1 /*
2 * Copyright 2019 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <thread>
18
19 #include <android-base/stringprintf.h>
20 #include <compositionengine/CompositionEngine.h>
21 #include <compositionengine/CompositionRefreshArgs.h>
22 #include <compositionengine/DisplayColorProfile.h>
23 #include <compositionengine/LayerFE.h>
24 #include <compositionengine/LayerFECompositionState.h>
25 #include <compositionengine/RenderSurface.h>
26 #include <compositionengine/impl/Output.h>
27 #include <compositionengine/impl/OutputCompositionState.h>
28 #include <compositionengine/impl/OutputLayer.h>
29 #include <compositionengine/impl/OutputLayerCompositionState.h>
30
31 // TODO(b/129481165): remove the #pragma below and fix conversion issues
32 #pragma clang diagnostic push
33 #pragma clang diagnostic ignored "-Wconversion"
34
35 #include <renderengine/DisplaySettings.h>
36 #include <renderengine/RenderEngine.h>
37
38 // TODO(b/129481165): remove the #pragma below and fix conversion issues
39 #pragma clang diagnostic pop // ignored "-Wconversion"
40
41 #include <ui/DebugUtils.h>
42 #include <ui/HdrCapabilities.h>
43 #include <utils/Trace.h>
44
45 #include "TracedOrdinal.h"
46
47 namespace android::compositionengine {
48
49 Output::~Output() = default;
50
51 namespace impl {
52
53 namespace {
54
55 template <typename T>
56 class Reversed {
57 public:
Reversed(const T & container)58 explicit Reversed(const T& container) : mContainer(container) {}
begin()59 auto begin() { return mContainer.rbegin(); }
end()60 auto end() { return mContainer.rend(); }
61
62 private:
63 const T& mContainer;
64 };
65
66 // Helper for enumerating over a container in reverse order
67 template <typename T>
reversed(const T & c)68 Reversed<T> reversed(const T& c) {
69 return Reversed<T>(c);
70 }
71
72 } // namespace
73
createOutput(const compositionengine::CompositionEngine & compositionEngine)74 std::shared_ptr<Output> createOutput(
75 const compositionengine::CompositionEngine& compositionEngine) {
76 return createOutputTemplated<Output>(compositionEngine);
77 }
78
79 Output::~Output() = default;
80
isValid() const81 bool Output::isValid() const {
82 return mDisplayColorProfile && mDisplayColorProfile->isValid() && mRenderSurface &&
83 mRenderSurface->isValid();
84 }
85
getDisplayId() const86 std::optional<DisplayId> Output::getDisplayId() const {
87 return {};
88 }
89
getName() const90 const std::string& Output::getName() const {
91 return mName;
92 }
93
setName(const std::string & name)94 void Output::setName(const std::string& name) {
95 mName = name;
96 }
97
setCompositionEnabled(bool enabled)98 void Output::setCompositionEnabled(bool enabled) {
99 auto& outputState = editState();
100 if (outputState.isEnabled == enabled) {
101 return;
102 }
103
104 outputState.isEnabled = enabled;
105 dirtyEntireOutput();
106 }
107
setProjection(const ui::Transform & transform,uint32_t orientation,const Rect & frame,const Rect & viewport,const Rect & sourceClip,const Rect & destinationClip,bool needsFiltering)108 void Output::setProjection(const ui::Transform& transform, uint32_t orientation, const Rect& frame,
109 const Rect& viewport, const Rect& sourceClip,
110 const Rect& destinationClip, bool needsFiltering) {
111 auto& outputState = editState();
112 outputState.transform = transform;
113 outputState.orientation = orientation;
114 outputState.sourceClip = sourceClip;
115 outputState.destinationClip = destinationClip;
116 outputState.frame = frame;
117 outputState.viewport = viewport;
118 outputState.needsFiltering = needsFiltering;
119
120 dirtyEntireOutput();
121 }
122
123 // TODO(b/121291683): Rename setSize() once more is moved.
setBounds(const ui::Size & size)124 void Output::setBounds(const ui::Size& size) {
125 mRenderSurface->setDisplaySize(size);
126 // TODO(b/121291683): Rename outputState.size once more is moved.
127 editState().bounds = Rect(mRenderSurface->getSize());
128
129 dirtyEntireOutput();
130 }
131
setLayerStackFilter(uint32_t layerStackId,bool isInternal)132 void Output::setLayerStackFilter(uint32_t layerStackId, bool isInternal) {
133 auto& outputState = editState();
134 outputState.layerStackId = layerStackId;
135 outputState.layerStackInternal = isInternal;
136
137 dirtyEntireOutput();
138 }
139
setColorTransform(const compositionengine::CompositionRefreshArgs & args)140 void Output::setColorTransform(const compositionengine::CompositionRefreshArgs& args) {
141 auto& colorTransformMatrix = editState().colorTransformMatrix;
142 if (!args.colorTransformMatrix || colorTransformMatrix == args.colorTransformMatrix) {
143 return;
144 }
145
146 colorTransformMatrix = *args.colorTransformMatrix;
147
148 dirtyEntireOutput();
149 }
150
setColorProfile(const ColorProfile & colorProfile)151 void Output::setColorProfile(const ColorProfile& colorProfile) {
152 ui::Dataspace targetDataspace =
153 getDisplayColorProfile()->getTargetDataspace(colorProfile.mode, colorProfile.dataspace,
154 colorProfile.colorSpaceAgnosticDataspace);
155
156 auto& outputState = editState();
157 if (outputState.colorMode == colorProfile.mode &&
158 outputState.dataspace == colorProfile.dataspace &&
159 outputState.renderIntent == colorProfile.renderIntent &&
160 outputState.targetDataspace == targetDataspace) {
161 return;
162 }
163
164 outputState.colorMode = colorProfile.mode;
165 outputState.dataspace = colorProfile.dataspace;
166 outputState.renderIntent = colorProfile.renderIntent;
167 outputState.targetDataspace = targetDataspace;
168
169 mRenderSurface->setBufferDataspace(colorProfile.dataspace);
170
171 ALOGV("Set active color mode: %s (%d), active render intent: %s (%d)",
172 decodeColorMode(colorProfile.mode).c_str(), colorProfile.mode,
173 decodeRenderIntent(colorProfile.renderIntent).c_str(), colorProfile.renderIntent);
174
175 dirtyEntireOutput();
176 }
177
dump(std::string & out) const178 void Output::dump(std::string& out) const {
179 using android::base::StringAppendF;
180
181 StringAppendF(&out, " Composition Output State: [\"%s\"]", mName.c_str());
182
183 out.append("\n ");
184
185 dumpBase(out);
186 }
187
dumpBase(std::string & out) const188 void Output::dumpBase(std::string& out) const {
189 dumpState(out);
190
191 if (mDisplayColorProfile) {
192 mDisplayColorProfile->dump(out);
193 } else {
194 out.append(" No display color profile!\n");
195 }
196
197 if (mRenderSurface) {
198 mRenderSurface->dump(out);
199 } else {
200 out.append(" No render surface!\n");
201 }
202
203 android::base::StringAppendF(&out, "\n %zu Layers\n", getOutputLayerCount());
204 for (const auto* outputLayer : getOutputLayersOrderedByZ()) {
205 if (!outputLayer) {
206 continue;
207 }
208 outputLayer->dump(out);
209 }
210 }
211
getDisplayColorProfile() const212 compositionengine::DisplayColorProfile* Output::getDisplayColorProfile() const {
213 return mDisplayColorProfile.get();
214 }
215
setDisplayColorProfile(std::unique_ptr<compositionengine::DisplayColorProfile> mode)216 void Output::setDisplayColorProfile(std::unique_ptr<compositionengine::DisplayColorProfile> mode) {
217 mDisplayColorProfile = std::move(mode);
218 }
219
getReleasedLayersForTest() const220 const Output::ReleasedLayers& Output::getReleasedLayersForTest() const {
221 return mReleasedLayers;
222 }
223
setDisplayColorProfileForTest(std::unique_ptr<compositionengine::DisplayColorProfile> mode)224 void Output::setDisplayColorProfileForTest(
225 std::unique_ptr<compositionengine::DisplayColorProfile> mode) {
226 mDisplayColorProfile = std::move(mode);
227 }
228
getRenderSurface() const229 compositionengine::RenderSurface* Output::getRenderSurface() const {
230 return mRenderSurface.get();
231 }
232
setRenderSurface(std::unique_ptr<compositionengine::RenderSurface> surface)233 void Output::setRenderSurface(std::unique_ptr<compositionengine::RenderSurface> surface) {
234 mRenderSurface = std::move(surface);
235 editState().bounds = Rect(mRenderSurface->getSize());
236
237 dirtyEntireOutput();
238 }
239
cacheClientCompositionRequests(uint32_t cacheSize)240 void Output::cacheClientCompositionRequests(uint32_t cacheSize) {
241 if (cacheSize == 0) {
242 mClientCompositionRequestCache.reset();
243 } else {
244 mClientCompositionRequestCache = std::make_unique<ClientCompositionRequestCache>(cacheSize);
245 }
246 };
247
setRenderSurfaceForTest(std::unique_ptr<compositionengine::RenderSurface> surface)248 void Output::setRenderSurfaceForTest(std::unique_ptr<compositionengine::RenderSurface> surface) {
249 mRenderSurface = std::move(surface);
250 }
251
getDirtyRegion(bool repaintEverything) const252 Region Output::getDirtyRegion(bool repaintEverything) const {
253 const auto& outputState = getState();
254 Region dirty(outputState.viewport);
255 if (!repaintEverything) {
256 dirty.andSelf(outputState.dirtyRegion);
257 }
258 return dirty;
259 }
260
belongsInOutput(std::optional<uint32_t> layerStackId,bool internalOnly) const261 bool Output::belongsInOutput(std::optional<uint32_t> layerStackId, bool internalOnly) const {
262 // The layerStackId's must match, and also the layer must not be internal
263 // only when not on an internal output.
264 const auto& outputState = getState();
265 return layerStackId && (*layerStackId == outputState.layerStackId) &&
266 (!internalOnly || outputState.layerStackInternal);
267 }
268
belongsInOutput(const sp<compositionengine::LayerFE> & layerFE) const269 bool Output::belongsInOutput(const sp<compositionengine::LayerFE>& layerFE) const {
270 const auto* layerFEState = layerFE->getCompositionState();
271 return layerFEState && belongsInOutput(layerFEState->layerStackId, layerFEState->internalOnly);
272 }
273
createOutputLayer(const sp<LayerFE> & layerFE) const274 std::unique_ptr<compositionengine::OutputLayer> Output::createOutputLayer(
275 const sp<LayerFE>& layerFE) const {
276 return impl::createOutputLayer(*this, layerFE);
277 }
278
getOutputLayerForLayer(const sp<LayerFE> & layerFE) const279 compositionengine::OutputLayer* Output::getOutputLayerForLayer(const sp<LayerFE>& layerFE) const {
280 auto index = findCurrentOutputLayerForLayer(layerFE);
281 return index ? getOutputLayerOrderedByZByIndex(*index) : nullptr;
282 }
283
findCurrentOutputLayerForLayer(const sp<compositionengine::LayerFE> & layer) const284 std::optional<size_t> Output::findCurrentOutputLayerForLayer(
285 const sp<compositionengine::LayerFE>& layer) const {
286 for (size_t i = 0; i < getOutputLayerCount(); i++) {
287 auto outputLayer = getOutputLayerOrderedByZByIndex(i);
288 if (outputLayer && &outputLayer->getLayerFE() == layer.get()) {
289 return i;
290 }
291 }
292 return std::nullopt;
293 }
294
setReleasedLayers(Output::ReleasedLayers && layers)295 void Output::setReleasedLayers(Output::ReleasedLayers&& layers) {
296 mReleasedLayers = std::move(layers);
297 }
298
prepare(const compositionengine::CompositionRefreshArgs & refreshArgs,LayerFESet & geomSnapshots)299 void Output::prepare(const compositionengine::CompositionRefreshArgs& refreshArgs,
300 LayerFESet& geomSnapshots) {
301 ATRACE_CALL();
302 ALOGV(__FUNCTION__);
303
304 rebuildLayerStacks(refreshArgs, geomSnapshots);
305 }
306
present(const compositionengine::CompositionRefreshArgs & refreshArgs)307 void Output::present(const compositionengine::CompositionRefreshArgs& refreshArgs) {
308 ATRACE_CALL();
309 ALOGV(__FUNCTION__);
310
311 updateColorProfile(refreshArgs);
312 updateAndWriteCompositionState(refreshArgs);
313 setColorTransform(refreshArgs);
314 beginFrame();
315 prepareFrame();
316 devOptRepaintFlash(refreshArgs);
317 finishFrame(refreshArgs);
318 postFramebuffer();
319 }
320
rebuildLayerStacks(const compositionengine::CompositionRefreshArgs & refreshArgs,LayerFESet & layerFESet)321 void Output::rebuildLayerStacks(const compositionengine::CompositionRefreshArgs& refreshArgs,
322 LayerFESet& layerFESet) {
323 ATRACE_CALL();
324 ALOGV(__FUNCTION__);
325
326 auto& outputState = editState();
327
328 // Do nothing if this output is not enabled or there is no need to perform this update
329 if (!outputState.isEnabled || CC_LIKELY(!refreshArgs.updatingOutputGeometryThisFrame)) {
330 return;
331 }
332
333 // Process the layers to determine visibility and coverage
334 compositionengine::Output::CoverageState coverage{layerFESet};
335 collectVisibleLayers(refreshArgs, coverage);
336
337 // Compute the resulting coverage for this output, and store it for later
338 const ui::Transform& tr = outputState.transform;
339 Region undefinedRegion{outputState.bounds};
340 undefinedRegion.subtractSelf(tr.transform(coverage.aboveOpaqueLayers));
341
342 outputState.undefinedRegion = undefinedRegion;
343 outputState.dirtyRegion.orSelf(coverage.dirtyRegion);
344 }
345
collectVisibleLayers(const compositionengine::CompositionRefreshArgs & refreshArgs,compositionengine::Output::CoverageState & coverage)346 void Output::collectVisibleLayers(const compositionengine::CompositionRefreshArgs& refreshArgs,
347 compositionengine::Output::CoverageState& coverage) {
348 // Evaluate the layers from front to back to determine what is visible. This
349 // also incrementally calculates the coverage information for each layer as
350 // well as the entire output.
351 for (auto layer : reversed(refreshArgs.layers)) {
352 // Incrementally process the coverage for each layer
353 ensureOutputLayerIfVisible(layer, coverage);
354
355 // TODO(b/121291683): Stop early if the output is completely covered and
356 // no more layers could even be visible underneath the ones on top.
357 }
358
359 setReleasedLayers(refreshArgs);
360
361 finalizePendingOutputLayers();
362
363 // Generate a simple Z-order values to each visible output layer
364 uint32_t zOrder = 0;
365 for (auto* outputLayer : getOutputLayersOrderedByZ()) {
366 outputLayer->editState().z = zOrder++;
367 }
368 }
369
ensureOutputLayerIfVisible(sp<compositionengine::LayerFE> & layerFE,compositionengine::Output::CoverageState & coverage)370 void Output::ensureOutputLayerIfVisible(sp<compositionengine::LayerFE>& layerFE,
371 compositionengine::Output::CoverageState& coverage) {
372 // Ensure we have a snapshot of the basic geometry layer state. Limit the
373 // snapshots to once per frame for each candidate layer, as layers may
374 // appear on multiple outputs.
375 if (!coverage.latchedLayers.count(layerFE)) {
376 coverage.latchedLayers.insert(layerFE);
377 layerFE->prepareCompositionState(compositionengine::LayerFE::StateSubset::BasicGeometry);
378 }
379
380 // Only consider the layers on the given layer stack
381 if (!belongsInOutput(layerFE)) {
382 return;
383 }
384
385 // Obtain a read-only pointer to the front-end layer state
386 const auto* layerFEState = layerFE->getCompositionState();
387 if (CC_UNLIKELY(!layerFEState)) {
388 return;
389 }
390
391 // handle hidden surfaces by setting the visible region to empty
392 if (CC_UNLIKELY(!layerFEState->isVisible)) {
393 return;
394 }
395
396 /*
397 * opaqueRegion: area of a surface that is fully opaque.
398 */
399 Region opaqueRegion;
400
401 /*
402 * visibleRegion: area of a surface that is visible on screen and not fully
403 * transparent. This is essentially the layer's footprint minus the opaque
404 * regions above it. Areas covered by a translucent surface are considered
405 * visible.
406 */
407 Region visibleRegion;
408
409 /*
410 * coveredRegion: area of a surface that is covered by all visible regions
411 * above it (which includes the translucent areas).
412 */
413 Region coveredRegion;
414
415 /*
416 * transparentRegion: area of a surface that is hinted to be completely
417 * transparent. This is only used to tell when the layer has no visible non-
418 * transparent regions and can be removed from the layer list. It does not
419 * affect the visibleRegion of this layer or any layers beneath it. The hint
420 * may not be correct if apps don't respect the SurfaceView restrictions
421 * (which, sadly, some don't).
422 */
423 Region transparentRegion;
424
425 /*
426 * shadowRegion: Region cast by the layer's shadow.
427 */
428 Region shadowRegion;
429
430 const ui::Transform& tr = layerFEState->geomLayerTransform;
431
432 // Get the visible region
433 // TODO(b/121291683): Is it worth creating helper methods on LayerFEState
434 // for computations like this?
435 const Rect visibleRect(tr.transform(layerFEState->geomLayerBounds));
436 visibleRegion.set(visibleRect);
437
438 if (layerFEState->shadowRadius > 0.0f) {
439 // if the layer casts a shadow, offset the layers visible region and
440 // calculate the shadow region.
441 const auto inset = static_cast<int32_t>(ceilf(layerFEState->shadowRadius) * -1.0f);
442 Rect visibleRectWithShadows(visibleRect);
443 visibleRectWithShadows.inset(inset, inset, inset, inset);
444 visibleRegion.set(visibleRectWithShadows);
445 shadowRegion = visibleRegion.subtract(visibleRect);
446 }
447
448 if (visibleRegion.isEmpty()) {
449 return;
450 }
451
452 // Remove the transparent area from the visible region
453 if (!layerFEState->isOpaque) {
454 if (tr.preserveRects()) {
455 // transform the transparent region
456 transparentRegion = tr.transform(layerFEState->transparentRegionHint);
457 } else {
458 // transformation too complex, can't do the
459 // transparent region optimization.
460 transparentRegion.clear();
461 }
462 }
463
464 // compute the opaque region
465 const auto layerOrientation = tr.getOrientation();
466 if (layerFEState->isOpaque && ((layerOrientation & ui::Transform::ROT_INVALID) == 0)) {
467 // If we one of the simple category of transforms (0/90/180/270 rotation
468 // + any flip), then the opaque region is the layer's footprint.
469 // Otherwise we don't try and compute the opaque region since there may
470 // be errors at the edges, and we treat the entire layer as
471 // translucent.
472 opaqueRegion.set(visibleRect);
473 }
474
475 // Clip the covered region to the visible region
476 coveredRegion = coverage.aboveCoveredLayers.intersect(visibleRegion);
477
478 // Update accumAboveCoveredLayers for next (lower) layer
479 coverage.aboveCoveredLayers.orSelf(visibleRegion);
480
481 // subtract the opaque region covered by the layers above us
482 visibleRegion.subtractSelf(coverage.aboveOpaqueLayers);
483
484 if (visibleRegion.isEmpty()) {
485 return;
486 }
487
488 // Get coverage information for the layer as previously displayed,
489 // also taking over ownership from mOutputLayersorderedByZ.
490 auto prevOutputLayerIndex = findCurrentOutputLayerForLayer(layerFE);
491 auto prevOutputLayer =
492 prevOutputLayerIndex ? getOutputLayerOrderedByZByIndex(*prevOutputLayerIndex) : nullptr;
493
494 // Get coverage information for the layer as previously displayed
495 // TODO(b/121291683): Define kEmptyRegion as a constant in Region.h
496 const Region kEmptyRegion;
497 const Region& oldVisibleRegion =
498 prevOutputLayer ? prevOutputLayer->getState().visibleRegion : kEmptyRegion;
499 const Region& oldCoveredRegion =
500 prevOutputLayer ? prevOutputLayer->getState().coveredRegion : kEmptyRegion;
501
502 // compute this layer's dirty region
503 Region dirty;
504 if (layerFEState->contentDirty) {
505 // we need to invalidate the whole region
506 dirty = visibleRegion;
507 // as well, as the old visible region
508 dirty.orSelf(oldVisibleRegion);
509 } else {
510 /* compute the exposed region:
511 * the exposed region consists of two components:
512 * 1) what's VISIBLE now and was COVERED before
513 * 2) what's EXPOSED now less what was EXPOSED before
514 *
515 * note that (1) is conservative, we start with the whole visible region
516 * but only keep what used to be covered by something -- which mean it
517 * may have been exposed.
518 *
519 * (2) handles areas that were not covered by anything but got exposed
520 * because of a resize.
521 *
522 */
523 const Region newExposed = visibleRegion - coveredRegion;
524 const Region oldExposed = oldVisibleRegion - oldCoveredRegion;
525 dirty = (visibleRegion & oldCoveredRegion) | (newExposed - oldExposed);
526 }
527 dirty.subtractSelf(coverage.aboveOpaqueLayers);
528
529 // accumulate to the screen dirty region
530 coverage.dirtyRegion.orSelf(dirty);
531
532 // Update accumAboveOpaqueLayers for next (lower) layer
533 coverage.aboveOpaqueLayers.orSelf(opaqueRegion);
534
535 // Compute the visible non-transparent region
536 Region visibleNonTransparentRegion = visibleRegion.subtract(transparentRegion);
537
538 // Perform the final check to see if this layer is visible on this output
539 // TODO(b/121291683): Why does this not use visibleRegion? (see outputSpaceVisibleRegion below)
540 const auto& outputState = getState();
541 Region drawRegion(outputState.transform.transform(visibleNonTransparentRegion));
542 drawRegion.andSelf(outputState.bounds);
543 if (drawRegion.isEmpty()) {
544 return;
545 }
546
547 Region visibleNonShadowRegion = visibleRegion.subtract(shadowRegion);
548
549 // The layer is visible. Either reuse the existing outputLayer if we have
550 // one, or create a new one if we do not.
551 auto result = ensureOutputLayer(prevOutputLayerIndex, layerFE);
552
553 // Store the layer coverage information into the layer state as some of it
554 // is useful later.
555 auto& outputLayerState = result->editState();
556 outputLayerState.visibleRegion = visibleRegion;
557 outputLayerState.visibleNonTransparentRegion = visibleNonTransparentRegion;
558 outputLayerState.coveredRegion = coveredRegion;
559 outputLayerState.outputSpaceVisibleRegion =
560 outputState.transform.transform(visibleNonShadowRegion.intersect(outputState.viewport));
561 outputLayerState.shadowRegion = shadowRegion;
562 }
563
setReleasedLayers(const compositionengine::CompositionRefreshArgs &)564 void Output::setReleasedLayers(const compositionengine::CompositionRefreshArgs&) {
565 // The base class does nothing with this call.
566 }
567
updateLayerStateFromFE(const CompositionRefreshArgs & args) const568 void Output::updateLayerStateFromFE(const CompositionRefreshArgs& args) const {
569 for (auto* layer : getOutputLayersOrderedByZ()) {
570 layer->getLayerFE().prepareCompositionState(
571 args.updatingGeometryThisFrame ? LayerFE::StateSubset::GeometryAndContent
572 : LayerFE::StateSubset::Content);
573 }
574 }
575
updateAndWriteCompositionState(const compositionengine::CompositionRefreshArgs & refreshArgs)576 void Output::updateAndWriteCompositionState(
577 const compositionengine::CompositionRefreshArgs& refreshArgs) {
578 ATRACE_CALL();
579 ALOGV(__FUNCTION__);
580
581 if (!getState().isEnabled) {
582 return;
583 }
584
585 mLayerRequestingBackgroundBlur = findLayerRequestingBackgroundComposition();
586 bool forceClientComposition = mLayerRequestingBackgroundBlur != nullptr;
587
588 for (auto* layer : getOutputLayersOrderedByZ()) {
589 layer->updateCompositionState(refreshArgs.updatingGeometryThisFrame,
590 refreshArgs.devOptForceClientComposition ||
591 forceClientComposition,
592 refreshArgs.internalDisplayRotationFlags);
593
594 if (mLayerRequestingBackgroundBlur == layer) {
595 forceClientComposition = false;
596 }
597
598 // Send the updated state to the HWC, if appropriate.
599 layer->writeStateToHWC(refreshArgs.updatingGeometryThisFrame);
600 }
601 }
602
findLayerRequestingBackgroundComposition() const603 compositionengine::OutputLayer* Output::findLayerRequestingBackgroundComposition() const {
604 compositionengine::OutputLayer* layerRequestingBgComposition = nullptr;
605 for (auto* layer : getOutputLayersOrderedByZ()) {
606 if (layer->getLayerFE().getCompositionState()->backgroundBlurRadius > 0) {
607 layerRequestingBgComposition = layer;
608 }
609 }
610 return layerRequestingBgComposition;
611 }
612
updateColorProfile(const compositionengine::CompositionRefreshArgs & refreshArgs)613 void Output::updateColorProfile(const compositionengine::CompositionRefreshArgs& refreshArgs) {
614 setColorProfile(pickColorProfile(refreshArgs));
615 }
616
617 // Returns a data space that fits all visible layers. The returned data space
618 // can only be one of
619 // - Dataspace::SRGB (use legacy dataspace and let HWC saturate when colors are enhanced)
620 // - Dataspace::DISPLAY_P3
621 // - Dataspace::DISPLAY_BT2020
622 // The returned HDR data space is one of
623 // - Dataspace::UNKNOWN
624 // - Dataspace::BT2020_HLG
625 // - Dataspace::BT2020_PQ
getBestDataspace(ui::Dataspace * outHdrDataSpace,bool * outIsHdrClientComposition) const626 ui::Dataspace Output::getBestDataspace(ui::Dataspace* outHdrDataSpace,
627 bool* outIsHdrClientComposition) const {
628 ui::Dataspace bestDataSpace = ui::Dataspace::V0_SRGB;
629 *outHdrDataSpace = ui::Dataspace::UNKNOWN;
630
631 for (const auto* layer : getOutputLayersOrderedByZ()) {
632 switch (layer->getLayerFE().getCompositionState()->dataspace) {
633 case ui::Dataspace::V0_SCRGB:
634 case ui::Dataspace::V0_SCRGB_LINEAR:
635 case ui::Dataspace::BT2020:
636 case ui::Dataspace::BT2020_ITU:
637 case ui::Dataspace::BT2020_LINEAR:
638 case ui::Dataspace::DISPLAY_BT2020:
639 bestDataSpace = ui::Dataspace::DISPLAY_BT2020;
640 break;
641 case ui::Dataspace::DISPLAY_P3:
642 bestDataSpace = ui::Dataspace::DISPLAY_P3;
643 break;
644 case ui::Dataspace::BT2020_PQ:
645 case ui::Dataspace::BT2020_ITU_PQ:
646 bestDataSpace = ui::Dataspace::DISPLAY_P3;
647 *outHdrDataSpace = ui::Dataspace::BT2020_PQ;
648 *outIsHdrClientComposition =
649 layer->getLayerFE().getCompositionState()->forceClientComposition;
650 break;
651 case ui::Dataspace::BT2020_HLG:
652 case ui::Dataspace::BT2020_ITU_HLG:
653 bestDataSpace = ui::Dataspace::DISPLAY_P3;
654 // When there's mixed PQ content and HLG content, we set the HDR
655 // data space to be BT2020_PQ and convert HLG to PQ.
656 if (*outHdrDataSpace == ui::Dataspace::UNKNOWN) {
657 *outHdrDataSpace = ui::Dataspace::BT2020_HLG;
658 }
659 break;
660 default:
661 break;
662 }
663 }
664
665 return bestDataSpace;
666 }
667
pickColorProfile(const compositionengine::CompositionRefreshArgs & refreshArgs) const668 compositionengine::Output::ColorProfile Output::pickColorProfile(
669 const compositionengine::CompositionRefreshArgs& refreshArgs) const {
670 if (refreshArgs.outputColorSetting == OutputColorSetting::kUnmanaged) {
671 return ColorProfile{ui::ColorMode::NATIVE, ui::Dataspace::UNKNOWN,
672 ui::RenderIntent::COLORIMETRIC,
673 refreshArgs.colorSpaceAgnosticDataspace};
674 }
675
676 ui::Dataspace hdrDataSpace;
677 bool isHdrClientComposition = false;
678 ui::Dataspace bestDataSpace = getBestDataspace(&hdrDataSpace, &isHdrClientComposition);
679
680 switch (refreshArgs.forceOutputColorMode) {
681 case ui::ColorMode::SRGB:
682 bestDataSpace = ui::Dataspace::V0_SRGB;
683 break;
684 case ui::ColorMode::DISPLAY_P3:
685 bestDataSpace = ui::Dataspace::DISPLAY_P3;
686 break;
687 default:
688 break;
689 }
690
691 // respect hdrDataSpace only when there is no legacy HDR support
692 const bool isHdr = hdrDataSpace != ui::Dataspace::UNKNOWN &&
693 !mDisplayColorProfile->hasLegacyHdrSupport(hdrDataSpace) && !isHdrClientComposition;
694 if (isHdr) {
695 bestDataSpace = hdrDataSpace;
696 }
697
698 ui::RenderIntent intent;
699 switch (refreshArgs.outputColorSetting) {
700 case OutputColorSetting::kManaged:
701 case OutputColorSetting::kUnmanaged:
702 intent = isHdr ? ui::RenderIntent::TONE_MAP_COLORIMETRIC
703 : ui::RenderIntent::COLORIMETRIC;
704 break;
705 case OutputColorSetting::kEnhanced:
706 intent = isHdr ? ui::RenderIntent::TONE_MAP_ENHANCE : ui::RenderIntent::ENHANCE;
707 break;
708 default: // vendor display color setting
709 intent = static_cast<ui::RenderIntent>(refreshArgs.outputColorSetting);
710 break;
711 }
712
713 ui::ColorMode outMode;
714 ui::Dataspace outDataSpace;
715 ui::RenderIntent outRenderIntent;
716 mDisplayColorProfile->getBestColorMode(bestDataSpace, intent, &outDataSpace, &outMode,
717 &outRenderIntent);
718
719 return ColorProfile{outMode, outDataSpace, outRenderIntent,
720 refreshArgs.colorSpaceAgnosticDataspace};
721 }
722
beginFrame()723 void Output::beginFrame() {
724 auto& outputState = editState();
725 const bool dirty = !getDirtyRegion(false).isEmpty();
726 const bool empty = getOutputLayerCount() == 0;
727 const bool wasEmpty = !outputState.lastCompositionHadVisibleLayers;
728
729 // If nothing has changed (!dirty), don't recompose.
730 // If something changed, but we don't currently have any visible layers,
731 // and didn't when we last did a composition, then skip it this time.
732 // The second rule does two things:
733 // - When all layers are removed from a display, we'll emit one black
734 // frame, then nothing more until we get new layers.
735 // - When a display is created with a private layer stack, we won't
736 // emit any black frames until a layer is added to the layer stack.
737 const bool mustRecompose = dirty && !(empty && wasEmpty);
738
739 const char flagPrefix[] = {'-', '+'};
740 static_cast<void>(flagPrefix);
741 ALOGV_IF("%s: %s composition for %s (%cdirty %cempty %cwasEmpty)", __FUNCTION__,
742 mustRecompose ? "doing" : "skipping", getName().c_str(), flagPrefix[dirty],
743 flagPrefix[empty], flagPrefix[wasEmpty]);
744
745 mRenderSurface->beginFrame(mustRecompose);
746
747 if (mustRecompose) {
748 outputState.lastCompositionHadVisibleLayers = !empty;
749 }
750 }
751
prepareFrame()752 void Output::prepareFrame() {
753 ATRACE_CALL();
754 ALOGV(__FUNCTION__);
755
756 const auto& outputState = getState();
757 if (!outputState.isEnabled) {
758 return;
759 }
760
761 chooseCompositionStrategy();
762
763 mRenderSurface->prepareFrame(outputState.usesClientComposition,
764 outputState.usesDeviceComposition);
765 }
766
devOptRepaintFlash(const compositionengine::CompositionRefreshArgs & refreshArgs)767 void Output::devOptRepaintFlash(const compositionengine::CompositionRefreshArgs& refreshArgs) {
768 if (CC_LIKELY(!refreshArgs.devOptFlashDirtyRegionsDelay)) {
769 return;
770 }
771
772 if (getState().isEnabled) {
773 // transform the dirty region into this screen's coordinate space
774 const Region dirtyRegion = getDirtyRegion(refreshArgs.repaintEverything);
775 if (!dirtyRegion.isEmpty()) {
776 base::unique_fd readyFence;
777 // redraw the whole screen
778 static_cast<void>(composeSurfaces(dirtyRegion, refreshArgs));
779
780 mRenderSurface->queueBuffer(std::move(readyFence));
781 }
782 }
783
784 postFramebuffer();
785
786 std::this_thread::sleep_for(*refreshArgs.devOptFlashDirtyRegionsDelay);
787
788 prepareFrame();
789 }
790
finishFrame(const compositionengine::CompositionRefreshArgs & refreshArgs)791 void Output::finishFrame(const compositionengine::CompositionRefreshArgs& refreshArgs) {
792 ATRACE_CALL();
793 ALOGV(__FUNCTION__);
794
795 if (!getState().isEnabled) {
796 return;
797 }
798
799 // Repaint the framebuffer (if needed), getting the optional fence for when
800 // the composition completes.
801 auto optReadyFence = composeSurfaces(Region::INVALID_REGION, refreshArgs);
802 if (!optReadyFence) {
803 return;
804 }
805
806 // swap buffers (presentation)
807 mRenderSurface->queueBuffer(std::move(*optReadyFence));
808 }
809
composeSurfaces(const Region & debugRegion,const compositionengine::CompositionRefreshArgs & refreshArgs)810 std::optional<base::unique_fd> Output::composeSurfaces(
811 const Region& debugRegion, const compositionengine::CompositionRefreshArgs& refreshArgs) {
812 ATRACE_CALL();
813 ALOGV(__FUNCTION__);
814
815 const auto& outputState = getState();
816 OutputCompositionState& outputCompositionState = editState();
817 const TracedOrdinal<bool> hasClientComposition = {"hasClientComposition",
818 outputState.usesClientComposition};
819
820 auto& renderEngine = getCompositionEngine().getRenderEngine();
821 const bool supportsProtectedContent = renderEngine.supportsProtectedContent();
822
823 // If we the display is secure, protected content support is enabled, and at
824 // least one layer has protected content, we need to use a secure back
825 // buffer.
826 if (outputState.isSecure && supportsProtectedContent) {
827 auto layers = getOutputLayersOrderedByZ();
828 bool needsProtected = std::any_of(layers.begin(), layers.end(), [](auto* layer) {
829 return layer->getLayerFE().getCompositionState()->hasProtectedContent;
830 });
831 if (needsProtected != renderEngine.isProtected()) {
832 renderEngine.useProtectedContext(needsProtected);
833 }
834 if (needsProtected != mRenderSurface->isProtected() &&
835 needsProtected == renderEngine.isProtected()) {
836 mRenderSurface->setProtected(needsProtected);
837 }
838 }
839
840 base::unique_fd fd;
841 sp<GraphicBuffer> buf;
842
843 // If we aren't doing client composition on this output, but do have a
844 // flipClientTarget request for this frame on this output, we still need to
845 // dequeue a buffer.
846 if (hasClientComposition || outputState.flipClientTarget) {
847 buf = mRenderSurface->dequeueBuffer(&fd);
848 if (buf == nullptr) {
849 ALOGW("Dequeuing buffer for display [%s] failed, bailing out of "
850 "client composition for this frame",
851 mName.c_str());
852 return {};
853 }
854 }
855
856 base::unique_fd readyFence;
857 if (!hasClientComposition) {
858 setExpensiveRenderingExpected(false);
859 return readyFence;
860 }
861
862 ALOGV("hasClientComposition");
863
864 renderengine::DisplaySettings clientCompositionDisplay;
865 clientCompositionDisplay.physicalDisplay = outputState.destinationClip;
866 clientCompositionDisplay.clip = outputState.sourceClip;
867 clientCompositionDisplay.orientation = outputState.orientation;
868 clientCompositionDisplay.outputDataspace = mDisplayColorProfile->hasWideColorGamut()
869 ? outputState.dataspace
870 : ui::Dataspace::UNKNOWN;
871 clientCompositionDisplay.maxLuminance =
872 mDisplayColorProfile->getHdrCapabilities().getDesiredMaxLuminance();
873
874 // Compute the global color transform matrix.
875 if (!outputState.usesDeviceComposition && !getSkipColorTransform()) {
876 clientCompositionDisplay.colorTransform = outputState.colorTransformMatrix;
877 }
878
879 // Note: Updated by generateClientCompositionRequests
880 clientCompositionDisplay.clearRegion = Region::INVALID_REGION;
881
882 // Generate the client composition requests for the layers on this output.
883 std::vector<LayerFE::LayerSettings> clientCompositionLayers =
884 generateClientCompositionRequests(supportsProtectedContent,
885 clientCompositionDisplay.clearRegion,
886 clientCompositionDisplay.outputDataspace);
887 appendRegionFlashRequests(debugRegion, clientCompositionLayers);
888
889 // Check if the client composition requests were rendered into the provided graphic buffer. If
890 // so, we can reuse the buffer and avoid client composition.
891 if (mClientCompositionRequestCache) {
892 if (mClientCompositionRequestCache->exists(buf->getId(), clientCompositionDisplay,
893 clientCompositionLayers)) {
894 outputCompositionState.reusedClientComposition = true;
895 setExpensiveRenderingExpected(false);
896 return readyFence;
897 }
898 mClientCompositionRequestCache->add(buf->getId(), clientCompositionDisplay,
899 clientCompositionLayers);
900 }
901
902 // We boost GPU frequency here because there will be color spaces conversion
903 // or complex GPU shaders and it's expensive. We boost the GPU frequency so that
904 // GPU composition can finish in time. We must reset GPU frequency afterwards,
905 // because high frequency consumes extra battery.
906 const bool expensiveBlurs =
907 refreshArgs.blursAreExpensive && mLayerRequestingBackgroundBlur != nullptr;
908 const bool expensiveRenderingExpected =
909 clientCompositionDisplay.outputDataspace == ui::Dataspace::DISPLAY_P3 || expensiveBlurs;
910 if (expensiveRenderingExpected) {
911 setExpensiveRenderingExpected(true);
912 }
913
914 std::vector<const renderengine::LayerSettings*> clientCompositionLayerPointers;
915 clientCompositionLayerPointers.reserve(clientCompositionLayers.size());
916 std::transform(clientCompositionLayers.begin(), clientCompositionLayers.end(),
917 std::back_inserter(clientCompositionLayerPointers),
918 [](LayerFE::LayerSettings& settings) -> renderengine::LayerSettings* {
919 return &settings;
920 });
921
922 const nsecs_t renderEngineStart = systemTime();
923 status_t status =
924 renderEngine.drawLayers(clientCompositionDisplay, clientCompositionLayerPointers,
925 buf->getNativeBuffer(), /*useFramebufferCache=*/true,
926 std::move(fd), &readyFence);
927
928 if (status != NO_ERROR && mClientCompositionRequestCache) {
929 // If rendering was not successful, remove the request from the cache.
930 mClientCompositionRequestCache->remove(buf->getId());
931 }
932
933 auto& timeStats = getCompositionEngine().getTimeStats();
934 if (readyFence.get() < 0) {
935 timeStats.recordRenderEngineDuration(renderEngineStart, systemTime());
936 } else {
937 timeStats.recordRenderEngineDuration(renderEngineStart,
938 std::make_shared<FenceTime>(
939 new Fence(dup(readyFence.get()))));
940 }
941
942 return readyFence;
943 }
944
generateClientCompositionRequests(bool supportsProtectedContent,Region & clearRegion,ui::Dataspace outputDataspace)945 std::vector<LayerFE::LayerSettings> Output::generateClientCompositionRequests(
946 bool supportsProtectedContent, Region& clearRegion, ui::Dataspace outputDataspace) {
947 std::vector<LayerFE::LayerSettings> clientCompositionLayers;
948 ALOGV("Rendering client layers");
949
950 const auto& outputState = getState();
951 const Region viewportRegion(outputState.viewport);
952 const bool useIdentityTransform = false;
953 bool firstLayer = true;
954 // Used when a layer clears part of the buffer.
955 Region dummyRegion;
956
957 for (auto* layer : getOutputLayersOrderedByZ()) {
958 const auto& layerState = layer->getState();
959 const auto* layerFEState = layer->getLayerFE().getCompositionState();
960 auto& layerFE = layer->getLayerFE();
961
962 const Region clip(viewportRegion.intersect(layerState.visibleRegion));
963 ALOGV("Layer: %s", layerFE.getDebugName());
964 if (clip.isEmpty()) {
965 ALOGV(" Skipping for empty clip");
966 firstLayer = false;
967 continue;
968 }
969
970 const bool clientComposition = layer->requiresClientComposition();
971
972 // We clear the client target for non-client composed layers if
973 // requested by the HWC. We skip this if the layer is not an opaque
974 // rectangle, as by definition the layer must blend with whatever is
975 // underneath. We also skip the first layer as the buffer target is
976 // guaranteed to start out cleared.
977 const bool clearClientComposition =
978 layerState.clearClientTarget && layerFEState->isOpaque && !firstLayer;
979
980 ALOGV(" Composition type: client %d clear %d", clientComposition, clearClientComposition);
981
982 // If the layer casts a shadow but the content casting the shadow is occluded, skip
983 // composing the non-shadow content and only draw the shadows.
984 const bool realContentIsVisible = clientComposition &&
985 !layerState.visibleRegion.subtract(layerState.shadowRegion).isEmpty();
986
987 if (clientComposition || clearClientComposition) {
988 compositionengine::LayerFE::ClientCompositionTargetSettings targetSettings{
989 clip,
990 useIdentityTransform,
991 layer->needsFiltering() || outputState.needsFiltering,
992 outputState.isSecure,
993 supportsProtectedContent,
994 clientComposition ? clearRegion : dummyRegion,
995 outputState.viewport,
996 outputDataspace,
997 realContentIsVisible,
998 !clientComposition, /* clearContent */
999 };
1000 std::vector<LayerFE::LayerSettings> results =
1001 layerFE.prepareClientCompositionList(targetSettings);
1002 if (realContentIsVisible && !results.empty()) {
1003 layer->editState().clientCompositionTimestamp = systemTime();
1004 }
1005
1006 clientCompositionLayers.insert(clientCompositionLayers.end(),
1007 std::make_move_iterator(results.begin()),
1008 std::make_move_iterator(results.end()));
1009 results.clear();
1010 }
1011
1012 firstLayer = false;
1013 }
1014
1015 return clientCompositionLayers;
1016 }
1017
appendRegionFlashRequests(const Region & flashRegion,std::vector<LayerFE::LayerSettings> & clientCompositionLayers)1018 void Output::appendRegionFlashRequests(
1019 const Region& flashRegion, std::vector<LayerFE::LayerSettings>& clientCompositionLayers) {
1020 if (flashRegion.isEmpty()) {
1021 return;
1022 }
1023
1024 LayerFE::LayerSettings layerSettings;
1025 layerSettings.source.buffer.buffer = nullptr;
1026 layerSettings.source.solidColor = half3(1.0, 0.0, 1.0);
1027 layerSettings.alpha = half(1.0);
1028
1029 for (const auto& rect : flashRegion) {
1030 layerSettings.geometry.boundaries = rect.toFloatRect();
1031 clientCompositionLayers.push_back(layerSettings);
1032 }
1033 }
1034
setExpensiveRenderingExpected(bool)1035 void Output::setExpensiveRenderingExpected(bool) {
1036 // The base class does nothing with this call.
1037 }
1038
postFramebuffer()1039 void Output::postFramebuffer() {
1040 ATRACE_CALL();
1041 ALOGV(__FUNCTION__);
1042
1043 if (!getState().isEnabled) {
1044 return;
1045 }
1046
1047 auto& outputState = editState();
1048 outputState.dirtyRegion.clear();
1049 mRenderSurface->flip();
1050
1051 auto frame = presentAndGetFrameFences();
1052
1053 mRenderSurface->onPresentDisplayCompleted();
1054
1055 for (auto* layer : getOutputLayersOrderedByZ()) {
1056 // The layer buffer from the previous frame (if any) is released
1057 // by HWC only when the release fence from this frame (if any) is
1058 // signaled. Always get the release fence from HWC first.
1059 sp<Fence> releaseFence = Fence::NO_FENCE;
1060
1061 if (auto hwcLayer = layer->getHwcLayer()) {
1062 if (auto f = frame.layerFences.find(hwcLayer); f != frame.layerFences.end()) {
1063 releaseFence = f->second;
1064 }
1065 }
1066
1067 // If the layer was client composited in the previous frame, we
1068 // need to merge with the previous client target acquire fence.
1069 // Since we do not track that, always merge with the current
1070 // client target acquire fence when it is available, even though
1071 // this is suboptimal.
1072 // TODO(b/121291683): Track previous frame client target acquire fence.
1073 if (outputState.usesClientComposition) {
1074 releaseFence =
1075 Fence::merge("LayerRelease", releaseFence, frame.clientTargetAcquireFence);
1076 }
1077
1078 layer->getLayerFE().onLayerDisplayed(releaseFence);
1079 }
1080
1081 // We've got a list of layers needing fences, that are disjoint with
1082 // OutputLayersOrderedByZ. The best we can do is to
1083 // supply them with the present fence.
1084 for (auto& weakLayer : mReleasedLayers) {
1085 if (auto layer = weakLayer.promote(); layer != nullptr) {
1086 layer->onLayerDisplayed(frame.presentFence);
1087 }
1088 }
1089
1090 // Clear out the released layers now that we're done with them.
1091 mReleasedLayers.clear();
1092 }
1093
dirtyEntireOutput()1094 void Output::dirtyEntireOutput() {
1095 auto& outputState = editState();
1096 outputState.dirtyRegion.set(outputState.bounds);
1097 }
1098
chooseCompositionStrategy()1099 void Output::chooseCompositionStrategy() {
1100 // The base output implementation can only do client composition
1101 auto& outputState = editState();
1102 outputState.usesClientComposition = true;
1103 outputState.usesDeviceComposition = false;
1104 outputState.reusedClientComposition = false;
1105 }
1106
getSkipColorTransform() const1107 bool Output::getSkipColorTransform() const {
1108 return true;
1109 }
1110
presentAndGetFrameFences()1111 compositionengine::Output::FrameFences Output::presentAndGetFrameFences() {
1112 compositionengine::Output::FrameFences result;
1113 if (getState().usesClientComposition) {
1114 result.clientTargetAcquireFence = mRenderSurface->getClientTargetAcquireFence();
1115 }
1116 return result;
1117 }
1118
1119 } // namespace impl
1120 } // namespace android::compositionengine
1121