1 /*
2 * Copyright (C) 2008 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "monitor-inl.h"
18
19 #include <vector>
20
21 #include "android-base/stringprintf.h"
22
23 #include "art_method-inl.h"
24 #include "base/logging.h" // For VLOG.
25 #include "base/mutex.h"
26 #include "base/quasi_atomic.h"
27 #include "base/stl_util.h"
28 #include "base/systrace.h"
29 #include "base/time_utils.h"
30 #include "class_linker.h"
31 #include "dex/dex_file-inl.h"
32 #include "dex/dex_file_types.h"
33 #include "dex/dex_instruction-inl.h"
34 #include "lock_word-inl.h"
35 #include "mirror/class-inl.h"
36 #include "mirror/object-inl.h"
37 #include "object_callbacks.h"
38 #include "scoped_thread_state_change-inl.h"
39 #include "stack.h"
40 #include "thread.h"
41 #include "thread_list.h"
42 #include "verifier/method_verifier.h"
43 #include "well_known_classes.h"
44
45 namespace art {
46
47 using android::base::StringPrintf;
48
49 static constexpr uint64_t kDebugThresholdFudgeFactor = kIsDebugBuild ? 10 : 1;
50 static constexpr uint64_t kLongWaitMs = 100 * kDebugThresholdFudgeFactor;
51
52 /*
53 * Every Object has a monitor associated with it, but not every Object is actually locked. Even
54 * the ones that are locked do not need a full-fledged monitor until a) there is actual contention
55 * or b) wait() is called on the Object, or (c) we need to lock an object that also has an
56 * identity hashcode.
57 *
58 * For Android, we have implemented a scheme similar to the one described in Bacon et al.'s
59 * "Thin locks: featherweight synchronization for Java" (ACM 1998). Things are even easier for us,
60 * though, because we have a full 32 bits to work with.
61 *
62 * The two states of an Object's lock are referred to as "thin" and "fat". A lock may transition
63 * from the "thin" state to the "fat" state and this transition is referred to as inflation. We
64 * deflate locks from time to time as part of heap trimming.
65 *
66 * The lock value itself is stored in mirror::Object::monitor_ and the representation is described
67 * in the LockWord value type.
68 *
69 * Monitors provide:
70 * - mutually exclusive access to resources
71 * - a way for multiple threads to wait for notification
72 *
73 * In effect, they fill the role of both mutexes and condition variables.
74 *
75 * Only one thread can own the monitor at any time. There may be several threads waiting on it
76 * (the wait call unlocks it). One or more waiting threads may be getting interrupted or notified
77 * at any given time.
78 */
79
80 uint32_t Monitor::lock_profiling_threshold_ = 0;
81 uint32_t Monitor::stack_dump_lock_profiling_threshold_ = 0;
82
Init(uint32_t lock_profiling_threshold,uint32_t stack_dump_lock_profiling_threshold)83 void Monitor::Init(uint32_t lock_profiling_threshold,
84 uint32_t stack_dump_lock_profiling_threshold) {
85 // It isn't great to always include the debug build fudge factor for command-
86 // line driven arguments, but it's easier to adjust here than in the build.
87 lock_profiling_threshold_ =
88 lock_profiling_threshold * kDebugThresholdFudgeFactor;
89 stack_dump_lock_profiling_threshold_ =
90 stack_dump_lock_profiling_threshold * kDebugThresholdFudgeFactor;
91 }
92
Monitor(Thread * self,Thread * owner,ObjPtr<mirror::Object> obj,int32_t hash_code)93 Monitor::Monitor(Thread* self, Thread* owner, ObjPtr<mirror::Object> obj, int32_t hash_code)
94 : monitor_lock_("a monitor lock", kMonitorLock),
95 num_waiters_(0),
96 owner_(owner),
97 lock_count_(0),
98 obj_(GcRoot<mirror::Object>(obj)),
99 wait_set_(nullptr),
100 wake_set_(nullptr),
101 hash_code_(hash_code),
102 lock_owner_(nullptr),
103 lock_owner_method_(nullptr),
104 lock_owner_dex_pc_(0),
105 lock_owner_sum_(0),
106 lock_owner_request_(nullptr),
107 monitor_id_(MonitorPool::ComputeMonitorId(this, self)) {
108 #ifdef __LP64__
109 DCHECK(false) << "Should not be reached in 64b";
110 next_free_ = nullptr;
111 #endif
112 // We should only inflate a lock if the owner is ourselves or suspended. This avoids a race
113 // with the owner unlocking the thin-lock.
114 CHECK(owner == nullptr || owner == self || owner->IsSuspended());
115 // The identity hash code is set for the life time of the monitor.
116 }
117
Monitor(Thread * self,Thread * owner,ObjPtr<mirror::Object> obj,int32_t hash_code,MonitorId id)118 Monitor::Monitor(Thread* self,
119 Thread* owner,
120 ObjPtr<mirror::Object> obj,
121 int32_t hash_code,
122 MonitorId id)
123 : monitor_lock_("a monitor lock", kMonitorLock),
124 num_waiters_(0),
125 owner_(owner),
126 lock_count_(0),
127 obj_(GcRoot<mirror::Object>(obj)),
128 wait_set_(nullptr),
129 wake_set_(nullptr),
130 hash_code_(hash_code),
131 lock_owner_(nullptr),
132 lock_owner_method_(nullptr),
133 lock_owner_dex_pc_(0),
134 lock_owner_sum_(0),
135 lock_owner_request_(nullptr),
136 monitor_id_(id) {
137 #ifdef __LP64__
138 next_free_ = nullptr;
139 #endif
140 // We should only inflate a lock if the owner is ourselves or suspended. This avoids a race
141 // with the owner unlocking the thin-lock.
142 CHECK(owner == nullptr || owner == self || owner->IsSuspended());
143 // The identity hash code is set for the life time of the monitor.
144 }
145
GetHashCode()146 int32_t Monitor::GetHashCode() {
147 int32_t hc = hash_code_.load(std::memory_order_relaxed);
148 if (!HasHashCode()) {
149 // Use a strong CAS to prevent spurious failures since these can make the boot image
150 // non-deterministic.
151 hash_code_.CompareAndSetStrongRelaxed(0, mirror::Object::GenerateIdentityHashCode());
152 hc = hash_code_.load(std::memory_order_relaxed);
153 }
154 DCHECK(HasHashCode());
155 return hc;
156 }
157
SetLockingMethod(Thread * owner)158 void Monitor::SetLockingMethod(Thread* owner) {
159 DCHECK(owner == Thread::Current() || owner->IsSuspended());
160 // Do not abort on dex pc errors. This can easily happen when we want to dump a stack trace on
161 // abort.
162 ArtMethod* lock_owner_method;
163 uint32_t lock_owner_dex_pc;
164 lock_owner_method = owner->GetCurrentMethod(&lock_owner_dex_pc, false);
165 if (lock_owner_method != nullptr && UNLIKELY(lock_owner_method->IsProxyMethod())) {
166 // Grab another frame. Proxy methods are not helpful for lock profiling. This should be rare
167 // enough that it's OK to walk the stack twice.
168 struct NextMethodVisitor final : public StackVisitor {
169 explicit NextMethodVisitor(Thread* thread) REQUIRES_SHARED(Locks::mutator_lock_)
170 : StackVisitor(thread,
171 nullptr,
172 StackVisitor::StackWalkKind::kIncludeInlinedFrames,
173 false),
174 count_(0),
175 method_(nullptr),
176 dex_pc_(0) {}
177 bool VisitFrame() override REQUIRES_SHARED(Locks::mutator_lock_) {
178 ArtMethod* m = GetMethod();
179 if (m->IsRuntimeMethod()) {
180 // Continue if this is a runtime method.
181 return true;
182 }
183 count_++;
184 if (count_ == 2u) {
185 method_ = m;
186 dex_pc_ = GetDexPc(false);
187 return false;
188 }
189 return true;
190 }
191 size_t count_;
192 ArtMethod* method_;
193 uint32_t dex_pc_;
194 };
195 NextMethodVisitor nmv(owner_.load(std::memory_order_relaxed));
196 nmv.WalkStack();
197 lock_owner_method = nmv.method_;
198 lock_owner_dex_pc = nmv.dex_pc_;
199 }
200 SetLockOwnerInfo(lock_owner_method, lock_owner_dex_pc, owner);
201 DCHECK(lock_owner_method == nullptr || !lock_owner_method->IsProxyMethod());
202 }
203
SetLockingMethodNoProxy(Thread * owner)204 void Monitor::SetLockingMethodNoProxy(Thread *owner) {
205 DCHECK(owner == Thread::Current());
206 uint32_t lock_owner_dex_pc;
207 ArtMethod* lock_owner_method = owner->GetCurrentMethod(&lock_owner_dex_pc);
208 // We don't expect a proxy method here.
209 DCHECK(lock_owner_method == nullptr || !lock_owner_method->IsProxyMethod());
210 SetLockOwnerInfo(lock_owner_method, lock_owner_dex_pc, owner);
211 }
212
Install(Thread * self)213 bool Monitor::Install(Thread* self) NO_THREAD_SAFETY_ANALYSIS {
214 // This may or may not result in acquiring monitor_lock_. Its behavior is much more complicated
215 // than what clang thread safety analysis understands.
216 // Monitor is not yet public.
217 Thread* owner = owner_.load(std::memory_order_relaxed);
218 CHECK(owner == nullptr || owner == self || (ART_USE_FUTEXES && owner->IsSuspended()));
219 // Propagate the lock state.
220 LockWord lw(GetObject()->GetLockWord(false));
221 switch (lw.GetState()) {
222 case LockWord::kThinLocked: {
223 DCHECK(owner != nullptr);
224 CHECK_EQ(owner->GetThreadId(), lw.ThinLockOwner());
225 DCHECK_EQ(monitor_lock_.GetExclusiveOwnerTid(), 0) << " my tid = " << SafeGetTid(self);
226 lock_count_ = lw.ThinLockCount();
227 #if ART_USE_FUTEXES
228 monitor_lock_.ExclusiveLockUncontendedFor(owner);
229 #else
230 monitor_lock_.ExclusiveLock(owner);
231 #endif
232 DCHECK_EQ(monitor_lock_.GetExclusiveOwnerTid(), owner->GetTid())
233 << " my tid = " << SafeGetTid(self);
234 LockWord fat(this, lw.GCState());
235 // Publish the updated lock word, which may race with other threads.
236 bool success = GetObject()->CasLockWord(lw, fat, CASMode::kWeak, std::memory_order_release);
237 if (success) {
238 if (ATraceEnabled()) {
239 SetLockingMethod(owner);
240 }
241 return true;
242 } else {
243 #if ART_USE_FUTEXES
244 monitor_lock_.ExclusiveUnlockUncontended();
245 #else
246 for (uint32_t i = 0; i <= lockCount; ++i) {
247 monitor_lock_.ExclusiveUnlock(owner);
248 }
249 #endif
250 return false;
251 }
252 }
253 case LockWord::kHashCode: {
254 CHECK_EQ(hash_code_.load(std::memory_order_relaxed), static_cast<int32_t>(lw.GetHashCode()));
255 DCHECK_EQ(monitor_lock_.GetExclusiveOwnerTid(), 0) << " my tid = " << SafeGetTid(self);
256 LockWord fat(this, lw.GCState());
257 return GetObject()->CasLockWord(lw, fat, CASMode::kWeak, std::memory_order_release);
258 }
259 case LockWord::kFatLocked: {
260 // The owner_ is suspended but another thread beat us to install a monitor.
261 return false;
262 }
263 case LockWord::kUnlocked: {
264 LOG(FATAL) << "Inflating unlocked lock word";
265 UNREACHABLE();
266 }
267 default: {
268 LOG(FATAL) << "Invalid monitor state " << lw.GetState();
269 UNREACHABLE();
270 }
271 }
272 }
273
~Monitor()274 Monitor::~Monitor() {
275 // Deflated monitors have a null object.
276 }
277
AppendToWaitSet(Thread * thread)278 void Monitor::AppendToWaitSet(Thread* thread) {
279 // Not checking that the owner is equal to this thread, since we've released
280 // the monitor by the time this method is called.
281 DCHECK(thread != nullptr);
282 DCHECK(thread->GetWaitNext() == nullptr) << thread->GetWaitNext();
283 if (wait_set_ == nullptr) {
284 wait_set_ = thread;
285 return;
286 }
287
288 // push_back.
289 Thread* t = wait_set_;
290 while (t->GetWaitNext() != nullptr) {
291 t = t->GetWaitNext();
292 }
293 t->SetWaitNext(thread);
294 }
295
RemoveFromWaitSet(Thread * thread)296 void Monitor::RemoveFromWaitSet(Thread *thread) {
297 DCHECK(owner_ == Thread::Current());
298 DCHECK(thread != nullptr);
299 auto remove = [&](Thread*& set){
300 if (set != nullptr) {
301 if (set == thread) {
302 set = thread->GetWaitNext();
303 thread->SetWaitNext(nullptr);
304 return true;
305 }
306 Thread* t = set;
307 while (t->GetWaitNext() != nullptr) {
308 if (t->GetWaitNext() == thread) {
309 t->SetWaitNext(thread->GetWaitNext());
310 thread->SetWaitNext(nullptr);
311 return true;
312 }
313 t = t->GetWaitNext();
314 }
315 }
316 return false;
317 };
318 if (remove(wait_set_)) {
319 return;
320 }
321 remove(wake_set_);
322 }
323
SetObject(ObjPtr<mirror::Object> object)324 void Monitor::SetObject(ObjPtr<mirror::Object> object) {
325 obj_ = GcRoot<mirror::Object>(object);
326 }
327
328 // This function is inlined and just helps to not have the VLOG and ATRACE check at all the
329 // potential tracing points.
AtraceMonitorLock(Thread * self,ObjPtr<mirror::Object> obj,bool is_wait)330 void Monitor::AtraceMonitorLock(Thread* self, ObjPtr<mirror::Object> obj, bool is_wait) {
331 if (UNLIKELY(VLOG_IS_ON(systrace_lock_logging) && ATraceEnabled())) {
332 AtraceMonitorLockImpl(self, obj, is_wait);
333 }
334 }
335
AtraceMonitorLockImpl(Thread * self,ObjPtr<mirror::Object> obj,bool is_wait)336 void Monitor::AtraceMonitorLockImpl(Thread* self, ObjPtr<mirror::Object> obj, bool is_wait) {
337 // Wait() requires a deeper call stack to be useful. Otherwise you'll see "Waiting at
338 // Object.java". Assume that we'll wait a nontrivial amount, so it's OK to do a longer
339 // stack walk than if !is_wait.
340 const size_t wanted_frame_number = is_wait ? 1U : 0U;
341
342 ArtMethod* method = nullptr;
343 uint32_t dex_pc = 0u;
344
345 size_t current_frame_number = 0u;
346 StackVisitor::WalkStack(
347 // Note: Adapted from CurrentMethodVisitor in thread.cc. We must not resolve here.
348 [&](const art::StackVisitor* stack_visitor) REQUIRES_SHARED(Locks::mutator_lock_) {
349 ArtMethod* m = stack_visitor->GetMethod();
350 if (m == nullptr || m->IsRuntimeMethod()) {
351 // Runtime method, upcall, or resolution issue. Skip.
352 return true;
353 }
354
355 // Is this the requested frame?
356 if (current_frame_number == wanted_frame_number) {
357 method = m;
358 dex_pc = stack_visitor->GetDexPc(false /* abort_on_error*/);
359 return false;
360 }
361
362 // Look for more.
363 current_frame_number++;
364 return true;
365 },
366 self,
367 /* context= */ nullptr,
368 art::StackVisitor::StackWalkKind::kIncludeInlinedFrames);
369
370 const char* prefix = is_wait ? "Waiting on " : "Locking ";
371
372 const char* filename;
373 int32_t line_number;
374 TranslateLocation(method, dex_pc, &filename, &line_number);
375
376 // It would be nice to have a stable "ID" for the object here. However, the only stable thing
377 // would be the identity hashcode. But we cannot use IdentityHashcode here: For one, there are
378 // times when it is unsafe to make that call (see stack dumping for an explanation). More
379 // importantly, we would have to give up on thin-locking when adding systrace locks, as the
380 // identity hashcode is stored in the lockword normally (so can't be used with thin-locks).
381 //
382 // Because of thin-locks we also cannot use the monitor id (as there is no monitor). Monitor ids
383 // also do not have to be stable, as the monitor may be deflated.
384 std::string tmp = StringPrintf("%s %d at %s:%d",
385 prefix,
386 (obj == nullptr ? -1 : static_cast<int32_t>(reinterpret_cast<uintptr_t>(obj.Ptr()))),
387 (filename != nullptr ? filename : "null"),
388 line_number);
389 ATraceBegin(tmp.c_str());
390 }
391
AtraceMonitorUnlock()392 void Monitor::AtraceMonitorUnlock() {
393 if (UNLIKELY(VLOG_IS_ON(systrace_lock_logging))) {
394 ATraceEnd();
395 }
396 }
397
PrettyContentionInfo(const std::string & owner_name,pid_t owner_tid,ArtMethod * owners_method,uint32_t owners_dex_pc,size_t num_waiters)398 std::string Monitor::PrettyContentionInfo(const std::string& owner_name,
399 pid_t owner_tid,
400 ArtMethod* owners_method,
401 uint32_t owners_dex_pc,
402 size_t num_waiters) {
403 Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
404 const char* owners_filename;
405 int32_t owners_line_number = 0;
406 if (owners_method != nullptr) {
407 TranslateLocation(owners_method, owners_dex_pc, &owners_filename, &owners_line_number);
408 }
409 std::ostringstream oss;
410 oss << "monitor contention with owner " << owner_name << " (" << owner_tid << ")";
411 if (owners_method != nullptr) {
412 oss << " at " << owners_method->PrettyMethod();
413 oss << "(" << owners_filename << ":" << owners_line_number << ")";
414 }
415 oss << " waiters=" << num_waiters;
416 return oss.str();
417 }
418
TryLock(Thread * self,bool spin)419 bool Monitor::TryLock(Thread* self, bool spin) {
420 Thread *owner = owner_.load(std::memory_order_relaxed);
421 if (owner == self) {
422 lock_count_++;
423 CHECK_NE(lock_count_, 0u); // Abort on overflow.
424 } else {
425 bool success = spin ? monitor_lock_.ExclusiveTryLockWithSpinning(self)
426 : monitor_lock_.ExclusiveTryLock(self);
427 if (!success) {
428 return false;
429 }
430 DCHECK(owner_.load(std::memory_order_relaxed) == nullptr);
431 owner_.store(self, std::memory_order_relaxed);
432 CHECK_EQ(lock_count_, 0u);
433 if (ATraceEnabled()) {
434 SetLockingMethodNoProxy(self);
435 }
436 }
437 DCHECK(monitor_lock_.IsExclusiveHeld(self));
438 AtraceMonitorLock(self, GetObject(), /* is_wait= */ false);
439 return true;
440 }
441
442 template <LockReason reason>
Lock(Thread * self)443 void Monitor::Lock(Thread* self) {
444 bool called_monitors_callback = false;
445 if (TryLock(self, /*spin=*/ true)) {
446 // TODO: This preserves original behavior. Correct?
447 if (called_monitors_callback) {
448 CHECK(reason == LockReason::kForLock);
449 Runtime::Current()->GetRuntimeCallbacks()->MonitorContendedLocked(this);
450 }
451 return;
452 }
453 // Contended; not reentrant. We hold no locks, so tread carefully.
454 const bool log_contention = (lock_profiling_threshold_ != 0);
455 uint64_t wait_start_ms = log_contention ? MilliTime() : 0;
456
457 Thread *orig_owner = nullptr;
458 ArtMethod* owners_method;
459 uint32_t owners_dex_pc;
460
461 // Do this before releasing the mutator lock so that we don't get deflated.
462 size_t num_waiters = num_waiters_.fetch_add(1, std::memory_order_relaxed);
463
464 bool started_trace = false;
465 if (ATraceEnabled() && owner_.load(std::memory_order_relaxed) != nullptr) {
466 // Acquiring thread_list_lock_ ensures that owner doesn't disappear while
467 // we're looking at it.
468 Locks::thread_list_lock_->ExclusiveLock(self);
469 orig_owner = owner_.load(std::memory_order_relaxed);
470 if (orig_owner != nullptr) { // Did the owner_ give the lock up?
471 const uint32_t orig_owner_thread_id = orig_owner->GetThreadId();
472 GetLockOwnerInfo(&owners_method, &owners_dex_pc, orig_owner);
473 std::ostringstream oss;
474 std::string name;
475 orig_owner->GetThreadName(name);
476 oss << PrettyContentionInfo(name,
477 orig_owner_thread_id,
478 owners_method,
479 owners_dex_pc,
480 num_waiters);
481 Locks::thread_list_lock_->ExclusiveUnlock(self);
482 // Add info for contending thread.
483 uint32_t pc;
484 ArtMethod* m = self->GetCurrentMethod(&pc);
485 const char* filename;
486 int32_t line_number;
487 TranslateLocation(m, pc, &filename, &line_number);
488 oss << " blocking from "
489 << ArtMethod::PrettyMethod(m) << "(" << (filename != nullptr ? filename : "null")
490 << ":" << line_number << ")";
491 ATraceBegin(oss.str().c_str());
492 started_trace = true;
493 } else {
494 Locks::thread_list_lock_->ExclusiveUnlock(self);
495 }
496 }
497 if (log_contention) {
498 // Request the current holder to set lock_owner_info.
499 // Do this even if tracing is enabled, so we semi-consistently get the information
500 // corresponding to MonitorExit.
501 // TODO: Consider optionally obtaining a stack trace here via a checkpoint. That would allow
502 // us to see what the other thread is doing while we're waiting.
503 orig_owner = owner_.load(std::memory_order_relaxed);
504 lock_owner_request_.store(orig_owner, std::memory_order_relaxed);
505 }
506 // Call the contended locking cb once and only once. Also only call it if we are locking for
507 // the first time, not during a Wait wakeup.
508 if (reason == LockReason::kForLock && !called_monitors_callback) {
509 called_monitors_callback = true;
510 Runtime::Current()->GetRuntimeCallbacks()->MonitorContendedLocking(this);
511 }
512 self->SetMonitorEnterObject(GetObject().Ptr());
513 {
514 ScopedThreadSuspension tsc(self, kBlocked); // Change to blocked and give up mutator_lock_.
515
516 // Acquire monitor_lock_ without mutator_lock_, expecting to block this time.
517 // We already tried spinning above. The shutdown procedure currently assumes we stop
518 // touching monitors shortly after we suspend, so don't spin again here.
519 monitor_lock_.ExclusiveLock(self);
520
521 if (log_contention && orig_owner != nullptr) {
522 // Woken from contention.
523 uint64_t wait_ms = MilliTime() - wait_start_ms;
524 uint32_t sample_percent;
525 if (wait_ms >= lock_profiling_threshold_) {
526 sample_percent = 100;
527 } else {
528 sample_percent = 100 * wait_ms / lock_profiling_threshold_;
529 }
530 if (sample_percent != 0 && (static_cast<uint32_t>(rand() % 100) < sample_percent)) {
531 // Do this unconditionally for consistency. It's possible another thread
532 // snuck in in the middle, and tracing was enabled. In that case, we may get its
533 // MonitorEnter information. We can live with that.
534 GetLockOwnerInfo(&owners_method, &owners_dex_pc, orig_owner);
535
536 // Reacquire mutator_lock_ for logging.
537 ScopedObjectAccess soa(self);
538
539 const bool should_dump_stacks = stack_dump_lock_profiling_threshold_ > 0 &&
540 wait_ms > stack_dump_lock_profiling_threshold_;
541
542 // Acquire thread-list lock to find thread and keep it from dying until we've got all
543 // the info we need.
544 Locks::thread_list_lock_->ExclusiveLock(self);
545
546 // Is there still a thread at the same address as the original owner?
547 // We tolerate the fact that it may occasionally be the wrong one.
548 if (Runtime::Current()->GetThreadList()->Contains(orig_owner)) {
549 uint32_t original_owner_tid = orig_owner->GetTid(); // System thread id.
550 std::string original_owner_name;
551 orig_owner->GetThreadName(original_owner_name);
552 std::string owner_stack_dump;
553
554 if (should_dump_stacks) {
555 // Very long contention. Dump stacks.
556 struct CollectStackTrace : public Closure {
557 void Run(art::Thread* thread) override
558 REQUIRES_SHARED(art::Locks::mutator_lock_) {
559 thread->DumpJavaStack(oss);
560 }
561
562 std::ostringstream oss;
563 };
564 CollectStackTrace owner_trace;
565 // RequestSynchronousCheckpoint releases the thread_list_lock_ as a part of its
566 // execution.
567 orig_owner->RequestSynchronousCheckpoint(&owner_trace);
568 owner_stack_dump = owner_trace.oss.str();
569 } else {
570 Locks::thread_list_lock_->ExclusiveUnlock(self);
571 }
572
573 // This is all the data we need. We dropped the thread-list lock, it's OK for the
574 // owner to go away now.
575
576 if (should_dump_stacks) {
577 // Give the detailed traces for really long contention.
578 // This must be here (and not above) because we cannot hold the thread-list lock
579 // while running the checkpoint.
580 std::ostringstream self_trace_oss;
581 self->DumpJavaStack(self_trace_oss);
582
583 uint32_t pc;
584 ArtMethod* m = self->GetCurrentMethod(&pc);
585
586 LOG(WARNING) << "Long "
587 << PrettyContentionInfo(original_owner_name,
588 original_owner_tid,
589 owners_method,
590 owners_dex_pc,
591 num_waiters)
592 << " in " << ArtMethod::PrettyMethod(m) << " for "
593 << PrettyDuration(MsToNs(wait_ms)) << "\n"
594 << "Current owner stack:\n" << owner_stack_dump
595 << "Contender stack:\n" << self_trace_oss.str();
596 } else if (wait_ms > kLongWaitMs && owners_method != nullptr) {
597 uint32_t pc;
598 ArtMethod* m = self->GetCurrentMethod(&pc);
599 // TODO: We should maybe check that original_owner is still a live thread.
600 LOG(WARNING) << "Long "
601 << PrettyContentionInfo(original_owner_name,
602 original_owner_tid,
603 owners_method,
604 owners_dex_pc,
605 num_waiters)
606 << " in " << ArtMethod::PrettyMethod(m) << " for "
607 << PrettyDuration(MsToNs(wait_ms));
608 }
609 LogContentionEvent(self,
610 wait_ms,
611 sample_percent,
612 owners_method,
613 owners_dex_pc);
614 } else {
615 Locks::thread_list_lock_->ExclusiveUnlock(self);
616 }
617 }
618 }
619 }
620 // We've successfully acquired monitor_lock_, released thread_list_lock, and are runnable.
621
622 // We avoided touching monitor fields while suspended, so set owner_ here.
623 owner_.store(self, std::memory_order_relaxed);
624 DCHECK_EQ(lock_count_, 0u);
625
626 if (ATraceEnabled()) {
627 SetLockingMethodNoProxy(self);
628 }
629 if (started_trace) {
630 ATraceEnd();
631 }
632 self->SetMonitorEnterObject(nullptr);
633 num_waiters_.fetch_sub(1, std::memory_order_relaxed);
634 DCHECK(monitor_lock_.IsExclusiveHeld(self));
635 // We need to pair this with a single contended locking call. NB we match the RI behavior and call
636 // this even if MonitorEnter failed.
637 if (called_monitors_callback) {
638 CHECK(reason == LockReason::kForLock);
639 Runtime::Current()->GetRuntimeCallbacks()->MonitorContendedLocked(this);
640 }
641 }
642
643 template void Monitor::Lock<LockReason::kForLock>(Thread* self);
644 template void Monitor::Lock<LockReason::kForWait>(Thread* self);
645
646 static void ThrowIllegalMonitorStateExceptionF(const char* fmt, ...)
647 __attribute__((format(printf, 1, 2)));
648
ThrowIllegalMonitorStateExceptionF(const char * fmt,...)649 static void ThrowIllegalMonitorStateExceptionF(const char* fmt, ...)
650 REQUIRES_SHARED(Locks::mutator_lock_) {
651 va_list args;
652 va_start(args, fmt);
653 Thread* self = Thread::Current();
654 self->ThrowNewExceptionV("Ljava/lang/IllegalMonitorStateException;", fmt, args);
655 if (!Runtime::Current()->IsStarted() || VLOG_IS_ON(monitor)) {
656 std::ostringstream ss;
657 self->Dump(ss);
658 LOG(Runtime::Current()->IsStarted() ? ::android::base::INFO : ::android::base::ERROR)
659 << self->GetException()->Dump() << "\n" << ss.str();
660 }
661 va_end(args);
662 }
663
ThreadToString(Thread * thread)664 static std::string ThreadToString(Thread* thread) {
665 if (thread == nullptr) {
666 return "nullptr";
667 }
668 std::ostringstream oss;
669 // TODO: alternatively, we could just return the thread's name.
670 oss << *thread;
671 return oss.str();
672 }
673
FailedUnlock(ObjPtr<mirror::Object> o,uint32_t expected_owner_thread_id,uint32_t found_owner_thread_id,Monitor * monitor)674 void Monitor::FailedUnlock(ObjPtr<mirror::Object> o,
675 uint32_t expected_owner_thread_id,
676 uint32_t found_owner_thread_id,
677 Monitor* monitor) {
678 std::string current_owner_string;
679 std::string expected_owner_string;
680 std::string found_owner_string;
681 uint32_t current_owner_thread_id = 0u;
682 {
683 MutexLock mu(Thread::Current(), *Locks::thread_list_lock_);
684 ThreadList* const thread_list = Runtime::Current()->GetThreadList();
685 Thread* expected_owner = thread_list->FindThreadByThreadId(expected_owner_thread_id);
686 Thread* found_owner = thread_list->FindThreadByThreadId(found_owner_thread_id);
687
688 // Re-read owner now that we hold lock.
689 Thread* current_owner = (monitor != nullptr) ? monitor->GetOwner() : nullptr;
690 if (current_owner != nullptr) {
691 current_owner_thread_id = current_owner->GetThreadId();
692 }
693 // Get short descriptions of the threads involved.
694 current_owner_string = ThreadToString(current_owner);
695 expected_owner_string = expected_owner != nullptr ? ThreadToString(expected_owner) : "unnamed";
696 found_owner_string = found_owner != nullptr ? ThreadToString(found_owner) : "unnamed";
697 }
698
699 if (current_owner_thread_id == 0u) {
700 if (found_owner_thread_id == 0u) {
701 ThrowIllegalMonitorStateExceptionF("unlock of unowned monitor on object of type '%s'"
702 " on thread '%s'",
703 mirror::Object::PrettyTypeOf(o).c_str(),
704 expected_owner_string.c_str());
705 } else {
706 // Race: the original read found an owner but now there is none
707 ThrowIllegalMonitorStateExceptionF("unlock of monitor owned by '%s' on object of type '%s'"
708 " (where now the monitor appears unowned) on thread '%s'",
709 found_owner_string.c_str(),
710 mirror::Object::PrettyTypeOf(o).c_str(),
711 expected_owner_string.c_str());
712 }
713 } else {
714 if (found_owner_thread_id == 0u) {
715 // Race: originally there was no owner, there is now
716 ThrowIllegalMonitorStateExceptionF("unlock of monitor owned by '%s' on object of type '%s'"
717 " (originally believed to be unowned) on thread '%s'",
718 current_owner_string.c_str(),
719 mirror::Object::PrettyTypeOf(o).c_str(),
720 expected_owner_string.c_str());
721 } else {
722 if (found_owner_thread_id != current_owner_thread_id) {
723 // Race: originally found and current owner have changed
724 ThrowIllegalMonitorStateExceptionF("unlock of monitor originally owned by '%s' (now"
725 " owned by '%s') on object of type '%s' on thread '%s'",
726 found_owner_string.c_str(),
727 current_owner_string.c_str(),
728 mirror::Object::PrettyTypeOf(o).c_str(),
729 expected_owner_string.c_str());
730 } else {
731 ThrowIllegalMonitorStateExceptionF("unlock of monitor owned by '%s' on object of type '%s'"
732 " on thread '%s",
733 current_owner_string.c_str(),
734 mirror::Object::PrettyTypeOf(o).c_str(),
735 expected_owner_string.c_str());
736 }
737 }
738 }
739 }
740
Unlock(Thread * self)741 bool Monitor::Unlock(Thread* self) {
742 DCHECK(self != nullptr);
743 Thread* owner = owner_.load(std::memory_order_relaxed);
744 if (owner == self) {
745 // We own the monitor, so nobody else can be in here.
746 CheckLockOwnerRequest(self);
747 AtraceMonitorUnlock();
748 if (lock_count_ == 0) {
749 owner_.store(nullptr, std::memory_order_relaxed);
750 SignalWaiterAndReleaseMonitorLock(self);
751 } else {
752 --lock_count_;
753 DCHECK(monitor_lock_.IsExclusiveHeld(self));
754 DCHECK_EQ(owner_.load(std::memory_order_relaxed), self);
755 // Keep monitor_lock_, but pretend we released it.
756 FakeUnlockMonitorLock();
757 }
758 return true;
759 }
760 // We don't own this, so we're not allowed to unlock it.
761 // The JNI spec says that we should throw IllegalMonitorStateException in this case.
762 uint32_t owner_thread_id = 0u;
763 {
764 MutexLock mu(self, *Locks::thread_list_lock_);
765 owner = owner_.load(std::memory_order_relaxed);
766 if (owner != nullptr) {
767 owner_thread_id = owner->GetThreadId();
768 }
769 }
770 FailedUnlock(GetObject(), self->GetThreadId(), owner_thread_id, this);
771 // Pretend to release monitor_lock_, which we should not.
772 FakeUnlockMonitorLock();
773 return false;
774 }
775
SignalWaiterAndReleaseMonitorLock(Thread * self)776 void Monitor::SignalWaiterAndReleaseMonitorLock(Thread* self) {
777 // We want to release the monitor and signal up to one thread that was waiting
778 // but has since been notified.
779 DCHECK_EQ(lock_count_, 0u);
780 DCHECK(monitor_lock_.IsExclusiveHeld(self));
781 while (wake_set_ != nullptr) {
782 // No risk of waking ourselves here; since monitor_lock_ is not released until we're ready to
783 // return, notify can't move the current thread from wait_set_ to wake_set_ until this
784 // method is done checking wake_set_.
785 Thread* thread = wake_set_;
786 wake_set_ = thread->GetWaitNext();
787 thread->SetWaitNext(nullptr);
788 DCHECK(owner_.load(std::memory_order_relaxed) == nullptr);
789
790 // Check to see if the thread is still waiting.
791 {
792 // In the case of wait(), we'll be acquiring another thread's GetWaitMutex with
793 // self's GetWaitMutex held. This does not risk deadlock, because we only acquire this lock
794 // for threads in the wake_set_. A thread can only enter wake_set_ from Notify or NotifyAll,
795 // and those hold monitor_lock_. Thus, the threads whose wait mutexes we acquire here must
796 // have already been released from wait(), since we have not released monitor_lock_ until
797 // after we've chosen our thread to wake, so there is no risk of the following lock ordering
798 // leading to deadlock:
799 // Thread 1 waits
800 // Thread 2 waits
801 // Thread 3 moves threads 1 and 2 from wait_set_ to wake_set_
802 // Thread 1 enters this block, and attempts to acquire Thread 2's GetWaitMutex to wake it
803 // Thread 2 enters this block, and attempts to acquire Thread 1's GetWaitMutex to wake it
804 //
805 // Since monitor_lock_ is not released until the thread-to-be-woken-up's GetWaitMutex is
806 // acquired, two threads cannot attempt to acquire each other's GetWaitMutex while holding
807 // their own and cause deadlock.
808 MutexLock wait_mu(self, *thread->GetWaitMutex());
809 if (thread->GetWaitMonitor() != nullptr) {
810 // Release the lock, so that a potentially awakened thread will not
811 // immediately contend on it. The lock ordering here is:
812 // monitor_lock_, self->GetWaitMutex, thread->GetWaitMutex
813 monitor_lock_.Unlock(self); // Releases contenders.
814 thread->GetWaitConditionVariable()->Signal(self);
815 return;
816 }
817 }
818 }
819 monitor_lock_.Unlock(self);
820 DCHECK(!monitor_lock_.IsExclusiveHeld(self));
821 }
822
Wait(Thread * self,int64_t ms,int32_t ns,bool interruptShouldThrow,ThreadState why)823 void Monitor::Wait(Thread* self, int64_t ms, int32_t ns,
824 bool interruptShouldThrow, ThreadState why) {
825 DCHECK(self != nullptr);
826 DCHECK(why == kTimedWaiting || why == kWaiting || why == kSleeping);
827
828 // Make sure that we hold the lock.
829 if (owner_.load(std::memory_order_relaxed) != self) {
830 ThrowIllegalMonitorStateExceptionF("object not locked by thread before wait()");
831 return;
832 }
833
834 // We need to turn a zero-length timed wait into a regular wait because
835 // Object.wait(0, 0) is defined as Object.wait(0), which is defined as Object.wait().
836 if (why == kTimedWaiting && (ms == 0 && ns == 0)) {
837 why = kWaiting;
838 }
839
840 // Enforce the timeout range.
841 if (ms < 0 || ns < 0 || ns > 999999) {
842 self->ThrowNewExceptionF("Ljava/lang/IllegalArgumentException;",
843 "timeout arguments out of range: ms=%" PRId64 " ns=%d", ms, ns);
844 return;
845 }
846
847 CheckLockOwnerRequest(self);
848
849 /*
850 * Release our hold - we need to let it go even if we're a few levels
851 * deep in a recursive lock, and we need to restore that later.
852 */
853 unsigned int prev_lock_count = lock_count_;
854 lock_count_ = 0;
855
856 AtraceMonitorUnlock(); // For the implict Unlock() just above. This will only end the deepest
857 // nesting, but that is enough for the visualization, and corresponds to
858 // the single Lock() we do afterwards.
859 AtraceMonitorLock(self, GetObject(), /* is_wait= */ true);
860
861 bool was_interrupted = false;
862 bool timed_out = false;
863 // Update monitor state now; it's not safe once we're "suspended".
864 owner_.store(nullptr, std::memory_order_relaxed);
865 num_waiters_.fetch_add(1, std::memory_order_relaxed);
866 {
867 // Update thread state. If the GC wakes up, it'll ignore us, knowing
868 // that we won't touch any references in this state, and we'll check
869 // our suspend mode before we transition out.
870 ScopedThreadSuspension sts(self, why);
871
872 // Pseudo-atomically wait on self's wait_cond_ and release the monitor lock.
873 MutexLock mu(self, *self->GetWaitMutex());
874
875 /*
876 * Add ourselves to the set of threads waiting on this monitor.
877 * It's important that we are only added to the wait set after
878 * acquiring our GetWaitMutex, so that calls to Notify() that occur after we
879 * have released monitor_lock_ will not move us from wait_set_ to wake_set_
880 * until we've signalled contenders on this monitor.
881 */
882 AppendToWaitSet(self);
883
884 // Set wait_monitor_ to the monitor object we will be waiting on. When wait_monitor_ is
885 // non-null a notifying or interrupting thread must signal the thread's wait_cond_ to wake it
886 // up.
887 DCHECK(self->GetWaitMonitor() == nullptr);
888 self->SetWaitMonitor(this);
889
890 // Release the monitor lock.
891 DCHECK(monitor_lock_.IsExclusiveHeld(self));
892 SignalWaiterAndReleaseMonitorLock(self);
893
894 // Handle the case where the thread was interrupted before we called wait().
895 if (self->IsInterrupted()) {
896 was_interrupted = true;
897 } else {
898 // Wait for a notification or a timeout to occur.
899 if (why == kWaiting) {
900 self->GetWaitConditionVariable()->Wait(self);
901 } else {
902 DCHECK(why == kTimedWaiting || why == kSleeping) << why;
903 timed_out = self->GetWaitConditionVariable()->TimedWait(self, ms, ns);
904 }
905 was_interrupted = self->IsInterrupted();
906 }
907 }
908
909 {
910 // We reset the thread's wait_monitor_ field after transitioning back to runnable so
911 // that a thread in a waiting/sleeping state has a non-null wait_monitor_ for debugging
912 // and diagnostic purposes. (If you reset this earlier, stack dumps will claim that threads
913 // are waiting on "null".)
914 MutexLock mu(self, *self->GetWaitMutex());
915 DCHECK(self->GetWaitMonitor() != nullptr);
916 self->SetWaitMonitor(nullptr);
917 }
918
919 // Allocate the interrupted exception not holding the monitor lock since it may cause a GC.
920 // If the GC requires acquiring the monitor for enqueuing cleared references, this would
921 // cause a deadlock if the monitor is held.
922 if (was_interrupted && interruptShouldThrow) {
923 /*
924 * We were interrupted while waiting, or somebody interrupted an
925 * un-interruptible thread earlier and we're bailing out immediately.
926 *
927 * The doc sayeth: "The interrupted status of the current thread is
928 * cleared when this exception is thrown."
929 */
930 self->SetInterrupted(false);
931 self->ThrowNewException("Ljava/lang/InterruptedException;", nullptr);
932 }
933
934 AtraceMonitorUnlock(); // End Wait().
935
936 // We just slept, tell the runtime callbacks about this.
937 Runtime::Current()->GetRuntimeCallbacks()->MonitorWaitFinished(this, timed_out);
938
939 // Re-acquire the monitor and lock.
940 Lock<LockReason::kForWait>(self);
941 lock_count_ = prev_lock_count;
942 DCHECK(monitor_lock_.IsExclusiveHeld(self));
943 self->GetWaitMutex()->AssertNotHeld(self);
944
945 num_waiters_.fetch_sub(1, std::memory_order_relaxed);
946 RemoveFromWaitSet(self);
947 }
948
Notify(Thread * self)949 void Monitor::Notify(Thread* self) {
950 DCHECK(self != nullptr);
951 // Make sure that we hold the lock.
952 if (owner_.load(std::memory_order_relaxed) != self) {
953 ThrowIllegalMonitorStateExceptionF("object not locked by thread before notify()");
954 return;
955 }
956 // Move one thread from waiters to wake set
957 Thread* to_move = wait_set_;
958 if (to_move != nullptr) {
959 wait_set_ = to_move->GetWaitNext();
960 to_move->SetWaitNext(wake_set_);
961 wake_set_ = to_move;
962 }
963 }
964
NotifyAll(Thread * self)965 void Monitor::NotifyAll(Thread* self) {
966 DCHECK(self != nullptr);
967 // Make sure that we hold the lock.
968 if (owner_.load(std::memory_order_relaxed) != self) {
969 ThrowIllegalMonitorStateExceptionF("object not locked by thread before notifyAll()");
970 return;
971 }
972
973 // Move all threads from waiters to wake set
974 Thread* to_move = wait_set_;
975 if (to_move != nullptr) {
976 wait_set_ = nullptr;
977 Thread* move_to = wake_set_;
978 if (move_to == nullptr) {
979 wake_set_ = to_move;
980 return;
981 }
982 while (move_to->GetWaitNext() != nullptr) {
983 move_to = move_to->GetWaitNext();
984 }
985 move_to->SetWaitNext(to_move);
986 }
987 }
988
Deflate(Thread * self,ObjPtr<mirror::Object> obj)989 bool Monitor::Deflate(Thread* self, ObjPtr<mirror::Object> obj) {
990 DCHECK(obj != nullptr);
991 // Don't need volatile since we only deflate with mutators suspended.
992 LockWord lw(obj->GetLockWord(false));
993 // If the lock isn't an inflated monitor, then we don't need to deflate anything.
994 if (lw.GetState() == LockWord::kFatLocked) {
995 Monitor* monitor = lw.FatLockMonitor();
996 DCHECK(monitor != nullptr);
997 // Can't deflate if we have anybody waiting on the CV or trying to acquire the monitor.
998 if (monitor->num_waiters_.load(std::memory_order_relaxed) > 0) {
999 return false;
1000 }
1001 if (!monitor->monitor_lock_.ExclusiveTryLock(self)) {
1002 // We cannot deflate a monitor that's currently held. It's unclear whether we should if
1003 // we could.
1004 return false;
1005 }
1006 DCHECK_EQ(monitor->lock_count_, 0u);
1007 DCHECK_EQ(monitor->owner_.load(std::memory_order_relaxed), static_cast<Thread*>(nullptr));
1008 if (monitor->HasHashCode()) {
1009 LockWord new_lw = LockWord::FromHashCode(monitor->GetHashCode(), lw.GCState());
1010 // Assume no concurrent read barrier state changes as mutators are suspended.
1011 obj->SetLockWord(new_lw, false);
1012 VLOG(monitor) << "Deflated " << obj << " to hash monitor " << monitor->GetHashCode();
1013 } else {
1014 // No lock and no hash, just put an empty lock word inside the object.
1015 LockWord new_lw = LockWord::FromDefault(lw.GCState());
1016 // Assume no concurrent read barrier state changes as mutators are suspended.
1017 obj->SetLockWord(new_lw, false);
1018 VLOG(monitor) << "Deflated" << obj << " to empty lock word";
1019 }
1020 monitor->monitor_lock_.ExclusiveUnlock(self);
1021 DCHECK(!(monitor->monitor_lock_.IsExclusiveHeld(self)));
1022 // The monitor is deflated, mark the object as null so that we know to delete it during the
1023 // next GC.
1024 monitor->obj_ = GcRoot<mirror::Object>(nullptr);
1025 }
1026 return true;
1027 }
1028
Inflate(Thread * self,Thread * owner,ObjPtr<mirror::Object> obj,int32_t hash_code)1029 void Monitor::Inflate(Thread* self, Thread* owner, ObjPtr<mirror::Object> obj, int32_t hash_code) {
1030 DCHECK(self != nullptr);
1031 DCHECK(obj != nullptr);
1032 // Allocate and acquire a new monitor.
1033 Monitor* m = MonitorPool::CreateMonitor(self, owner, obj, hash_code);
1034 DCHECK(m != nullptr);
1035 if (m->Install(self)) {
1036 if (owner != nullptr) {
1037 VLOG(monitor) << "monitor: thread" << owner->GetThreadId()
1038 << " created monitor " << m << " for object " << obj;
1039 } else {
1040 VLOG(monitor) << "monitor: Inflate with hashcode " << hash_code
1041 << " created monitor " << m << " for object " << obj;
1042 }
1043 Runtime::Current()->GetMonitorList()->Add(m);
1044 CHECK_EQ(obj->GetLockWord(true).GetState(), LockWord::kFatLocked);
1045 } else {
1046 MonitorPool::ReleaseMonitor(self, m);
1047 }
1048 }
1049
InflateThinLocked(Thread * self,Handle<mirror::Object> obj,LockWord lock_word,uint32_t hash_code)1050 void Monitor::InflateThinLocked(Thread* self, Handle<mirror::Object> obj, LockWord lock_word,
1051 uint32_t hash_code) {
1052 DCHECK_EQ(lock_word.GetState(), LockWord::kThinLocked);
1053 uint32_t owner_thread_id = lock_word.ThinLockOwner();
1054 if (owner_thread_id == self->GetThreadId()) {
1055 // We own the monitor, we can easily inflate it.
1056 Inflate(self, self, obj.Get(), hash_code);
1057 } else {
1058 ThreadList* thread_list = Runtime::Current()->GetThreadList();
1059 // Suspend the owner, inflate. First change to blocked and give up mutator_lock_.
1060 self->SetMonitorEnterObject(obj.Get());
1061 bool timed_out;
1062 Thread* owner;
1063 {
1064 ScopedThreadSuspension sts(self, kWaitingForLockInflation);
1065 owner = thread_list->SuspendThreadByThreadId(owner_thread_id,
1066 SuspendReason::kInternal,
1067 &timed_out);
1068 }
1069 if (owner != nullptr) {
1070 // We succeeded in suspending the thread, check the lock's status didn't change.
1071 lock_word = obj->GetLockWord(true);
1072 if (lock_word.GetState() == LockWord::kThinLocked &&
1073 lock_word.ThinLockOwner() == owner_thread_id) {
1074 // Go ahead and inflate the lock.
1075 Inflate(self, owner, obj.Get(), hash_code);
1076 }
1077 bool resumed = thread_list->Resume(owner, SuspendReason::kInternal);
1078 DCHECK(resumed);
1079 }
1080 self->SetMonitorEnterObject(nullptr);
1081 }
1082 }
1083
1084 // Fool annotalysis into thinking that the lock on obj is acquired.
FakeLock(ObjPtr<mirror::Object> obj)1085 static ObjPtr<mirror::Object> FakeLock(ObjPtr<mirror::Object> obj)
1086 EXCLUSIVE_LOCK_FUNCTION(obj.Ptr()) NO_THREAD_SAFETY_ANALYSIS {
1087 return obj;
1088 }
1089
1090 // Fool annotalysis into thinking that the lock on obj is release.
FakeUnlock(ObjPtr<mirror::Object> obj)1091 static ObjPtr<mirror::Object> FakeUnlock(ObjPtr<mirror::Object> obj)
1092 UNLOCK_FUNCTION(obj.Ptr()) NO_THREAD_SAFETY_ANALYSIS {
1093 return obj;
1094 }
1095
MonitorEnter(Thread * self,ObjPtr<mirror::Object> obj,bool trylock)1096 ObjPtr<mirror::Object> Monitor::MonitorEnter(Thread* self,
1097 ObjPtr<mirror::Object> obj,
1098 bool trylock) {
1099 DCHECK(self != nullptr);
1100 DCHECK(obj != nullptr);
1101 self->AssertThreadSuspensionIsAllowable();
1102 obj = FakeLock(obj);
1103 uint32_t thread_id = self->GetThreadId();
1104 size_t contention_count = 0;
1105 StackHandleScope<1> hs(self);
1106 Handle<mirror::Object> h_obj(hs.NewHandle(obj));
1107 #if !ART_USE_FUTEXES
1108 // In this case we cannot inflate an unowned monitor, so we sometimes defer inflation.
1109 bool should_inflate = false;
1110 #endif
1111 while (true) {
1112 // We initially read the lockword with ordinary Java/relaxed semantics. When stronger
1113 // semantics are needed, we address it below. Since GetLockWord bottoms out to a relaxed load,
1114 // we can fix it later, in an infrequently executed case, with a fence.
1115 LockWord lock_word = h_obj->GetLockWord(false);
1116 switch (lock_word.GetState()) {
1117 case LockWord::kUnlocked: {
1118 // No ordering required for preceding lockword read, since we retest.
1119 LockWord thin_locked(LockWord::FromThinLockId(thread_id, 0, lock_word.GCState()));
1120 if (h_obj->CasLockWord(lock_word, thin_locked, CASMode::kWeak, std::memory_order_acquire)) {
1121 #if !ART_USE_FUTEXES
1122 if (should_inflate) {
1123 InflateThinLocked(self, h_obj, lock_word, 0);
1124 }
1125 #endif
1126 AtraceMonitorLock(self, h_obj.Get(), /* is_wait= */ false);
1127 return h_obj.Get(); // Success!
1128 }
1129 continue; // Go again.
1130 }
1131 case LockWord::kThinLocked: {
1132 uint32_t owner_thread_id = lock_word.ThinLockOwner();
1133 if (owner_thread_id == thread_id) {
1134 // No ordering required for initial lockword read.
1135 // We own the lock, increase the recursion count.
1136 uint32_t new_count = lock_word.ThinLockCount() + 1;
1137 if (LIKELY(new_count <= LockWord::kThinLockMaxCount)) {
1138 LockWord thin_locked(LockWord::FromThinLockId(thread_id,
1139 new_count,
1140 lock_word.GCState()));
1141 // Only this thread pays attention to the count. Thus there is no need for stronger
1142 // than relaxed memory ordering.
1143 if (!kUseReadBarrier) {
1144 h_obj->SetLockWord(thin_locked, /* as_volatile= */ false);
1145 AtraceMonitorLock(self, h_obj.Get(), /* is_wait= */ false);
1146 return h_obj.Get(); // Success!
1147 } else {
1148 // Use CAS to preserve the read barrier state.
1149 if (h_obj->CasLockWord(lock_word,
1150 thin_locked,
1151 CASMode::kWeak,
1152 std::memory_order_relaxed)) {
1153 AtraceMonitorLock(self, h_obj.Get(), /* is_wait= */ false);
1154 return h_obj.Get(); // Success!
1155 }
1156 }
1157 continue; // Go again.
1158 } else {
1159 // We'd overflow the recursion count, so inflate the monitor.
1160 InflateThinLocked(self, h_obj, lock_word, 0);
1161 }
1162 } else {
1163 if (trylock) {
1164 return nullptr;
1165 }
1166 // Contention.
1167 contention_count++;
1168 Runtime* runtime = Runtime::Current();
1169 if (contention_count <= runtime->GetMaxSpinsBeforeThinLockInflation()) {
1170 // TODO: Consider switching the thread state to kWaitingForLockInflation when we are
1171 // yielding. Use sched_yield instead of NanoSleep since NanoSleep can wait much longer
1172 // than the parameter you pass in. This can cause thread suspension to take excessively
1173 // long and make long pauses. See b/16307460.
1174 // TODO: We should literally spin first, without sched_yield. Sched_yield either does
1175 // nothing (at significant expense), or guarantees that we wait at least microseconds.
1176 // If the owner is running, I would expect the median lock hold time to be hundreds
1177 // of nanoseconds or less.
1178 sched_yield();
1179 } else {
1180 #if ART_USE_FUTEXES
1181 contention_count = 0;
1182 // No ordering required for initial lockword read. Install rereads it anyway.
1183 InflateThinLocked(self, h_obj, lock_word, 0);
1184 #else
1185 // Can't inflate from non-owning thread. Keep waiting. Bad for power, but this code
1186 // isn't used on-device.
1187 should_inflate = true;
1188 usleep(10);
1189 #endif
1190 }
1191 }
1192 continue; // Start from the beginning.
1193 }
1194 case LockWord::kFatLocked: {
1195 // We should have done an acquire read of the lockword initially, to ensure
1196 // visibility of the monitor data structure. Use an explicit fence instead.
1197 std::atomic_thread_fence(std::memory_order_acquire);
1198 Monitor* mon = lock_word.FatLockMonitor();
1199 if (trylock) {
1200 return mon->TryLock(self) ? h_obj.Get() : nullptr;
1201 } else {
1202 mon->Lock(self);
1203 DCHECK(mon->monitor_lock_.IsExclusiveHeld(self));
1204 return h_obj.Get(); // Success!
1205 }
1206 }
1207 case LockWord::kHashCode:
1208 // Inflate with the existing hashcode.
1209 // Again no ordering required for initial lockword read, since we don't rely
1210 // on the visibility of any prior computation.
1211 Inflate(self, nullptr, h_obj.Get(), lock_word.GetHashCode());
1212 continue; // Start from the beginning.
1213 default: {
1214 LOG(FATAL) << "Invalid monitor state " << lock_word.GetState();
1215 UNREACHABLE();
1216 }
1217 }
1218 }
1219 }
1220
MonitorExit(Thread * self,ObjPtr<mirror::Object> obj)1221 bool Monitor::MonitorExit(Thread* self, ObjPtr<mirror::Object> obj) {
1222 DCHECK(self != nullptr);
1223 DCHECK(obj != nullptr);
1224 self->AssertThreadSuspensionIsAllowable();
1225 obj = FakeUnlock(obj);
1226 StackHandleScope<1> hs(self);
1227 Handle<mirror::Object> h_obj(hs.NewHandle(obj));
1228 while (true) {
1229 LockWord lock_word = obj->GetLockWord(true);
1230 switch (lock_word.GetState()) {
1231 case LockWord::kHashCode:
1232 // Fall-through.
1233 case LockWord::kUnlocked:
1234 FailedUnlock(h_obj.Get(), self->GetThreadId(), 0u, nullptr);
1235 return false; // Failure.
1236 case LockWord::kThinLocked: {
1237 uint32_t thread_id = self->GetThreadId();
1238 uint32_t owner_thread_id = lock_word.ThinLockOwner();
1239 if (owner_thread_id != thread_id) {
1240 FailedUnlock(h_obj.Get(), thread_id, owner_thread_id, nullptr);
1241 return false; // Failure.
1242 } else {
1243 // We own the lock, decrease the recursion count.
1244 LockWord new_lw = LockWord::Default();
1245 if (lock_word.ThinLockCount() != 0) {
1246 uint32_t new_count = lock_word.ThinLockCount() - 1;
1247 new_lw = LockWord::FromThinLockId(thread_id, new_count, lock_word.GCState());
1248 } else {
1249 new_lw = LockWord::FromDefault(lock_word.GCState());
1250 }
1251 if (!kUseReadBarrier) {
1252 DCHECK_EQ(new_lw.ReadBarrierState(), 0U);
1253 // TODO: This really only needs memory_order_release, but we currently have
1254 // no way to specify that. In fact there seem to be no legitimate uses of SetLockWord
1255 // with a final argument of true. This slows down x86 and ARMv7, but probably not v8.
1256 h_obj->SetLockWord(new_lw, true);
1257 AtraceMonitorUnlock();
1258 // Success!
1259 return true;
1260 } else {
1261 // Use CAS to preserve the read barrier state.
1262 if (h_obj->CasLockWord(lock_word, new_lw, CASMode::kWeak, std::memory_order_release)) {
1263 AtraceMonitorUnlock();
1264 // Success!
1265 return true;
1266 }
1267 }
1268 continue; // Go again.
1269 }
1270 }
1271 case LockWord::kFatLocked: {
1272 Monitor* mon = lock_word.FatLockMonitor();
1273 return mon->Unlock(self);
1274 }
1275 default: {
1276 LOG(FATAL) << "Invalid monitor state " << lock_word.GetState();
1277 UNREACHABLE();
1278 }
1279 }
1280 }
1281 }
1282
Wait(Thread * self,ObjPtr<mirror::Object> obj,int64_t ms,int32_t ns,bool interruptShouldThrow,ThreadState why)1283 void Monitor::Wait(Thread* self,
1284 ObjPtr<mirror::Object> obj,
1285 int64_t ms,
1286 int32_t ns,
1287 bool interruptShouldThrow,
1288 ThreadState why) {
1289 DCHECK(self != nullptr);
1290 DCHECK(obj != nullptr);
1291 StackHandleScope<1> hs(self);
1292 Handle<mirror::Object> h_obj(hs.NewHandle(obj));
1293
1294 Runtime::Current()->GetRuntimeCallbacks()->ObjectWaitStart(h_obj, ms);
1295 if (UNLIKELY(self->ObserveAsyncException() || self->IsExceptionPending())) {
1296 // See b/65558434 for information on handling of exceptions here.
1297 return;
1298 }
1299
1300 LockWord lock_word = h_obj->GetLockWord(true);
1301 while (lock_word.GetState() != LockWord::kFatLocked) {
1302 switch (lock_word.GetState()) {
1303 case LockWord::kHashCode:
1304 // Fall-through.
1305 case LockWord::kUnlocked:
1306 ThrowIllegalMonitorStateExceptionF("object not locked by thread before wait()");
1307 return; // Failure.
1308 case LockWord::kThinLocked: {
1309 uint32_t thread_id = self->GetThreadId();
1310 uint32_t owner_thread_id = lock_word.ThinLockOwner();
1311 if (owner_thread_id != thread_id) {
1312 ThrowIllegalMonitorStateExceptionF("object not locked by thread before wait()");
1313 return; // Failure.
1314 } else {
1315 // We own the lock, inflate to enqueue ourself on the Monitor. May fail spuriously so
1316 // re-load.
1317 Inflate(self, self, h_obj.Get(), 0);
1318 lock_word = h_obj->GetLockWord(true);
1319 }
1320 break;
1321 }
1322 case LockWord::kFatLocked: // Unreachable given the loop condition above. Fall-through.
1323 default: {
1324 LOG(FATAL) << "Invalid monitor state " << lock_word.GetState();
1325 UNREACHABLE();
1326 }
1327 }
1328 }
1329 Monitor* mon = lock_word.FatLockMonitor();
1330 mon->Wait(self, ms, ns, interruptShouldThrow, why);
1331 }
1332
DoNotify(Thread * self,ObjPtr<mirror::Object> obj,bool notify_all)1333 void Monitor::DoNotify(Thread* self, ObjPtr<mirror::Object> obj, bool notify_all) {
1334 DCHECK(self != nullptr);
1335 DCHECK(obj != nullptr);
1336 LockWord lock_word = obj->GetLockWord(true);
1337 switch (lock_word.GetState()) {
1338 case LockWord::kHashCode:
1339 // Fall-through.
1340 case LockWord::kUnlocked:
1341 ThrowIllegalMonitorStateExceptionF("object not locked by thread before notify()");
1342 return; // Failure.
1343 case LockWord::kThinLocked: {
1344 uint32_t thread_id = self->GetThreadId();
1345 uint32_t owner_thread_id = lock_word.ThinLockOwner();
1346 if (owner_thread_id != thread_id) {
1347 ThrowIllegalMonitorStateExceptionF("object not locked by thread before notify()");
1348 return; // Failure.
1349 } else {
1350 // We own the lock but there's no Monitor and therefore no waiters.
1351 return; // Success.
1352 }
1353 }
1354 case LockWord::kFatLocked: {
1355 Monitor* mon = lock_word.FatLockMonitor();
1356 if (notify_all) {
1357 mon->NotifyAll(self);
1358 } else {
1359 mon->Notify(self);
1360 }
1361 return; // Success.
1362 }
1363 default: {
1364 LOG(FATAL) << "Invalid monitor state " << lock_word.GetState();
1365 UNREACHABLE();
1366 }
1367 }
1368 }
1369
GetLockOwnerThreadId(ObjPtr<mirror::Object> obj)1370 uint32_t Monitor::GetLockOwnerThreadId(ObjPtr<mirror::Object> obj) {
1371 DCHECK(obj != nullptr);
1372 LockWord lock_word = obj->GetLockWord(true);
1373 switch (lock_word.GetState()) {
1374 case LockWord::kHashCode:
1375 // Fall-through.
1376 case LockWord::kUnlocked:
1377 return ThreadList::kInvalidThreadId;
1378 case LockWord::kThinLocked:
1379 return lock_word.ThinLockOwner();
1380 case LockWord::kFatLocked: {
1381 Monitor* mon = lock_word.FatLockMonitor();
1382 return mon->GetOwnerThreadId();
1383 }
1384 default: {
1385 LOG(FATAL) << "Unreachable";
1386 UNREACHABLE();
1387 }
1388 }
1389 }
1390
FetchState(const Thread * thread,ObjPtr<mirror::Object> * monitor_object,uint32_t * lock_owner_tid)1391 ThreadState Monitor::FetchState(const Thread* thread,
1392 /* out */ ObjPtr<mirror::Object>* monitor_object,
1393 /* out */ uint32_t* lock_owner_tid) {
1394 DCHECK(monitor_object != nullptr);
1395 DCHECK(lock_owner_tid != nullptr);
1396
1397 *monitor_object = nullptr;
1398 *lock_owner_tid = ThreadList::kInvalidThreadId;
1399
1400 ThreadState state = thread->GetState();
1401
1402 switch (state) {
1403 case kWaiting:
1404 case kTimedWaiting:
1405 case kSleeping:
1406 {
1407 Thread* self = Thread::Current();
1408 MutexLock mu(self, *thread->GetWaitMutex());
1409 Monitor* monitor = thread->GetWaitMonitor();
1410 if (monitor != nullptr) {
1411 *monitor_object = monitor->GetObject();
1412 }
1413 }
1414 break;
1415
1416 case kBlocked:
1417 case kWaitingForLockInflation:
1418 {
1419 ObjPtr<mirror::Object> lock_object = thread->GetMonitorEnterObject();
1420 if (lock_object != nullptr) {
1421 if (kUseReadBarrier && Thread::Current()->GetIsGcMarking()) {
1422 // We may call Thread::Dump() in the middle of the CC thread flip and this thread's stack
1423 // may have not been flipped yet and "pretty_object" may be a from-space (stale) ref, in
1424 // which case the GetLockOwnerThreadId() call below will crash. So explicitly mark/forward
1425 // it here.
1426 lock_object = ReadBarrier::Mark(lock_object.Ptr());
1427 }
1428 *monitor_object = lock_object;
1429 *lock_owner_tid = lock_object->GetLockOwnerThreadId();
1430 }
1431 }
1432 break;
1433
1434 default:
1435 break;
1436 }
1437
1438 return state;
1439 }
1440
GetContendedMonitor(Thread * thread)1441 ObjPtr<mirror::Object> Monitor::GetContendedMonitor(Thread* thread) {
1442 // This is used to implement JDWP's ThreadReference.CurrentContendedMonitor, and has a bizarre
1443 // definition of contended that includes a monitor a thread is trying to enter...
1444 ObjPtr<mirror::Object> result = thread->GetMonitorEnterObject();
1445 if (result == nullptr) {
1446 // ...but also a monitor that the thread is waiting on.
1447 MutexLock mu(Thread::Current(), *thread->GetWaitMutex());
1448 Monitor* monitor = thread->GetWaitMonitor();
1449 if (monitor != nullptr) {
1450 result = monitor->GetObject();
1451 }
1452 }
1453 return result;
1454 }
1455
VisitLocks(StackVisitor * stack_visitor,void (* callback)(ObjPtr<mirror::Object>,void *),void * callback_context,bool abort_on_failure)1456 void Monitor::VisitLocks(StackVisitor* stack_visitor,
1457 void (*callback)(ObjPtr<mirror::Object>, void*),
1458 void* callback_context,
1459 bool abort_on_failure) {
1460 ArtMethod* m = stack_visitor->GetMethod();
1461 CHECK(m != nullptr);
1462
1463 // Native methods are an easy special case.
1464 // TODO: use the JNI implementation's table of explicit MonitorEnter calls and dump those too.
1465 if (m->IsNative()) {
1466 if (m->IsSynchronized()) {
1467 ObjPtr<mirror::Object> jni_this =
1468 stack_visitor->GetCurrentHandleScope(sizeof(void*))->GetReference(0);
1469 callback(jni_this, callback_context);
1470 }
1471 return;
1472 }
1473
1474 // Proxy methods should not be synchronized.
1475 if (m->IsProxyMethod()) {
1476 CHECK(!m->IsSynchronized());
1477 return;
1478 }
1479
1480 // Is there any reason to believe there's any synchronization in this method?
1481 CHECK(m->GetCodeItem() != nullptr) << m->PrettyMethod();
1482 CodeItemDataAccessor accessor(m->DexInstructionData());
1483 if (accessor.TriesSize() == 0) {
1484 return; // No "tries" implies no synchronization, so no held locks to report.
1485 }
1486
1487 // Get the dex pc. If abort_on_failure is false, GetDexPc will not abort in the case it cannot
1488 // find the dex pc, and instead return kDexNoIndex. Then bail out, as it indicates we have an
1489 // inconsistent stack anyways.
1490 uint32_t dex_pc = stack_visitor->GetDexPc(abort_on_failure);
1491 if (!abort_on_failure && dex_pc == dex::kDexNoIndex) {
1492 LOG(ERROR) << "Could not find dex_pc for " << m->PrettyMethod();
1493 return;
1494 }
1495
1496 // Ask the verifier for the dex pcs of all the monitor-enter instructions corresponding to
1497 // the locks held in this stack frame.
1498 std::vector<verifier::MethodVerifier::DexLockInfo> monitor_enter_dex_pcs;
1499 verifier::MethodVerifier::FindLocksAtDexPc(m,
1500 dex_pc,
1501 &monitor_enter_dex_pcs,
1502 Runtime::Current()->GetTargetSdkVersion());
1503 for (verifier::MethodVerifier::DexLockInfo& dex_lock_info : monitor_enter_dex_pcs) {
1504 // As a debug check, check that dex PC corresponds to a monitor-enter.
1505 if (kIsDebugBuild) {
1506 const Instruction& monitor_enter_instruction = accessor.InstructionAt(dex_lock_info.dex_pc);
1507 CHECK_EQ(monitor_enter_instruction.Opcode(), Instruction::MONITOR_ENTER)
1508 << "expected monitor-enter @" << dex_lock_info.dex_pc << "; was "
1509 << reinterpret_cast<const void*>(&monitor_enter_instruction);
1510 }
1511
1512 // Iterate through the set of dex registers, as the compiler may not have held all of them
1513 // live.
1514 bool success = false;
1515 for (uint32_t dex_reg : dex_lock_info.dex_registers) {
1516 uint32_t value;
1517
1518 // For optimized code we expect the DexRegisterMap to be present - monitor information
1519 // not be optimized out.
1520 success = stack_visitor->GetVReg(m, dex_reg, kReferenceVReg, &value);
1521 if (success) {
1522 ObjPtr<mirror::Object> o = reinterpret_cast<mirror::Object*>(value);
1523 callback(o, callback_context);
1524 break;
1525 }
1526 }
1527 DCHECK(success) << "Failed to find/read reference for monitor-enter at dex pc "
1528 << dex_lock_info.dex_pc
1529 << " in method "
1530 << m->PrettyMethod();
1531 if (!success) {
1532 LOG(WARNING) << "Had a lock reported for dex pc " << dex_lock_info.dex_pc
1533 << " but was not able to fetch a corresponding object!";
1534 }
1535 }
1536 }
1537
IsValidLockWord(LockWord lock_word)1538 bool Monitor::IsValidLockWord(LockWord lock_word) {
1539 switch (lock_word.GetState()) {
1540 case LockWord::kUnlocked:
1541 // Nothing to check.
1542 return true;
1543 case LockWord::kThinLocked:
1544 // Basic sanity check of owner.
1545 return lock_word.ThinLockOwner() != ThreadList::kInvalidThreadId;
1546 case LockWord::kFatLocked: {
1547 // Check the monitor appears in the monitor list.
1548 Monitor* mon = lock_word.FatLockMonitor();
1549 MonitorList* list = Runtime::Current()->GetMonitorList();
1550 MutexLock mu(Thread::Current(), list->monitor_list_lock_);
1551 for (Monitor* list_mon : list->list_) {
1552 if (mon == list_mon) {
1553 return true; // Found our monitor.
1554 }
1555 }
1556 return false; // Fail - unowned monitor in an object.
1557 }
1558 case LockWord::kHashCode:
1559 return true;
1560 default:
1561 LOG(FATAL) << "Unreachable";
1562 UNREACHABLE();
1563 }
1564 }
1565
IsLocked()1566 bool Monitor::IsLocked() REQUIRES_SHARED(Locks::mutator_lock_) {
1567 return GetOwner() != nullptr;
1568 }
1569
TranslateLocation(ArtMethod * method,uint32_t dex_pc,const char ** source_file,int32_t * line_number)1570 void Monitor::TranslateLocation(ArtMethod* method,
1571 uint32_t dex_pc,
1572 const char** source_file,
1573 int32_t* line_number) {
1574 // If method is null, location is unknown
1575 if (method == nullptr) {
1576 *source_file = "";
1577 *line_number = 0;
1578 return;
1579 }
1580 *source_file = method->GetDeclaringClassSourceFile();
1581 if (*source_file == nullptr) {
1582 *source_file = "";
1583 }
1584 *line_number = method->GetLineNumFromDexPC(dex_pc);
1585 }
1586
GetOwnerThreadId()1587 uint32_t Monitor::GetOwnerThreadId() {
1588 // Make sure owner is not deallocated during access.
1589 MutexLock mu(Thread::Current(), *Locks::thread_list_lock_);
1590 Thread* owner = GetOwner();
1591 if (owner != nullptr) {
1592 return owner->GetThreadId();
1593 } else {
1594 return ThreadList::kInvalidThreadId;
1595 }
1596 }
1597
MonitorList()1598 MonitorList::MonitorList()
1599 : allow_new_monitors_(true), monitor_list_lock_("MonitorList lock", kMonitorListLock),
1600 monitor_add_condition_("MonitorList disallow condition", monitor_list_lock_) {
1601 }
1602
~MonitorList()1603 MonitorList::~MonitorList() {
1604 Thread* self = Thread::Current();
1605 MutexLock mu(self, monitor_list_lock_);
1606 // Release all monitors to the pool.
1607 // TODO: Is it an invariant that *all* open monitors are in the list? Then we could
1608 // clear faster in the pool.
1609 MonitorPool::ReleaseMonitors(self, &list_);
1610 }
1611
DisallowNewMonitors()1612 void MonitorList::DisallowNewMonitors() {
1613 CHECK(!kUseReadBarrier);
1614 MutexLock mu(Thread::Current(), monitor_list_lock_);
1615 allow_new_monitors_ = false;
1616 }
1617
AllowNewMonitors()1618 void MonitorList::AllowNewMonitors() {
1619 CHECK(!kUseReadBarrier);
1620 Thread* self = Thread::Current();
1621 MutexLock mu(self, monitor_list_lock_);
1622 allow_new_monitors_ = true;
1623 monitor_add_condition_.Broadcast(self);
1624 }
1625
BroadcastForNewMonitors()1626 void MonitorList::BroadcastForNewMonitors() {
1627 Thread* self = Thread::Current();
1628 MutexLock mu(self, monitor_list_lock_);
1629 monitor_add_condition_.Broadcast(self);
1630 }
1631
Add(Monitor * m)1632 void MonitorList::Add(Monitor* m) {
1633 Thread* self = Thread::Current();
1634 MutexLock mu(self, monitor_list_lock_);
1635 // CMS needs this to block for concurrent reference processing because an object allocated during
1636 // the GC won't be marked and concurrent reference processing would incorrectly clear the JNI weak
1637 // ref. But CC (kUseReadBarrier == true) doesn't because of the to-space invariant.
1638 while (!kUseReadBarrier && UNLIKELY(!allow_new_monitors_)) {
1639 // Check and run the empty checkpoint before blocking so the empty checkpoint will work in the
1640 // presence of threads blocking for weak ref access.
1641 self->CheckEmptyCheckpointFromWeakRefAccess(&monitor_list_lock_);
1642 monitor_add_condition_.WaitHoldingLocks(self);
1643 }
1644 list_.push_front(m);
1645 }
1646
SweepMonitorList(IsMarkedVisitor * visitor)1647 void MonitorList::SweepMonitorList(IsMarkedVisitor* visitor) {
1648 Thread* self = Thread::Current();
1649 MutexLock mu(self, monitor_list_lock_);
1650 for (auto it = list_.begin(); it != list_.end(); ) {
1651 Monitor* m = *it;
1652 // Disable the read barrier in GetObject() as this is called by GC.
1653 ObjPtr<mirror::Object> obj = m->GetObject<kWithoutReadBarrier>();
1654 // The object of a monitor can be null if we have deflated it.
1655 ObjPtr<mirror::Object> new_obj = obj != nullptr ? visitor->IsMarked(obj.Ptr()) : nullptr;
1656 if (new_obj == nullptr) {
1657 VLOG(monitor) << "freeing monitor " << m << " belonging to unmarked object "
1658 << obj;
1659 MonitorPool::ReleaseMonitor(self, m);
1660 it = list_.erase(it);
1661 } else {
1662 m->SetObject(new_obj);
1663 ++it;
1664 }
1665 }
1666 }
1667
Size()1668 size_t MonitorList::Size() {
1669 Thread* self = Thread::Current();
1670 MutexLock mu(self, monitor_list_lock_);
1671 return list_.size();
1672 }
1673
1674 class MonitorDeflateVisitor : public IsMarkedVisitor {
1675 public:
MonitorDeflateVisitor()1676 MonitorDeflateVisitor() : self_(Thread::Current()), deflate_count_(0) {}
1677
IsMarked(mirror::Object * object)1678 mirror::Object* IsMarked(mirror::Object* object) override
1679 REQUIRES_SHARED(Locks::mutator_lock_) {
1680 if (Monitor::Deflate(self_, object)) {
1681 DCHECK_NE(object->GetLockWord(true).GetState(), LockWord::kFatLocked);
1682 ++deflate_count_;
1683 // If we deflated, return null so that the monitor gets removed from the array.
1684 return nullptr;
1685 }
1686 return object; // Monitor was not deflated.
1687 }
1688
1689 Thread* const self_;
1690 size_t deflate_count_;
1691 };
1692
DeflateMonitors()1693 size_t MonitorList::DeflateMonitors() {
1694 MonitorDeflateVisitor visitor;
1695 Locks::mutator_lock_->AssertExclusiveHeld(visitor.self_);
1696 SweepMonitorList(&visitor);
1697 return visitor.deflate_count_;
1698 }
1699
MonitorInfo(ObjPtr<mirror::Object> obj)1700 MonitorInfo::MonitorInfo(ObjPtr<mirror::Object> obj) : owner_(nullptr), entry_count_(0) {
1701 DCHECK(obj != nullptr);
1702 LockWord lock_word = obj->GetLockWord(true);
1703 switch (lock_word.GetState()) {
1704 case LockWord::kUnlocked:
1705 // Fall-through.
1706 case LockWord::kForwardingAddress:
1707 // Fall-through.
1708 case LockWord::kHashCode:
1709 break;
1710 case LockWord::kThinLocked:
1711 owner_ = Runtime::Current()->GetThreadList()->FindThreadByThreadId(lock_word.ThinLockOwner());
1712 DCHECK(owner_ != nullptr) << "Thin-locked without owner!";
1713 entry_count_ = 1 + lock_word.ThinLockCount();
1714 // Thin locks have no waiters.
1715 break;
1716 case LockWord::kFatLocked: {
1717 Monitor* mon = lock_word.FatLockMonitor();
1718 owner_ = mon->owner_.load(std::memory_order_relaxed);
1719 // Here it is okay for the owner to be null since we don't reset the LockWord back to
1720 // kUnlocked until we get a GC. In cases where this hasn't happened yet we will have a fat
1721 // lock without an owner.
1722 // Neither owner_ nor entry_count_ is touched by threads in "suspended" state, so
1723 // we must see consistent values.
1724 if (owner_ != nullptr) {
1725 entry_count_ = 1 + mon->lock_count_;
1726 } else {
1727 DCHECK_EQ(mon->lock_count_, 0u) << "Monitor is fat-locked without any owner!";
1728 }
1729 for (Thread* waiter = mon->wait_set_; waiter != nullptr; waiter = waiter->GetWaitNext()) {
1730 waiters_.push_back(waiter);
1731 }
1732 break;
1733 }
1734 }
1735 }
1736
1737 } // namespace art
1738