lStatus = BAD_TYPE;
7775         goto Exit;
7776     }
7777 
7778     // compute track buffer size in frames, and suggest the notification frame count
7779     if (*flags & AUDIO_INPUT_FLAG_FAST) {
7780         // fast track: frame count is exactly the pipe depth
7781         frameCount = mPipeFramesP2;
7782         // ignore requested notificationFrames, and always notify exactly once every HAL buffer
7783         notificationFrameCount = mFrameCount;
7784     } else {
7785         // not fast track: max notification period is resampled equivalent of one HAL buffer time
7786         //                 or 20 ms if there is a fast capture
7787         // TODO This could be a roundupRatio inline, and const
7788         size_t maxNotificationFrames = ((int64_t) (hasFastCapture() ? mSampleRate/50 : mFrameCount)
7789                 * sampleRate + mSampleRate - 1) / mSampleRate;
7790         // minimum number of notification periods is at least kMinNotifications,
7791         // and at least kMinMs rounded up to a whole notification period (minNotificationsByMs)
7792         static const size_t kMinNotifications = 3;
7793         static const uint32_t kMinMs = 30;
7794         // TODO This could be a roundupRatio inline
7795         const size_t minFramesByMs = (sampleRate * kMinMs + 1000 - 1) / 1000;
7796         // TODO This could be a roundupRatio inline
7797         const size_t minNotificationsByMs = (minFramesByMs + maxNotificationFrames - 1) /
7798                 maxNotificationFrames;
7799         const size_t minFrameCount = maxNotificationFrames *
7800                 max(kMinNotifications, minNotificationsByMs);
7801         frameCount = max(frameCount, minFrameCount);
7802         if (notificationFrameCount == 0 || notificationFrameCount > maxNotificationFrames) {
7803             notificationFrameCount = maxNotificationFrames;
7804         }
7805     }
7806     *pFrameCount = frameCount;
7807     *pNotificationFrameCount = notificationFrameCount;
7808 
7809     { // scope for mLock
7810         Mutex::Autolock _l(mLock);
7811 
7812         track = new RecordTrack(this, client, attr, sampleRate,
7813                       format, channelMask, frameCount,
7814                       nullptr /* buffer */, (size_t)0 /* bufferSize */, sessionId, creatorPid, uid,
7815                       *flags, TrackBase::TYPE_DEFAULT, opPackageName, portId);
7816 
7817         lStatus = track->initCheck();
7818         if (lStatus != NO_ERROR) {
7819             ALOGE("createRecordTrack_l() initCheck failed %d; no control block?", lStatus);
7820             // track must be cleared from the caller as the caller has the AF lock
7821             goto Exit;
7822         }
7823         mTracks.add(track);
7824 
7825         if ((*flags & AUDIO_INPUT_FLAG_FAST) && (tid != -1)) {
7826             pid_t callingPid = IPCThreadState::self()->getCallingPid();
7827             // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
7828             // so ask activity manager to do this on our behalf
7829             sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp, true /*forApp*/);
7830         }
7831     }
7832 
7833     lStatus = NO_ERROR;
7834 
7835 Exit:
7836     *status = lStatus;
7837     return track;
7838 }
7839 
start(RecordThread::RecordTrack * recordTrack,AudioSystem::sync_event_t event,audio_session_t triggerSession)7840 status_t AudioFlinger::RecordThread::start(RecordThread::RecordTrack* recordTrack,
7841                                            AudioSystem::sync_event_t event,
7842                                            audio_session_t triggerSession)
7843 {
7844     ALOGV("RecordThread::start event %d, triggerSession %d", event, triggerSession);
7845     sp<ThreadBase> strongMe = this;
7846     status_t status = NO_ERROR;
7847 
7848     if (event == AudioSystem::SYNC_EVENT_NONE) {
7849         recordTrack->clearSyncStartEvent();
7850     } else if (event != AudioSystem::SYNC_EVENT_SAME) {
7851         recordTrack->mSyncStartEvent = mAudioFlinger->createSyncEvent(event,
7852                                        triggerSession,
7853                                        recordTrack->sessionId(),
7854                                        syncStartEventCallback,
7855                                        recordTrack);
7856         // Sync event can be cancelled by the trigger session if the track is not in a
7857         // compatible state in which case we start record immediately
7858         if (recordTrack->mSyncStartEvent->isCancelled()) {
7859             recordTrack->clearSyncStartEvent();
7860         } else {
7861             // do not wait for the event for more than AudioSystem::kSyncRecordStartTimeOutMs
7862             recordTrack->mFramesToDrop = -(ssize_t)
7863                     ((AudioSystem::kSyncRecordStartTimeOutMs * recordTrack->mSampleRate) / 1000);
7864         }
7865     }
7866 
7867     {
7868         // This section is a rendezvous between binder thread executing start() and RecordThread
7869         AutoMutex lock(mLock);
7870         if (recordTrack->isInvalid()) {
7871             recordTrack->clearSyncStartEvent();
7872             return INVALID_OPERATION;
7873         }
7874         if (mActiveTracks.indexOf(recordTrack) >= 0) {
7875             if (recordTrack->mState == TrackBase::PAUSING) {
7876                 // We haven't stopped yet (moved to PAUSED and not in mActiveTracks)
7877                 // so no need to startInput().
7878                 ALOGV("active record track PAUSING -> ACTIVE");
7879                 recordTrack->mState = TrackBase::ACTIVE;
7880             } else {
7881                 ALOGV("active record track state %d", recordTrack->mState);
7882             }
7883             return status;
7884         }
7885 
7886         // TODO consider other ways of handling this, such as changing the state to :STARTING and
7887         //      adding the track to mActiveTracks after returning from AudioSystem::startInput(),
7888         //      or using a separate command thread
7889         recordTrack->mState = TrackBase::STARTING_1;
7890         mActiveTracks.add(recordTrack);
7891         status_t status = NO_ERROR;
7892         if (recordTrack->isExternalTrack()) {
7893             mLock.unlock();
7894             status = AudioSystem::startInput(recordTrack->portId());
7895             mLock.lock();
7896             if (recordTrack->isInvalid()) {
7897                 recordTrack->clearSyncStartEvent();
7898                 if (status == NO_ERROR && recordTrack->mState == TrackBase::STARTING_1) {
7899                     recordTrack->mState = TrackBase::STARTING_2;
7900                     // STARTING_2 forces destroy to call stopInput.
7901                 }
7902                 return INVALID_OPERATION;
7903             }
7904             if (recordTrack->mState != TrackBase::STARTING_1) {
7905                 ALOGW("%s(%d): unsynchronized mState:%d change",
7906                     __func__, recordTrack->id(), recordTrack->mState);
7907                 // Someone else has changed state, let them take over,
7908                 // leave mState in the new state.
7909                 recordTrack->clearSyncStartEvent();
7910                 return INVALID_OPERATION;
7911             }
7912             // we're ok, but perhaps startInput has failed
7913             if (status != NO_ERROR) {
7914                 ALOGW("%s(%d): startInput failed, status %d",
7915                     __func__, recordTrack->id(), status);
7916                 // We are in ActiveTracks if STARTING_1 and valid, so remove from ActiveTracks,
7917                 // leave in STARTING_1, so destroy() will not call stopInput.
7918                 mActiveTracks.remove(recordTrack);
7919                 recordTrack->clearSyncStartEvent();
7920                 return status;
7921             }
7922             sendIoConfigEvent_l(
7923                 AUDIO_CLIENT_STARTED, recordTrack->creatorPid(), recordTrack->portId());
7924         }
7925 
7926         recordTrack->logBeginInterval(patchSourcesToString(&mPatch)); // log to MediaMetrics
7927 
7928         // Catch up with current buffer indices if thread is already running.
7929         // This is what makes a new client discard all buffered data.  If the track's mRsmpInFront
7930         // was initialized to some value closer to the thread's mRsmpInFront, then the track could
7931         // see previously buffered data before it called start(), but with greater risk of overrun.
7932 
7933         recordTrack->mResamplerBufferProvider->reset();
7934         if (!recordTrack->isDirect()) {
7935             // clear any converter state as new data will be discontinuous
7936             recordTrack->mRecordBufferConverter->reset();
7937         }
7938         recordTrack->mState = TrackBase::STARTING_2;
7939         // signal thread to start
7940         mWaitWorkCV.broadcast();
7941         return status;
7942     }
7943 }
7944 
syncStartEventCallback(const wp<SyncEvent> & event)7945 void AudioFlinger::RecordThread::syncStartEventCallback(const wp<SyncEvent>& event)
7946 {
7947     sp<SyncEvent> strongEvent = event.promote();
7948 
7949     if (strongEvent != 0) {
7950         sp<RefBase> ptr = strongEvent->cookie().promote();
7951         if (ptr != 0) {
7952             RecordTrack *recordTrack = (RecordTrack *)ptr.get();
7953             recordTrack->handleSyncStartEvent(strongEvent);
7954         }
7955     }
7956 }
7957 
stop(RecordThread::RecordTrack * recordTrack)7958 bool AudioFlinger::RecordThread::stop(RecordThread::RecordTrack* recordTrack) {
7959     ALOGV("RecordThread::stop");
7960     AutoMutex _l(mLock);
7961     // if we're invalid, we can't be on the ActiveTracks.
7962     if (mActiveTracks.indexOf(recordTrack) < 0 || recordTrack->mState == TrackBase::PAUSING) {
7963         return false;
7964     }
7965     // note that threadLoop may still be processing the track at this point [without lock]
7966     recordTrack->mState = TrackBase::PAUSING;
7967 
7968     // NOTE: Waiting here is important to keep stop synchronous.
7969     // This is needed for proper patchRecord peer release.
7970     while (recordTrack->mState == TrackBase::PAUSING && !recordTrack->isInvalid()) {
7971         mWaitWorkCV.broadcast(); // signal thread to stop
7972         mStartStopCond.wait(mLock);
7973     }
7974 
7975     if (recordTrack->mState == TrackBase::PAUSED) { // successful stop
7976         ALOGV("Record stopped OK");
7977         return true;
7978     }
7979 
7980     // don't handle anything - we've been invalidated or restarted and in a different state
7981     ALOGW_IF("%s(%d): unsynchronized stop, state: %d",
7982             __func__, recordTrack->id(), recordTrack->mState);
7983     return false;
7984 }
7985 
isValidSyncEvent(const sp<SyncEvent> & event __unused) const7986 bool AudioFlinger::RecordThread::isValidSyncEvent(const sp<SyncEvent>& event __unused) const
7987 {
7988     return false;
7989 }
7990 
setSyncEvent(const sp<SyncEvent> & event __unused)7991 status_t AudioFlinger::RecordThread::setSyncEvent(const sp<SyncEvent>& event __unused)
7992 {
7993 #if 0   // This branch is currently dead code, but is preserved in case it will be needed in future
7994     if (!isValidSyncEvent(event)) {
7995         return BAD_VALUE;
7996     }
7997 
7998     audio_session_t eventSession = event->triggerSession();
7999     status_t ret = NAME_NOT_FOUND;
8000 
8001     Mutex::Autolock _l(mLock);
8002 
8003     for (size_t i = 0; i < mTracks.size(); i++) {
8004         sp<RecordTrack> track = mTracks[i];
8005         if (eventSession == track->sessionId()) {
8006             (void) track->setSyncEvent(event);
8007             ret = NO_ERROR;
8008         }
8009     }
8010     return ret;
8011 #else
8012     return BAD_VALUE;
8013 #endif
8014 }
8015 
getActiveMicrophones(std::vector<media::MicrophoneInfo> * activeMicrophones)8016 status_t AudioFlinger::RecordThread::getActiveMicrophones(
8017         std::vector<media::MicrophoneInfo>* activeMicrophones)
8018 {
8019     ALOGV("RecordThread::getActiveMicrophones");
8020     AutoMutex _l(mLock);
8021     status_t status = mInput->stream->getActiveMicrophones(activeMicrophones);
8022     return status;
8023 }
8024 
setPreferredMicrophoneDirection(audio_microphone_direction_t direction)8025 status_t AudioFlinger::RecordThread::setPreferredMicrophoneDirection(
8026             audio_microphone_direction_t direction)
8027 {
8028     ALOGV("setPreferredMicrophoneDirection(%d)", direction);
8029     AutoMutex _l(mLock);
8030     return mInput->stream->setPreferredMicrophoneDirection(direction);
8031 }
8032 
setPreferredMicrophoneFieldDimension(float zoom)8033 status_t AudioFlinger::RecordThread::setPreferredMicrophoneFieldDimension(float zoom)
8034 {
8035     ALOGV("setPreferredMicrophoneFieldDimension(%f)", zoom);
8036     AutoMutex _l(mLock);
8037     return mInput->stream->setPreferredMicrophoneFieldDimension(zoom);
8038 }
8039 
updateMetadata_l()8040 void AudioFlinger::RecordThread::updateMetadata_l()
8041 {
8042     if (mInput == nullptr || mInput->stream == nullptr ||
8043             !mActiveTracks.readAndClearHasChanged()) {
8044         return;
8045     }
8046     StreamInHalInterface::SinkMetadata metadata;
8047     for (const sp<RecordTrack> &track : mActiveTracks) {
8048         // No track is invalid as this is called after prepareTrack_l in the same critical section
8049         metadata.tracks.push_back({
8050                 .source = track->attributes().source,
8051                 .gain = 1, // capture tracks do not have volumes
8052         });
8053     }
8054     mInput->stream->updateSinkMetadata(metadata);
8055 }
8056 
8057 // destroyTrack_l() must be called with ThreadBase::mLock held
destroyTrack_l(const sp<RecordTrack> & track)8058 void AudioFlinger::RecordThread::destroyTrack_l(const sp<RecordTrack>& track)
8059 {
8060     track->terminate();
8061     track->mState = TrackBase::STOPPED;
8062     // active tracks are removed by threadLoop()
8063     if (mActiveTracks.indexOf(track) < 0) {
8064         removeTrack_l(track);
8065     }
8066 }
8067 
removeTrack_l(const sp<RecordTrack> & track)8068 void AudioFlinger::RecordThread::removeTrack_l(const sp<RecordTrack>& track)
8069 {
8070     String8 result;
8071     track->appendDump(result, false /* active */);
8072     mLocalLog.log("removeTrack_l (%p) %s", track.get(), result.string());
8073 
8074     mTracks.remove(track);
8075     // need anything related to effects here?
8076     if (track->isFastTrack()) {
8077         ALOG_ASSERT(!mFastTrackAvail);
8078         mFastTrackAvail = true;
8079     }
8080 }
8081 
dumpInternals_l(int fd,const Vector<String16> & args __unused)8082 void AudioFlinger::RecordThread::dumpInternals_l(int fd, const Vector<String16>& args __unused)
8083 {
8084     AudioStreamIn *input = mInput;
8085     audio_input_flags_t flags = input != NULL ? input->flags : AUDIO_INPUT_FLAG_NONE;
8086     dprintf(fd, "  AudioStreamIn: %p flags %#x (%s)\n",
8087             input, flags, toString(flags).c_str());
8088     dprintf(fd, "  Frames read: %lld\n", (long long)mFramesRead);
8089     if (mActiveTracks.isEmpty()) {
8090         dprintf(fd, "  No active record clients\n");
8091     }
8092 
8093     if (input != nullptr) {
8094         dprintf(fd, "  Hal stream dump:\n");
8095         (void)input->stream->dump(fd);
8096     }
8097 
8098     dprintf(fd, "  Fast capture thread: %s\n", hasFastCapture() ? "yes" : "no");
8099     dprintf(fd, "  Fast track available: %s\n", mFastTrackAvail ? "yes" : "no");
8100 
8101     // Make a non-atomic copy of fast capture dump state so it won't change underneath us
8102     // while we are dumping it.  It may be inconsistent, but it won't mutate!
8103     // This is a large object so we place it on the heap.
8104     // FIXME 25972958: Need an intelligent copy constructor that does not touch unused pages.
8105     const std::unique_ptr<FastCaptureDumpState> copy =
8106             std::make_unique<FastCaptureDumpState>(mFastCaptureDumpState);
8107     copy->dump(fd);
8108 }
8109 
dumpTracks_l(int fd,const Vector<String16> & args __unused)8110 void AudioFlinger::RecordThread::dumpTracks_l(int fd, const Vector<String16>& args __unused)
8111 {
8112     String8 result;
8113     size_t numtracks = mTracks.size();
8114     size_t numactive = mActiveTracks.size();
8115     size_t numactiveseen = 0;
8116     dprintf(fd, "  %zu Tracks", numtracks);
8117     const char *prefix = "    ";
8118     if (numtracks) {
8119         dprintf(fd, " of which %zu are active\n", numactive);
8120         result.append(prefix);
8121         mTracks[0]->appendDumpHeader(result);
8122         for (size_t i = 0; i < numtracks ; ++i) {
8123             sp<RecordTrack> track = mTracks[i];
8124             if (track != 0) {
8125                 bool active = mActiveTracks.indexOf(track) >= 0;
8126                 if (active) {
8127                     numactiveseen++;
8128                 }
8129                 result.append(prefix);
8130                 track->appendDump(result, active);
8131             }
8132         }
8133     } else {
8134         dprintf(fd, "\n");
8135     }
8136 
8137     if (numactiveseen != numactive) {
8138         result.append("  The following tracks are in the active list but"
8139                 " not in the track list\n");
8140         result.append(prefix);
8141         mActiveTracks[0]->appendDumpHeader(result);
8142         for (size_t i = 0; i < numactive; ++i) {
8143             sp<RecordTrack> track = mActiveTracks[i];
8144             if (mTracks.indexOf(track) < 0) {
8145                 result.append(prefix);
8146                 track->appendDump(result, true /* active */);
8147             }
8148         }
8149 
8150     }
8151     write(fd, result.string(), result.size());
8152 }
8153 
setRecordSilenced(audio_port_handle_t portId,bool silenced)8154 void AudioFlinger::RecordThread::setRecordSilenced(audio_port_handle_t portId, bool silenced)
8155 {
8156     Mutex::Autolock _l(mLock);
8157     for (size_t i = 0; i < mTracks.size() ; i++) {
8158         sp<RecordTrack> track = mTracks[i];
8159         if (track != 0 && track->portId() == portId) {
8160             track->setSilenced(silenced);
8161         }
8162     }
8163 }
8164 
reset()8165 void AudioFlinger::RecordThread::ResamplerBufferProvider::reset()
8166 {
8167     sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
8168     RecordThread *recordThread = (RecordThread *) threadBase.get();
8169     mRsmpInFront = recordThread->mRsmpInRear;
8170     mRsmpInUnrel = 0;
8171 }
8172 
sync(size_t * framesAvailable,bool * hasOverrun)8173 void AudioFlinger::RecordThread::ResamplerBufferProvider::sync(
8174         size_t *framesAvailable, bool *hasOverrun)
8175 {
8176     sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
8177     RecordThread *recordThread = (RecordThread *) threadBase.get();
8178     const int32_t rear = recordThread->mRsmpInRear;
8179     const int32_t front = mRsmpInFront;
8180     const ssize_t filled = audio_utils::safe_sub_overflow(rear, front);
8181 
8182     size_t framesIn;
8183     bool overrun = false;
8184     if (filled < 0) {
8185         // should not happen, but treat like a massive overrun and re-sync
8186         framesIn = 0;
8187         mRsmpInFront = rear;
8188         overrun = true;
8189     } else if ((size_t) filled <= recordThread->mRsmpInFrames) {
8190         framesIn = (size_t) filled;
8191     } else {
8192         // client is not keeping up with server, but give it latest data
8193         framesIn = recordThread->mRsmpInFrames;
8194         mRsmpInFront = /* front = */ audio_utils::safe_sub_overflow(
8195                 rear, static_cast<int32_t>(framesIn));
8196         overrun = true;
8197     }
8198     if (framesAvailable != NULL) {
8199         *framesAvailable = framesIn;
8200     }
8201     if (hasOverrun != NULL) {
8202         *hasOverrun = overrun;
8203     }
8204 }
8205 
8206 // AudioBufferProvider interface
getNextBuffer(AudioBufferProvider::Buffer * buffer)8207 status_t AudioFlinger::RecordThread::ResamplerBufferProvider::getNextBuffer(
8208         AudioBufferProvider::Buffer* buffer)
8209 {
8210     sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
8211     if (threadBase == 0) {
8212         buffer->frameCount = 0;
8213         buffer->raw = NULL;
8214         return NOT_ENOUGH_DATA;
8215     }
8216     RecordThread *recordThread = (RecordThread *) threadBase.get();
8217     int32_t rear = recordThread->mRsmpInRear;
8218     int32_t front = mRsmpInFront;
8219     ssize_t filled = audio_utils::safe_sub_overflow(rear, front);
8220     // FIXME should not be P2 (don't want to increase latency)
8221     // FIXME if client not keeping up, discard
8222     LOG_ALWAYS_FATAL_IF(!(0 <= filled && (size_t) filled <= recordThread->mRsmpInFrames));
8223     // 'filled' may be non-contiguous, so return only the first contiguous chunk
8224     front &= recordThread->mRsmpInFramesP2 - 1;
8225     size_t part1 = recordThread->mRsmpInFramesP2 - front;
8226     if (part1 > (size_t) filled) {
8227         part1 = filled;
8228     }
8229     size_t ask = buffer->frameCount;
8230     ALOG_ASSERT(ask > 0);
8231     if (part1 > ask) {
8232         part1 = ask;
8233     }
8234     if (part1 == 0) {
8235         // out of data is fine since the resampler will return a short-count.
8236         buffer->raw = NULL;
8237         buffer->frameCount = 0;
8238         mRsmpInUnrel = 0;
8239         return NOT_ENOUGH_DATA;
8240     }
8241 
8242     buffer->raw = (uint8_t*)recordThread->mRsmpInBuffer + front * recordThread->mFrameSize;
8243     buffer->frameCount = part1;
8244     mRsmpInUnrel = part1;
8245     return NO_ERROR;
8246 }
8247 
8248 // AudioBufferProvider interface
releaseBuffer(AudioBufferProvider::Buffer * buffer)8249 void AudioFlinger::RecordThread::ResamplerBufferProvider::releaseBuffer(
8250         AudioBufferProvider::Buffer* buffer)
8251 {
8252     int32_t stepCount = static_cast<int32_t>(buffer->frameCount);
8253     if (stepCount == 0) {
8254         return;
8255     }
8256     ALOG_ASSERT(stepCount <= mRsmpInUnrel);
8257     mRsmpInUnrel -= stepCount;
8258     mRsmpInFront = audio_utils::safe_add_overflow(mRsmpInFront, stepCount);
8259     buffer->raw = NULL;
8260     buffer->frameCount = 0;
8261 }
8262 
checkBtNrec()8263 void AudioFlinger::RecordThread::checkBtNrec()
8264 {
8265     Mutex::Autolock _l(mLock);
8266     checkBtNrec_l();
8267 }
8268 
checkBtNrec_l()8269 void AudioFlinger::RecordThread::checkBtNrec_l()
8270 {
8271     // disable AEC and NS if the device is a BT SCO headset supporting those
8272     // pre processings
8273     bool suspend = audio_is_bluetooth_sco_device(inDeviceType()) &&
8274                         mAudioFlinger->btNrecIsOff();
8275     if (mBtNrecSuspended.exchange(suspend) != suspend) {
8276         for (size_t i = 0; i < mEffectChains.size(); i++) {
8277             setEffectSuspended_l(FX_IID_AEC, suspend, mEffectChains[i]->sessionId());
8278             setEffectSuspended_l(FX_IID_NS, suspend, mEffectChains[i]->sessionId());
8279         }
8280     }
8281 }
8282 
8283 
checkForNewParameter_l(const String8 & keyValuePair,status_t & status)8284 bool AudioFlinger::RecordThread::checkForNewParameter_l(const String8& keyValuePair,
8285                                                         status_t& status)
8286 {
8287     bool reconfig = false;
8288 
8289     status = NO_ERROR;
8290 
8291     audio_format_t reqFormat = mFormat;
8292     uint32_t samplingRate = mSampleRate;
8293     // TODO this may change if we want to support capture from HDMI PCM multi channel (e.g on TVs).
8294     audio_channel_mask_t channelMask = audio_channel_in_mask_from_count(mChannelCount);
8295 
8296     AudioParameter param = AudioParameter(keyValuePair);
8297     int value;
8298 
8299     // scope for AutoPark extends to end of method
8300     AutoPark<FastCapture> park(mFastCapture);
8301 
8302     // TODO Investigate when this code runs. Check with audio policy when a sample rate and
8303     //      channel count change can be requested. Do we mandate the first client defines the
8304     //      HAL sampling rate and channel count or do we allow changes on the fly?
8305     if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
8306         samplingRate = value;
8307         reconfig = true;
8308     }
8309     if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
8310         if (!audio_is_linear_pcm((audio_format_t) value)) {
8311             status = BAD_VALUE;
8312         } else {
8313             reqFormat = (audio_format_t) value;
8314             reconfig = true;
8315         }
8316     }
8317     if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
8318         audio_channel_mask_t mask = (audio_channel_mask_t) value;
8319         if (!audio_is_input_channel(mask) ||
8320                 audio_channel_count_from_in_mask(mask) > FCC_8) {
8321             status = BAD_VALUE;
8322         } else {
8323             channelMask = mask;
8324             reconfig = true;
8325         }
8326     }
8327     if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
8328         // do not accept frame count changes if tracks are open as the track buffer
8329         // size depends on frame count and correct behavior would not be guaranteed
8330         // if frame count is changed after track creation
8331         if (mActiveTracks.size() > 0) {
8332             status = INVALID_OPERATION;
8333         } else {
8334             reconfig = true;
8335         }
8336     }
8337     if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
8338         LOG_FATAL("Should not set routing device in RecordThread");
8339     }
8340     if (param.getInt(String8(AudioParameter::keyInputSource), value) == NO_ERROR &&
8341             mAudioSource != (audio_source_t)value) {
8342         LOG_FATAL("Should not set audio source in RecordThread");
8343     }
8344 
8345     if (status == NO_ERROR) {
8346         status = mInput->stream->setParameters(keyValuePair);
8347         if (status == INVALID_OPERATION) {
8348             inputStandBy();
8349             status = mInput->stream->setParameters(keyValuePair);
8350         }
8351         if (reconfig) {
8352             if (status == BAD_VALUE) {
8353                 uint32_t sRate;
8354                 audio_channel_mask_t channelMask;
8355                 audio_format_t format;
8356                 if (mInput->stream->getAudioProperties(&sRate, &channelMask, &format) == OK &&
8357                         audio_is_linear_pcm(format) && audio_is_linear_pcm(reqFormat) &&
8358                         sRate <= (AUDIO_RESAMPLER_DOWN_RATIO_MAX * samplingRate) &&
8359                         audio_channel_count_from_in_mask(channelMask) <= FCC_8) {
8360                     status = NO_ERROR;
8361                 }
8362             }
8363             if (status == NO_ERROR) {
8364                 readInputParameters_l();
8365                 sendIoConfigEvent_l(AUDIO_INPUT_CONFIG_CHANGED);
8366             }
8367         }
8368     }
8369 
8370     return reconfig;
8371 }
8372 
getParameters(const String8 & keys)8373 String8 AudioFlinger::RecordThread::getParameters(const String8& keys)
8374 {
8375     Mutex::Autolock _l(mLock);
8376     if (initCheck() == NO_ERROR) {
8377         String8 out_s8;
8378         if (mInput->stream->getParameters(keys, &out_s8) == OK) {
8379             return out_s8;
8380         }
8381     }
8382     return String8();
8383 }
8384 
ioConfigChanged(audio_io_config_event event,pid_t pid,audio_port_handle_t portId)8385 void AudioFlinger::RecordThread::ioConfigChanged(audio_io_config_event event, pid_t pid,
8386                                                  audio_port_handle_t portId) {
8387     sp<AudioIoDescriptor> desc = new AudioIoDescriptor();
8388 
8389     desc->mIoHandle = mId;
8390 
8391     switch (event) {
8392     case AUDIO_INPUT_OPENED:
8393     case AUDIO_INPUT_REGISTERED:
8394     case AUDIO_INPUT_CONFIG_CHANGED:
8395         desc->mPatch = mPatch;
8396         desc->mChannelMask = mChannelMask;
8397         desc->mSamplingRate = mSampleRate;
8398         desc->mFormat = mFormat;
8399         desc->mFrameCount = mFrameCount;
8400         desc->mFrameCountHAL = mFrameCount;
8401         desc->mLatency = 0;
8402         break;
8403     case AUDIO_CLIENT_STARTED:
8404         desc->mPatch = mPatch;
8405         desc->mPortId = portId;
8406         break;
8407     case AUDIO_INPUT_CLOSED:
8408     default:
8409         break;
8410     }
8411     mAudioFlinger->ioConfigChanged(event, desc, pid);
8412 }
8413 
readInputParameters_l()8414 void AudioFlinger::RecordThread::readInputParameters_l()
8415 {
8416     status_t result = mInput->stream->getAudioProperties(&mSampleRate, &mChannelMask, &mHALFormat);
8417     LOG_ALWAYS_FATAL_IF(result != OK, "Error retrieving audio properties from HAL: %d", result);
8418     mFormat = mHALFormat;
8419     mChannelCount = audio_channel_count_from_in_mask(mChannelMask);
8420     if (audio_is_linear_pcm(mFormat)) {
8421         LOG_ALWAYS_FATAL_IF(mChannelCount > FCC_8, "HAL channel count %d > %d",
8422                 mChannelCount, FCC_8);
8423     } else {
8424         // Can have more that FCC_8 channels in encoded streams.
8425         ALOGI("HAL format %#x is not linear pcm", mFormat);
8426     }
8427     result = mInput->stream->getFrameSize(&mFrameSize);
8428     LOG_ALWAYS_FATAL_IF(result != OK, "Error retrieving frame size from HAL: %d", result);
8429     LOG_ALWAYS_FATAL_IF(mFrameSize <= 0, "Error frame size was %zu but must be greater than zero",
8430             mFrameSize);
8431     result = mInput->stream->getBufferSize(&mBufferSize);
8432     LOG_ALWAYS_FATAL_IF(result != OK, "Error retrieving buffer size from HAL: %d", result);
8433     mFrameCount = mBufferSize / mFrameSize;
8434     ALOGV("%p RecordThread params: mChannelCount=%u, mFormat=%#x, mFrameSize=%zu, "
8435             "mBufferSize=%zu, mFrameCount=%zu",
8436             this, mChannelCount, mFormat, mFrameSize, mBufferSize, mFrameCount);
8437     // This is the formula for calculating the temporary buffer size.
8438     // With 7 HAL buffers, we can guarantee ability to down-sample the input by ratio of 6:1 to
8439     // 1 full output buffer, regardless of the alignment of the available input.
8440     // The value is somewhat arbitrary, and could probably be even larger.
8441     // A larger value should allow more old data to be read after a track calls start(),
8442     // without increasing latency.
8443     //
8444     // Note this is independent of the maximum downsampling ratio permitted for capture.
8445     mRsmpInFrames = mFrameCount * 7;
8446     mRsmpInFramesP2 = roundup(mRsmpInFrames);
8447     free(mRsmpInBuffer);
8448     mRsmpInBuffer = NULL;
8449 
8450     // TODO optimize audio capture buffer sizes ...
8451     // Here we calculate the size of the sliding buffer used as a source
8452     // for resampling.  mRsmpInFramesP2 is currently roundup(mFrameCount * 7).
8453     // For current HAL frame counts, this is usually 2048 = 40 ms.  It would
8454     // be better to have it derived from the pipe depth in the long term.
8455     // The current value is higher than necessary.  However it should not add to latency.
8456 
8457     // Over-allocate beyond mRsmpInFramesP2 to permit a HAL read past end of buffer
8458     mRsmpInFramesOA = mRsmpInFramesP2 + mFrameCount - 1;
8459     (void)posix_memalign(&mRsmpInBuffer, 32, mRsmpInFramesOA * mFrameSize);
8460     // if posix_memalign fails, will segv here.
8461     memset(mRsmpInBuffer, 0, mRsmpInFramesOA * mFrameSize);
8462 
8463     // AudioRecord mSampleRate and mChannelCount are constant due to AudioRecord API constraints.
8464     // But if thread's mSampleRate or mChannelCount changes, how will that affect active tracks?
8465 
8466     audio_input_flags_t flags = mInput->flags;
8467     mediametrics::LogItem item(mThreadMetrics.getMetricsId());
8468     item.set(AMEDIAMETRICS_PROP_EVENT, AMEDIAMETRICS_PROP_EVENT_VALUE_READPARAMETERS)
8469         .set(AMEDIAMETRICS_PROP_ENCODING, formatToString(mFormat).c_str())
8470         .set(AMEDIAMETRICS_PROP_FLAGS, toString(flags).c_str())
8471         .set(AMEDIAMETRICS_PROP_SAMPLERATE, (int32_t)mSampleRate)
8472         .set(AMEDIAMETRICS_PROP_CHANNELMASK, (int32_t)mChannelMask)
8473         .set(AMEDIAMETRICS_PROP_CHANNELCOUNT, (int32_t)mChannelCount)
8474         .set(AMEDIAMETRICS_PROP_FRAMECOUNT, (int32_t)mFrameCount)
8475         .record();
8476 }
8477 
getInputFramesLost()8478 uint32_t AudioFlinger::RecordThread::getInputFramesLost()
8479 {
8480     Mutex::Autolock _l(mLock);
8481     uint32_t result;
8482     if (initCheck() == NO_ERROR && mInput->stream->getInputFramesLost(&result) == OK) {
8483         return result;
8484     }
8485     return 0;
8486 }
8487 
sessionIds() const8488 KeyedVector<audio_session_t, bool> AudioFlinger::RecordThread::sessionIds() const
8489 {
8490     KeyedVector<audio_session_t, bool> ids;
8491     Mutex::Autolock _l(mLock);
8492     for (size_t j = 0; j < mTracks.size(); ++j) {
8493         sp<RecordThread::RecordTrack> track = mTracks[j];
8494         audio_session_t sessionId = track->sessionId();
8495         if (ids.indexOfKey(sessionId) < 0) {
8496             ids.add(sessionId, true);
8497         }
8498     }
8499     return ids;
8500 }
8501 
clearInput()8502 AudioFlinger::AudioStreamIn* AudioFlinger::RecordThread::clearInput()
8503 {
8504     Mutex::Autolock _l(mLock);
8505     AudioStreamIn *input = mInput;
8506     mInput = NULL;
8507     return input;
8508 }
8509 
8510 // this method must always be called either with ThreadBase mLock held or inside the thread loop
stream() const8511 sp<StreamHalInterface> AudioFlinger::RecordThread::stream() const
8512 {
8513     if (mInput == NULL) {
8514         return NULL;
8515     }
8516     return mInput->stream;
8517 }
8518 
addEffectChain_l(const sp<EffectChain> & chain)8519 status_t AudioFlinger::RecordThread::addEffectChain_l(const sp<EffectChain>& chain)
8520 {
8521     ALOGV("addEffectChain_l() %p on thread %p", chain.get(), this);
8522     chain->setThread(this);
8523     chain->setInBuffer(NULL);
8524     chain->setOutBuffer(NULL);
8525 
8526     checkSuspendOnAddEffectChain_l(chain);
8527 
8528     // make sure enabled pre processing effects state is communicated to the HAL as we
8529     // just moved them to a new input stream.
8530     chain->syncHalEffectsState();
8531 
8532     mEffectChains.add(chain);
8533 
8534     return NO_ERROR;
8535 }
8536 
removeEffectChain_l(const sp<EffectChain> & chain)8537 size_t AudioFlinger::RecordThread::removeEffectChain_l(const sp<EffectChain>& chain)
8538 {
8539     ALOGV("removeEffectChain_l() %p from thread %p", chain.get(), this);
8540 
8541     for (size_t i = 0; i < mEffectChains.size(); i++) {
8542         if (chain == mEffectChains[i]) {
8543             mEffectChains.removeAt(i);
8544             break;
8545         }
8546     }
8547     return mEffectChains.size();
8548 }
8549 
createAudioPatch_l(const struct audio_patch * patch,audio_patch_handle_t * handle)8550 status_t AudioFlinger::RecordThread::createAudioPatch_l(const struct audio_patch *patch,
8551                                                           audio_patch_handle_t *handle)
8552 {
8553     status_t status = NO_ERROR;
8554 
8555     // store new device and send to effects
8556     mInDeviceTypeAddr.mType = patch->sources[0].ext.device.type;
8557     mInDeviceTypeAddr.mAddress = patch->sources[0].ext.device.address;
8558     audio_port_handle_t deviceId = patch->sources[0].id;
8559     for (size_t i = 0; i < mEffectChains.size(); i++) {
8560         mEffectChains[i]->setInputDevice_l(inDeviceTypeAddr());
8561     }
8562 
8563     checkBtNrec_l();
8564 
8565     // store new source and send to effects
8566     if (mAudioSource != patch->sinks[0].ext.mix.usecase.source) {
8567         mAudioSource = patch->sinks[0].ext.mix.usecase.source;
8568         for (size_t i = 0; i < mEffectChains.size(); i++) {
8569             mEffectChains[i]->setAudioSource_l(mAudioSource);
8570         }
8571     }
8572 
8573     if (mInput->audioHwDev->supportsAudioPatches()) {
8574         sp<DeviceHalInterface> hwDevice = mInput->audioHwDev->hwDevice();
8575         status = hwDevice->createAudioPatch(patch->num_sources,
8576                                             patch->sources,
8577                                             patch->num_sinks,
8578                                             patch->sinks,
8579                                             handle);
8580     } else {
8581         char *address;
8582         if (strcmp(patch->sources[0].ext.device.address, "") != 0) {
8583             address = audio_device_address_to_parameter(
8584                                                 patch->sources[0].ext.device.type,
8585                                                 patch->sources[0].ext.device.address);
8586         } else {
8587             address = (char *)calloc(1, 1);
8588         }
8589         AudioParameter param = AudioParameter(String8(address));
8590         free(address);
8591         param.addInt(String8(AudioParameter::keyRouting),
8592                      (int)patch->sources[0].ext.device.type);
8593         param.addInt(String8(AudioParameter::keyInputSource),
8594                                          (int)patch->sinks[0].ext.mix.usecase.source);
8595         status = mInput->stream->setParameters(param.toString());
8596         *handle = AUDIO_PATCH_HANDLE_NONE;
8597     }
8598 
8599     if ((mPatch.num_sources == 0) || (mPatch.sources[0].id != deviceId)) {
8600         sendIoConfigEvent_l(AUDIO_INPUT_CONFIG_CHANGED);
8601         mPatch = *patch;
8602     }
8603 
8604     const std::string pathSourcesAsString = patchSourcesToString(patch);
8605     mThreadMetrics.logEndInterval();
8606     mThreadMetrics.logCreatePatch(pathSourcesAsString, /* outDevices */ {});
8607     mThreadMetrics.logBeginInterval();
8608     // also dispatch to active AudioRecords
8609     for (const auto &track : mActiveTracks) {
8610         track->logEndInterval();
8611         track->logBeginInterval(pathSourcesAsString);
8612     }
8613     return status;
8614 }
8615 
releaseAudioPatch_l(const audio_patch_handle_t handle)8616 status_t AudioFlinger::RecordThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
8617 {
8618     status_t status = NO_ERROR;
8619 
8620     mPatch = audio_patch{};
8621     mInDeviceTypeAddr.reset();
8622 
8623     if (mInput->audioHwDev->supportsAudioPatches()) {
8624         sp<DeviceHalInterface> hwDevice = mInput->audioHwDev->hwDevice();
8625         status = hwDevice->releaseAudioPatch(handle);
8626     } else {
8627         AudioParameter param;
8628         param.addInt(String8(AudioParameter::keyRouting), 0);
8629         status = mInput->stream->setParameters(param.toString());
8630     }
8631     return status;
8632 }
8633 
updateOutDevices(const DeviceDescriptorBaseVector & outDevices)8634 void AudioFlinger::RecordThread::updateOutDevices(const DeviceDescriptorBaseVector& outDevices)
8635 {
8636     mOutDevices = outDevices;
8637     mOutDeviceTypeAddrs = deviceTypeAddrsFromDescriptors(mOutDevices);
8638     for (size_t i = 0; i < mEffectChains.size(); i++) {
8639         mEffectChains[i]->setDevices_l(outDeviceTypeAddrs());
8640     }
8641 }
8642 
addPatchTrack(const sp<PatchRecord> & record)8643 void AudioFlinger::RecordThread::addPatchTrack(const sp<PatchRecord>& record)
8644 {
8645     Mutex::Autolock _l(mLock);
8646     mTracks.add(record);
8647     if (record->getSource()) {
8648         mSource = record->getSource();
8649     }
8650 }
8651 
deletePatchTrack(const sp<PatchRecord> & record)8652 void AudioFlinger::RecordThread::deletePatchTrack(const sp<PatchRecord>& record)
8653 {
8654     Mutex::Autolock _l(mLock);
8655     if (mSource == record->getSource()) {
8656         mSource = mInput;
8657     }
8658     destroyTrack_l(record);
8659 }
8660 
toAudioPortConfig(struct audio_port_config * config)8661 void AudioFlinger::RecordThread::toAudioPortConfig(struct audio_port_config *config)
8662 {
8663     ThreadBase::toAudioPortConfig(config);
8664     config->role = AUDIO_PORT_ROLE_SINK;
8665     config->ext.mix.hw_module = mInput->audioHwDev->handle();
8666     config->ext.mix.usecase.source = mAudioSource;
8667     if (mInput && mInput->flags != AUDIO_INPUT_FLAG_NONE) {
8668         config->config_mask |= AUDIO_PORT_CONFIG_FLAGS;
8669         config->flags.input = mInput->flags;
8670     }
8671 }
8672 
8673 // ----------------------------------------------------------------------------
8674 //      Mmap
8675 // ----------------------------------------------------------------------------
8676 
MmapThreadHandle(const sp<MmapThread> & thread)8677 AudioFlinger::MmapThreadHandle::MmapThreadHandle(const sp<MmapThread>& thread)
8678     : mThread(thread)
8679 {
8680     assert(thread != 0); // thread must start non-null and stay non-null
8681 }
8682 
~MmapThreadHandle()8683 AudioFlinger::MmapThreadHandle::~MmapThreadHandle()
8684 {
8685     mThread->disconnect();
8686 }
8687 
createMmapBuffer(int32_t minSizeFrames,struct audio_mmap_buffer_info * info)8688 status_t AudioFlinger::MmapThreadHandle::createMmapBuffer(int32_t minSizeFrames,
8689                                   struct audio_mmap_buffer_info *info)
8690 {
8691     return mThread->createMmapBuffer(minSizeFrames, info);
8692 }
8693 
getMmapPosition(struct audio_mmap_position * position)8694 status_t AudioFlinger::MmapThreadHandle::getMmapPosition(struct audio_mmap_position *position)
8695 {
8696     return mThread->getMmapPosition(position);
8697 }
8698 
start(const AudioClient & client,const audio_attributes_t * attr,audio_port_handle_t * handle)8699 status_t AudioFlinger::MmapThreadHandle::start(const AudioClient& client,
8700         const audio_attributes_t *attr, audio_port_handle_t *handle)
8701 
8702 {
8703     return mThread->start(client, attr, handle);
8704 }
8705 
stop(audio_port_handle_t handle)8706 status_t AudioFlinger::MmapThreadHandle::stop(audio_port_handle_t handle)
8707 {
8708     return mThread->stop(handle);
8709 }
8710 
standby()8711 status_t AudioFlinger::MmapThreadHandle::standby()
8712 {
8713     return mThread->standby();
8714 }
8715 
8716 
MmapThread(const sp<AudioFlinger> & audioFlinger,audio_io_handle_t id,AudioHwDevice * hwDev,sp<StreamHalInterface> stream,bool systemReady,bool isOut)8717 AudioFlinger::MmapThread::MmapThread(
8718         const sp<AudioFlinger>& audioFlinger, audio_io_handle_t id,
8719         AudioHwDevice *hwDev, sp<StreamHalInterface> stream, bool systemReady, bool isOut)
8720     : ThreadBase(audioFlinger, id, (isOut ? MMAP_PLAYBACK : MMAP_CAPTURE), systemReady, isOut),
8721       mSessionId(AUDIO_SESSION_NONE),
8722       mPortId(AUDIO_PORT_HANDLE_NONE),
8723       mHalStream(stream), mHalDevice(hwDev->hwDevice()), mAudioHwDev(hwDev),
8724       mActiveTracks(&this->mLocalLog),
8725       mHalVolFloat(-1.0f), // Initialize to illegal value so it always gets set properly later.
8726       mNoCallbackWarningCount(0)
8727 {
8728     mStandby = true;
8729     readHalParameters_l();
8730 }
8731 
~MmapThread()8732 AudioFlinger::MmapThread::~MmapThread()
8733 {
8734     releaseWakeLock_l();
8735 }
8736 
onFirstRef()8737 void AudioFlinger::MmapThread::onFirstRef()
8738 {
8739     run(mThreadName, ANDROID_PRIORITY_URGENT_AUDIO);
8740 }
8741 
disconnect()8742 void AudioFlinger::MmapThread::disconnect()
8743 {
8744     ActiveTracks<MmapTrack> activeTracks;
8745     {
8746         Mutex::Autolock _l(mLock);
8747         for (const sp<MmapTrack> &t : mActiveTracks) {
8748             activeTracks.add(t);
8749         }
8750     }
8751     for (const sp<MmapTrack> &t : activeTracks) {
8752         stop(t->portId());
8753     }
8754     // This will decrement references and may cause the destruction of this thread.
8755     if (isOutput()) {
8756         AudioSystem::releaseOutput(mPortId);
8757     } else {
8758         AudioSystem::releaseInput(mPortId);
8759     }
8760 }
8761 
8762 
configure(const audio_attributes_t * attr,audio_stream_type_t streamType __unused,audio_session_t sessionId,const sp<MmapStreamCallback> & callback,audio_port_handle_t deviceId,audio_port_handle_t portId)8763 void AudioFlinger::MmapThread::configure(const audio_attributes_t *attr,
8764                                                 audio_stream_type_t streamType __unused,
8765                                                 audio_session_t sessionId,
8766                                                 const sp<MmapStreamCallback>& callback,
8767                                                 audio_port_handle_t deviceId,
8768                                                 audio_port_handle_t portId)
8769 {
8770     mAttr = *attr;
8771     mSessionId = sessionId;
8772     mCallback = callback;
8773     mDeviceId = deviceId;
8774     mPortId = portId;
8775 }
8776 
createMmapBuffer(int32_t minSizeFrames,struct audio_mmap_buffer_info * info)8777 status_t AudioFlinger::MmapThread::createMmapBuffer(int32_t minSizeFrames,
8778                                   struct audio_mmap_buffer_info *info)
8779 {
8780     if (mHalStream == 0) {
8781         return NO_INIT;
8782     }
8783     mStandby = true;
8784     acquireWakeLock();
8785     return mHalStream->createMmapBuffer(minSizeFrames, info);
8786 }
8787 
getMmapPosition(struct audio_mmap_position * position)8788 status_t AudioFlinger::MmapThread::getMmapPosition(struct audio_mmap_position *position)
8789 {
8790     if (mHalStream == 0) {
8791         return NO_INIT;
8792     }
8793     return mHalStream->getMmapPosition(position);
8794 }
8795 
exitStandby()8796 status_t AudioFlinger::MmapThread::exitStandby()
8797 {
8798     status_t ret = mHalStream->start();
8799     if (ret != NO_ERROR) {
8800         ALOGE("%s: error mHalStream->start() = %d for first track", __FUNCTION__, ret);
8801         return ret;
8802     }
8803     if (mStandby) {
8804         mThreadMetrics.logBeginInterval();
8805         mStandby = false;
8806     }
8807     return NO_ERROR;
8808 }
8809 
start(const AudioClient & client,const audio_attributes_t * attr,audio_port_handle_t * handle)8810 status_t AudioFlinger::MmapThread::start(const AudioClient& client,
8811                                          const audio_attributes_t *attr,
8812                                          audio_port_handle_t *handle)
8813 {
8814     ALOGV("%s clientUid %d mStandby %d mPortId %d *handle %d", __FUNCTION__,
8815           client.clientUid, mStandby, mPortId, *handle);
8816     if (mHalStream == 0) {
8817         return NO_INIT;
8818     }
8819 
8820     status_t ret;
8821 
8822     if (*handle == mPortId) {
8823         // for the first track, reuse portId and session allocated when the stream was opened
8824         return exitStandby();
8825     }
8826 
8827     audio_port_handle_t portId = AUDIO_PORT_HANDLE_NONE;
8828 
8829     audio_io_handle_t io = mId;
8830     if (isOutput()) {
8831         audio_config_t config = AUDIO_CONFIG_INITIALIZER;
8832         config.sample_rate = mSampleRate;
8833         config.channel_mask = mChannelMask;
8834         config.format = mFormat;
8835         audio_stream_type_t stream = streamType();
8836         audio_output_flags_t flags =
8837                 (audio_output_flags_t)(AUDIO_OUTPUT_FLAG_MMAP_NOIRQ | AUDIO_OUTPUT_FLAG_DIRECT);
8838         audio_port_handle_t deviceId = mDeviceId;
8839         std::vector<audio_io_handle_t> secondaryOutputs;
8840         ret = AudioSystem::getOutputForAttr(&mAttr, &io,
8841                                             mSessionId,
8842                                             &stream,
8843                                             client.clientPid,
8844                                             client.clientUid,
8845                                             &config,
8846                                             flags,
8847                                             &deviceId,
8848                                             &portId,
8849                                             &secondaryOutputs);
8850         ALOGD_IF(!secondaryOutputs.empty(),
8851                  "MmapThread::start does not support secondary outputs, ignoring them");
8852     } else {
8853         audio_config_base_t config;
8854         config.sample_rate = mSampleRate;
8855         config.channel_mask = mChannelMask;
8856         config.format = mFormat;
8857         audio_port_handle_t deviceId = mDeviceId;
8858         ret = AudioSystem::getInputForAttr(&mAttr, &io,
8859                                               RECORD_RIID_INVALID,
8860                                               mSessionId,
8861                                               client.clientPid,
8862                                               client.clientUid,
8863                                               client.packageName,
8864                                               &config,
8865                                               AUDIO_INPUT_FLAG_MMAP_NOIRQ,
8866                                               &deviceId,
8867                                               &portId);
8868     }
8869     // APM should not chose a different input or output stream for the same set of attributes
8870     // and audo configuration
8871     if (ret != NO_ERROR || io != mId) {
8872         ALOGE("%s: error getting output or input from APM (error %d, io %d expected io %d)",
8873               __FUNCTION__, ret, io, mId);
8874         return BAD_VALUE;
8875     }
8876 
8877     if (isOutput()) {
8878         ret = AudioSystem::startOutput(portId);
8879     } else {
8880         ret = AudioSystem::startInput(portId);
8881     }
8882 
8883     Mutex::Autolock _l(mLock);
8884     // abort if start is rejected by audio policy manager
8885     if (ret != NO_ERROR) {
8886         ALOGE("%s: error start rejected by AudioPolicyManager = %d", __FUNCTION__, ret);
8887         if (!mActiveTracks.isEmpty()) {
8888             mLock.unlock();
8889             if (isOutput()) {
8890                 AudioSystem::releaseOutput(portId);
8891             } else {
8892                 AudioSystem::releaseInput(portId);
8893             }
8894             mLock.lock();
8895         } else {
8896             mHalStream->stop();
8897         }
8898         return PERMISSION_DENIED;
8899     }
8900 
8901     // Given that MmapThread::mAttr is mutable, should a MmapTrack have attributes ?
8902     sp<MmapTrack> track = new MmapTrack(this, attr == nullptr ? mAttr : *attr, mSampleRate, mFormat,
8903                                         mChannelMask, mSessionId, isOutput(), client.clientUid,
8904                                         client.clientPid, IPCThreadState::self()->getCallingPid(),
8905                                         portId);
8906 
8907     if (isOutput()) {
8908         // force volume update when a new track is added
8909         mHalVolFloat = -1.0f;
8910     } else if (!track->isSilenced_l()) {
8911         for (const sp<MmapTrack> &t : mActiveTracks) {
8912             if (t->isSilenced_l() && t->uid() != client.clientUid)
8913                 t->invalidate();
8914         }
8915     }
8916 
8917 
8918     mActiveTracks.add(track);
8919     sp<EffectChain> chain = getEffectChain_l(mSessionId);
8920     if (chain != 0) {
8921         chain->setStrategy(AudioSystem::getStrategyForStream(streamType()));
8922         chain->incTrackCnt();
8923         chain->incActiveTrackCnt();
8924     }
8925 
8926     track->logBeginInterval(patchSinksToString(&mPatch)); // log to MediaMetrics
8927     *handle = portId;
8928     broadcast_l();
8929 
8930     ALOGV("%s DONE handle %d stream %p", __FUNCTION__, *handle, mHalStream.get());
8931 
8932     return NO_ERROR;
8933 }
8934 
stop(audio_port_handle_t handle)8935 status_t AudioFlinger::MmapThread::stop(audio_port_handle_t handle)
8936 {
8937     ALOGV("%s handle %d", __FUNCTION__, handle);
8938 
8939     if (mHalStream == 0) {
8940         return NO_INIT;
8941     }
8942 
8943     if (handle == mPortId) {
8944         mHalStream->stop();
8945         return NO_ERROR;
8946     }
8947 
8948     Mutex::Autolock _l(mLock);
8949 
8950     sp<MmapTrack> track;
8951     for (const sp<MmapTrack> &t : mActiveTracks) {
8952         if (handle == t->portId()) {
8953             track = t;
8954             break;
8955         }
8956     }
8957     if (track == 0) {
8958         return BAD_VALUE;
8959     }
8960 
8961     mActiveTracks.remove(track);
8962 
8963     mLock.unlock();
8964     if (isOutput()) {
8965         AudioSystem::stopOutput(track->portId());
8966         AudioSystem::releaseOutput(track->portId());
8967     } else {
8968         AudioSystem::stopInput(track->portId());
8969         AudioSystem::releaseInput(track->portId());
8970     }
8971     mLock.lock();
8972 
8973     sp<EffectChain> chain = getEffectChain_l(track->sessionId());
8974     if (chain != 0) {
8975         chain->decActiveTrackCnt();
8976         chain->decTrackCnt();
8977     }
8978 
8979     broadcast_l();
8980 
8981     return NO_ERROR;
8982 }
8983 
standby()8984 status_t AudioFlinger::MmapThread::standby()
8985 {
8986     ALOGV("%s", __FUNCTION__);
8987 
8988     if (mHalStream == 0) {
8989         return NO_INIT;
8990     }
8991     if (!mActiveTracks.isEmpty()) {
8992         return INVALID_OPERATION;
8993     }
8994     mHalStream->standby();
8995     if (!mStandby) {
8996         mThreadMetrics.logEndInterval();
8997         mStandby = true;
8998     }
8999     releaseWakeLock();
9000     return NO_ERROR;
9001 }
9002 
9003 
readHalParameters_l()9004 void AudioFlinger::MmapThread::readHalParameters_l()
9005 {
9006     status_t result = mHalStream->getAudioProperties(&mSampleRate, &mChannelMask, &mHALFormat);
9007     LOG_ALWAYS_FATAL_IF(result != OK, "Error retrieving audio properties from HAL: %d", result);
9008     mFormat = mHALFormat;
9009     LOG_ALWAYS_FATAL_IF(!audio_is_linear_pcm(mFormat), "HAL format %#x is not linear pcm", mFormat);
9010     result = mHalStream->getFrameSize(&mFrameSize);
9011     LOG_ALWAYS_FATAL_IF(result != OK, "Error retrieving frame size from HAL: %d", result);
9012     LOG_ALWAYS_FATAL_IF(mFrameSize <= 0, "Error frame size was %zu but must be greater than zero",
9013             mFrameSize);
9014     result = mHalStream->getBufferSize(&mBufferSize);
9015     LOG_ALWAYS_FATAL_IF(result != OK, "Error retrieving buffer size from HAL: %d", result);
9016     mFrameCount = mBufferSize / mFrameSize;
9017 
9018     // TODO: make a readHalParameters call?
9019     mediametrics::LogItem item(mThreadMetrics.getMetricsId());
9020     item.set(AMEDIAMETRICS_PROP_EVENT, AMEDIAMETRICS_PROP_EVENT_VALUE_READPARAMETERS)
9021         .set(AMEDIAMETRICS_PROP_ENCODING, formatToString(mFormat).c_str())
9022         .set(AMEDIAMETRICS_PROP_SAMPLERATE, (int32_t)mSampleRate)
9023         .set(AMEDIAMETRICS_PROP_CHANNELMASK, (int32_t)mChannelMask)
9024         .set(AMEDIAMETRICS_PROP_CHANNELCOUNT, (int32_t)mChannelCount)
9025         .set(AMEDIAMETRICS_PROP_FRAMECOUNT, (int32_t)mFrameCount)
9026         /*
9027         .set(AMEDIAMETRICS_PROP_FLAGS, toString(flags).c_str())
9028         .set(AMEDIAMETRICS_PROP_PREFIX_HAPTIC AMEDIAMETRICS_PROP_CHANNELMASK,
9029                 (int32_t)mHapticChannelMask)
9030         .set(AMEDIAMETRICS_PROP_PREFIX_HAPTIC AMEDIAMETRICS_PROP_CHANNELCOUNT,
9031                 (int32_t)mHapticChannelCount)
9032         */
9033         .set(AMEDIAMETRICS_PROP_PREFIX_HAL    AMEDIAMETRICS_PROP_ENCODING,
9034                 formatToString(mHALFormat).c_str())
9035         .set(AMEDIAMETRICS_PROP_PREFIX_HAL    AMEDIAMETRICS_PROP_FRAMECOUNT,
9036                 (int32_t)mFrameCount) // sic - added HAL
9037         .record();
9038 }
9039 
threadLoop()9040 bool AudioFlinger::MmapThread::threadLoop()
9041 {
9042     checkSilentMode_l();
9043 
9044     const String8 myName(String8::format("thread %p type %d TID %d", this, mType, gettid()));
9045 
9046     while (!exitPending())
9047     {
9048         Vector< sp<EffectChain> > effectChains;
9049 
9050         { // under Thread lock
9051         Mutex::Autolock _l(mLock);
9052 
9053         if (mSignalPending) {
9054             // A signal was raised while we were unlocked
9055             mSignalPending = false;
9056         } else {
9057             if (mConfigEvents.isEmpty()) {
9058                 // we're about to wait, flush the binder command buffer
9059                 IPCThreadState::self()->flushCommands();
9060 
9061                 if (exitPending()) {
9062                     break;
9063                 }
9064 
9065                 // wait until we have something to do...
9066                 ALOGV("%s going to sleep", myName.string());
9067                 mWaitWorkCV.wait(mLock);
9068                 ALOGV("%s waking up", myName.string());
9069 
9070                 checkSilentMode_l();
9071 
9072                 continue;
9073             }
9074         }
9075 
9076         processConfigEvents_l();
9077 
9078         processVolume_l();
9079 
9080         checkInvalidTracks_l();
9081 
9082         mActiveTracks.updatePowerState(this);
9083 
9084         updateMetadata_l();
9085 
9086         lockEffectChains_l(effectChains);
9087         } // release Thread lock
9088 
9089         for (size_t i = 0; i < effectChains.size(); i ++) {
9090             effectChains[i]->process_l(); // Thread is not locked, but effect chain is locked
9091         }
9092 
9093         // enable changes in effect chain, including moving to another thread.
9094         unlockEffectChains(effectChains);
9095         // Effect chains will be actually deleted here if they were removed from
9096         // mEffectChains list during mixing or effects processing
9097     }
9098 
9099     threadLoop_exit();
9100 
9101     if (!mStandby) {
9102         threadLoop_standby();
9103         mStandby = true;
9104     }
9105 
9106     ALOGV("Thread %p type %d exiting", this, mType);
9107     return false;
9108 }
9109 
9110 // checkForNewParameter_l() must be called with ThreadBase::mLock held
checkForNewParameter_l(const String8 & keyValuePair,status_t & status)9111 bool AudioFlinger::MmapThread::checkForNewParameter_l(const String8& keyValuePair,
9112                                                               status_t& status)
9113 {
9114     AudioParameter param = AudioParameter(keyValuePair);
9115     int value;
9116     bool sendToHal = true;
9117     if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
9118         LOG_FATAL("Should not happen set routing device in MmapThread");
9119     }
9120     if (sendToHal) {
9121         status = mHalStream->setParameters(keyValuePair);
9122     } else {
9123         status = NO_ERROR;
9124     }
9125 
9126     return false;
9127 }
9128 
getParameters(const String8 & keys)9129 String8 AudioFlinger::MmapThread::getParameters(const String8& keys)
9130 {
9131     Mutex::Autolock _l(mLock);
9132     String8 out_s8;
9133     if (initCheck() == NO_ERROR && mHalStream->getParameters(keys, &out_s8) == OK) {
9134         return out_s8;
9135     }
9136     return String8();
9137 }
9138 
ioConfigChanged(audio_io_config_event event,pid_t pid,audio_port_handle_t portId __unused)9139 void AudioFlinger::MmapThread::ioConfigChanged(audio_io_config_event event, pid_t pid,
9140                                                audio_port_handle_t portId __unused) {
9141     sp<AudioIoDescriptor> desc = new AudioIoDescriptor();
9142 
9143     desc->mIoHandle = mId;
9144 
9145     switch (event) {
9146     case AUDIO_INPUT_OPENED:
9147     case AUDIO_INPUT_REGISTERED:
9148     case AUDIO_INPUT_CONFIG_CHANGED:
9149     case AUDIO_OUTPUT_OPENED:
9150     case AUDIO_OUTPUT_REGISTERED:
9151     case AUDIO_OUTPUT_CONFIG_CHANGED:
9152         desc->mPatch = mPatch;
9153         desc->mChannelMask = mChannelMask;
9154         desc->mSamplingRate = mSampleRate;
9155         desc->mFormat = mFormat;
9156         desc->mFrameCount = mFrameCount;
9157         desc->mFrameCountHAL = mFrameCount;
9158         desc->mLatency = 0;
9159         break;
9160 
9161     case AUDIO_INPUT_CLOSED:
9162     case AUDIO_OUTPUT_CLOSED:
9163     default:
9164         break;
9165     }
9166     mAudioFlinger->ioConfigChanged(event, desc, pid);
9167 }
9168 
createAudioPatch_l(const struct audio_patch * patch,audio_patch_handle_t * handle)9169 status_t AudioFlinger::MmapThread::createAudioPatch_l(const struct audio_patch *patch,
9170                                                           audio_patch_handle_t *handle)
9171 {
9172     status_t status = NO_ERROR;
9173 
9174     // store new device and send to effects
9175     audio_devices_t type = AUDIO_DEVICE_NONE;
9176     audio_port_handle_t deviceId;
9177     AudioDeviceTypeAddrVector sinkDeviceTypeAddrs;
9178     AudioDeviceTypeAddr sourceDeviceTypeAddr;
9179     uint32_t numDevices = 0;
9180     if (isOutput()) {
9181         for (unsigned int i = 0; i < patch->num_sinks; i++) {
9182             LOG_ALWAYS_FATAL_IF(popcount(patch->sinks[i].ext.device.type) > 1
9183                                 && !mAudioHwDev->supportsAudioPatches(),
9184                                 "Enumerated device type(%#x) must not be used "
9185                                 "as it does not support audio patches",
9186                                 patch->sinks[i].ext.device.type);
9187             type |= patch->sinks[i].ext.device.type;
9188             sinkDeviceTypeAddrs.push_back(AudioDeviceTypeAddr(patch->sinks[i].ext.device.type,
9189                     patch->sinks[i].ext.device.address));
9190         }
9191         deviceId = patch->sinks[0].id;
9192         numDevices = mPatch.num_sinks;
9193     } else {
9194         type = patch->sources[0].ext.device.type;
9195         deviceId = patch->sources[0].id;
9196         numDevices = mPatch.num_sources;
9197         sourceDeviceTypeAddr.mType = patch->sources[0].ext.device.type;
9198         sourceDeviceTypeAddr.mAddress = patch->sources[0].ext.device.address;
9199     }
9200 
9201     for (size_t i = 0; i < mEffectChains.size(); i++) {
9202         if (isOutput()) {
9203             mEffectChains[i]->setDevices_l(sinkDeviceTypeAddrs);
9204         } else {
9205             mEffectChains[i]->setInputDevice_l(sourceDeviceTypeAddr);
9206         }
9207     }
9208 
9209     if (!isOutput()) {
9210         // store new source and send to effects
9211         if (mAudioSource != patch->sinks[0].ext.mix.usecase.source) {
9212             mAudioSource = patch->sinks[0].ext.mix.usecase.source;
9213             for (size_t i = 0; i < mEffectChains.size(); i++) {
9214                 mEffectChains[i]->setAudioSource_l(mAudioSource);
9215             }
9216         }
9217     }
9218 
9219     if (mAudioHwDev->supportsAudioPatches()) {
9220         status = mHalDevice->createAudioPatch(patch->num_sources,
9221                                             patch->sources,
9222                                             patch->num_sinks,
9223                                             patch->sinks,
9224                                             handle);
9225     } else {
9226         char *address;
9227         if (strcmp(patch->sinks[0].ext.device.address, "") != 0) {
9228             //FIXME: we only support address on first sink with HAL version < 3.0
9229             address = audio_device_address_to_parameter(
9230                                                         patch->sinks[0].ext.device.type,
9231                                                         patch->sinks[0].ext.device.address);
9232         } else {
9233             address = (char *)calloc(1, 1);
9234         }
9235         AudioParameter param = AudioParameter(String8(address));
9236         free(address);
9237         param.addInt(String8(AudioParameter::keyRouting), (int)type);
9238         if (!isOutput()) {
9239             param.addInt(String8(AudioParameter::keyInputSource),
9240                                          (int)patch->sinks[0].ext.mix.usecase.source);
9241         }
9242         status = mHalStream->setParameters(param.toString());
9243         *handle = AUDIO_PATCH_HANDLE_NONE;
9244     }
9245 
9246     if (numDevices == 0 || mDeviceId != deviceId) {
9247         if (isOutput()) {
9248             sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
9249             mOutDeviceTypeAddrs = sinkDeviceTypeAddrs;
9250             checkSilentMode_l();
9251         } else {
9252             sendIoConfigEvent_l(AUDIO_INPUT_CONFIG_CHANGED);
9253             mInDeviceTypeAddr = sourceDeviceTypeAddr;
9254         }
9255         sp<MmapStreamCallback> callback = mCallback.promote();
9256         if (mDeviceId != deviceId && callback != 0) {
9257             mLock.unlock();
9258             callback->onRoutingChanged(deviceId);
9259             mLock.lock();
9260         }
9261         mPatch = *patch;
9262         mDeviceId = deviceId;
9263     }
9264     return status;
9265 }
9266 
releaseAudioPatch_l(const audio_patch_handle_t handle)9267 status_t AudioFlinger::MmapThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
9268 {
9269     status_t status = NO_ERROR;
9270 
9271     mPatch = audio_patch{};
9272     mOutDeviceTypeAddrs.clear();
9273     mInDeviceTypeAddr.reset();
9274 
9275     bool supportsAudioPatches = mHalDevice->supportsAudioPatches(&supportsAudioPatches) == OK ?
9276                                         supportsAudioPatches : false;
9277 
9278     if (supportsAudioPatches) {
9279         status = mHalDevice->releaseAudioPatch(handle);
9280     } else {
9281         AudioParameter param;
9282         param.addInt(String8(AudioParameter::keyRouting), 0);
9283         status = mHalStream->setParameters(param.toString());
9284     }
9285     return status;
9286 }
9287 
toAudioPortConfig(struct audio_port_config * config)9288 void AudioFlinger::MmapThread::toAudioPortConfig(struct audio_port_config *config)
9289 {
9290     ThreadBase::toAudioPortConfig(config);
9291     if (isOutput()) {
9292         config->role = AUDIO_PORT_ROLE_SOURCE;
9293         config->ext.mix.hw_module = mAudioHwDev->handle();
9294         config->ext.mix.usecase.stream = AUDIO_STREAM_DEFAULT;
9295     } else {
9296         config->role = AUDIO_PORT_ROLE_SINK;
9297         config->ext.mix.hw_module = mAudioHwDev->handle();
9298         config->ext.mix.usecase.source = mAudioSource;
9299     }
9300 }
9301 
addEffectChain_l(const sp<EffectChain> & chain)9302 status_t AudioFlinger::MmapThread::addEffectChain_l(const sp<EffectChain>& chain)
9303 {
9304     audio_session_t session = chain->sessionId();
9305 
9306     ALOGV("addEffectChain_l() %p on thread %p for session %d", chain.get(), this, session);
9307     // Attach all tracks with same session ID to this chain.
9308     // indicate all active tracks in the chain
9309     for (const sp<MmapTrack> &track : mActiveTracks) {
9310         if (session == track->sessionId()) {
9311             chain->incTrackCnt();
9312             chain->incActiveTrackCnt();
9313         }
9314     }
9315 
9316     chain->setThread(this);
9317     chain->setInBuffer(nullptr);
9318     chain->setOutBuffer(nullptr);
9319     chain->syncHalEffectsState();
9320 
9321     mEffectChains.add(chain);
9322     checkSuspendOnAddEffectChain_l(chain);
9323     return NO_ERROR;
9324 }
9325 
removeEffectChain_l(const sp<EffectChain> & chain)9326 size_t AudioFlinger::MmapThread::removeEffectChain_l(const sp<EffectChain>& chain)
9327 {
9328     audio_session_t session = chain->sessionId();
9329 
9330     ALOGV("removeEffectChain_l() %p from thread %p for session %d", chain.get(), this, session);
9331 
9332     for (size_t i = 0; i < mEffectChains.size(); i++) {
9333         if (chain == mEffectChains[i]) {
9334             mEffectChains.removeAt(i);
9335             // detach all active tracks from the chain
9336             // detach all tracks with same session ID from this chain
9337             for (const sp<MmapTrack> &track : mActiveTracks) {
9338                 if (session == track->sessionId()) {
9339                     chain->decActiveTrackCnt();
9340                     chain->decTrackCnt();
9341                 }
9342             }
9343             break;
9344         }
9345     }
9346     return mEffectChains.size();
9347 }
9348 
threadLoop_standby()9349 void AudioFlinger::MmapThread::threadLoop_standby()
9350 {
9351     mHalStream->standby();
9352 }
9353 
threadLoop_exit()9354 void AudioFlinger::MmapThread::threadLoop_exit()
9355 {
9356     // Do not call callback->onTearDown() because it is redundant for thread exit
9357     // and because it can cause a recursive mutex lock on stop().
9358 }
9359 
setSyncEvent(const sp<SyncEvent> & event __unused)9360 status_t AudioFlinger::MmapThread::setSyncEvent(const sp<SyncEvent>& event __unused)
9361 {
9362     return BAD_VALUE;
9363 }
9364 
isValidSyncEvent(const sp<SyncEvent> & event __unused) const9365 bool AudioFlinger::MmapThread::isValidSyncEvent(const sp<SyncEvent>& event __unused) const
9366 {
9367     return false;
9368 }
9369 
checkEffectCompatibility_l(const effect_descriptor_t * desc,audio_session_t sessionId)9370 status_t AudioFlinger::MmapThread::checkEffectCompatibility_l(
9371         const effect_descriptor_t *desc, audio_session_t sessionId)
9372 {
9373     // No global effect sessions on mmap threads
9374     if (audio_is_global_session(sessionId)) {
9375         ALOGW("checkEffectCompatibility_l(): global effect %s on MMAP thread %s",
9376                 desc->name, mThreadName);
9377         return BAD_VALUE;
9378     }
9379 
9380     if (!isOutput() && ((desc->flags & EFFECT_FLAG_TYPE_MASK) != EFFECT_FLAG_TYPE_PRE_PROC)) {
9381         ALOGW("checkEffectCompatibility_l(): non pre processing effect %s on capture mmap thread",
9382                 desc->name);
9383         return BAD_VALUE;
9384     }
9385     if (isOutput() && ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_PRE_PROC)) {
9386         ALOGW("checkEffectCompatibility_l(): pre processing effect %s created on playback mmap "
9387               "thread", desc->name);
9388         return BAD_VALUE;
9389     }
9390 
9391     // Only allow effects without processing load or latency
9392     if ((desc->flags & EFFECT_FLAG_NO_PROCESS_MASK) != EFFECT_FLAG_NO_PROCESS) {
9393         return BAD_VALUE;
9394     }
9395 
9396     return NO_ERROR;
9397 }
9398 
checkInvalidTracks_l()9399 void AudioFlinger::MmapThread::checkInvalidTracks_l()
9400 {
9401     for (const sp<MmapTrack> &track : mActiveTracks) {
9402         if (track->isInvalid()) {
9403             sp<MmapStreamCallback> callback = mCallback.promote();
9404             if (callback != 0) {
9405                 mLock.unlock();
9406                 callback->onTearDown(track->portId());
9407                 mLock.lock();
9408             } else if (mNoCallbackWarningCount < kMaxNoCallbackWarnings) {
9409                 ALOGW("Could not notify MMAP stream tear down: no onTearDown callback!");
9410                 mNoCallbackWarningCount++;
9411             }
9412         }
9413     }
9414 }
9415 
dumpInternals_l(int fd,const Vector<String16> & args __unused)9416 void AudioFlinger::MmapThread::dumpInternals_l(int fd, const Vector<String16>& args __unused)
9417 {
9418     dprintf(fd, "  Attributes: content type %d usage %d source %d\n",
9419             mAttr.content_type, mAttr.usage, mAttr.source);
9420     dprintf(fd, "  Session: %d port Id: %d\n", mSessionId, mPortId);
9421     if (mActiveTracks.isEmpty()) {
9422         dprintf(fd, "  No active clients\n");
9423     }
9424 }
9425 
dumpTracks_l(int fd,const Vector<String16> & args __unused)9426 void AudioFlinger::MmapThread::dumpTracks_l(int fd, const Vector<String16>& args __unused)
9427 {
9428     String8 result;
9429     size_t numtracks = mActiveTracks.size();
9430     dprintf(fd, "  %zu Tracks\n", numtracks);
9431     const char *prefix = "    ";
9432     if (numtracks) {
9433         result.append(prefix);
9434         mActiveTracks[0]->appendDumpHeader(result);
9435         for (size_t i = 0; i < numtracks ; ++i) {
9436             sp<MmapTrack> track = mActiveTracks[i];
9437             result.append(prefix);
9438             track->appendDump(result, true /* active */);
9439         }
9440     } else {
9441         dprintf(fd, "\n");
9442     }
9443     write(fd, result.string(), result.size());
9444 }
9445 
MmapPlaybackThread(const sp<AudioFlinger> & audioFlinger,audio_io_handle_t id,AudioHwDevice * hwDev,AudioStreamOut * output,bool systemReady)9446 AudioFlinger::MmapPlaybackThread::MmapPlaybackThread(
9447         const sp<AudioFlinger>& audioFlinger, audio_io_handle_t id,
9448         AudioHwDevice *hwDev,  AudioStreamOut *output, bool systemReady)
9449     : MmapThread(audioFlinger, id, hwDev, output->stream, systemReady, true /* isOut */),
9450       mStreamType(AUDIO_STREAM_MUSIC),
9451       mStreamVolume(1.0),
9452       mStreamMute(false),
9453       mOutput(output)
9454 {
9455     snprintf(mThreadName, kThreadNameLength, "AudioMmapOut_%X", id);
9456     mChannelCount = audio_channel_count_from_out_mask(mChannelMask);
9457     mMasterVolume = audioFlinger->masterVolume_l();
9458     mMasterMute = audioFlinger->masterMute_l();
9459     if (mAudioHwDev) {
9460         if (mAudioHwDev->canSetMasterVolume()) {
9461             mMasterVolume = 1.0;
9462         }
9463 
9464         if (mAudioHwDev->canSetMasterMute()) {
9465             mMasterMute = false;
9466         }
9467     }
9468 }
9469 
configure(const audio_attributes_t * attr,audio_stream_type_t streamType,audio_session_t sessionId,const sp<MmapStreamCallback> & callback,audio_port_handle_t deviceId,audio_port_handle_t portId)9470 void AudioFlinger::MmapPlaybackThread::configure(const audio_attributes_t *attr,
9471                                                 audio_stream_type_t streamType,
9472                                                 audio_session_t sessionId,
9473                                                 const sp<MmapStreamCallback>& callback,
9474                                                 audio_port_handle_t deviceId,
9475                                                 audio_port_handle_t portId)
9476 {
9477     MmapThread::configure(attr, streamType, sessionId, callback, deviceId, portId);
9478     mStreamType = streamType;
9479 }
9480 
clearOutput()9481 AudioStreamOut* AudioFlinger::MmapPlaybackThread::clearOutput()
9482 {
9483     Mutex::Autolock _l(mLock);
9484     AudioStreamOut *output = mOutput;
9485     mOutput = NULL;
9486     return output;
9487 }
9488 
setMasterVolume(float value)9489 void AudioFlinger::MmapPlaybackThread::setMasterVolume(float value)
9490 {
9491     Mutex::Autolock _l(mLock);
9492     // Don't apply master volume in SW if our HAL can do it for us.
9493     if (mAudioHwDev &&
9494             mAudioHwDev->canSetMasterVolume()) {
9495         mMasterVolume = 1.0;
9496     } else {
9497         mMasterVolume = value;
9498     }
9499 }
9500 
setMasterMute(bool muted)9501 void AudioFlinger::MmapPlaybackThread::setMasterMute(bool muted)
9502 {
9503     Mutex::Autolock _l(mLock);
9504     // Don't apply master mute in SW if our HAL can do it for us.
9505     if (mAudioHwDev && mAudioHwDev->canSetMasterMute()) {
9506         mMasterMute = false;
9507     } else {
9508         mMasterMute = muted;
9509     }
9510 }
9511 
setStreamVolume(audio_stream_type_t stream,float value)9512 void AudioFlinger::MmapPlaybackThread::setStreamVolume(audio_stream_type_t stream, float value)
9513 {
9514     Mutex::Autolock _l(mLock);
9515     if (stream == mStreamType) {
9516         mStreamVolume = value;
9517         broadcast_l();
9518     }
9519 }
9520 
streamVolume(audio_stream_type_t stream) const9521 float AudioFlinger::MmapPlaybackThread::streamVolume(audio_stream_type_t stream) const
9522 {
9523     Mutex::Autolock _l(mLock);
9524     if (stream == mStreamType) {
9525         return mStreamVolume;
9526     }
9527     return 0.0f;
9528 }
9529 
setStreamMute(audio_stream_type_t stream,bool muted)9530 void AudioFlinger::MmapPlaybackThread::setStreamMute(audio_stream_type_t stream, bool muted)
9531 {
9532     Mutex::Autolock _l(mLock);
9533     if (stream == mStreamType) {
9534         mStreamMute= muted;
9535         broadcast_l();
9536     }
9537 }
9538 
invalidateTracks(audio_stream_type_t streamType)9539 void AudioFlinger::MmapPlaybackThread::invalidateTracks(audio_stream_type_t streamType)
9540 {
9541     Mutex::Autolock _l(mLock);
9542     if (streamType == mStreamType) {
9543         for (const sp<MmapTrack> &track : mActiveTracks) {
9544             track->invalidate();
9545         }
9546         broadcast_l();
9547     }
9548 }
9549 
processVolume_l()9550 void AudioFlinger::MmapPlaybackThread::processVolume_l()
9551 {
9552     float volume;
9553 
9554     if (mMasterMute || mStreamMute) {
9555         volume = 0;
9556     } else {
9557         volume = mMasterVolume * mStreamVolume;
9558     }
9559 
9560     if (volume != mHalVolFloat) {
9561 
9562         // Convert volumes from float to 8.24
9563         uint32_t vol = (uint32_t)(volume * (1 << 24));
9564 
9565         // Delegate volume control to effect in track effect chain if needed
9566         // only one effect chain can be present on DirectOutputThread, so if
9567         // there is one, the track is connected to it
9568         if (!mEffectChains.isEmpty()) {
9569             mEffectChains[0]->setVolume_l(&vol, &vol);
9570             volume = (float)vol / (1 << 24);
9571         }
9572         // Try to use HW volume control and fall back to SW control if not implemented
9573         if (mOutput->stream->setVolume(volume, volume) == NO_ERROR) {
9574             mHalVolFloat = volume; // HW volume control worked, so update value.
9575             mNoCallbackWarningCount = 0;
9576         } else {
9577             sp<MmapStreamCallback> callback = mCallback.promote();
9578             if (callback != 0) {
9579                 int channelCount;
9580                 if (isOutput()) {
9581                     channelCount = audio_channel_count_from_out_mask(mChannelMask);
9582                 } else {
9583                     channelCount = audio_channel_count_from_in_mask(mChannelMask);
9584                 }
9585                 Vector<float> values;
9586                 for (int i = 0; i < channelCount; i++) {
9587                     values.add(volume);
9588                 }
9589                 mHalVolFloat = volume; // SW volume control worked, so update value.
9590                 mNoCallbackWarningCount = 0;
9591                 mLock.unlock();
9592                 callback->onVolumeChanged(mChannelMask, values);
9593                 mLock.lock();
9594             } else {
9595                 if (mNoCallbackWarningCount < kMaxNoCallbackWarnings) {
9596                     ALOGW("Could not set MMAP stream volume: no volume callback!");
9597                     mNoCallbackWarningCount++;
9598                 }
9599             }
9600         }
9601     }
9602 }
9603 
updateMetadata_l()9604 void AudioFlinger::MmapPlaybackThread::updateMetadata_l()
9605 {
9606     if (mOutput == nullptr || mOutput->stream == nullptr ||
9607             !mActiveTracks.readAndClearHasChanged()) {
9608         return;
9609     }
9610     StreamOutHalInterface::SourceMetadata metadata;
9611     for (const sp<MmapTrack> &track : mActiveTracks) {
9612         // No track is invalid as this is called after prepareTrack_l in the same critical section
9613         metadata.tracks.push_back({
9614                 .usage = track->attributes().usage,
9615                 .content_type = track->attributes().content_type,
9616                 .gain = mHalVolFloat, // TODO: propagate from aaudio pre-mix volume
9617         });
9618     }
9619     mOutput->stream->updateSourceMetadata(metadata);
9620 }
9621 
checkSilentMode_l()9622 void AudioFlinger::MmapPlaybackThread::checkSilentMode_l()
9623 {
9624     if (!mMasterMute) {
9625         char value[PROPERTY_VALUE_MAX];
9626         if (property_get("ro.audio.silent", value, "0") > 0) {
9627             char *endptr;
9628             unsigned long ul = strtoul(value, &endptr, 0);
9629             if (*endptr == '\0' && ul != 0) {
9630                 ALOGD("Silence is golden");
9631                 // The setprop command will not allow a property to be changed after
9632                 // the first time it is set, so we don't have to worry about un-muting.
9633                 setMasterMute_l(true);
9634             }
9635         }
9636     }
9637 }
9638 
toAudioPortConfig(struct audio_port_config * config)9639 void AudioFlinger::MmapPlaybackThread::toAudioPortConfig(struct audio_port_config *config)
9640 {
9641     MmapThread::toAudioPortConfig(config);
9642     if (mOutput && mOutput->flags != AUDIO_OUTPUT_FLAG_NONE) {
9643         config->config_mask |= AUDIO_PORT_CONFIG_FLAGS;
9644         config->flags.output = mOutput->flags;
9645     }
9646 }
9647 
dumpInternals_l(int fd,const Vector<String16> & args)9648 void AudioFlinger::MmapPlaybackThread::dumpInternals_l(int fd, const Vector<String16>& args)
9649 {
9650     MmapThread::dumpInternals_l(fd, args);
9651 
9652     dprintf(fd, "  Stream type: %d Stream volume: %f HAL volume: %f Stream mute %d\n",
9653             mStreamType, mStreamVolume, mHalVolFloat, mStreamMute);
9654     dprintf(fd, "  Master volume: %f Master mute %d\n", mMasterVolume, mMasterMute);
9655 }
9656 
MmapCaptureThread(const sp<AudioFlinger> & audioFlinger,audio_io_handle_t id,AudioHwDevice * hwDev,AudioStreamIn * input,bool systemReady)9657 AudioFlinger::MmapCaptureThread::MmapCaptureThread(
9658         const sp<AudioFlinger>& audioFlinger, audio_io_handle_t id,
9659         AudioHwDevice *hwDev,  AudioStreamIn *input, bool systemReady)
9660     : MmapThread(audioFlinger, id, hwDev, input->stream, systemReady, false /* isOut */),
9661       mInput(input)
9662 {
9663     snprintf(mThreadName, kThreadNameLength, "AudioMmapIn_%X", id);
9664     mChannelCount = audio_channel_count_from_in_mask(mChannelMask);
9665 }
9666 
exitStandby()9667 status_t AudioFlinger::MmapCaptureThread::exitStandby()
9668 {
9669     {
9670         // mInput might have been cleared by clearInput()
9671         Mutex::Autolock _l(mLock);
9672         if (mInput != nullptr && mInput->stream != nullptr) {
9673             mInput->stream->setGain(1.0f);
9674         }
9675     }
9676     return MmapThread::exitStandby();
9677 }
9678 
clearInput()9679 AudioFlinger::AudioStreamIn* AudioFlinger::MmapCaptureThread::clearInput()
9680 {
9681     Mutex::Autolock _l(mLock);
9682     AudioStreamIn *input = mInput;
9683     mInput = NULL;
9684     return input;
9685 }
9686 
9687 
processVolume_l()9688 void AudioFlinger::MmapCaptureThread::processVolume_l()
9689 {
9690     bool changed = false;
9691     bool silenced = false;
9692 
9693     sp<MmapStreamCallback> callback = mCallback.promote();
9694     if (callback == 0) {
9695         if (mNoCallbackWarningCount < kMaxNoCallbackWarnings) {
9696             ALOGW("Could not set MMAP stream silenced: no onStreamSilenced callback!");
9697             mNoCallbackWarningCount++;
9698         }
9699     }
9700 
9701     // After a change occurred in track silenced state, mute capture in audio DSP if at least one
9702     // track is silenced and unmute otherwise
9703     for (size_t i = 0; i < mActiveTracks.size() && !silenced; i++) {
9704         if (!mActiveTracks[i]->getAndSetSilencedNotified_l()) {
9705             changed = true;
9706             silenced = mActiveTracks[i]->isSilenced_l();
9707         }
9708     }
9709 
9710     if (changed) {
9711         mInput->stream->setGain(silenced ? 0.0f: 1.0f);
9712     }
9713 }
9714 
updateMetadata_l()9715 void AudioFlinger::MmapCaptureThread::updateMetadata_l()
9716 {
9717     if (mInput == nullptr || mInput->stream == nullptr ||
9718             !mActiveTracks.readAndClearHasChanged()) {
9719         return;
9720     }
9721     StreamInHalInterface::SinkMetadata metadata;
9722     for (const sp<MmapTrack> &track : mActiveTracks) {
9723         // No track is invalid as this is called after prepareTrack_l in the same critical section
9724         metadata.tracks.push_back({
9725                 .source = track->attributes().source,
9726                 .gain = 1, // capture tracks do not have volumes
9727         });
9728     }
9729     mInput->stream->updateSinkMetadata(metadata);
9730 }
9731 
setRecordSilenced(audio_port_handle_t portId,bool silenced)9732 void AudioFlinger::MmapCaptureThread::setRecordSilenced(audio_port_handle_t portId, bool silenced)
9733 {
9734     Mutex::Autolock _l(mLock);
9735     for (size_t i = 0; i < mActiveTracks.size() ; i++) {
9736         if (mActiveTracks[i]->portId() == portId) {
9737             mActiveTracks[i]->setSilenced_l(silenced);
9738             broadcast_l();
9739         }
9740     }
9741 }
9742 
toAudioPortConfig(struct audio_port_config * config)9743 void AudioFlinger::MmapCaptureThread::toAudioPortConfig(struct audio_port_config *config)
9744 {
9745     MmapThread::toAudioPortConfig(config);
9746     if (mInput && mInput->flags != AUDIO_INPUT_FLAG_NONE) {
9747         config->config_mask |= AUDIO_PORT_CONFIG_FLAGS;
9748         config->flags.input = mInput->flags;
9749     }
9750 }
9751 
9752 } // namespace android
9753