1 /*
2  * Copyright (C) 2017 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 /**
18  * @addtogroup NeuralNetworks
19  * @{
20  */
21 
22 /**
23  * @file NeuralNetworks.h
24  */
25 
26 #ifndef ANDROID_FRAMEWORKS_ML_NN_RUNTIME_NEURAL_NETWORKS_H
27 #define ANDROID_FRAMEWORKS_ML_NN_RUNTIME_NEURAL_NETWORKS_H
28 
29 /******************************************************************
30  *
31  * IMPORTANT NOTICE:
32  *
33  *   This file is part of Android's set of stable system headers
34  *   exposed by the Android NDK (Native Development Kit).
35  *
36  *   Third-party source AND binary code relies on the definitions
37  *   here to be FROZEN ON ALL UPCOMING PLATFORM RELEASES.
38  *
39  *   - DO NOT MODIFY ENUMS (EXCEPT IF YOU ADD NEW 32-BIT VALUES)
40  *   - DO NOT MODIFY CONSTANTS OR FUNCTIONAL MACROS
41  *   - DO NOT CHANGE THE SIGNATURE OF FUNCTIONS IN ANY WAY
42  *   - DO NOT CHANGE THE LAYOUT OR SIZE OF STRUCTURES
43  */
44 
45 #include <android/hardware_buffer.h>
46 #include <stddef.h>
47 #include <stdint.h>
48 #include <sys/cdefs.h>
49 
50 __BEGIN_DECLS
51 
52 /**
53  * Operand types.
54  *
55  * The type of an operand in a model.
56  *
57  * Types prefaced with ANEURALNETWORKS_TENSOR_* must be used for tensor data (i.e., tensors
58  * with at least one dimension). Types not prefaced by ANEURALNETWORKS_TENSOR_* represent
59  * scalar values and must have no dimensions.
60  *
61  * Although we define many types, most operators accept just a few
62  * types. Most used are {@link ANEURALNETWORKS_TENSOR_FLOAT32},
63  * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM},
64  * and {@link ANEURALNETWORKS_INT32}.
65  *
66  * Available since API level 27.
67  */
68 typedef enum {
69     /** A 32 bit floating point scalar value. */
70     ANEURALNETWORKS_FLOAT32 = 0,
71     /** A signed 32 bit integer scalar value. */
72     ANEURALNETWORKS_INT32 = 1,
73     /** An unsigned 32 bit integer scalar value. */
74     ANEURALNETWORKS_UINT32 = 2,
75     /** A tensor of 32 bit floating point values. */
76     ANEURALNETWORKS_TENSOR_FLOAT32 = 3,
77     /** A tensor of 32 bit integer values. */
78     ANEURALNETWORKS_TENSOR_INT32 = 4,
79     /**
80      * A tensor of 8 bit unsigned integers that represent real numbers.
81      *
82      * Attached to this tensor are two numbers that can be used to convert the
83      * 8 bit integer to the real value and vice versa. These two numbers are:
84      * - scale: a 32 bit floating point value greater than zero.
85      * - zeroPoint: a 32 bit integer, in range [0, 255].
86      *
87      * The formula is:
88      *   real_value = (integer_value - zeroPoint) * scale.
89      */
90     ANEURALNETWORKS_TENSOR_QUANT8_ASYMM = 5,
91     /**
92      * An 8 bit boolean scalar value.
93      *
94      * Values of this operand type are either true or false. A zero value
95      * represents false; any other value represents true.
96      *
97      * Available since API level 29.
98      */
99     ANEURALNETWORKS_BOOL = 6,
100     /**
101      * A tensor of 16 bit signed integers that represent real numbers.
102      *
103      * Attached to this tensor is a number representing real value scale that is
104      * used to convert the 16 bit number to a real value in the following way:
105      * realValue = integerValue * scale.
106      *
107      * scale is a 32 bit floating point with value greater than zero.
108      *
109      * Available since API level 29.
110      */
111     ANEURALNETWORKS_TENSOR_QUANT16_SYMM = 7,
112     /**
113      * A tensor of IEEE 754 16 bit floating point values.
114      *
115      * Available since API level 29.
116      */
117     ANEURALNETWORKS_TENSOR_FLOAT16 = 8,
118     /**
119      * A tensor of 8 bit boolean values.
120      *
121      * Values of this operand type are either true or false. A zero value
122      * represents false; any other value represents true.
123      *
124      * Available since API level 29.
125      */
126     ANEURALNETWORKS_TENSOR_BOOL8 = 9,
127     /**
128      * An IEEE 754 16 bit floating point scalar value.
129      *
130      * Available since API level 29.
131      */
132     ANEURALNETWORKS_FLOAT16 = 10,
133     /**
134      * A tensor of 8 bit signed integers that represent real numbers.
135      *
136      * This tensor is associated with additional fields that can
137      * be used to convert the 8 bit signed integer to the real value and vice versa.
138      * These fields are:
139      * - channelDim: a 32 bit unsigned integer indicating channel dimension.
140      * - scales: an array of positive 32 bit floating point values.
141      * The size of the scales array must be equal to dimensions[channelDim].
142      *
143      * {@link ANeuralNetworksModel_setOperandSymmPerChannelQuantParams} must be used
144      * to set the parameters for an Operand of this type.
145      *
146      * The channel dimension of this tensor must not be unknown (dimensions[channelDim] != 0).
147      *
148      * The formula is:
149      * realValue[..., C, ...] =
150      *     integerValue[..., C, ...] * scales[C]
151      * where C is an index in the Channel dimension.
152      *
153      * Available since API level 29.
154      */
155     ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL = 11,
156     /**
157      * A tensor of 16 bit unsigned integers that represent real numbers.
158      *
159      * Attached to this tensor are two numbers that can be used to convert the
160      * 16 bit integer to the real value and vice versa. These two numbers are:
161      * - scale: a 32 bit floating point value greater than zero.
162      * - zeroPoint: a 32 bit integer, in range [0, 65535].
163      *
164      * The formula is:
165      * real_value = (integer_value - zeroPoint) * scale.
166      *
167      * Available since API level 29.
168      */
169     ANEURALNETWORKS_TENSOR_QUANT16_ASYMM = 12,
170     /**
171      * A tensor of 8 bit signed integers that represent real numbers.
172      *
173      * Attached to this tensor is a number representing real value scale that is
174      * used to convert the 8 bit number to a real value in the following way:
175      * realValue = integerValue * scale.
176      *
177      * scale is a 32 bit floating point with value greater than zero.
178      *
179      * Available since API level 29.
180      */
181     ANEURALNETWORKS_TENSOR_QUANT8_SYMM = 13,
182     /**
183      * A tensor of 8 bit signed integers that represent real numbers.
184      *
185      * Attached to this tensor are two numbers that can be used to convert the
186      * 8 bit integer to the real value and vice versa. These two numbers are:
187      * - scale: a 32 bit floating point value greater than zero.
188      * - zeroPoint: a 32 bit integer, in range [-128, 127].
189      *
190      * The formula is:
191      * real_value = (integer_value - zeroPoint) * scale.
192      *
193      * Available since API level 30.
194      */
195     ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED = 14,
196 
197     /**
198      * A reference to a model.
199      *
200      * {@link ANeuralNetworksModel_setOperandValueFromModel} must be used to set
201      * the value for an Operand of this type.
202      *
203      * Available since API level 30.
204      */
205     ANEURALNETWORKS_MODEL = 15,
206 } OperandCode;
207 
208 /**
209  * Operation types.
210  *
211  * The type of an operation in a model.
212  *
213  * Available since API level 27.
214  */
215 typedef enum {
216     // Operations below are available since API level 27.
217 
218     /**
219      * Adds two tensors, element-wise.
220      *
221      * Takes two input tensors of identical {@link OperandCode} and compatible
222      * dimensions. The output is the sum of both input tensors, optionally
223      * modified by an activation function.
224      *
225      * Two dimensions are compatible when:
226      *     1. they are equal, or
227      *     2. one of them is 1
228      *
229      * The size of the output is the maximum size along each dimension of the
230      * input operands. It starts with the trailing dimensions, and works its
231      * way forward.
232      *
233      * Example:
234      *
235      *     input1.dimension = {4, 1, 2}
236      *     input2.dimension = {5, 4, 3, 1}
237      *     output.dimension = {5, 4, 3, 2}
238      *
239      * Since API level 29, generic zero-sized input tensor is supported. Zero
240      * dimension is only compatible with 0 or 1. The size of the output
241      * dimension is zero if either of corresponding input dimension is zero.
242      *
243      * Supported tensor {@link OperandCode}:
244      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16} (since API level 29)
245      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
246      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
247      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} (since API level 30)
248      * * {@link ANEURALNETWORKS_TENSOR_INT32} (since API level 30)
249      *
250      * Supported tensor rank: up to 4
251      *
252      * Inputs:
253      * * 0: A tensor.
254      * * 1: A tensor of the same {@link OperandCode}, and compatible dimensions
255      *      as input0.
256      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} and
257      *      {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} tensor,
258      *      the scales and zeroPoint can be different from input0 scale and zeroPoint.
259      * * 2: An {@link ANEURALNETWORKS_INT32} scalar, and has to be one of the
260      *      {@link FuseCode} values. Specifies the activation to
261      *      invoke on the result.
262      *      For a {@link ANEURALNETWORKS_TENSOR_INT32} tensor,
263      *      the {@link FuseCode} must be "NONE".
264      *
265      * Outputs:
266      * * 0: The sum, a tensor of the same {@link OperandCode} as input0.
267      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} and
268      *      {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} tensor,
269      *      the scale and zeroPoint can be different from inputs' scale and zeroPoint.
270      *
271      * Available since API level 27.
272      */
273     ANEURALNETWORKS_ADD = 0,
274 
275     /**
276      * Performs a 2-D average pooling operation.
277      *
278      * The output dimensions are functions of the filter dimensions, stride, and
279      * padding.
280      *
281      * The values in the output tensor are computed as:
282      *
283      *     output[b, i, j, channel] =
284      *         sum_{di, dj}(
285      *             input[b, strides[1] * i + di, strides[2] * j + dj, channel]
286      *         ) / sum(1)
287      *
288      * Supported tensor {@link OperandCode}:
289      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16} (since API level 29)
290      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
291      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
292      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} (since API level 30)
293      *
294      * Supported tensor rank: 4, with "NHWC" or "NCHW" data layout.
295      * With the default data layout NHWC, the data is stored in the order of:
296      * [batch, height, width, channels]. Alternatively, the data layout could
297      * be NCHW, the data storage order of: [batch, channels, height, width].
298      * NCHW is supported since API level 29.
299      *
300      * Both explicit padding and implicit padding are supported.
301      *
302      * Inputs (explicit padding):
303      * * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying
304      *      the input.
305      *      Since API level 29, zero batches is supported for this tensor.
306      * * 1: An {@link ANEURALNETWORKS_INT32} scalar, specifying the padding on
307      *      the left, in the ‘width’ dimension.
308      * * 2: An {@link ANEURALNETWORKS_INT32} scalar, specifying the padding on
309      *      the right, in the ‘width’ dimension.
310      * * 3: An {@link ANEURALNETWORKS_INT32} scalar, specifying the padding on
311      *      the top, in the ‘height’ dimension.
312      * * 4: An {@link ANEURALNETWORKS_INT32} scalar, specifying the padding on
313      *      the bottom, in the ‘height’ dimension.
314      * * 5: An {@link ANEURALNETWORKS_INT32} scalar, specifying the stride when
315      *      walking through input in the ‘width’ dimension.
316      * * 6: An {@link ANEURALNETWORKS_INT32} scalar, specifying the stride when
317      *      walking through input in the ‘height’ dimension.
318      * * 7: An {@link ANEURALNETWORKS_INT32} scalar, specifying the filter
319      *      width.
320      * * 8: An {@link ANEURALNETWORKS_INT32} scalar, specifying the filter
321      *      height.
322      * * 9: An {@link ANEURALNETWORKS_INT32} scalar, and has to be one of the
323      *      {@link FuseCode} values. Specifies the activation to
324      *      invoke on the result.
325      * * 10: An optional {@link ANEURALNETWORKS_BOOL} scalar, default to false.
326      *       Set to true to specify NCHW data layout for input0 and output0.
327      *       Available since API level 29.
328      *
329      * Inputs (implicit padding):
330      * * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying
331      *      the input.
332      *      Since API level 29, zero batches is supported for this tensor.
333      * * 1: An {@link ANEURALNETWORKS_INT32} scalar, specifying the implicit
334      *      padding scheme, has to be one of the
335      *      {@link PaddingCode} values.
336      * * 2: An {@link ANEURALNETWORKS_INT32} scalar, specifying the stride when
337      *      walking through input in the ‘width’ dimension.
338      * * 3: An {@link ANEURALNETWORKS_INT32} scalar, specifying the stride when
339      *      walking through input in the ‘height’ dimension.
340      * * 4: An {@link ANEURALNETWORKS_INT32} scalar, specifying the filter
341      *      width.
342      * * 5: An {@link ANEURALNETWORKS_INT32} scalar, specifying the filter
343      *      height.
344      * * 6: An {@link ANEURALNETWORKS_INT32} scalar, and has to be one of the
345      *      {@link FuseCode} values. Specifies the activation to
346      *      invoke on the result.
347      * * 7: An optional {@link ANEURALNETWORKS_BOOL} scalar, default to false.
348      *      Set to true to specify NCHW data layout for input0 and output0.
349      *      Available since API level 29.
350      *
351      * Outputs:
352      * * 0: The output 4-D tensor, of shape
353      *      [batches, out_height, out_width, depth].
354      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} and
355      *      {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} tensor,
356      *      the scale and zeroPoint must be the same as input0.
357      *
358      * Available since API level 27.
359      */
360     ANEURALNETWORKS_AVERAGE_POOL_2D = 1,
361 
362     /**
363      * Concatenates the input tensors along the given dimension.
364      *
365      * The input tensors must have identical {@link OperandCode} and the same
366      * dimensions except the dimension along the concatenation axis.
367      *
368      * Supported tensor {@link OperandCode}:
369      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16} (since API level 29)
370      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
371      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
372      *   (full support since API level 29, see the input section)
373      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} (since API level 30)
374      *
375      * Supported tensor rank: up to 4
376      *
377      * Inputs:
378      * * 0 ~ n-1: The list of n input tensors, of shape
379      *            [D0, D1, ..., Daxis(i), ..., Dm].
380      *            Before API level 29, all input tensors of
381      *            {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
382      *            must have the same scale and zeroPoint as the output tensor.
383      *            Input tensors of
384      *            {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED}
385      *            are allowed to have different scale and zeroPoint.
386      *            Since API level 29, zero-sized tensors are supported.
387      * * n: An {@link ANEURALNETWORKS_INT32} scalar, specifying the
388      *      concatenation axis.
389      *
390      * Outputs:
391      * * 0: The output, a tensor of the same {@link OperandCode} as the input
392      *      tensors. The output shape is [D0, D1, ..., sum(Daxis(i)), ..., Dm].
393      *      Since API level 29, for a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} tensor,
394      *      the scale and zeroPoint values can be different from
395      *      input tensors. Before API level 29 they have to be the same as for the input tensors.
396      *
397      * Available since API level 27.
398      */
399     ANEURALNETWORKS_CONCATENATION = 2,
400 
401     /**
402      * Performs a 2-D convolution operation.
403      *
404      * The CONV_2D op sweeps a 2-D filter that can mix channels together over a
405      * batch of images, applying the filter to each window of each image of the
406      * appropriate size.
407      *
408      * The output dimensions are functions of the filter dimensions, stride, and
409      * padding.
410      *
411      * The values in the output tensor are computed as:
412      *
413      *     output[b, i, j, channel] =
414      *         sum_{di, dj, k} (
415      *             input[b, strides[1] * i + di, strides[2] * j + dj, k] *
416      *             filter[channel, di, dj, k]
417      *         ) + bias[channel]
418      *
419      * Supported tensor {@link OperandCode} configurations:
420      * * 32 bit floating point:
421      * * * {@link ANEURALNETWORKS_TENSOR_FLOAT32} for input, filter, output, and bias.
422      *
423      * * Quantized:
424      * * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} for input, filter, and output.
425      * * * {@link ANEURALNETWORKS_TENSOR_INT32} for bias (with scale set to
426      * * * input.scale * filter.scale).
427      *
428      * Available since API level 29:
429      * * 16 bit floating point:
430      * * * {@link ANEURALNETWORKS_TENSOR_FLOAT16} for input, filter, output, and bias.
431      *
432      * * Quantized with symmetric per channel quantization for the filter:
433      * * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} for input, and output.
434      * * * {@link ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL} for filter.
435      * * * {@link ANEURALNETWORKS_TENSOR_INT32} for bias (scale set to 0.0,
436      * * * each value scaling is separate and equal to input.scale * filter.scales[channel]).
437      *
438      * Available since API level 30:
439      * * Quantized signed (since API level 30):
440      * * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} for input, filter, and output.
441      * * * {@link ANEURALNETWORKS_TENSOR_INT32} for bias (with scale set to
442      * * * input.scale * filter.scale).
443      *
444      * * Quantized signed with filter symmetric per channel quantization (since API level 30):
445      * * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} for input, and output.
446      * * * {@link ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL} for filter.
447      * * * {@link ANEURALNETWORKS_TENSOR_INT32} for bias (scale set to 0.0,
448      * * * each value scaling is separate and equal to input.scale * filter.scales[channel]).
449      *
450      * Supported tensor rank: 4, with "NHWC" or "NCHW" data layout.
451      * With the default data layout NHWC, the data is stored in the order of:
452      * [batch, height, width, channels]. Alternatively, the data layout could
453      * be NCHW, the data storage order of: [batch, channels, height, width].
454      * NCHW is supported since API level 29.
455      *
456      * Both explicit padding and implicit padding are supported.
457      *
458      * Inputs (explicit padding):
459      * * 0: A 4-D tensor, of shape [batches, height, width, depth_in],
460      *      specifying the input.
461      *      Since API level 29, zero batches is supported for this tensor.
462      * * 1: A 4-D tensor, of shape
463      *      [depth_out, filter_height, filter_width, depth_in], specifying the
464      *      filter.
465      *      For tensor of type {@link ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL}
466      *      the channel dimension (ANeuralNetworksSymmPerChannelQuantParams::channelDim)
467      *      must be set to 0.
468      * * 2: A 1-D tensor, of shape [depth_out], specifying the bias. For input
469      *      tensor of type {@link ANEURALNETWORKS_TENSOR_FLOAT32}
470      *      or {@link ANEURALNETWORKS_TENSOR_FLOAT16} the bias must be of the same type.
471      *      For filter tensor of {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
472      *      and {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED},
473      *      the bias should be of {@link ANEURALNETWORKS_TENSOR_INT32}, with zeroPoint
474      *      of 0 and bias_scale == input_scale * filter_scale.
475      *      For filter tensor of {@link ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL},
476      *      the bias should be of {@link ANEURALNETWORKS_TENSOR_INT32}, with zeroPoint of 0
477      *      and bias_scale of 0. The actual scale of each value 'i' is equal to
478      *      bias_scale[i] = input_scale * filter_scale[i].
479      * * 3: An {@link ANEURALNETWORKS_INT32} scalar, specifying the padding on
480      *      the left, in the ‘width’ dimension.
481      * * 4: An {@link ANEURALNETWORKS_INT32} scalar, specifying the padding on
482      *      the right, in the ‘width’ dimension.
483      * * 5: An {@link ANEURALNETWORKS_INT32} scalar, specifying the padding on
484      *      the top, in the ‘height’ dimension.
485      * * 6: An {@link ANEURALNETWORKS_INT32} scalar, specifying the padding on
486      *      the bottom, in the ‘height’ dimension.
487      * * 7: An {@link ANEURALNETWORKS_INT32} scalar, specifying the stride when
488      *      walking through input in the ‘width’ dimension.
489      * * 8: An {@link ANEURALNETWORKS_INT32} scalar, specifying the stride when
490      *      walking through input in the ‘height’ dimension.
491      * * 9: An {@link ANEURALNETWORKS_INT32} scalar, and has to be one of the
492      *      {@link FuseCode} values. Specifies the activation to
493      *      invoke on the result.
494      * * 10: An optional {@link ANEURALNETWORKS_BOOL} scalar, default to false.
495      *      Set to true to specify NCHW data layout for input0 and output0.
496      *      Available since API level 29.
497      * * 11: An optional {@link ANEURALNETWORKS_INT32} scalar, specifying the dilation
498      *      factor for width. Defaults to 1. If set to k > 1, there will be k-1 skipped
499      *      cells between each filter element on width dimension. If this input is set,
500      *      input 12 (dilation factor for height) must be specified as well.
501      *      Available since API level 29.
502      * * 12: An optional {@link ANEURALNETWORKS_INT32} scalar, specifying the dilation
503      *      factor for height. Defaults to 1. If set to k > 1, there will be k-1 skipped
504      *      cells between each filter element on height dimension. If this input is set,
505      *      input 11 (dilation factor for width) must be specified as well.
506      *      Available since API level 29.
507      *
508      * Inputs (implicit padding):
509      * * 0: A 4-D tensor, of shape [batches, height, width, depth_in],
510      *      specifying the input.
511      *      Since API level 29, zero batches is supported for this tensor.
512      * * 1: A 4-D tensor, of shape
513      *      [depth_out, filter_height, filter_width, depth_in], specifying the
514      *      filter.
515      *      For tensor of type {@link ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL}
516      *      the channel dimension (ANeuralNetworksSymmPerChannelQuantParams::channelDim)
517      *      must be set to 0.
518      * * 2: A 1-D tensor, of shape [depth_out], specifying the bias. For input
519      *      tensor of type {@link ANEURALNETWORKS_TENSOR_FLOAT32}
520      *      or {@link ANEURALNETWORKS_TENSOR_FLOAT16} the bias must be of the same
521      *      type.
522      *      For filter tensor of {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
523      *      and {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED},
524      *      the bias should be of {@link ANEURALNETWORKS_TENSOR_INT32}, with zeroPoint
525      *      of 0 and bias_scale == input_scale * filter_scale.
526      *      For filter tensor of {@link ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL},
527      *      the bias should be of {@link ANEURALNETWORKS_TENSOR_INT32}, with zeroPoint of 0
528      *      and bias_scale of 0. The actual scale of each value 'i' is equal to
529      *      bias_scale[i] = input_scale * filter_scale[i].
530      * * 3: An {@link ANEURALNETWORKS_INT32} scalar, specifying the implicit
531      *      padding scheme, has to be one of the
532      *      {@link PaddingCode} values.
533      * * 4: An {@link ANEURALNETWORKS_INT32} scalar, specifying the stride when
534      *      walking through input in the ‘width’ dimension.
535      * * 5: An {@link ANEURALNETWORKS_INT32} scalar, specifying the stride when
536      *      walking through input in the ‘height’ dimension.
537      * * 6: An {@link ANEURALNETWORKS_INT32} scalar, and has to be one of the
538      *      {@link FuseCode} values. Specifies the activation to
539      *      invoke on the result.
540      * * 7: An optional {@link ANEURALNETWORKS_BOOL} scalar, default to false.
541      *      Set to true to specify NCHW data layout for input0 and output0.
542      *      Available since API level 29.
543      * * 8: An optional {@link ANEURALNETWORKS_INT32} scalar, specifying the dilation
544      *      factor for width. Defaults to 1. If set to k > 1, there will be k-1 skipped
545      *      cells between each filter element on width dimension. If this input is set,
546      *      input 9 (dilation factor for height) must be specified as well.
547      *      Available since API level 29.
548      * * 9: An optional {@link ANEURALNETWORKS_INT32} scalar, specifying the dilation
549      *      factor for height. Defaults to 1. If set to k > 1, there will be k-1 skipped
550      *      cells between each filter element on height dimension. If this input is set,
551      *      input 8 (dilation factor for width) must be specified as well.
552      *      Available since API level 29.
553      *
554      * Outputs:
555      * * 0: The output 4-D tensor, of shape
556      *      [batches, out_height, out_width, depth_out].
557      *      Before API level 29, for output tensor of {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM},
558      *      the following condition must be satisfied: output_scale > input_scale * filter_scale
559      *
560      * Available since API level 27.
561      */
562     ANEURALNETWORKS_CONV_2D = 3,
563 
564     /**
565      * Performs a depthwise 2-D convolution operation.
566      *
567      * Given an input tensor of shape [batches, height, width, depth_in] and a
568      * filter tensor of shape [1, filter_height, filter_width, depth_out]
569      * containing depth_out convolutional filters of depth 1, DEPTHWISE_CONV
570      * applies a different filter to each input channel (expanding from 1
571      * channel to channel_multiplier channels for each), then concatenates the
572      * results together.
573      *
574      * The output has depth_out = depth_in * depth_multiplier channels.
575      * The output dimensions are functions of the filter dimensions, stride, and
576      * padding.
577      *
578      * The values in the output tensor are computed as:
579      *
580      *     output[b, i, j, k * channel_multiplier + q] =
581      *         sum_{di, dj} (
582      *             input[b, strides[1] * i + di, strides[2] * j + dj, k] *
583      *             filter[1, di, dj, k * channel_multiplier + q]
584      *         ) + bias[k * channel_multiplier + q]
585      *
586      * Supported tensor {@link OperandCode} configurations:
587      * * 32 bit floating point:
588      * * * {@link ANEURALNETWORKS_TENSOR_FLOAT32} for input, filter, output, and bias.
589      *
590      * * Quantized:
591      * * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} for input, filter, and output.
592      * * * {@link ANEURALNETWORKS_TENSOR_INT32} for bias (with scale set to
593      * * * input.scale * filter.scale).
594      *
595      * Available since API level 29:
596      * * 16 bit floating point:
597      * * * {@link ANEURALNETWORKS_TENSOR_FLOAT16} for input, filter, output, and bias.
598      *
599      * * Quantized with symmetric per channel quantization for the filter:
600      * * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} for input, and output.
601      * * * {@link ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL} for filter.
602      * * * {@link ANEURALNETWORKS_TENSOR_INT32} for bias (scale set to 0.0,
603      * * * each value scaling is separate and equal to input.scale * filter.scales[channel]).
604      *
605      * Available since API level 30:
606      * * Quantized signed (since API level 30):
607      * * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} for input, filter, and output.
608      * * * {@link ANEURALNETWORKS_TENSOR_INT32} for bias (with scale set to
609      * * * input.scale * filter.scale).
610      *
611      * * Quantized signed with filter symmetric per channel quantization (since API level 30):
612      * * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} for input, and output.
613      * * * {@link ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL} for filter.
614      * * * {@link ANEURALNETWORKS_TENSOR_INT32} for bias (scale set to 0.0,
615      * * * each value scaling is separate and equal to input.scale * filter.scales[channel]).
616      *
617      * Supported tensor rank: 4, with "NHWC" or "NCHW" data layout.
618      * With the default data layout NHWC, the data is stored in the order of:
619      * [batch, height, width, channels]. Alternatively, the data layout could
620      * be NCHW, the data storage order of: [batch, channels, height, width].
621      * NCHW is supported since API level 29.
622      *
623      * Both explicit padding and implicit padding are supported.
624      *
625      * Inputs (explicit padding):
626      * * 0: A 4-D tensor, of shape [batches, height, width, depth_in],
627      *      specifying the input.
628      * * 1: A 4-D tensor, of shape [1, filter_height, filter_width, depth_out],
629      *      specifying the filter.
630      *      For tensor of type {@link ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL}
631      *      the channel dimension (ANeuralNetworksSymmPerChannelQuantParams::channelDim)
632      *      must be set to 3.
633      * * 2: A 1-D tensor, of shape [depth_out], specifying the bias. For input
634      *      tensor of type {@link ANEURALNETWORKS_TENSOR_FLOAT32}
635      *      or {@link ANEURALNETWORKS_TENSOR_FLOAT16} the bias must be of the same type.
636      *      For filter tensor of {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
637      *      and {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED},
638      *      the bias should be of {@link ANEURALNETWORKS_TENSOR_INT32}, with zeroPoint
639      *      of 0 and bias_scale == input_scale * filter_scale.
640      *      For filter tensor of {@link ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL},
641      *      the bias should be of {@link ANEURALNETWORKS_TENSOR_INT32}, with zeroPoint of 0
642      *      and bias_scale of 0. The actual scale of each value 'i' is equal to
643      *      bias_scale[i] = input_scale * filter_scale[i].
644      * * 3: An {@link ANEURALNETWORKS_INT32} scalar, specifying the padding on
645      *      the left, in the ‘width’ dimension.
646      * * 4: An {@link ANEURALNETWORKS_INT32} scalar, specifying the padding on
647      *      the right, in the ‘width’ dimension.
648      * * 5: An {@link ANEURALNETWORKS_INT32} scalar, specifying the padding on
649      *      the top, in the ‘height’ dimension.
650      * * 6: An {@link ANEURALNETWORKS_INT32} scalar, specifying the padding on
651      *      the bottom, in the ‘height’ dimension.
652      * * 7: An {@link ANEURALNETWORKS_INT32} scalar, specifying the stride when
653      *      walking through input in the ‘width’ dimension.
654      * * 8: An {@link ANEURALNETWORKS_INT32} scalar, specifying the stride when
655      *      walking through input in the ‘height’ dimension.
656      * * 9: An {@link ANEURALNETWORKS_INT32} scalar, specifying the depthwise
657      *      multiplier.
658      * * 10: An {@link ANEURALNETWORKS_INT32} scalar, and has to be one of the
659      *       {@link FuseCode} values. Specifies the activation to
660      *       invoke on the result.
661      * * 11: An optional {@link ANEURALNETWORKS_BOOL} scalar, default to false.
662      *       Set to true to specify NCHW data layout for input0 and output0.
663      *       Available since API level 29.
664      * * 12: An optional {@link ANEURALNETWORKS_INT32} scalar, specifying the dilation
665      *      factor for width. Defaults to 1. If set to k > 1, there will be k-1 skipped
666      *      cells between each filter element on width dimension. If this input is set,
667      *      input 13 (dilation factor for height) must be specified as well.
668      *      Available since API level 29.
669      * * 13: An optional {@link ANEURALNETWORKS_INT32} scalar, specifying the dilation
670      *      factor for height. Defaults to 1. If set to k > 1, there will be k-1 skipped
671      *      cells between each filter element on height dimension. If this input is set,
672      *      input 12 (dilation factor for width) must be specified as well.
673      *      Available since API level 29.
674      *
675      * Inputs (implicit padding):
676      * * 0: A 4-D tensor, of shape [batches, height, width, depth_in],
677      *      specifying the input.
678      * * 1: A 4-D tensor, of shape [1, filter_height, filter_width, depth_out],
679      *      specifying the filter.
680      * * 2: A 1-D tensor, of shape [depth_out], specifying the bias. For input
681      *      tensor of type {@link ANEURALNETWORKS_TENSOR_FLOAT32}
682      *      or {@link ANEURALNETWORKS_TENSOR_FLOAT16} the bias must be of the same type.
683      *      For filter tensor of {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
684      *      and {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED},
685      *      the bias should be of {@link ANEURALNETWORKS_TENSOR_INT32}, with zeroPoint
686      *      of 0 and bias_scale == input_scale * filter_scale.
687      *      For filter tensor of {@link ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL},
688      *      the bias should be of {@link ANEURALNETWORKS_TENSOR_INT32}, with zeroPoint of 0
689      *      and bias_scale of 0. The actual scale of each value 'i' is equal to
690      *      bias_scale[i] = input_scale * filter_scale[i].
691      * * 3: An {@link ANEURALNETWORKS_INT32} scalar, specifying the implicit
692      *      padding scheme, has to be one of the
693      *      {@link PaddingCode} values.
694      * * 4: An {@link ANEURALNETWORKS_INT32} scalar, specifying the stride when
695      *      walking through input in the ‘width’ dimension.
696      * * 5: An {@link ANEURALNETWORKS_INT32} scalar, specifying the stride when
697      *      walking through input in the ‘height’ dimension.
698      * * 6: An {@link ANEURALNETWORKS_INT32} scalar, specifying the depthwise
699      *      multiplier.
700      * * 7: An {@link ANEURALNETWORKS_INT32} scalar, and has to be one of the
701      *      {@link FuseCode} values. Specifies the activation to
702      *      invoke on the result.
703      * * 8: An optional {@link ANEURALNETWORKS_BOOL} scalar, default to false.
704      *      Set to true to specify NCHW data layout for input0 and output0.
705      *      Available since API level 29.
706      * * 9: An optional {@link ANEURALNETWORKS_INT32} scalar, specifying the dilation
707      *      factor for width. Defaults to 1. If set to k > 1, there will be k-1 skipped
708      *      cells between each filter element on width dimension. If this input is set,
709      *      input 10 (dilation factor for height) must be specified as well.
710      *      Available since API level 29.
711      * * 10: An optional {@link ANEURALNETWORKS_INT32} scalar, specifying the dilation
712      *      factor for height. Defaults to 1. If set to k > 1, there will be k-1 skipped
713      *      cells between each filter element on height dimension. If this input is set,
714      *      input 9 (dilation factor for width) must be specified as well.
715      *      Available since API level 29.
716      *
717      * Outputs:
718      * * 0: The output 4-D tensor, of shape
719      *      [batches, out_height, out_width, depth_out]. Before API level 29, for
720      *      output tensor of {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM},
721      *      the following condition must be satisfied:
722      *      output_scale > input_scale * filter_scale
723      *
724      * Available since API level 27.
725      */
726     ANEURALNETWORKS_DEPTHWISE_CONV_2D = 4,
727 
728     /**
729      * Rearranges data from depth into blocks of spatial data.
730      *
731      * More specifically, this op outputs a copy of the input tensor where
732      * values from the depth dimension are moved in spatial blocks to the height
733      * and width dimensions. The value block_size indicates the input block size
734      * and how the data is moved.
735      *
736      * Chunks of data of size block_size * block_size from depth are rearranged
737      * into non-overlapping blocks of size block_size x block_size.
738      *
739      * The width of the output tensor is input_depth * block_size, whereas the
740      * height is input_height * block_size. The depth of the input tensor must
741      * be divisible by block_size * block_size
742      *
743      * Supported tensor {@link OperandCode}:
744      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16} (since API level 29)
745      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
746      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
747      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} (since API level 30)
748      *
749      * Supported tensor rank: 4, with "NHWC" or "NCHW" data layout.
750      * With the default data layout NHWC, the data is stored in the order of:
751      * [batch, height, width, channels]. Alternatively, the data layout could
752      * be NCHW, the data storage order of: [batch, channels, height, width].
753      * NCHW is supported since API level 29.
754      *
755      * Inputs:
756      * * 0: A 4-D tensor, of shape [batches, height, width, depth_in],
757      *      specifying the input.
758      * * 1: An {@link ANEURALNETWORKS_INT32} scalar, specifying the block_size.
759      *      block_size must be >=1 and block_size * block_size must be a divisor
760      *      of the input depth.
761      * * 2: An optional {@link ANEURALNETWORKS_BOOL} scalar, default to false.
762      *      Set to true to specify NCHW data layout for input0 and output0.
763      *      Available since API level 29.
764      *
765      * Outputs:
766      * * 0: The output 4-D tensor, of shape [batch, height*block_size,
767      *      width*block_size, depth/(block_size*block_size)].
768      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} and
769      *      {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} tensor,
770      *      the scale and zeroPoint must be the same as input0.
771      *
772      * Available since API level 27.
773      */
774     ANEURALNETWORKS_DEPTH_TO_SPACE = 5,
775 
776     /**
777      * Dequantizes the input tensor.
778      *
779      * The formula is:
780      *
781      *     output = (input - zeroPoint) * scale.
782      *
783      * Supported input tensor {@link OperandCode}:
784      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
785      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_SYMM} (since API level 29)
786      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL} (since API level 29)
787      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} (since API level 30)
788      *
789      * Supported output tensor {@link OperandCode}:
790      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16} (since API level 29)
791      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}.
792      *
793      * Supported tensor rank: up to 4
794      *
795      * Inputs:
796      * * 0: A tensor.
797      *      Since API level 29, this tensor may be zero-sized.
798      *
799      * Outputs:
800      * * 0: A tensor with the same shape as input0.
801      *
802      * Available since API level 27.
803      */
804     ANEURALNETWORKS_DEQUANTIZE = 6,
805 
806     /**
807      * Looks up sub-tensors in the input tensor.
808      *
809      * This operator takes for input a tensor of values (Values) and
810      * a one-dimensional tensor of selection indices (Lookups).
811      * The output tensor is the concatenation of sub-tensors of Values as
812      * selected by Lookups.
813      *
814      * Think of Values as being sliced along its first dimension:
815      * The entries in Lookups select which slices are concatenated together
816      * to create the output tensor.
817      *
818      * For example, if Values has shape of [40, 200, 300] and
819      * Lookups has shape of [3], all three values found in Lookups are
820      * expected to be between 0 and 39. The resulting tensor must
821      * have shape of [3, 200, 300].
822      *
823      * If a value in Lookups is out of bounds, the operation must fail
824      * and an error must be reported.
825      *
826      * Supported value tensor {@link OperandCode}:
827      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16} (since API level 30)
828      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
829      * * {@link ANEURALNETWORKS_TENSOR_INT32} (since API level 29)
830      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} (since API level 29)
831      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} (since API level 30)
832      *
833      * Supported value tensor rank: from 2
834      *
835      * Inputs:
836      * * 0: Lookups. A 1-D tensor of {@link ANEURALNETWORKS_TENSOR_INT32}.
837      *      The values are indices into the first dimension of Values.
838      * * 1: Values. An n-D tensor, where n >= 2, from which sub-tensors are
839      *      extracted.
840      *
841      * Output:
842      * * 0: A n-D tensor with the same rank and shape as the Values
843      *      tensor, except for the first dimension which has the same size
844      *      as Lookups' only dimension.
845      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} and
846      *      {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} tensor,
847      *      the scale and zeroPoint must be the same as input1.
848      *
849      * Available since API level 27.
850      */
851     ANEURALNETWORKS_EMBEDDING_LOOKUP = 7,
852 
853     /**
854      * Computes element-wise floor() on the input tensor.
855      *
856      * Supported tensor {@link OperandCode}:
857      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16} (since API level 29)
858      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
859      *
860      * Supported tensor rank: up to 4
861      *
862      * Inputs:
863      * * 0: A tensor.
864      *
865      * Outputs:
866      * * 0: The output tensor, of the same {@link OperandCode} and dimensions as
867      *      the input tensor.
868      *
869      * Available since API level 27.
870      */
871     ANEURALNETWORKS_FLOOR = 8,
872 
873     /**
874      * Denotes a fully (densely) connected layer, which connects all elements
875      * in the input tensor with each element in the output tensor.
876      *
877      * This layer implements the operation:
878      *
879      *     outputs = activation(inputs * weights’ + bias)
880      *
881      * Supported tensor {@link OperandCode}:
882      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16} (since API level 29)
883      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
884      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
885      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} (since API level 30)
886      *
887      * Supported tensor rank: up to 4.
888      *
889      * Inputs:
890      * * 0: A tensor of at least rank 2, specifying the input. If rank is
891      *      greater than 2, then it gets flattened to a 2-D Tensor. The
892      *      (flattened) 2-D Tensor is reshaped (if necessary) to
893      *      [batch_size, input_size], where "input_size" corresponds to the
894      *      number of inputs to the layer, matching the second dimension of
895      *      weights, and "batch_size" is calculated by dividing the number of
896      *      elements by "input_size".
897      *      Since API level 29, zero batch_size is supported for this tensor.
898      * * 1: A 2-D tensor, specifying the weights, of shape
899      *      [num_units, input_size], where "num_units" corresponds to the number
900      *      of output nodes.
901      * * 2: A 1-D tensor, of shape [num_units], specifying the bias. For input
902      *      tensor of {@link ANEURALNETWORKS_TENSOR_FLOAT32}, the bias should
903      *      also be of {@link ANEURALNETWORKS_TENSOR_FLOAT32}.
904      *      For input tensor of {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
905      *      and {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED},
906      *      the bias should be of {@link ANEURALNETWORKS_TENSOR_INT32},
907      *      with zeroPoint of 0 and bias_scale == input_scale * filter_scale.
908      * * 3: An {@link ANEURALNETWORKS_INT32} scalar, and has to be one of the
909      *      {@link FuseCode} values. Specifies the activation to
910      *      invoke on the result.
911      *
912      * Outputs:
913      * * 0: The output tensor, of shape [batch_size, num_units]. Before API level 29, for
914      *      output tensor of {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}, the following
915      *      condition must be satisfied: output_scale > input_scale * filter_scale.
916      *
917      * Available since API level 27.
918      */
919     ANEURALNETWORKS_FULLY_CONNECTED = 9,
920 
921     /**
922      * Looks up sub-tensors in the input tensor using a key-value map.
923      *
924      * This operator takes for input a tensor of values (Values),
925      * a one-dimensional tensor of selection values (Lookups) and
926      * a one-dimensional tensor that maps these values to Values
927      * indexes. The output tensor is the concatenation of sub-tensors of
928      * Values as selected by Lookups via Keys.
929      *
930      * Think of Values as being sliced along its outer-most dimension.
931      * The output is a concatenation of selected slices, with one slice
932      * for each entry of Lookups. The slice selected is the one at the
933      * same index as the Maps entry that matches the value in Lookups.
934      *
935      * For a hit, the corresponding sub-tensor of Values is included
936      * in the Output tensor. For a miss, the corresponding sub-tensor in
937      * Output must have zero values.
938      *
939      * For example, if Values has shape of [40, 200, 300],
940      * Keys should have a shape of [40]. If Lookups tensor has shape
941      * of [3], three slices are being concatenated, so the resulting tensor
942      * must have the shape of [3, 200, 300]. If the first entry in Lookups
943      * has the value 123456, that value must be located in Keys tensor.
944      * If the sixth entry of Keys contains 123456, the sixth slice of Values
945      * must be selected. If no entry in Keys has 123456, a slice of zeroes
946      * must be concatenated.
947      *
948      * Supported value tensor {@link OperandCode}:
949      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
950      * * {@link ANEURALNETWORKS_TENSOR_INT32}
951      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
952      *
953      * Supported value tensor rank: from 2
954      *
955      * Inputs:
956      * * 0: Lookups. A 1-D {@link ANEURALNETWORKS_TENSOR_INT32} tensor with
957      *      shape [ k ].
958      * * 1: Keys. A 1-D {@link ANEURALNETWORKS_TENSOR_INT32} tensor with shape
959      *      [ n ]; Keys and Values pair represent a map, i.e., the ith element
960      *      in Keys (Keys[i]) is the key to select the ith sub-tensor in Values
961      *      (Values[i]), where 0 <= i <= n-1. Keys tensor *MUST* be sorted in
962      *      ascending order.
963      * * 2: Values. A tensor with shape of [ n, … ]; i.e., the first dimension
964      *      must be n.
965      *
966      * Outputs:
967      * * 0: Output. A tensor with shape [ k …].
968      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} tensor,
969      *      the scale and zeroPoint must be the same as input2.
970      * * 1: Hits. A boolean tensor with shape [ k ] indicates whether the lookup
971      *      hits (True) or not (False).
972      *      Stored as {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} with offset 0
973      *      and scale 1.0f.
974      *      A non-zero byte represents True, a hit. A zero indicates otherwise.
975      *
976      * Available since API level 27.
977      */
978     ANEURALNETWORKS_HASHTABLE_LOOKUP = 10,
979 
980     /**
981      * Applies L2 normalization along the axis dimension.
982      *
983      * The values in the output tensor are computed as:
984      *
985      *     output[batch, row, col, channel] =
986      *         input[batch, row, col, channel] /
987      *         sqrt(sum_{c} pow(input[batch, row, col, c], 2))
988      *
989      * By default the axis dimension is the last dimension of the input tensor.
990      *
991      * Supported tensor {@link OperandCode}:
992      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16} (since API level 29)
993      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
994      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} (since API level 29)
995      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} (since API level 30)
996      *
997      * Supported tensor rank: up to 4
998      * Tensors with rank less than 4 are only supported since API level 29.
999      *
1000      * Inputs:
1001      * * 0: An n-D tensor, specifying the tensor to be normalized.
1002      * * 1: An optional {@link ANEURALNETWORKS_INT32} scalar, default to -1,
1003      *      specifying the dimension normalization would be performed on.
1004      *      Negative index is used to specify axis from the end (e.g. -1 for
1005      *      the last axis). Must be in the range [-n, n).
1006      *      Available since API level 29.
1007      *
1008      * Outputs:
1009      * * 0: A tensor of the same {@link OperandCode} and same shape as input0.
1010      *      For {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM},
1011      *      the scale must be 1.f / 128 and the zeroPoint must be 128.
1012      *      For {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED},
1013      *      the scale must be 1.f / 128 and the zeroPoint must be 0.
1014      *
1015      *      NOTE: Before API level 30, if the elements along an axis are all zeros,
1016      *      the result is undefined. Since API level 30, if the elements along an axis
1017      *      are all zeros, the result is logical zero.
1018      *
1019      * Available since API level 27.
1020      */
1021     ANEURALNETWORKS_L2_NORMALIZATION = 11,
1022 
1023     /**
1024      * Performs an 2-D L2 pooling operation.
1025      *
1026      * The output dimensions are functions of the filter dimensions, stride, and
1027      * padding.
1028      *
1029      * The values in the output tensor are computed as:
1030      *
1031      *     output[b, i, j, c] =
1032      *         sqrt(sum_{di, dj} pow(input[b, strides[1] * i + di, strides[2] * j + dj, c], 2) /
1033      *              sum(1))
1034      *
1035      * Supported tensor {@link OperandCode}:
1036      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16} (since API level 29)
1037      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
1038      *
1039      * Supported tensor rank: 4, with "NHWC" or "NCHW" data layout.
1040      * With the default data layout NHWC, the data is stored in the order of:
1041      * [batch, height, width, channels]. Alternatively, the data layout could
1042      * be NCHW, the data storage order of: [batch, channels, height, width].
1043      * NCHW is supported since API level 29.
1044      *
1045      * Both explicit padding and implicit padding are supported.
1046      *
1047      * Inputs (explicit padding):
1048      * * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying
1049      *      the input.
1050      *      Since API level 29, zero batches is supported for this tensor.
1051      * * 1: An {@link ANEURALNETWORKS_INT32} scalar, specifying the padding on
1052      *      the left, in the ‘width’ dimension.
1053      * * 2: An {@link ANEURALNETWORKS_INT32} scalar, specifying the padding on
1054      *      the right, in the ‘width’ dimension.
1055      * * 3: An {@link ANEURALNETWORKS_INT32} scalar, specifying the padding on
1056      *      the top, in the ‘height’ dimension.
1057      * * 4: An {@link ANEURALNETWORKS_INT32} scalar, specifying the padding on
1058      *      the bottom, in the ‘height’ dimension.
1059      * * 5: An {@link ANEURALNETWORKS_INT32} scalar, specifying the stride when
1060      *      walking through input in the ‘width’ dimension.
1061      * * 6: An {@link ANEURALNETWORKS_INT32} scalar, specifying the stride when
1062      *      walking through input in the ‘height’ dimension.
1063      * * 7: An {@link ANEURALNETWORKS_INT32} scalar, specifying the filter
1064      *      width.
1065      * * 8: An {@link ANEURALNETWORKS_INT32} scalar, specifying the filter
1066      *      height.
1067      * * 9: An {@link ANEURALNETWORKS_INT32} scalar, and has to be one of the
1068      *      {@link FuseCode} values. Specifies the activation to
1069      *      invoke on the result.
1070      * * 10: An optional {@link ANEURALNETWORKS_BOOL} scalar, default to false.
1071      *       Set to true to specify NCHW data layout for input0 and output0.
1072      *       Available since API level 29.
1073      *
1074      * Inputs (implicit padding):
1075      * * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying
1076      *      the input.
1077      *      Since API level 29, zero batches is supported for this tensor.
1078      * * 1: An {@link ANEURALNETWORKS_INT32} scalar, specifying the implicit
1079      *      padding scheme, has to be one of the
1080      *      {@link PaddingCode} values.
1081      * * 2: An {@link ANEURALNETWORKS_INT32} scalar, specifying the stride when
1082      *      walking through input in the ‘width’ dimension.
1083      * * 3: An {@link ANEURALNETWORKS_INT32} scalar, specifying the stride when
1084      *      walking through input in the ‘height’ dimension.
1085      * * 4: An {@link ANEURALNETWORKS_INT32} scalar, specifying the filter
1086      *      width.
1087      * * 5: An {@link ANEURALNETWORKS_INT32} scalar, specifying the filter
1088      *      height.
1089      * * 6: An {@link ANEURALNETWORKS_INT32} scalar, and has to be one of the
1090      *      {@link FuseCode} values. Specifies the activation to
1091      *      invoke on the result.
1092      * * 7: An optional {@link ANEURALNETWORKS_BOOL} scalar, default to false.
1093      *      Set to true to specify NCHW data layout for input0 and output0.
1094      *      Available since API level 29.
1095      *
1096      * Outputs:
1097      * * 0: The output 4-D tensor, of shape
1098      *      [batches, out_height, out_width, depth].
1099      *
1100      * Available since API level 27.
1101      */
1102     ANEURALNETWORKS_L2_POOL_2D = 12,
1103 
1104     /**
1105      * Applies Local Response Normalization along the depth dimension.
1106      *
1107      * The 4-D input tensor is treated as a 3-D array of 1-D vectors (along the
1108      * last dimension), and each vector is normalized independently. Within a
1109      * given vector, each component is divided by the weighted, squared sum of
1110      * inputs within depth_radius.
1111      *
1112      * The output is calculated using this formula:
1113      *
1114      *     sqr_sum[a, b, c, d] = sum(
1115      *         pow(input[a, b, c, d - depth_radius : d + depth_radius + 1], 2))
1116      *     output = input / pow((bias + alpha * sqr_sum), beta)
1117      *
1118      * For input tensor with rank less than 4, independently normalizes each
1119      * 1-D slice along specified dimension.
1120      *
1121      * Supported tensor {@link OperandCode}:
1122      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16} (since API level 29)
1123      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
1124      *
1125      * Supported tensor rank: up to 4
1126      * Tensors with rank less than 4 are only supported since API level 29.
1127      *
1128      * Inputs:
1129      * * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying
1130      *      the input.
1131      * * 1: An {@link ANEURALNETWORKS_INT32} scalar, specifying the radius of
1132      *      the normalization window.
1133      * * 2: A scalar, specifying the bias, must not be zero.
1134      *      For input tensor of {@link ANEURALNETWORKS_TENSOR_FLOAT16}, the bias
1135      *      value must be of {@link ANEURALNETWORKS_FLOAT16}.
1136      *      For input tensor of {@link ANEURALNETWORKS_TENSOR_FLOAT32}, the bias
1137      *      value must be of {@link ANEURALNETWORKS_FLOAT32}.
1138      * * 3: A scalar, specifying the scale factor, alpha.
1139      *      For input tensor of {@link ANEURALNETWORKS_TENSOR_FLOAT16}, the
1140      *      alpha value must be of {@link ANEURALNETWORKS_FLOAT16}.
1141      *      For input tensor of {@link ANEURALNETWORKS_TENSOR_FLOAT32}, the
1142      *      alpha value must be of {@link ANEURALNETWORKS_FLOAT32}.
1143      * * 4: A scalar, specifying the exponent, beta.
1144      *      For input tensor of {@link ANEURALNETWORKS_TENSOR_FLOAT16}, the beta
1145      *      value must be of {@link ANEURALNETWORKS_FLOAT16}.
1146      *      For input tensor of {@link ANEURALNETWORKS_TENSOR_FLOAT32}, the beta
1147      *      value must be of {@link ANEURALNETWORKS_FLOAT32}.
1148      * * 5: An optional {@link ANEURALNETWORKS_INT32} scalar, default to -1,
1149      *      specifying the dimension normalization would be performed on.
1150      *      Negative index is used to specify axis from the end (e.g. -1 for
1151      *      the last axis). Must be in the range [-n, n).
1152      *      Available since API level 29.
1153      *
1154      * Outputs:
1155      * * 0: The output tensor of same shape as input0.
1156      *
1157      * Available since API level 27.
1158      */
1159     ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION = 13,
1160 
1161     /**
1162      * Computes sigmoid activation on the input tensor element-wise.
1163      *
1164      * The output is calculated using this formula:
1165      *
1166      *     output = 1 / (1 + exp(-input))
1167      *
1168      * Supported tensor {@link OperandCode}:
1169      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16} (since API level 29)
1170      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
1171      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
1172      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} (since API level 30)
1173      *
1174      * Supported tensor rank: up to 4.
1175      *
1176      * Inputs:
1177      * * 0: A tensor, specifying the input.
1178      *      Since API level 29, this tensor may be zero-sized.
1179      *
1180      * Outputs:
1181      * * 0: The output tensor of same shape as input0.
1182      *      For {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM},
1183      *      the scale must be 1.f / 256 and the zeroPoint must be 0.
1184      *      For {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED},
1185      *      the scale must be 1.f / 256 and the zeroPoint must be -128.
1186      *
1187      * Available since API level 27.
1188      */
1189     ANEURALNETWORKS_LOGISTIC = 14,
1190 
1191     /**
1192      * Projects an input to a bit vector via locality senstive hashing.
1193      *
1194      * Supported input tensor {@link OperandCode}:
1195      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16} (since API level 29)
1196      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
1197      * * {@link ANEURALNETWORKS_TENSOR_INT32}
1198      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
1199      *
1200      * Supported input tensor rank: from 1
1201      *
1202      * Inputs:
1203      * * 0: Hash functions. Dim.size == 2, DataType: Float.
1204      *      Tensor[0].Dim[0]: Number of hash functions.
1205      *      Tensor[0].Dim[1]: Number of projected output bits generated by each
1206      *      hash function.
1207      *      If the projection type is Sparse:
1208      *      Tensor[0].Dim[1] + ceil(log2(Tensor[0].Dim[0])) <= 32
1209      *
1210      * * 1: Input. Dim.size >= 1, no restriction on DataType.
1211      * * 2: Weight. Optional. Dim.size == 1, DataType: Float.
1212      *      If not set, each input element is considered to have the same weight
1213      *      of 1.0.
1214      *      Tensor[1].Dim[0] == Tensor[2].Dim[0]
1215      * * 3: Type:
1216      *        Sparse:
1217      *          Value LSHProjectionType_SPARSE(=3) (since API level 29).
1218      *          Computed bit vector is considered to be sparse.
1219      *          Each output element is an int32 made up of multiple bits
1220      *          computed from hash functions.
1221      *
1222      *          NOTE: To avoid collisions across hash functions, an offset value
1223      *          of k * (1 << Tensor[0].Dim[1]) will be added to each signature,
1224      *          where k is the index of the hash function.
1225      *
1226      *          Value LSHProjectionType_SPARSE_DEPRECATED(=1).
1227      *          Legacy behavior that does not include the offset value.
1228      *
1229      *        Dense:
1230      *          Value LSHProjectionType_DENSE(=2).
1231      *          Computed bit vector is considered to be dense. Each output
1232      *          element represents a bit and can take the value of either
1233      *          0 or 1.
1234      *
1235      * Outputs:
1236      * * 0: If the projection type is Sparse:
1237      *      Output.Dim == { Tensor[0].Dim[0] }
1238      *      A tensor of int32 that represents hash signatures.
1239      *
1240      *      If the projection type is Dense:
1241      *      Output.Dim == { Tensor[0].Dim[0] * Tensor[0].Dim[1] }
1242      *      A flattened tensor that represents projected bit vectors.
1243      *
1244      * Available since API level 27.
1245      * The offset value for sparse projections was added in API level 29.
1246      */
1247     ANEURALNETWORKS_LSH_PROJECTION = 15,
1248 
1249     /**
1250      * Performs a single time step in a Long Short-Term Memory (LSTM) layer
1251      *
1252      * The LSTM operation is described by the following equations.
1253      *
1254      * \f{eqnarray*}{
1255      * i_t =& \sigma(W_{xi}x_t+W_{hi}h_{t-1}+W_{ci}C_{t-1}+b_i) & \\
1256      * f_t =& \sigma(W_{xf}x_t+W_{hf}h_{t-1}+W_{cf}C_{t-1}+b_f) & \\
1257      * C_t =& clip(f_t \odot C_{t-1} + i_t \odot
1258      *        g(W_{xc}x_t+W_{hc}h_{t-1}+b_c),\ t_{cell}) & \\
1259      * o_t =& \sigma(W_{xo}x_t+W_{ho}h_{t-1}+W_{co}C_t+b_o) & \\
1260      *      & & \\
1261      *      & clip(W_{proj}(o_t \odot g(C_t))+b_{proj},\ t_{proj})
1262      *      & if\ there\ is\ a\ projection; \\
1263      * h_t =& & \\
1264      *      & o_t \odot g(C_t) & otherwise. \\
1265      * \f}
1266      * Where:
1267      * * \f$x_t\f$ is the input,
1268      * * \f$i_t\f$ is the input gate,
1269      * * \f$f_t\f$ is the forget gate,
1270      * * \f$C_t\f$ is the cell state,
1271      * * \f$o_t\f$ is the output,
1272      * * \f$h_t\f$ is the output state,
1273      * * \f$\sigma\f$ is the logistic sigmoid function,
1274      * * \f$g\f$ is the cell input and cell output activation function, usually
1275      *   \f$tahn\f$,
1276      * * \f$W_{xi}\f$ is the input-to-input weight matrix,
1277      * * \f$W_{hi}\f$ is the recurrent to input weight matrix,
1278      * * \f$W_{ci}\f$ is the cell-to-input weight matrix,
1279      * * \f$b_i\f$ is the input gate bias,
1280      * * \f$W_{xf}\f$ is the input-to-forget weight matrix,
1281      * * \f$W_{hf}\f$ is the recurrent-to-forget weight matrix,
1282      * * \f$W_{cf}\f$ is the cell-to-forget weight matrix,
1283      * * \f$b_f\f$ is the forget gate bias,
1284      * * \f$W_{xc}\f$ is the input-to-cell weight matrix,
1285      * * \f$W_{hc}\f$ is the recurrent-to-cell weight matrix,
1286      * * \f$b_c\f$ is the cell bias,
1287      * * \f$W_{xo}\f$ is the input-to-output weight matrix,
1288      * * \f$W_{ho}\f$ is the recurrent-to-output weight matrix,
1289      * * \f$W_{co}\f$ is the cell-to-output weight matrix,
1290      * * \f$b_o\f$ is the output gate bias,
1291      * * \f$W_{proj}\f$ is the projection weight matrix,
1292      * * \f$b_{proj}\f$ is the projection bias,
1293      * * \f$t_{cell}\f$ is the threshold for clipping the cell state, and
1294      * * \f$t_{proj}\f$ is the threshold for clipping the projected output.
1295      * * \f$\odot\f$ is the
1296      *   <a href="https://en.wikipedia.org/wiki/Hadamard_product_(matrices)">
1297      *   Hadamard product</a> that takes two matrices and produces another
1298      *   matrix, each element of which is the product of the corresponding
1299      *   elements of the input matrices.
1300      *
1301      * Since API level 29 LSTM supports layer normalization.
1302      * In case layer normalization is used, the inputs to internal activation
1303      * functions (sigmoid and \f$g\f$) are normalized, rescaled and recentered
1304      * following an approach from section 3.1 from
1305      * https://arxiv.org/pdf/1607.06450.pdf
1306      *
1307      * The operation has the following independently optional inputs:
1308      * * The cell-to-input weights (\f$W_{ci}\f$), cell-to-forget weights
1309      *   (\f$W_{cf}\f$) and cell-to-output weights (\f$W_{co}\f$) either all
1310      *   have values or neither of them have values (i.e., all set to null). If
1311      *   they have values, the peephole optimization is used.
1312      * * The input-to-input weights (\f$W_{xi}\f$), recurrent-to-input weights
1313      *   (\f$W_{hi}\f$) and input gate bias (\f$b_i\f$) either all have values,
1314      *   or none of them have values. If they have no values, coupling of input
1315      *   and forget gates (CIFG) is used, in which case the input gate
1316      *   (\f$i_t\f$) is calculated using the following equation instead.
1317      *   \f{eqnarray*}{
1318      *   i_t = 1 - f_t
1319      *   \f}
1320      *   In case peephole optimization is used and CIFG is not used
1321      *   cell-to-input (\f$W_{ci}\f$) weights must be present. Otherwise, the
1322      *   cell-to-input weights must have no value.
1323      * * The projection weights (\f$W_{proj}\f$) is required only for the
1324      *   recurrent projection layer, and should otherwise have no value.
1325      * * The projection bias (\f$b_{proj}\f$) may (but not required to) have a
1326      *   value if the recurrent projection layer exists, and should otherwise
1327      *   have no value.
1328      * * (API level 29 or later) The four layer normalization weights either all have
1329      *   values or none of them have values. Additionally, if CIFG is used,
1330      *   input layer normalization weights tensor is omitted and the other layer
1331      *   normalization weights either all have values or none of them have
1332      *   values. Layer normalization is used when the values of all the layer
1333      *   normalization weights are present.
1334      *
1335      * References:
1336      *
1337      * The default non-peephole non-CIFG implementation is based on:
1338      * http://www.bioinf.jku.at/publications/older/2604.pdf
1339      * S. Hochreiter and J. Schmidhuber. "Long Short-Term Memory". Neural
1340      * Computation, 9(8):1735-1780, 1997.
1341      *
1342      * The peephole implementation and projection layer is based on:
1343      * https://research.google.com/pubs/archive/43905.pdf
1344      * Hasim Sak, Andrew Senior, and Francoise Beaufays. "Long short-term memory
1345      * recurrent neural network architectures for large scale acoustic
1346      * modeling." INTERSPEECH, 2014.
1347      * (However, the concept of peephole optimization was introduced in work
1348      * prior to this paper.)
1349      *
1350      * The coupling of input and forget gate (CIFG) is based on:
1351      * http://arxiv.org/pdf/1503.04069.pdf
1352      * Greff et al. "LSTM: A Search Space Odyssey"
1353      *
1354      * The layer normalization is based on:
1355      * https://arxiv.org/pdf/1607.06450.pdf
1356      * Jimmy Ba et al. "Layer Normalization"
1357      *
1358      * Supported tensor {@link OperandCode}:
1359      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16} (since API level 29)
1360      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
1361      *
1362      * All input and output tensors must be of the same type.
1363      *
1364      * Inputs:
1365      * * 0: The input (\f$x_t\f$).
1366      *      A 2-D tensor of shape [batch_size, input_size], where “batch_size”
1367      *      corresponds to the batching dimension, and “input_size” is the size
1368      *      of the input.
1369      * * 1: The input-to-input weights (\f$W_{xi}\f$). Optional.
1370      *      A 2-D tensor of shape [num_units, input_size], where “num_units”
1371      *      corresponds to the number of cell units.
1372      * * 2: The input-to-forget weights (\f$W_{xf}\f$).
1373      *      A 2-D tensor of shape [num_units, input_size].
1374      * * 3: The input-to-cell weights (\f$W_{xc}\f$).
1375      *      A 2-D tensor of shape [num_units, input_size].
1376      * * 4: The input-to-output weights (\f$W_{xo}\f$).
1377      *      A 2-D tensor of shape [num_units, input_size].
1378      * * 5: The recurrent-to-input weights (\f$W_{hi}\f$). Optional.
1379      *      A 2-D tensor of shape [num_units, output_size], where “output_size”
1380      *      corresponds to either the number of cell units (i.e., “num_units”),
1381      *      or the second dimension of the “projection_weights”, if defined.
1382      * * 6: The recurrent-to-forget weights (\f$W_{hf}\f$).
1383      *      A 2-D tensor of shape [num_units, output_size].
1384      * * 7: The recurrent-to-cell weights (\f$W_{hc}\f$).
1385      *      A 2-D tensor of shape [num_units, output_size].
1386      * * 8: The recurrent-to-output weights (\f$W_{ho}\f$).
1387      *      A 2-D tensor of shape [num_units, output_size].
1388      * * 9: The cell-to-input weights (\f$W_{ci}\f$). Optional.
1389      *      A 1-D tensor of shape [num_units].
1390      * * 10:The cell-to-forget weights (\f$W_{cf}\f$). Optional.
1391      *      A 1-D tensor of shape [num_units].
1392      * * 11:The cell-to-output weights (\f$W_{co}\f$). Optional.
1393      *      A 1-D tensor of shape [num_units].
1394      * * 12:The input gate bias (\f$b_i\f$). Optional.
1395      *      A 1-D tensor of shape [num_units].
1396      * * 13:The forget gate bias (\f$b_f\f$).
1397      *      A 1-D tensor of shape [num_units].
1398      * * 14:The cell bias (\f$b_c\f$).
1399      *      A 1-D tensor of shape [num_units].
1400      * * 15:The output gate bias (\f$b_o\f$).
1401      *      A 1-D tensor of shape [num_units].
1402      * * 16:The projection weights (\f$W_{proj}\f$). Optional.
1403      *      A 2-D tensor of shape [output_size, num_units].
1404      * * 17:The projection bias (\f$b_{proj}\f$). Optional.
1405      *      A 1-D tensor of shape [output_size].
1406      * * 18:The output state (in) (\f$h_{t-1}\f$).
1407      *      A 2-D tensor of shape [batch_size, output_size].
1408      * * 19:The cell state (in) (\f$C_{t-1}\f$).
1409      *      A 2-D tensor of shape [batch_size, num_units].
1410      * * 20:The activation function (\f$g\f$).
1411      *      A value indicating the activation function:
1412      *      <ul>
1413      *      <li>0: None;
1414      *      <li>1: Relu;
1415      *      <li>3: Relu6;
1416      *      <li>4: Tanh;
1417      *      <li>6: Sigmoid.
1418      *      </ul>
1419      * * 21:The clipping threshold (\f$t_{cell}\f$) for the cell state, such
1420      *      that values are bound within [-cell_clip, cell_clip]. If set to 0.0
1421      *      then clipping is disabled.
1422      *      Until API level 29 this scalar must be of type {@link
1423      *      ANEURALNETWORKS_FLOAT32}. Since API level 29, if all the input
1424      *      tensors have type {@link ANEURALNETWORKS_TENSOR_FLOAT32}, this
1425      *      scalar must be of the type {@link ANEURALNETWORKS_FLOAT32},
1426      *      otherwise if all the input tensors have the type {@link
1427      *      ANEURALNETWORKS_TENSOR_FLOAT16}, this scalar must be of type {@link
1428      *      ANEURALNETWORKS_FLOAT16}.
1429      * * 22:The clipping threshold (\f$t_{proj}\f$) for the output from the
1430      *      projection layer, such that values are bound within
1431      *      [-proj_clip, proj_clip]. If set to 0.0 then clipping is disabled.
1432      *      Until API level 29 this scalar must be of type {@link
1433      *      ANEURALNETWORKS_FLOAT32}. Since API level 29, if all the input
1434      *      tensors have type {@link ANEURALNETWORKS_TENSOR_FLOAT32}, this
1435      *      scalar must be of the type {@link ANEURALNETWORKS_FLOAT32},
1436      *      otherwise if all the input tensors have the type {@link
1437      *      ANEURALNETWORKS_TENSOR_FLOAT16}, this scalar must be of type {@link
1438      *      ANEURALNETWORKS_FLOAT16}.
1439      * Since API level 29 there are additional inputs to this op:
1440      * * 23:The input layer normalization weights.
1441      *      A 1-D tensor of shape [num_units]. Used to rescale normalized inputs
1442      *      to activation at input gate.
1443      * * 24:The forget layer normalization weights.
1444      *      A 1-D tensor of shape [num_units]. Used to rescale normalized inputs
1445      *      to activation at forget gate.
1446      * * 25:The cell layer normalization weights.
1447      *      A 1-D tensor of shape [num_units]. Used to rescale normalized inputs
1448      *      to activation at cell gate.
1449      * * 26:The output layer normalization weights.
1450      *      A 1-D tensor of shape [num_units]. Used to rescale normalized inputs
1451      *      to activation at output gate.
1452      *
1453      * Outputs:
1454      * * 0: The scratch buffer.
1455      *      A 2-D tensor of shape [batch_size, num_units * 3] with CIFG, or
1456      *      [batch_size, num_units * 4] without CIFG.
1457      * * 1: The output state (out) (\f$h_t\f$).
1458      *      A 2-D tensor of shape [batch_size, output_size].
1459      * * 2: The cell state (out) (\f$C_t\f$).
1460      *      A 2-D tensor of shape [batch_size, num_units].
1461      * * 3: The output (\f$o_t\f$).
1462      *      A 2-D tensor of shape [batch_size, output_size]. This is effectively
1463      *      the same as the current “output state (out)” value.
1464      *
1465      * Available since API level 27.
1466      */
1467     ANEURALNETWORKS_LSTM = 16,
1468 
1469     /**
1470      * Performs an 2-D max pooling operation.
1471      *
1472      * The output dimensions are functions of the filter dimensions, stride, and
1473      * padding.
1474      *
1475      * The values in the output tensor are computed as:
1476      *
1477      *     output[b, i, j, channel] =
1478      *         max_{di, dj} (
1479      *             input[b, strides[1] * i + di, strides[2] * j + dj, channel]
1480      *         )
1481      *
1482      * Supported tensor {@link OperandCode}:
1483      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16} (since API level 29)
1484      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
1485      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
1486      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} (since API level 30)
1487      *
1488      * Supported tensor rank: 4, with "NHWC" or "NCHW" data layout.
1489      * With the default data layout NHWC, the data is stored in the order of:
1490      * [batch, height, width, channels]. Alternatively, the data layout could
1491      * be NCHW, the data storage order of: [batch, channels, height, width].
1492      * NCHW is supported since API level 29.
1493      *
1494      * Both explicit padding and implicit padding are supported.
1495      *
1496      * Inputs (explicit padding):
1497      * * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying
1498      *      the input.
1499      *      Since API level 29, zero batches is supported for this tensor.
1500      * * 1: An {@link ANEURALNETWORKS_INT32} scalar, specifying the padding on
1501      *      the left, in the ‘width’ dimension.
1502      * * 2: An {@link ANEURALNETWORKS_INT32} scalar, specifying the padding on
1503      *      the right, in the ‘width’ dimension.
1504      * * 3: An {@link ANEURALNETWORKS_INT32} scalar, specifying the padding on
1505      *      the top, in the ‘height’ dimension.
1506      * * 4: An {@link ANEURALNETWORKS_INT32} scalar, specifying the padding on
1507      *      the bottom, in the ‘height’ dimension.
1508      * * 5: An {@link ANEURALNETWORKS_INT32} scalar, specifying the stride when
1509      *      walking through input in the ‘width’ dimension.
1510      * * 6: An {@link ANEURALNETWORKS_INT32} scalar, specifying the stride when
1511      *      walking through input in the ‘height’ dimension.
1512      * * 7: An {@link ANEURALNETWORKS_INT32} scalar, specifying the filter
1513      *      width.
1514      * * 8: An {@link ANEURALNETWORKS_INT32} scalar, specifying the filter
1515      *      height.
1516      * * 9: An {@link ANEURALNETWORKS_INT32} scalar, and has to be one of the
1517      *      {@link FuseCode} values. Specifies the activation to
1518      *      invoke on the result.
1519      * * 10: An optional {@link ANEURALNETWORKS_BOOL} scalar, default to false.
1520      *       Set to true to specify NCHW data layout for input0 and output0.
1521      *       Available since API level 29.
1522      *
1523      * Inputs (implicit padding):
1524      * * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying
1525      *      the input.
1526      *      Since API level 29, zero batches is supported for this tensor.
1527      * * 1: An {@link ANEURALNETWORKS_INT32} scalar, specifying the implicit
1528      *      padding scheme, has to be one of the
1529      *      {@link PaddingCode} values.
1530      * * 2: An {@link ANEURALNETWORKS_INT32} scalar, specifying the stride when
1531      *      walking through input in the ‘width’ dimension.
1532      * * 3: An {@link ANEURALNETWORKS_INT32} scalar, specifying the stride when
1533      *      walking through input in the ‘height’ dimension.
1534      * * 4: An {@link ANEURALNETWORKS_INT32} scalar, specifying the filter
1535      *      width.
1536      * * 5: An {@link ANEURALNETWORKS_INT32} scalar, specifying the filter
1537      *      height.
1538      * * 6: An {@link ANEURALNETWORKS_INT32} scalar, and has to be one of the
1539      *      {@link FuseCode} values. Specifies the activation to
1540      *      invoke on the result.
1541      * * 7: An optional {@link ANEURALNETWORKS_BOOL} scalar, default to false.
1542      *      Set to true to specify NCHW data layout for input0 and output0.
1543      *      Available since API level 29.
1544      *
1545      * Outputs:
1546      * * 0: The output 4-D tensor, of shape
1547      *      [batches, out_height, out_width, depth].
1548      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} and
1549      *      {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} tensor,
1550      *      the scale and zeroPoint must be the same as input0.
1551      *
1552      * Available since API level 27.
1553      */
1554     ANEURALNETWORKS_MAX_POOL_2D = 17,
1555 
1556     /**
1557      * Multiplies two tensors, element-wise.
1558      *
1559      * Takes two input tensors of identical {@link OperandCode} and compatible
1560      * dimensions. The output is the product of both input tensors, optionally
1561      * modified by an activation function.
1562      *
1563      * Two dimensions are compatible when:
1564      *     1. they are equal, or
1565      *     2. one of them is 1
1566      *
1567      * The size of the resulting output is the maximum size along each dimension
1568      * of the input operands. It starts with the trailing dimensions, and works
1569      * its way forward.
1570      *
1571      * Since API level 29, generic zero-sized input tensor is supported. Zero
1572      * dimension is only compatible with 0 or 1. The size of the output
1573      * dimension is zero if either of corresponding input dimension is zero.
1574      *
1575      * Supported tensor {@link OperandCode}:
1576      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16} (since API level 29)
1577      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
1578      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
1579      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} (since API level 30)
1580      * * {@link ANEURALNETWORKS_TENSOR_INT32} (since API level 30)
1581      *
1582      * Supported tensor rank: up to 4
1583      *
1584      * Inputs:
1585      * * 0: A tensor.
1586      * * 1: A tensor of the same {@link OperandCode}, and compatible dimensions
1587      *      as input0.
1588      * * 2: An {@link ANEURALNETWORKS_INT32} scalar, and has to be one of the
1589      *      {@link FuseCode} values. Specifies the activation to
1590      *      invoke on the result.
1591      *      For a {@link ANEURALNETWORKS_TENSOR_INT32} tensor,
1592      *      the {@link FuseCode} must be "NONE".
1593      *
1594      * Outputs:
1595      * * 0: The product, a tensor of the same {@link OperandCode} as input0.
1596      *      For output tensor of {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
1597      *      and {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED},
1598      *      the following condition must be satisfied:
1599      *      output_scale > input1_scale * input2_scale.
1600      *
1601      * Available since API level 27.
1602      */
1603     ANEURALNETWORKS_MUL = 18,
1604 
1605     /**
1606      * Computes rectified linear activation on the input tensor element-wise.
1607      *
1608      * The output is calculated using this formula:
1609      *
1610      *     output = max(0, input)
1611      *
1612      * Supported tensor {@link OperandCode}:
1613      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16} (since API level 29)
1614      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
1615      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
1616      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} (since API level 30)
1617      *
1618      * Supported tensor rank: up to 4.
1619      *
1620      * Inputs:
1621      * * 0: A tensor, specifying the input.
1622      *      Since API level 29, this tensor may be zero-sized.
1623      *
1624      * Outputs:
1625      * * 0: The output tensor of same shape as input0.
1626      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} and
1627      *      {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} tensor,
1628      *      the scale and zeroPoint must be the same as input0.
1629      *
1630      * Available since API level 27.
1631      */
1632     ANEURALNETWORKS_RELU = 19,
1633 
1634     /**
1635      * Computes rectified linear 1 activation on the input tensor element-wise.
1636      *
1637      * The output is calculated using this formula:
1638      *
1639      *     output = min(1.f, max(-1.f, input))
1640      *
1641      * Supported tensor {@link OperandCode}:
1642      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16} (since API level 29)
1643      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
1644      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
1645      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} (since API level 30)
1646      *
1647      * Supported tensor rank: up to 4.
1648      *
1649      * Inputs:
1650      * * 0: A tensor, specifying the input.
1651      *      Since API level 29, this tensor may be zero-sized.
1652      *
1653      * Outputs:
1654      * * 0: The output tensor of the same shape as input0.
1655      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} and
1656      *      {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} tensor,
1657      *      the scale and zeroPoint must be the same as input0.
1658      *
1659      * Available since API level 27.
1660      */
1661     ANEURALNETWORKS_RELU1 = 20,
1662 
1663     /**
1664      * Computes rectified linear 6 activation on the input tensor element-wise.
1665      *
1666      * The output is calculated using this formula:
1667      *
1668      *     output = min(6, max(0, input))
1669      *
1670      * Supported tensor {@link OperandCode}:
1671      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16} (since API level 29)
1672      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
1673      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
1674      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} (since API level 30)
1675      *
1676      * Supported tensor rank: up to 4.
1677      *
1678      * Inputs:
1679      * * 0: A tensor, specifying the input.
1680      *      Since API level 29, this tensor may be zero-sized.
1681      *
1682      * Outputs:
1683      * * 0: The output tensor of same shape as input0.
1684      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} and
1685      *      {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} tensor,
1686      *      the scale and zeroPoint must be the same as input0.
1687      *
1688      * Available since API level 27.
1689      */
1690     ANEURALNETWORKS_RELU6 = 21,
1691 
1692     /**
1693      * Reshapes a tensor.
1694      *
1695      * Given tensor, this operation returns a tensor that has the same values as
1696      * tensor, but with a newly specified shape.
1697      *
1698      * Supported tensor {@link OperandCode}:
1699      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16} (since API level 29)
1700      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
1701      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
1702      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} (since API level 30)
1703      *
1704      * Supported tensor rank: up to 4.
1705      *
1706      * Inputs:
1707      * * 0: A tensor, specifying the tensor to be reshaped.
1708      * * 1: A 1-D tensor of {@link ANEURALNETWORKS_TENSOR_INT32}, defining the
1709      *      shape of the output tensor. The number of elements implied by shape
1710      *      must be the same as the number of elements in the input tensor.
1711      *
1712      *      If one component of shape is the special value -1, the size of that
1713      *      dimension is computed so that the total size remains constant. In
1714      *      particular, a shape of [-1] flattens into 1-D. At most one component
1715      *      of shape can be -1.
1716      *
1717      * Outputs:
1718      * * 0: The output tensor, of shape specified by the input shape.
1719      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} and
1720      *      {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} tensor,
1721      *      the scale and zeroPoint must be the same as input0.
1722      *
1723      * Available since API level 27.
1724      */
1725     ANEURALNETWORKS_RESHAPE = 22,
1726 
1727     /**
1728      * Resizes images to given size using the bilinear interpretation.
1729      *
1730      * Resized images must be distorted if their output aspect ratio is not the
1731      * same as input aspect ratio. The corner pixels of output may not be the
1732      * same as corner pixels of input.
1733      *
1734      * Supported tensor {@link OperandCode}:
1735      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16} (since API level 29)
1736      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
1737      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} (since API level 29)
1738      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} (since API level 30)
1739      *
1740      * Supported tensor rank: 4, with "NHWC" or "NCHW" data layout.
1741      * With the default data layout NHWC, the data is stored in the order of:
1742      * [batch, height, width, channels]. Alternatively, the data layout could
1743      * be NCHW, the data storage order of: [batch, channels, height, width].
1744      * NCHW is supported since API level 29.
1745      *
1746      * Both resizing by shape and resizing by scale are supported.
1747      *
1748      * Inputs (resizing by shape):
1749      * * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying
1750      *      the input.
1751      *      Since API level 29, zero batches is supported for this tensor.
1752      * * 1: An {@link ANEURALNETWORKS_INT32} scalar, specifying the output
1753      *      width of the output tensor.
1754      * * 2: An {@link ANEURALNETWORKS_INT32} scalar, specifying the output
1755      *      height of the output tensor.
1756      * * 3: An optional {@link ANEURALNETWORKS_BOOL} scalar, default to false.
1757      *      Set to true to specify NCHW data layout for input0 and output0.
1758      *      Available since API level 29.
1759      * * 4: Align corners. An optional {@link ANEURALNETWORKS_BOOL}
1760      *      scalar, default to false.  If True, the centers of the 4 corner
1761      *      pixels of the input and output tensors are aligned, preserving the
1762      *      values at the corner pixels.
1763      *      Available since API level 30.
1764      * * 5: Half pixel centers. An optional {@link ANEURALNETWORKS_BOOL}
1765      *      scalar, default to false. If True, the pixel centers are assumed to
1766      *      be at (0.5, 0.5). This is the default behavior of image.resize in
1767      *      TF 2.0. If this parameter is True, then align_corners parameter
1768      *      must be False.
1769      *      Available since API level 30.
1770      *
1771      * Inputs (resizing by scale, since API level 29):
1772      * * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying
1773      *      the input. Zero batches is supported for this tensor.
1774      * * 1: A scalar, specifying width_scale, the scaling factor of the width
1775      *      dimension from the input tensor to the output tensor. The output
1776      *      width is calculated as new_width = floor(width * width_scale).
1777      *      The scalar must be of {@link ANEURALNETWORKS_FLOAT16} if input0 is
1778      *      of {@link ANEURALNETWORKS_TENSOR_FLOAT16} and of
1779      *      {@link ANEURALNETWORKS_FLOAT32} otherwise.
1780      * * 2: A scalar, specifying height_scale, the scaling factor of the height
1781      *      dimension from the input tensor to the output tensor. The output
1782      *      height is calculated as new_height = floor(height * height_scale).
1783      *      The scalar must be of {@link ANEURALNETWORKS_FLOAT16} if input0 is
1784      *      of {@link ANEURALNETWORKS_TENSOR_FLOAT16} and of
1785      *      {@link ANEURALNETWORKS_FLOAT32} otherwise.
1786      * * 3: An optional {@link ANEURALNETWORKS_BOOL} scalar, default to false.
1787      *      Set to true to specify NCHW data layout for input0 and output0.
1788      * * 4: Align corners. An optional {@link ANEURALNETWORKS_BOOL}
1789      *      scalar, default to false.  If True, the centers of the 4 corner
1790      *      pixels of the input and output tensors are aligned, preserving the
1791      *      values at the corner pixels.
1792      *      Available since API level 30.
1793      * * 5: Half pixel centers. An optional {@link ANEURALNETWORKS_BOOL}
1794      *      scalar, default to false. If True, the pixel centers are assumed to
1795      *      be at (0.5, 0.5). This is the default behavior of image.resize in
1796      *      TF 2.0. If this parameter is True, then align_corners parameter
1797      *      must be False.
1798      *      Available since API level 30.
1799      *
1800      * Outputs:
1801      * * 0: The output 4-D tensor, of shape
1802      *      [batches, new_height, new_width, depth].
1803      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} and
1804      *      {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} tensor,
1805      *      the scale and zeroPoint must be the same as input0.
1806      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} tensor,
1807      *      the scale and zeroPoint must be the same as input0.
1808      *
1809      * Available since API level 27.
1810      */
1811     ANEURALNETWORKS_RESIZE_BILINEAR = 23,
1812 
1813     /**
1814      * A basic recurrent neural network layer.
1815      *
1816      * This layer implements the operation:
1817      * outputs = state = activation(inputs * input_weights +
1818      *                              state * recurrent_weights + bias)
1819      *
1820      * Where:
1821      * * “input_weights” is a weight matrix that multiplies the inputs;
1822      * * “recurrent_weights” is a weight matrix that multiplies the current
1823      *    “state” which itself is the output from the previous time step
1824      *    computation;
1825      * * “bias” is a bias vector (added to each output vector in the batch);
1826      * * “activation” is the function passed as the “fused_activation_function”
1827      *   argument (if not “NONE”).
1828      *
1829      * Supported tensor {@link OperandCode}:
1830      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16} (since API level 29)
1831      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
1832      *
1833      * The input tensors must all be the same type.
1834      *
1835      * Inputs:
1836      * * 0: input.
1837      *      A 2-D tensor of shape [batch_size, input_size], where “batch_size”
1838      *      corresponds to the batching dimension, and “input_size” is the size
1839      *      of the input.
1840      * * 1: weights.
1841      *      A 2-D tensor of shape [num_units, input_size], where “num_units”
1842      *      corresponds to the number of units.
1843      * * 2: recurrent_weights.
1844      *      A 2-D tensor of shape [num_units, num_units], with columns
1845      *      corresponding to the weights from each unit.
1846      * * 3: bias.
1847      *      A 1-D tensor of shape [num_units].
1848      * * 4: hidden state (in).
1849      *      A 2-D tensor of shape [batch_size, num_units].
1850      * * 5: fused_activation_function.
1851      *      An optional {@link FuseCode} value indicating the
1852      *      activation function. If “NONE” is specified then it results in a
1853      *      linear activation.
1854      *
1855      * Outputs:
1856      * * 0: hidden state (out).
1857      *      A 2-D tensor of shape [batch_size, num_units].
1858      *
1859      * * 1: output.
1860      *      A 2-D tensor of shape [batch_size, num_units]. This is effectively
1861      *      the same as the current state value.
1862      *
1863      * Available since API level 27.
1864      */
1865     ANEURALNETWORKS_RNN = 24,
1866 
1867     /**
1868      * Computes the softmax activation on the input tensor element-wise, per
1869      * batch, by normalizing the input vector so the maximum coefficient is
1870      * zero.
1871      *
1872      * The output is calculated using this formula:
1873      *
1874      *     output[batch, i] =
1875      *         exp((input[batch, i] - max(input[batch, :])) * beta) /
1876      *         sum_{k}{exp((input[batch, k] - max(input[batch, :])) * beta)}
1877      *
1878      * For input tensor with rank other than 2, the activation will be applied
1879      * independently on each 1-D slice along specified dimension.
1880      *
1881      * Supported tensor {@link OperandCode}:
1882      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16} (since API level 29)
1883      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
1884      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
1885      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} (since API level 30)
1886      *
1887      * Supported tensor rank: up to 4.
1888      * Tensors with rank other than 2 or 4 are only supported since API level 29.
1889      *
1890      * Inputs:
1891      * * 0: A 2-D or 4-D tensor, specifying the tensor to be reshaped.
1892      *      Since API level 29, this tensor may be zero-sized.
1893      * * 1: A scalar, specifying the positive scaling factor for the exponent,
1894      *      beta. If input0 is of {@link ANEURALNETWORKS_TENSOR_FLOAT32},
1895      *      {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} or
1896      *      {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED}, the scalar
1897      *      must be of {@link ANEURALNETWORKS_FLOAT32}.
1898      *      If input0 is of {@link ANEURALNETWORKS_TENSOR_FLOAT16}, then the
1899      *      scalar must be of {@link ANEURALNETWORKS_FLOAT16}.
1900      * * 2: An optional {@link ANEURALNETWORKS_INT32} scalar, default to -1,
1901      *      specifying the dimension the activation would be performed on.
1902      *      Negative index is used to specify axis from the end (e.g. -1 for
1903      *      the last axis). Must be in the range [-n, n).
1904      *      Available since API level 29.
1905      *
1906      * Outputs:
1907      * * 0: The output tensor of same shape as input0.
1908      *      For {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM},
1909      *      the scale must be 1.f / 256 and the zeroPoint must be 0.
1910      *      For {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED},
1911      *      the scale must be 1.f / 256 and the zeroPoint must be -128.
1912      *
1913      * Available since API level 27.
1914      */
1915     ANEURALNETWORKS_SOFTMAX = 25,
1916 
1917     /**
1918      * Rearranges blocks of spatial data, into depth.
1919      *
1920      * More specifically, this op outputs a copy of the input tensor where
1921      * values from the height and width dimensions are moved to the depth
1922      * dimension. The value block_size indicates the input block size and how
1923      * the data is moved.
1924      *
1925      * Chunks of data of size block_size * block_size from depth are rearranged
1926      * into non-overlapping blocks of size block_size x block_size.
1927      *
1928      * The depth of the output tensor is input_depth * block_size * block_size.
1929      * The input tensor's height and width must be divisible by block_size.
1930      *
1931      * Supported tensor {@link OperandCode}:
1932      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16} (since API level 29)
1933      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
1934      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
1935      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} (since API level 30)
1936      *
1937      * Supported tensor rank: 4, with "NHWC" or "NCHW" data layout.
1938      * With the default data layout NHWC, the data is stored in the order of:
1939      * [batch, height, width, channels]. Alternatively, the data layout could
1940      * be NCHW, the data storage order of: [batch, channels, height, width].
1941      * NCHW is supported since API level 29.
1942      *
1943      * Inputs:
1944      * * 0: A 4-D tensor, of shape [batches, height, width, depth_in],
1945      *      specifying the input.
1946      * * 1: An {@link ANEURALNETWORKS_INT32} scalar, specifying the block_size.
1947      *      block_size must be >=1 and block_size must be a divisor of both the
1948      *      input height and width.
1949      * * 2: An optional {@link ANEURALNETWORKS_BOOL} scalar, default to false.
1950      *      Set to true to specify NCHW data layout for input0 and output0.
1951      *      Available since API level 29.
1952      *
1953      * Outputs:
1954      * * 0: The output 4-D tensor, of shape [batches, height/block_size,
1955      *      width/block_size, depth_in*block_size*block_size].
1956      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} and
1957      *      {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} tensor,
1958      *      the scale and zeroPoint must be the same as input0.
1959      *
1960      * Available since API level 27.
1961      */
1962     ANEURALNETWORKS_SPACE_TO_DEPTH = 26,
1963 
1964     /**
1965      * SVDF op is a kind of stateful layer derived from the notion that a
1966      * densely connected layer that's processing a sequence of input frames can
1967      * be approximated by using a singular value decomposition of each of its
1968      * nodes. The implementation is based on:
1969      *
1970      * https://research.google.com/pubs/archive/43813.pdf
1971      *
1972      * P. Nakkiran, R. Alvarez, R. Prabhavalkar, C. Parada.
1973      * “Compressing Deep Neural Networks using a Rank-Constrained Topology”.
1974      * INTERSPEECH, 2015.
1975      *
1976      * It processes the incoming input using a 2-stage filtering mechanism:
1977      * * stage 1 performs filtering on the "features" dimension, whose outputs
1978      *   get pushed into a memory of fixed-size memory_size.
1979      * * stage 2 performs filtering on the "time" dimension of the memory_size
1980      *   memoized outputs of stage 1.
1981      *
1982      * Specifically, for rank 1, this layer implements the operation:
1983      *
1984      *     memory = push(conv1d(inputs, weights_feature, feature_dim,
1985      *                          "ANEURALNETWORKS_PADDING_VALID"));
1986      *     outputs = activation(memory * weights_time + bias);
1987      *
1988      * Where:
1989      * * “weights_feature” is a weights matrix that processes the inputs (by
1990      *   convolving the input with every “feature filter”), and whose outputs
1991      *   get pushed, stacked in order, into the fixed-size “memory” (the oldest
1992      *   entry gets dropped);
1993      * * “weights_time” is a weights matrix that processes the “memory” (by a
1994      *   batched matrix multiplication on the num_units);
1995      * * “bias” is an optional bias vector (added to each output vector in the
1996      *   batch); and
1997      * * “activation” is the function passed as the “fused_activation_function”
1998      *   argument (if not “NONE”).
1999      *
2000      * Each rank adds a dimension to the weights matrices by means of stacking
2001      * the filters.
2002      *
2003      * Supported tensor {@link OperandCode}:
2004      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16} (since API level 29)
2005      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
2006      *
2007      * All input tensors must be the same type.
2008      *
2009      * Inputs:
2010      * * 0: input.
2011      *      A 2-D tensor of shape [batch_size, input_size], where “batch_size”
2012      *      corresponds to the batching dimension, and “input_size” is the size
2013      *      of the input.
2014      * * 1: weights_feature.
2015      *      A 2-D tensor of shape [num_units, input_size], where “num_units”
2016      *      corresponds to the number of units.
2017      * * 2: weights_time.
2018      *      A 2-D tensor of shape [num_units, memory_size], where “memory_size”
2019      *      corresponds to the fixed-size of the memory.
2020      * * 3: bias.
2021      *      An optional 1-D tensor of shape [num_units].
2022      * * 4: state (in).
2023      *      A 2-D tensor of shape [batch_size, (memory_size - 1) * num_units * rank].
2024      * * 5: rank.
2025      *      The rank of the SVD approximation.
2026      * * 6: fused_activation_function.
2027      *      An optional {@link FuseCode} value indicating the
2028      *      activation function. If “NONE” is specified then it results in a
2029      *      linear activation.
2030      *
2031      * Outputs:
2032      * * 0: state (out).
2033      *      A 2-D tensor of the same {@link OperandCode} as the inputs, with shape
2034      *      [batch_size, (memory_size - 1) * num_units * rank].
2035      * * 1: output.
2036      *      A 2-D tensor of the same {@link OperandCode} as the inputs, with shape
2037      *      [batch_size, num_units].
2038      *
2039      * Available since API level 27.
2040      */
2041     ANEURALNETWORKS_SVDF = 27,
2042 
2043     /**
2044      * Computes hyperbolic tangent of input tensor element-wise.
2045      *
2046      * The output is calculated using this formula:
2047      *
2048      *     output = tanh(input)
2049      *
2050      * Supported tensor {@link OperandCode}:
2051      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16} (since API level 29)
2052      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
2053      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} (since API level 29)
2054      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} (since API level 30)
2055      *
2056      * Supported tensor rank: up to 4.
2057      *
2058      * Inputs:
2059      * * 0: A tensor, specifying the input.
2060      *      Since API level 29, this tensor may be zero-sized.
2061      *
2062      * Outputs:
2063      * * 0: The output tensor of same shape as input0.
2064      *      For {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM},
2065      *      the scale must be 1.f / 128 and the zeroPoint must be 128.
2066      *      For {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED},
2067      *      the scale must be 1.f / 128 and the zeroPoint must be 0.
2068      *
2069      * Available since API level 27.
2070      */
2071     ANEURALNETWORKS_TANH = 28,
2072 
2073     // Operations below are available since API level 28.
2074 
2075     /**
2076      * BatchToSpace for N-dimensional tensors.
2077      *
2078      * This operation reshapes the batch dimension (dimension 0) into M + 1
2079      * dimensions of shape block_shape + [batch], interleaves these blocks back
2080      * into the grid defined by the spatial dimensions [1, ..., M], to obtain a
2081      * result with the same rank as the input.
2082      *
2083      * This is the reverse of SpaceToBatch.
2084      *
2085      * Supported tensor {@link OperandCode}:
2086      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16} (since API level 29)
2087      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
2088      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
2089      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} (since API level 30)
2090      *
2091      * Supported tensor rank: 4, with "NHWC" or "NCHW" data layout.
2092      * With the default data layout NHWC, the data is stored in the order of:
2093      * [batch, height, width, channels]. Alternatively, the data layout could
2094      * be NCHW, the data storage order of: [batch, channels, height, width].
2095      * NCHW is supported since API level 29.
2096      *
2097      * Inputs:
2098      * * 0: An n-D tensor, specifying the tensor to be reshaped
2099      * * 1: A 1-D Tensor of {@link ANEURALNETWORKS_TENSOR_INT32}, the block
2100      *      sizes for each spatial dimension of the input tensor. All values
2101      *      must be >= 1.
2102      * * 2: An optional {@link ANEURALNETWORKS_BOOL} scalar, default to false.
2103      *      Set to true to specify NCHW data layout for input0 and output0.
2104      *      Available since API level 29.
2105      *
2106      * Outputs:
2107      * * 0: A tensor of the same {@link OperandCode} as input0.
2108      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} and
2109      *      {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} tensor,
2110      *      the scale and zeroPoint must be the same as input0.
2111      *
2112      * Available since API level 28.
2113      */
2114     ANEURALNETWORKS_BATCH_TO_SPACE_ND = 29,
2115 
2116     /**
2117      * Element-wise division of two tensors.
2118      *
2119      * Takes two input tensors of identical {@link OperandCode} and compatible
2120      * dimensions. The output is the result of dividing the first input tensor
2121      * by the second, optionally modified by an activation function.
2122      *
2123      * For inputs of {@link ANEURALNETWORKS_TENSOR_INT32}, performs
2124      * "floor division" ("//" in Python). For example,
2125      *     5 // 2 = 2
2126      *    -5 // 2 = -3
2127      *
2128      * Two dimensions are compatible when:
2129      *     1. they are equal, or
2130      *     2. one of them is 1
2131      *
2132      * The size of the output is the maximum size along each dimension of the
2133      * input operands. It starts with the trailing dimensions, and works its way
2134      * forward.
2135      *
2136      * Example:
2137      *     input1.dimension =    {4, 1, 2}
2138      *     input2.dimension = {5, 4, 3, 1}
2139      *     output.dimension = {5, 4, 3, 2}
2140      *
2141      * Since API level 29, generic zero-sized input tensor is supported. Zero
2142      * dimension is only compatible with 0 or 1. The size of the output
2143      * dimension is zero if either of corresponding input dimension is zero.
2144      *
2145      * Supported tensor {@link OperandCode}:
2146      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16} (since API level 29)
2147      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
2148      * * {@link ANEURALNETWORKS_TENSOR_INT32} (since API level 30)
2149      *
2150      * Supported tensor rank: up to 4
2151      *
2152      * Inputs:
2153      * * 0: An n-D tensor, specifying the first input.
2154      * * 1: A tensor of the same {@link OperandCode}, and compatible dimensions
2155      *      as input0.
2156      * * 2: An {@link ANEURALNETWORKS_INT32} scalar, and has to be one of the
2157      *      {@link FuseCode} values. Specifies the activation to
2158      *      invoke on the result.
2159      *      For a {@link ANEURALNETWORKS_TENSOR_INT32} tensor,
2160      *      the {@link FuseCode} must be "NONE".
2161      *
2162      * Outputs:
2163      * * 0: A tensor of the same {@link OperandCode} as input0.
2164      *
2165      * Available since API level 28.
2166      */
2167     ANEURALNETWORKS_DIV = 30,
2168 
2169     /**
2170      * Computes the mean of elements across dimensions of a tensor.
2171      *
2172      * Reduces the input tensor along the given dimensions to reduce. Unless
2173      * keep_dims is true, the rank of the tensor is reduced by 1 for each entry
2174      * in axis. If keep_dims is true, the reduced dimensions are retained with
2175      * length 1.
2176      *
2177      * Supported tensor {@link OperandCode}:
2178      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16} (since API level 29)
2179      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
2180      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
2181      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} (since API level 30)
2182      *
2183      * Supported tensor rank: up to 4
2184      *
2185      * Inputs:
2186      * * 0: A tensor, specifying the input.
2187      * * 1: A 1-D Tensor of {@link ANEURALNETWORKS_TENSOR_INT32}. The dimensions
2188      *      to reduce. Must be in the range
2189      *      [-rank(input_tensor), rank(input_tensor)).
2190      *
2191      *      NOTE: When the operation was introduced, the documentation
2192      *      incorrectly stated that if dimensions were empty, the operation
2193      *      would reduce across all dimensions. This behavior was never
2194      *      implemented.
2195      *
2196      * * 2: An {@link ANEURALNETWORKS_INT32} scalar, keep_dims. If positive,
2197      *      retains reduced dimensions with length 1.
2198      *
2199      * Outputs:
2200      * * 0: A tensor of the same {@link OperandCode} as input0.
2201      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} and
2202      *      {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} tensor,
2203      *      the scale and zeroPoint must be the same as input0.
2204      *      If all dimensions are reduced and keep_dims is false, the output
2205      *      shape is [1].
2206      *
2207      * Available since API level 28.
2208      */
2209     ANEURALNETWORKS_MEAN = 31,
2210 
2211     /**
2212      * Pads a tensor.
2213      *
2214      * This operation pads a tensor according to the specified paddings.
2215      *
2216      * Supported tensor {@link OperandCode}:
2217      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16} (since API level 29)
2218      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
2219      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
2220      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} (since API level 30)
2221      *   (full support since API level 29, see the output section)
2222      *
2223      * Supported tensor rank: up to 4
2224      *
2225      * Inputs:
2226      * * 0: An n-D tensor, specifying the tensor to be padded.
2227      * * 1: A 2-D Tensor of {@link ANEURALNETWORKS_TENSOR_INT32}, the paddings
2228      *      for each spatial dimension of the input tensor. The shape of the
2229      *      tensor must be {rank(input0), 2}.
2230      *      padding[i, 0] specifies the number of elements to be padded in the
2231      *      front of dimension i.
2232      *      padding[i, 1] specifies the number of elements to be padded after the
2233      *      end of dimension i.
2234      *
2235      * Outputs:
2236      * * 0: A tensor of the same {@link OperandCode} as input0. The
2237      *      output tensor has the same rank as input0, and each
2238      *      dimension of the output tensor has the same size as the
2239      *      corresponding dimension of the input tensor plus the size
2240      *      of the padding:
2241      *          output0.dimension[i] =
2242      *              padding[i, 0] + input0.dimension[i] + padding[i, 1]
2243      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} and
2244      *      {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} tensor,
2245      *      the scale and zeroPoint must be the same as input0.
2246      *
2247      *      NOTE: Before API level 29, the pad value for
2248      *      {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} is undefined.
2249      *      Since API level 29, the pad value is always the logical zero.
2250      *
2251      * Available since API level 28.
2252      */
2253     ANEURALNETWORKS_PAD = 32,
2254 
2255     /**
2256      * SpaceToBatch for N-Dimensional tensors.
2257      *
2258      * This operation divides "spatial" dimensions [1, ..., M] of the input into
2259      * a grid of blocks of shape block_shape, and interleaves these blocks with
2260      * the "batch" dimension (0) such that in the output, the spatial dimensions
2261      * [1, ..., M] correspond to the position within the grid, and the batch
2262      * dimension combines both the position within a spatial block and the
2263      * original batch position. Prior to division into blocks, the spatial
2264      * dimensions of the input are optionally zero padded according to paddings.
2265      *
2266      * Supported tensor {@link OperandCode}:
2267      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16} (since API level 29)
2268      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
2269      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
2270      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} (since API level 30)
2271      *   (full support since API level 29, see the output section)
2272      *
2273      * Supported tensor rank: 4, with "NHWC" or "NCHW" data layout.
2274      * With the default data layout NHWC, the data is stored in the order of:
2275      * [batch, height, width, channels]. Alternatively, the data layout could
2276      * be NCHW, the data storage order of: [batch, channels, height, width].
2277      * NCHW is supported since API level 29.
2278      *
2279      * Inputs:
2280      * * 0: An n-D tensor, specifying the input.
2281      * * 1: A 1-D Tensor of {@link ANEURALNETWORKS_TENSOR_INT32}, the block
2282      *      sizes for each spatial dimension of the input tensor. All values
2283      *      must be >= 1.
2284      * * 2: A 2-D Tensor of {@link ANEURALNETWORKS_TENSOR_INT32}, the paddings
2285      *      for each spatial dimension of the input tensor. All values must be
2286      *      >= 0. The shape of the tensor must be {M, 2}, where M is the number
2287      *      of spatial dimensions.
2288      *      padding[i, 0] specifies the number of element to be padded in the
2289      *      front of dimension i.
2290      *      padding[i, 1] specifies the number of element to be padded after the
2291      *      end of dimension i.
2292      * * 3: An optional {@link ANEURALNETWORKS_BOOL} scalar, default to false.
2293      *      Set to true to specify NCHW data layout for input0 and output0.
2294      *      Available since API level 29.
2295      *
2296      * Outputs:
2297      * * 0: A tensor of the same {@link OperandCode} as input0.
2298      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} and
2299      *      {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} tensor,
2300      *      the scale and zeroPoint must be the same as input0.
2301      *
2302      *      NOTE: Before API level 29, the pad value for
2303      *      {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} is undefined.
2304      *      Since API level 29, the pad value is always the logical zero.
2305      *
2306      * Available since API level 28.
2307      */
2308     ANEURALNETWORKS_SPACE_TO_BATCH_ND = 33,
2309 
2310     /**
2311      * Removes dimensions of size 1 from the shape of a tensor.
2312      *
2313      * Given a tensor input, this operation returns a tensor of the same
2314      * {@link OperandCode} with all dimensions of size 1 removed. If you don't
2315      * want to remove all size 1 dimensions, you can remove specific size 1
2316      * dimensions by specifying the axes (input1).
2317      *
2318      * Supported tensor {@link OperandCode}:
2319      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16} (since API level 29)
2320      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
2321      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
2322      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} (since API level 30)
2323      *
2324      * Supported tensor rank: up to 4
2325      *
2326      * Inputs:
2327      * * 0: An n-D tensor, the tensor to be squeezed.
2328      * * 1: An optional 1-D tensor of {@link ANEURALNETWORKS_TENSOR_INT32}. The
2329      *      dimensions to squeeze. If specified only squeezes the dimensions
2330      *      listed. Otherwise, squeezes all dimensions. The dimension index
2331      *      starts at 0. An error must be reported if squeezing a dimension that
2332      *      is not 1.
2333      *
2334      * Outputs:
2335      * * 0: A tensor of the same {@link OperandCode} as input0. Contains the
2336      *      same data as input, but has one or more dimensions of size 1
2337      *      removed.
2338      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} and
2339      *      {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} tensor,
2340      *      the scale and zeroPoint must be the same as input0.
2341      *      If all input dimensions are equal to 1 and are to be squeezed, the
2342      *      output shape is [1].
2343      *
2344      * Available since API level 28.
2345      */
2346     ANEURALNETWORKS_SQUEEZE = 34,
2347 
2348     /**
2349      * Extracts a strided slice of a tensor.
2350      *
2351      * Roughly speaking, this op extracts a slice of size (end - begin) / stride
2352      * from the given input tensor. Starting at the location specified by begin
2353      * the slice continues by adding stride to the index until all dimensions
2354      * are not less than end. Note that a stride can be negative, which causes a
2355      * reverse slice.
2356      *
2357      * Supported tensor {@link OperandCode}:
2358      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16} (since API level 29)
2359      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
2360      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
2361      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} (since API level 30)
2362      *
2363      * Supported tensor rank: up to 4
2364      *
2365      * Inputs:
2366      * * 0: An n-D tensor, specifying the tensor to be sliced.
2367      * * 1: begin, a 1-D tensor of {@link ANEURALNETWORKS_TENSOR_INT32}. The
2368      *      starts of the dimensions of the input tensor to be sliced. The
2369      *      length must be of rank(input0).
2370      * * 2: end, a 1-D tensor of {@link ANEURALNETWORKS_TENSOR_INT32}. The
2371      *      ends of the dimensions of the input tensor to be sliced. The length
2372      *      must be of rank(input0).
2373      * * 3: strides, a 1-D tensor of {@link ANEURALNETWORKS_TENSOR_INT32}. The
2374      *      strides of the dimensions of the input tensor to be sliced. The
2375      *      length must be of rank(input0). The entries must be non-zero.
2376      * * 4: begin_mask, an {@link ANEURALNETWORKS_INT32} scalar. If the ith bit
2377      *      of begin_mask is set, begin[i] is ignored and the fullest possible
2378      *      range in that dimension is used instead.
2379      * * 5: end_mask, an {@link ANEURALNETWORKS_INT32} scalar. If the ith bit of
2380      *      end_mask is set, end[i] is ignored and the fullest possible range in
2381      *      that dimension is used instead.
2382      * * 6: shrink_axis_mask, an {@link ANEURALNETWORKS_INT32} scalar. If the
2383      *      ith bit of shrink_axis_mask is set, the ith dimension specification
2384      *      shrinks the dimensionality by 1, taking on the value at index
2385      *      begin[i]. In this case, the ith specification must define a
2386      *      slice of size 1, e.g. begin[i] = x, end[i] = x + 1.
2387      *
2388      * Outputs:
2389      * * 0: A tensor of the same {@link OperandCode} as input0 and rank (n - k),
2390      *      where k is the number of bits set in shrink_axis_mask.
2391      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} and
2392      *      {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} tensor,
2393      *      the scale and zeroPoint must be the same as input0.
2394      *      If shrink_axis_mask is true for all input dimensions, the output
2395      *      shape is [1].
2396      *
2397      * Available since API level 28.
2398      */
2399     ANEURALNETWORKS_STRIDED_SLICE = 35,
2400 
2401     /**
2402      * Element-wise subtraction of two tensors.
2403      *
2404      * Takes two input tensors of identical {@link OperandCode} and compatible
2405      * dimensions. The output is the result of subtracting the second input
2406      * tensor from the first one, optionally modified by an activation function.
2407      *
2408      * Two dimensions are compatible when:
2409      *     1. they are equal, or
2410      *     2. one of them is 1
2411      *
2412      * The size of the output is the maximum size along each dimension of the
2413      * input operands. It starts with the trailing dimensions, and works its way
2414      * forward.
2415      *
2416      * Example:
2417      *     input1.dimension =    {4, 1, 2}
2418      *     input2.dimension = {5, 4, 3, 1}
2419      *     output.dimension = {5, 4, 3, 2}
2420      *
2421      * Since API level 29, generic zero-sized input tensor is supported. Zero
2422      * dimension is only compatible with 0 or 1. The size of the output
2423      * dimension is zero if either of corresponding input dimension is zero.
2424      *
2425      * Supported tensor {@link OperandCode}:
2426      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16} (since API level 29)
2427      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
2428      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} (since API level 29)
2429      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} (since API level 30)
2430      * * {@link ANEURALNETWORKS_TENSOR_INT32} (since API level 30)
2431      *
2432      * Supported tensor rank: up to 4
2433      *
2434      * Inputs:
2435      * * 0: An n-D tensor, specifying the first input.
2436      * * 1: A tensor of the same {@link OperandCode}, and compatible dimensions
2437      *      as input0.
2438      * * 2: An {@link ANEURALNETWORKS_INT32} scalar, and has to be one of the
2439      *      {@link FuseCode} values. Specifies the activation to
2440      *      invoke on the result.
2441      *      For a {@link ANEURALNETWORKS_TENSOR_INT32} tensor,
2442      *      the {@link FuseCode} must be "NONE".
2443      *
2444      * Outputs:
2445      * * 0: A tensor of the same {@link OperandCode} as input0.
2446      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} and
2447      *      {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} tensor,
2448      *      the scale and zeroPoint can be different from inputs' scale and zeroPoint.
2449      *
2450      * Available since API level 28.
2451      */
2452     ANEURALNETWORKS_SUB = 36,
2453 
2454     /**
2455      * Transposes the input tensor, permuting the dimensions according to the
2456      * perm tensor.
2457      *
2458      * The returned tensor's dimension i corresponds to the input dimension
2459      * perm[i]. If perm is not given, it is set to (n-1...0), where n is the
2460      * rank of the input tensor. Hence by default, this operation performs a
2461      * regular matrix transpose on 2-D input Tensors.
2462      *
2463      * Supported tensor {@link OperandCode}:
2464      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16} (since API level 29)
2465      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
2466      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
2467      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} (since API level 30)
2468      *
2469      * Supported tensor rank: up to 4
2470      *
2471      * Inputs:
2472      * * 0: An n-D tensor, specifying the tensor to be transposed.
2473      *      Since API level 29, this tensor may be zero-sized.
2474      * * 1: An optional 1-D Tensor of {@link ANEURALNETWORKS_TENSOR_INT32},
2475      *      the permutation of the dimensions of the input tensor.
2476      *
2477      * Outputs:
2478      * * 0: A tensor of the same {@link OperandCode} as input0.
2479      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} and
2480      *      {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} tensor,
2481      *      the scale and zeroPoint must be the same as input0.
2482      *
2483      * Available since API level 28.
2484      */
2485     ANEURALNETWORKS_TRANSPOSE = 37,
2486 
2487     // Operations below are available since API level 29.
2488 
2489     /**
2490      * Computes the absolute value of a tensor, element-wise.
2491      *
2492      * Supported tensor {@link OperandCode}:
2493      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
2494      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
2495      * * {@link ANEURALNETWORKS_TENSOR_INT32} (since API level 30)
2496      *
2497      * Supported tensor rank: from 1.
2498      *
2499      * Inputs:
2500      * * 0: A tensor.
2501      *
2502      * Outputs:
2503      * * 0: The output tensor of same shape as input0.
2504      *
2505      * Available since API level 29.
2506      */
2507     ANEURALNETWORKS_ABS = 38,
2508 
2509     /**
2510      * Returns the index of the largest element along an axis.
2511      *
2512      * Supported tensor {@link OperandCode}:
2513      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
2514      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
2515      * * {@link ANEURALNETWORKS_TENSOR_INT32}
2516      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
2517      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} (since API level 30)
2518      *
2519      * Supported tensor rank: from 1
2520      *
2521      * Inputs:
2522      * * 0: An n-D tensor specifying the input. Must be non-empty.
2523      * * 1: An {@link ANEURALNETWORKS_INT32} scalar specifying the axis to
2524      *      reduce across. Negative index is used to specify axis from the
2525      *      end (e.g. -1 for the last axis). Must be in the range [-n, n).
2526      *
2527      * Outputs:
2528      * * 0: An (n - 1)-D {@link ANEURALNETWORKS_TENSOR_INT32} tensor.
2529      *      If input is 1-dimensional, the output shape is [1].
2530      *
2531      * Available since API level 29.
2532      */
2533     // There is no underscore in ARG_MAX to avoid name conflict with
2534     // the macro defined in libc/kernel/uapi/linux/limits.h.
2535     ANEURALNETWORKS_ARGMAX = 39,
2536 
2537     /**
2538      * Returns the index of the smallest element along an axis.
2539      *
2540      * Supported tensor {@link OperandCode}:
2541      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
2542      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
2543      * * {@link ANEURALNETWORKS_TENSOR_INT32}
2544      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
2545      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} (since API level 30)
2546      *
2547      * Supported tensor rank: from 1
2548      *
2549      * Inputs:
2550      * * 0: An n-D tensor specifying the input. Must be non-empty.
2551      * * 1: An {@link ANEURALNETWORKS_INT32} scalar specifying the axis to
2552      *      reduce across. Negative index is used to specify axis from the
2553      *      end (e.g. -1 for the last axis). Must be in the range [-n, n).
2554      *
2555      * Outputs:
2556      * * 0: An (n - 1)-D {@link ANEURALNETWORKS_TENSOR_INT32} tensor.
2557      *      If input is 1-dimensional, the output shape is [1].
2558      *
2559      * Available since API level 29.
2560      */
2561     ANEURALNETWORKS_ARGMIN = 40,  // See ARGMAX for naming discussion.
2562 
2563     /**
2564      * Transform axis-aligned bounding box proposals using bounding box deltas.
2565      *
2566      * Given the positions of bounding box proposals and the corresponding
2567      * bounding box deltas for each class, return the refined bounding box
2568      * regions. The resulting bounding boxes are cliped against the edges of
2569      * the image.
2570      *
2571      * Supported tensor {@link OperandCode}:
2572      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
2573      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
2574      * * {@link ANEURALNETWORKS_TENSOR_QUANT16_ASYMM}
2575      *
2576      * Inputs:
2577      * * 0: A 2-D Tensor of shape [num_rois, 4], specifying the locations of the
2578      *      bounding box proposals, each line with format [x1, y1, x2, y2].
2579      *      For tensor of type {@link ANEURALNETWORKS_TENSOR_QUANT16_ASYMM},
2580      *      the zeroPoint must be 0 and the scale must be 0.125. Zero num_rois
2581      *      is supported for this tensor.
2582      * * 1: A 2-D Tensor of shape [num_rois, num_classes * 4], specifying the
2583      *      bounding box delta for each region of interest and each class. The
2584      *      bounding box deltas are organized in the following order
2585      *      [dx, dy, dw, dh], where dx and dy is the relative correction factor
2586      *      for the center position of the bounding box with respect to the width
2587      *      and height, dw and dh is the log-scale relative correction factor
2588      *      for the width and height. For input0 of type
2589      *      {@link ANEURALNETWORKS_TENSOR_QUANT16_ASYMM}, this tensor should be
2590      *      of {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} or
2591      *      {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED}. Zero num_rois is
2592      *      supported for this tensor.
2593      * * 2: An 1-D {@link ANEURALNETWORKS_TENSOR_INT32} tensor, of shape
2594      *      [num_rois], specifying the batch index of each box. Boxes with
2595      *      the same batch index are grouped together. Zero num_rois is
2596      *      supported for this tensor.
2597      * * 3: A 2-D Tensor of shape [batches, 2], specifying the information of
2598      *      each image in the batch, each line with format
2599      *      [image_height, image_width].
2600      *
2601      * Outputs:
2602      * * 0: A tensor of the same {@link OperandCode} as input0, with shape
2603      *      [num_rois, num_classes * 4], specifying the coordinates of each
2604      *      output bounding box for each class, with format [x1, y1, x2, y2].
2605      *      For type of {@link ANEURALNETWORKS_TENSOR_QUANT16_ASYMM}, the
2606      *      scale must be 0.125 and the zero point must be 0.
2607      *
2608      * Available since API level 29.
2609      */
2610     ANEURALNETWORKS_AXIS_ALIGNED_BBOX_TRANSFORM = 41,
2611 
2612     /**
2613      * A recurrent neural network layer that applies an LSTM cell to a
2614      * sequence of inputs in forward and backward directions.
2615      *
2616      * The op supports cross-linking via an auxiliary input. Regular cell feeds
2617      * one input into the two RNN cells in the following way:
2618      *
2619      *       INPUT  (INPUT_REVERSED)
2620      *         |         |
2621      *    ---------------------
2622      *    | FW_LSTM   BW_LSTM |
2623      *    ---------------------
2624      *         |         |
2625      *      FW_OUT     BW_OUT
2626      *
2627      * An op with cross-linking takes two inputs and feeds them into the RNN
2628      * cells in the following way:
2629      *
2630      *       AUX_INPUT   (AUX_INPUT_REVERSED)
2631      *           |             |
2632      *     INPUT | (INPUT_R'D.)|
2633      *       |   |       |     |
2634      *    -----------------------
2635      *    |  \  /        \    / |
2636      *    | FW_LSTM     BW_LSTM |
2637      *    -----------------------
2638      *         |           |
2639      *      FW_OUT      BW_OUT
2640      *
2641      * The cross-linking mode is enabled iff auxiliary input and auxiliary
2642      * weights are present. While stacking this op on top of itself, this
2643      * allows to connect both forward and backward outputs from previous cell
2644      * to the next cell's input.
2645      *
2646      * Since API level 30 parallel linking mode is supported. The mode is
2647      * enabled if auxiliary input is present but auxiliary weights are omitted.
2648      * In this case, the cell feeds inputs into the RNN in the following way:
2649      *
2650      *       INPUT (AUX_INPUT_REVERSED)
2651      *         |         |
2652      *    ---------------------
2653      *    | FW_LSTM   BW_LSTM |
2654      *    ---------------------
2655      *         |         |
2656      *      FW_OUT     BW_OUT
2657      *
2658      * While stacking this op on top of itself, this allows to connect both
2659      * forward and backward outputs from previous cell to the next cell's
2660      * corresponding inputs.
2661      *
2662      * Supported tensor {@link OperandCode}:
2663      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
2664      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
2665      *
2666      * Supported tensor rank: 3, either time-major or batch-major.
2667      *
2668      * All input and output tensors must be of the same type.
2669      *
2670      * Inputs:
2671      * * 0: The input.
2672      *      A 3-D tensor of shape:
2673      *        If time-major: [max_time, batch_size, input_size]
2674      *        If batch-major: [batch_size, max_time, input_size]
2675      *      where "max_time" is the number of timesteps (sequence length),
2676      *      "batch_size" corresponds to the batching dimension, and
2677      *      "input_size" is the size of the input.
2678      * * 1: The forward input-to-input weights. Optional.
2679      *      A 2-D tensor of shape [fw_num_units, input_size], where “fw_num_units”
2680      *      corresponds to the number of forward cell units.
2681      * * 2: The forward input-to-forget weights.
2682      *      A 2-D tensor of shape [fw_num_units, input_size].
2683      * * 3: The forward input-to-cell weights.
2684      *      A 2-D tensor of shape [fw_num_units, input_size].
2685      * * 4: The forward input-to-output weights.
2686      *      A 2-D tensor of shape [fw_num_units, input_size].
2687      * * 5: The forward recurrent-to-input weights. Optional.
2688      *      A 2-D tensor of shape [fw_num_units, fw_output_size], where “fw_output_size”
2689      *      corresponds to either the number of cell units (i.e., fw_num_units),
2690      *      or the second dimension of the “fw_projection_weights”, if defined.
2691      * * 6: The forward recurrent-to-forget weights.
2692      *      A 2-D tensor of shape [fw_num_units, fw_output_size].
2693      * * 7: The forward recurrent-to-cell weights.
2694      *      A 2-D tensor of shape [fw_num_units, fw_output_size].
2695      * * 8: The forward recurrent-to-output weights.
2696      *      A 2-D tensor of shape [fw_num_units, fw_output_size].
2697      * * 9: The forward cell-to-input weights. Optional.
2698      *      A 1-D tensor of shape [fw_num_units].
2699      * * 10: The forward cell-to-forget weights. Optional.
2700      *       A 1-D tensor of shape [fw_num_units].
2701      * * 11: The forward cell-to-output weights. Optional.
2702      *       A 1-D tensor of shape [fw_num_units].
2703      * * 12: The forward input gate bias. Optional.
2704      *       A 1-D tensor of shape [fw_num_units].
2705      * * 13: The forward forget gate bias.
2706      *       A 1-D tensor of shape [fw_num_units].
2707      * * 14: The forward cell gate bias.
2708      *       A 1-D tensor of shape [fw_num_units].
2709      * * 15: The forward output gate bias.
2710      *       A 1-D tensor of shape [fw_num_units].
2711      * * 16: The forward projection weights. Optional.
2712      *       A 2-D tensor of shape [fw_output_size, fw_num_units].
2713      * * 17: The forward projection bias. Optional.
2714      *       A 1-D tensor of shape [fw_output_size].
2715      * * 18: The backward input-to-input weights. Optional.
2716      *       A 2-D tensor of shape [bw_num_units, input_size], where “bw_num_units”
2717      *       corresponds to the number of backward cell units.
2718      * * 19: The backward input-to-forget weights.
2719      *       A 2-D tensor of shape [bw_num_units, input_size].
2720      * * 20: The backward input-to-cell weights.
2721      *       A 2-D tensor of shape [bw_num_units, input_size].
2722      * * 21: The backward input-to-output weights.
2723      *       A 2-D tensor of shape [bw_num_units, input_size].
2724      * * 22: The backward recurrent-to-input weights. Optional.
2725      *       A 2-D tensor of shape [bw_num_units, bw_output_size], where “bw_output_size”
2726      *       corresponds to either the number of cell units (i.e., “bw_num_units”),
2727      *       or the second dimension of the “bw_projection_weights”, if defined.
2728      * * 23: The backward recurrent-to-forget weights.
2729      *       A 2-D tensor of shape [bw_num_units, bw_output_size].
2730      * * 24: The backward recurrent-to-cell weights.
2731      *       A 2-D tensor of shape [bw_num_units, bw_output_size].
2732      * * 25: The backward recurrent-to-output weights.
2733      *       A 2-D tensor of shape [bw_num_units, bw_output_size].
2734      * * 26: The backward cell-to-input weights. Optional.
2735      *       A 1-D tensor of shape [bw_num_units].
2736      * * 27: The backward cell-to-forget weights. Optional.
2737      *       A 1-D tensor of shape [bw_num_units].
2738      * * 28: The backward cell-to-output weights. Optional.
2739      *       A 1-D tensor of shape [bw_num_units].
2740      * * 29: The backward input gate bias. Optional.
2741      *       A 1-D tensor of shape [bw_num_units].
2742      * * 30: The backward forget gate bias.
2743      *       A 1-D tensor of shape [bw_num_units].
2744      * * 31: The backward cell gate bias.
2745      *       A 1-D tensor of shape [bw_num_units].
2746      * * 32: The backward output gate bias.
2747      *       A 1-D tensor of shape [bw_num_units].
2748      * * 33: The backward projection weights. Optional.
2749      *       A 2-D tensor of shape [bw_output_size, bw_num_units].
2750      * * 34: The backward projection bias. Optional.
2751      *       A 1-D tensor of shape [bw_output_size].
2752      * * 35: The forward input activation state.
2753      *       A 2-D tensor of shape [batch_size, bw_output_size].
2754      * * 36: The forward input cell state.
2755      *       A 2-D tensor of shape [batch_size, bw_num_units].
2756      * * 37: The backward input activation state.
2757      *       A 2-D tensor of shape [batch_size, bw_output_size].
2758      * * 38: The backward input cell state.
2759      *       A 2-D tensor of shape [batch_size, bw_num_units].
2760      * * 39: The auxiliary input. Optional.
2761      *       A 3-D tensor of shape [max_time, batch_size, aux_input_size],
2762      *       where “batch_size” corresponds to the batching dimension, and
2763      *       “aux_input_size” is the size of the auxiliary input. Optional. See
2764      *       the docs above for the usage modes explanation.
2765      * * 40: The forward auxiliary input-to-input weights.
2766      *       Optional. See the docs above for the usage modes explanation.
2767      *       A 2-D tensor of shape [fw_num_units, aux_input_size].
2768      * * 41: The forward auxiliary input-to-forget weights.
2769      *       Optional. See the docs above for the usage modes explanation.
2770      *       A 2-D tensor of shape [fw_num_units, aux_input_size].
2771      * * 42: The forward auxiliary input-to-cell weights.
2772      *       Optional. See the docs above for the usage modes explanation.
2773      *       A 2-D tensor of shape [fw_num_units, aux_input_size].
2774      * * 43: The forward auxiliary input-to-output weights.
2775      *       Optional. See the docs above for the usage modes explanation.
2776      *       A 2-D tensor of shape [fw_num_units, aux_input_size].
2777      * * 44: The backward auxiliary input-to-input weights.
2778      *       Optional. See the docs above for the usage modes explanation.
2779      *       A 2-D tensor of shape [bw_num_units, aux_input_size].
2780      * * 45: The backward auxiliary input-to-forget weights.
2781      *       Optional. See the docs above for the usage modes explanation.
2782      *       A 2-D tensor of shape [bw_num_units, aux_input_size].
2783      * * 46: The backward auxiliary input-to-cell weights.
2784      *       Optional. See the docs above for the usage modes explanation.
2785      *       A 2-D tensor of shape [bw_num_units, aux_input_size].
2786      * * 47: The backward auxiliary input-to-output weights.
2787      *       Optional. See the docs above for the usage modes explanation.
2788      *       A 2-D tensor of shape [bw_num_units, aux_input_size].
2789      * * 48: The activation function.
2790      *       A value indicating the activation function:
2791      *       <ul>
2792      *       <li>0: None;
2793      *       <li>1: Relu;
2794      *       <li>3: Relu6;
2795      *       <li>4: Tanh;
2796      *       <li>6: Sigmoid.
2797      *       </ul>
2798      * * 49: The clipping threshold for the cell state, such
2799      *       that values are bound within [-cell_clip, cell_clip]. If set to 0.0
2800      *       then clipping is disabled.
2801      *       If all the input tensors have type {@link ANEURALNETWORKS_TENSOR_FLOAT32},
2802      *       this scalar must be of the type {@link ANEURALNETWORKS_FLOAT32},
2803      *       otherwise if all the input tensors have the type
2804      *       {@link ANEURALNETWORKS_TENSOR_FLOAT16}, this scalar must be
2805      *       of type {@link ANEURALNETWORKS_FLOAT16}.
2806      * * 50: The clipping threshold for the output from the
2807      *       projection layer, such that values are bound within
2808      *       [-proj_clip, proj_clip]. If set to 0.0 then clipping is disabled.
2809      *       If all the input tensors have type {@link ANEURALNETWORKS_TENSOR_FLOAT32},
2810      *       this scalar must be of the type {@link ANEURALNETWORKS_FLOAT32},
2811      *       otherwise if all the input tensors have the type
2812      *       {@link ANEURALNETWORKS_TENSOR_FLOAT16}, this scalar must be
2813      *       of type {@link ANEURALNETWORKS_FLOAT16}.
2814      * * 51: merge_outputs
2815      *       An {@link ANEURALNETWORKS_BOOL} scalar specifying if the outputs
2816      *       from forward and backward cells should be merged.
2817      * * 52: time_major
2818      *       An {@link ANEURALNETWORKS_BOOL} scalar specifying the shape format
2819      *       of input and output tensors.
2820      * * 53: The forward input layer normalization weights. Optional.
2821      *       A 1-D tensor of shape [fw_num_units]. Used to rescale normalized inputs
2822      *       to activation at input gate.
2823      * * 54: The forward forget layer normalization weights. Optional.
2824      *       A 1-D tensor of shape [fw_num_units]. Used to rescale normalized inputs
2825      *       to activation at forget gate.
2826      * * 55: The forward cell layer normalization weights. Optional.
2827      *       A 1-D tensor of shape [fw_num_units]. Used to rescale normalized inputs
2828      *       to activation at cell gate.
2829      * * 56: The forward output layer normalization weights. Optional.
2830      *       A 1-D tensor of shape [fw_num_units]. Used to rescale normalized inputs
2831      *       to activation at output gate.
2832      * * 57: The backward input layer normalization weights. Optional.
2833      *       A 1-D tensor of shape [bw_num_units]. Used to rescale normalized inputs
2834      *       to activation at input gate.
2835      * * 58: The backward forget layer normalization weights. Optional.
2836      *       A 1-D tensor of shape [bw_num_units]. Used to rescale normalized inputs
2837      *       to activation at forget gate.
2838      * * 59: The backward cell layer normalization weights. Optional.
2839      *       A 1-D tensor of shape [bw_num_units]. Used to rescale normalized inputs
2840      *       to activation at cell gate.
2841      * * 60: The backward output layer normalization weights. Optional.
2842      *       A 1-D tensor of shape [bw_num_units]. Used to rescale normalized inputs
2843      *       to activation at output gate.
2844      *
2845      * Outputs:
2846      * * 0: The forward output.
2847      *      A 3-D tensor of shape:
2848      *        If time-major and not merge_outputs:
2849      *          [max_time, batch_size, fw_output_size]
2850      *        If time-major and merge_outputs:
2851      *          [max_time, batch_size, fw_output_size + bw_output_size]
2852      *        If batch-major and not merge_outputs:
2853      *          [batch_size, max_time, fw_output_size]
2854      *        If batch-major and merge_outputs:
2855      *          [batch_size, max_time, fw_output_size + bw_output_size]
2856      * * 1: The backward output.  Unused if merge_outputs is true.
2857      *      A 3-D tensor of shape:
2858      *        If time-major: [max_time, batch_size, bw_output_size]
2859      *        If batch-major: [batch_size, max_time, bw_output_size]
2860      * * 2: The forward activation state output.
2861      *      A 2-D tensor of shape [batch_size, fw_output_size] containing an
2862      *      activation state from the last time step in the sequence. This
2863      *      output is optional and can be omitted. If this output is present
2864      *      then outputs 3-5 must be present as well.
2865      *      Available since API level 30.
2866      * * 3: The forward cell state output.
2867      *      A tensor of shape [batch_size, fw_cell_size] containing a cell state
2868      *      from the last time step in the sequence. This output is optional
2869      *      and can be omitted. If this output is present
2870      *      then outputs 2, 4, 5 must be present as well.
2871      *      Available since API level 30.
2872      * * 4: The backward activation state output.
2873      *      A 2-D tensor of shape [batch_size, bw_output_size] containing an
2874      *      activation state from the last time step in the sequence. This
2875      *      output is optional and can be omitted. If this output is present
2876      *      then outputs 2, 3, 5 must be present as well.
2877      *      Available since API level 30.
2878      * * 5: The backward cell state output.
2879      *      A tensor of shape [batch_size, bw_cell_size] containing a cell state
2880      *      from the last time step in the sequence. This output is optional
2881      *      and can be omitted. If this output is present
2882      *      then outputs 2-4 must be present as well.
2883      *      Available since API level 30.
2884      *
2885      * Available since API level 29.
2886      *
2887      * Important: As of API level 29, there is no way to get the output state tensors out and NNAPI
2888      * does not maintain internal states. This operator does not support the usage pattern in which
2889      * multiple cells are chained and state tensors are propagated.
2890      */
2891     ANEURALNETWORKS_BIDIRECTIONAL_SEQUENCE_LSTM = 42,
2892 
2893     /**
2894      * A recurrent neural network layer that applies a basic RNN cell to a
2895      * sequence of inputs in forward and backward directions.
2896      *
2897      * This Op unrolls the input along the sequence dimension, and implements
2898      * the following operation for each element in the sequence s =
2899      * 1...sequence_length:
2900      *   fw_outputs[s] = fw_state = activation(inputs[s] * fw_input_weights’ +
2901      *          fw_state * fw_recurrent_weights’ + fw_bias)
2902      *
2903      * And for each element in sequence t = sequence_length : 1
2904      *   bw_outputs[t] = bw_state = activation(inputs[t] * bw_input_weights’ +
2905      *          bw_state * bw_recurrent_weights’ + bw_bias)
2906      *
2907      * Where:
2908      * * “{fw,bw}_input_weights” is a weight matrix that multiplies the inputs;
2909      * * “{fw,bw}_recurrent_weights” is a weight matrix that multiplies the
2910      *    current “state” which itself is the output from the previous time step
2911      *    computation;
2912      * * “{fw,bw}_bias” is a bias vector (added to each output vector in the
2913      *    batch);
2914      * * “activation” is the function passed as the “fused_activation_function”
2915      *   argument (if not “NONE”).
2916      *
2917      * The op supports cross-linking via an auxiliary input. Regular cell feeds
2918      * one input into the two RNN cells in the following way:
2919      *
2920      *       INPUT  (INPUT_REVERSED)
2921      *         |         |
2922      *    ---------------------
2923      *    | FW_RNN     BW_RNN |
2924      *    ---------------------
2925      *         |         |
2926      *      FW_OUT     BW_OUT
2927      *
2928      * An op with cross-linking takes two inputs and feeds them into the RNN
2929      * cells in the following way:
2930      *
2931      *       AUX_INPUT   (AUX_INPUT_REVERSED)
2932      *           |             |
2933      *     INPUT | (INPUT_R'D.)|
2934      *       |   |       |     |
2935      *    -----------------------
2936      *    |  \  /        \    / |
2937      *    | FW_RNN       BW_RNN |
2938      *    -----------------------
2939      *         |           |
2940      *      FW_OUT      BW_OUT
2941      *
2942      * The cross-linking mode is enabled iff auxiliary input and auxiliary
2943      * weights are present. While stacking this op on top of itself, this
2944      * allows to connect both forward and backward outputs from previous cell
2945      * to the next cell's input.
2946      *
2947      * Since API level 30 parallel linking mode is supported. The mode is
2948      * enabled if auxiliary input is present but auxiliary weights are omitted.
2949      * In this case, the cell feeds inputs into the RNN in the following way:
2950      *
2951      *       INPUT (AUX_INPUT_REVERSED)
2952      *         |         |
2953      *    ---------------------
2954      *    | FW_RNN     BW_RNN |
2955      *    ---------------------
2956      *         |         |
2957      *      FW_OUT     BW_OUT
2958      *
2959      * While stacking this op on top of itself, this allows to connect both
2960      * forward and backward outputs from previous cell to the next cell's
2961      * corresponding inputs.
2962      *
2963      * Supported tensor {@link OperandCode}:
2964      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
2965      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
2966      *
2967      * The input tensors must all be the same type.
2968      *
2969      * Inputs:
2970      * * 0: input.
2971      *      A 3-D tensor. The shape is defined by the input 6 (timeMajor). If
2972      *      it is set to true, then the input has a shape [maxTime, batchSize,
2973      *      inputSize], otherwise the input has a shape [batchSize, maxTime,
2974      *      inputSize].
2975      * * 1: fwWeights.
2976      *      A 2-D tensor of shape [fwNumUnits, inputSize].
2977      * * 2: fwRecurrentWeights.
2978      *      A 2-D tensor of shape [fwNumUnits, fwNumUnits].
2979      * * 3: fwBias.
2980      *      A 1-D tensor of shape [fwNumUnits].
2981      * * 4: fwHiddenState.
2982      *      A 2-D tensor of shape [batchSize, fwNumUnits]. Specifies a hidden
2983      *      state input for the first time step of the computation.
2984      * * 5: bwWeights.
2985      *      A 2-D tensor of shape [bwNumUnits, inputSize].
2986      * * 6: bwRecurrentWeights.
2987      *      A 2-D tensor of shape [bwNumUnits, bwNumUnits].
2988      * * 7: bwBias.
2989      *      A 1-D tensor of shape [bwNumUnits].
2990      * * 8: bwHiddenState
2991      *      A 2-D tensor of shape [batchSize, bwNumUnits]. Specifies a hidden
2992      *      state input for the first time step of the computation.
2993      * * 9: auxInput.
2994      *      A 3-D tensor. The shape is defined by the input 6 (timeMajor). If
2995      *      it is set to true, then the input has a shape [maxTime, batchSize,
2996      *      auxInputSize], otherwise the input has a shape [batchSize, maxTime,
2997      *      auxInputSize]. Can be omitted. See the docs above for the usage
2998      *      modes explanation.
2999      * * 10:fwAuxWeights.
3000      *      A 2-D tensor of shape [fwNumUnits, auxInputSize]. Can be omitted.
3001      *      See the docs above for the usage modes explanation.
3002      * * 11:bwAuxWeights.
3003      *      A 2-D tensor of shape [bwNumUnits, auxInputSize]. Can be omitted.
3004      *      See the docs above for the usage modes explanation.
3005      * * 12:fusedActivationFunction.
3006      *      A {@link FuseCode} value indicating the activation function. If
3007      *      “NONE” is specified then it results in a linear activation.
3008      * * 13:timeMajor
3009      *      An {@link ANEURALNETWORKS_BOOL} scalar specifying the shape format
3010      *      of input and output tensors.
3011      * * 14:mergeOutputs
3012      *      An {@link ANEURALNETWORKS_BOOL} scalar specifying if the outputs
3013      *      from forward and backward cells are separate (if set to false) or
3014      *      concatenated (if set to true).
3015      * Outputs:
3016      * * 0: fwOutput.
3017      *      A 3-D tensor. The first two dimensions of the shape are defined by
3018      *      the input 6 (timeMajor) and the third dimension is defined by the
3019      *      input 14 (mergeOutputs). If timeMajor is set to true, then the first
3020      *      two dimensions are [maxTime, batchSize], otherwise they are set to
3021      *      [batchSize, maxTime]. If mergeOutputs is set to true, then the third
3022      *      dimension is equal to (fwNumUnits + bwNumUnits), otherwise it is set
3023      *      to fwNumUnits.
3024      * * 1: bwOutput.
3025      *      A 3-D tensor. If the input 14 (mergeOutputs) is set to true, then
3026      *      this tensor is not produced. The shape is defined by the input 6
3027      *      (timeMajor). If it is set to true, then the shape is set to
3028      *      [maxTime, batchSize, bwNumUnits], otherwise the shape is set to
3029      *      [batchSize, maxTime, bwNumUnits].
3030      * * 2: The forward hidden state output.
3031      *      A 2-D tensor of shape [batchSize, fwNumUnits] containing a hidden
3032      *      state from the last time step in the sequence. This output is
3033      *      optional and can be omitted. If this output is present then output
3034      *      3 must be present as well.
3035      *      Available since API level 30.
3036      * * 3: The backward hidden state output.
3037      *      A 2-D tensor of shape [batchSize, bwNumUnits] containing a hidden
3038      *      state from the last time step in the sequence. This output is
3039      *      optional and can be omitted. If this output is present then output
3040      *      2 must be present as well.
3041      *      Available since API level 30.
3042      *
3043      * Available since API level 29.
3044      *
3045      * Important: As of API level 29, there is no way to get the output state tensors out and NNAPI
3046      * does not maintain internal states. This operator does not support the usage pattern in which
3047      * multiple cells are chained and state tensors are propagated.
3048      */
3049     ANEURALNETWORKS_BIDIRECTIONAL_SEQUENCE_RNN = 43,
3050 
3051     /**
3052      * Greedily selects a subset of bounding boxes in descending order of score.
3053      *
3054      * This op applies NMS algorithm to each class. In each loop of execution,
3055      * the box with maximum score gets selected and removed from the pending set.
3056      * The scores of the rest of boxes are lowered according to the
3057      * intersection-over-union (IOU) overlapping with the previously selected
3058      * boxes and a specified NMS kernel method. Any boxes with score less
3059      * than a threshold are removed from the pending set.
3060      *
3061      * Three NMS kernels are supported:
3062      * * Hard:     score_new = score_old * (1 if IoU < threshold else 0)
3063      * * Linear:   score_new = score_old * (1 if IoU < threshold else 1 - IoU)
3064      * * Gaussian: score_new = score_old * exp(- IoU^2 / sigma)
3065      *
3066      * Axis-aligned bounding boxes are represented by its upper-left corner
3067      * coordinate (x1,y1) and lower-right corner coordinate (x2,y2). A valid
3068      * bounding box should satisfy x1 <= x2 and y1 <= y2.
3069      *
3070      * Supported tensor {@link OperandCode}:
3071      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
3072      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
3073      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
3074      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} (since API level 30)
3075      *
3076      * Inputs:
3077      * * 0: A 2-D Tensor of shape [num_rois, num_classes], specifying the score
3078      *      of each bounding box proposal. The boxes are grouped by batches in the
3079      *      first dimension. Zero num_rois is supported for this tensor.
3080      * * 1: A 2-D Tensor specifying the bounding boxes of shape
3081      *      [num_rois, num_classes * 4], organized in the order [x1, y1, x2, y2].
3082      *      The boxes are grouped by batches in the first dimension. The sequential
3083      *      order of the boxes corresponds with input0. For input0 of type
3084      *      {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}, this tensor should be of
3085      *      {@link ANEURALNETWORKS_TENSOR_QUANT16_ASYMM}, with zeroPoint of 0 and
3086      *      scale of 0.125.
3087      *      For input0 of type {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED},
3088      *      this tensor should be of {@link ANEURALNETWORKS_TENSOR_QUANT16_ASYMM},
3089      *      with zeroPoint of -128 and scale of 0.125.
3090      *      Zero num_rois is supported for this tensor.
3091      * * 2: A 1-D {@link ANEURALNETWORKS_TENSOR_INT32} tensor, of shape
3092      *      [num_rois], specifying the batch index of each box. Boxes with
3093      *      the same batch index are grouped together.
3094      * * 3: An {@link ANEURALNETWORKS_FLOAT32} scalar, score_threshold. Boxes
3095      *      with scores lower than the threshold are filtered before sending
3096      *      to the NMS algorithm.
3097      * * 4: An {@link ANEURALNETWORKS_INT32} scalar, specifying the maximum
3098      *      number of selected bounding boxes for each image. Set to a negative
3099      *      value for unlimited number of output bounding boxes.
3100      * * 5: An {@link ANEURALNETWORKS_INT32} scalar, specifying the NMS
3101      *      kernel method, options are 0:hard, 1:linear, 2:gaussian.
3102      * * 6: An {@link ANEURALNETWORKS_FLOAT32} scalar, specifying the IoU
3103      *      threshold in hard and linear NMS kernel. This field is ignored if
3104      *      gaussian kernel is selected.
3105      * * 7: An {@link ANEURALNETWORKS_FLOAT32} scalar, specifying the sigma in
3106      *      gaussian NMS kernel. This field is ignored if gaussian kernel is
3107      *      not selected.
3108      * * 8: An {@link ANEURALNETWORKS_FLOAT32} scalar, nms_score_threshold.
3109      *      Boxes with scores lower than the threshold are dropped during the
3110      *      score updating phase in soft NMS.
3111      *
3112      * Outputs:
3113      * * 0: A 1-D Tensor of the same {@link OperandCode} as input0, with shape
3114      *      [num_output_rois], specifying the score of each output box. The boxes
3115      *      are grouped by batches, but the sequential order in each batch is not
3116      *      guaranteed. For type of {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM},
3117      *      guaranteed. For type of {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
3118      *      or {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED},
3119      *      the scale and zero point must be the same as input0.
3120      * * 1: A 2-D Tensor of the same {@link OperandCode} as input1, with shape
3121      *      [num_output_rois, 4], specifying the coordinates of each
3122      *      output bounding box with the same format as input1. The sequential
3123      *      order of the boxes corresponds with output0. For type of
3124      *      {@link ANEURALNETWORKS_TENSOR_QUANT16_ASYMM}, the scale must be
3125      *      0.125 and the zero point must be 0.
3126      * * 2: A 1-D {@link ANEURALNETWORKS_TENSOR_INT32} tensor, of shape
3127      *      [num_output_rois], specifying the class of each output box. The
3128      *      sequential order of the boxes corresponds with output0.
3129      * * 3: A 1-D {@link ANEURALNETWORKS_TENSOR_INT32} tensor, of shape
3130      *      [num_output_rois], specifying the batch index of each box. Boxes
3131      *      with the same batch index are grouped together.
3132      *
3133      * Available since API level 29.
3134      */
3135     ANEURALNETWORKS_BOX_WITH_NMS_LIMIT = 44,
3136 
3137     /**
3138      * Casts a tensor to a type.
3139      *
3140      * This operation ignores the scale and zeroPoint of quanized tensors,
3141      * e.g. it treats a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} input
3142      * as a tensor of uint8 values.
3143      *
3144      * Supported tensor {@link OperandCode}:
3145      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
3146      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
3147      * * {@link ANEURALNETWORKS_TENSOR_INT32}
3148      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
3149      * Since API level 30, casting tensors of the following
3150      * {@link OperandCode} to the same {@link OperandCode} is supported:
3151      * * {@link ANEURALNETWORKS_TENSOR_BOOL8}
3152      * * {@link ANEURALNETWORKS_TENSOR_INT32}
3153      * * {@link ANEURALNETWORKS_TENSOR_QUANT16_ASYMM}
3154      * * {@link ANEURALNETWORKS_TENSOR_QUANT16_SYMM}
3155      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED}
3156      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_SYMM}
3157      *
3158      * Supported tensor rank: from 1
3159      *
3160      * Inputs:
3161      * * 0: A tensor.
3162      *
3163      * Outputs:
3164      * * 0: A tensor with the same shape as input0.
3165      *
3166      * Available since API level 29.
3167      */
3168     ANEURALNETWORKS_CAST = 45,
3169 
3170     /**
3171      * Shuffle the channels of the input tensor.
3172      *
3173      * Given an input tensor and a integer value of num_groups, CHANNEL_SHUFFLE
3174      * divide the channel dimension into num_groups groups, and reorganize the
3175      * channels by grouping channels with the same index in each group.
3176      *
3177      * Along the channel dimension, the output is calculated using this formula:
3178      *
3179      *     output_channel[k * num_groups + g] = input_channel[g * group_size + k]
3180      *
3181      * where group_size = num_channels / num_groups
3182      *
3183      * The number of channels must be divisible by num_groups.
3184      *
3185      * Supported tensor {@link OperandCode}:
3186      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
3187      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
3188      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
3189      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} (since API level 30)
3190      *
3191      * Supported tensor rank: up to 4
3192      *
3193      * Inputs:
3194      * * 0: An n-D tensor, specifying the tensor to be shuffled.
3195      * * 1: An {@link ANEURALNETWORKS_INT32} scalar, specifying the number of
3196      *      groups.
3197      * * 2: An {@link ANEURALNETWORKS_INT32} scalar, specifying the dimension
3198      *      channel shuffle would be performed on. Negative index is used to
3199      *      specify axis from the end (e.g. -1 for the last axis). Must be in
3200      *      the range [-n, n).
3201      *
3202      * Outputs:
3203      * * 0: A tensor of the same {@link OperandCode} and same shape as input0.
3204      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} and
3205      *      {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} tensor,
3206      *      the scale and zeroPoint must be the same as input0.
3207      *
3208      * Available since API level 29.
3209      */
3210     ANEURALNETWORKS_CHANNEL_SHUFFLE = 46,
3211 
3212     /**
3213      * Apply postprocessing steps to bounding box detections.
3214      *
3215      * Bounding box detections are generated by applying transformation on a set
3216      * of predefined anchors with the bounding box deltas from bounding box
3217      * regression. A final step of hard NMS is applied to limit the number of
3218      * returned boxes.
3219      *
3220      * Supported tensor {@link OperandCode}:
3221      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
3222      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
3223      *
3224      * Inputs:
3225      * * 0: A 3-D Tensor of shape [batches, num_anchors, num_classes], specifying
3226      *      the score of each anchor with each class. Class 0 for each
3227      *      [batches, num_anchors, 0] is background and will be ignored.
3228      * * 1: A 3-D Tensor of shape [batches, num_anchors, length_box_encoding], with
3229      *      the first four values in length_box_encoding specifying the bounding
3230      *      box deltas. The box deltas are encoded in the order of [dy, dx, dh, dw],
3231      *      where dy and dx is the linear-scale relative correction factor for the
3232      *      center position of the bounding box with respect to the width and height,
3233      *      dh and dw is the log-scale relative correction factor for the width and
3234      *      height. All the entries in length_box_encoding beyond the first four
3235      *      values are ignored in this operation.
3236      * * 2: A 2-D Tensor of shape [num_anchors, 4], specifying the shape of each
3237      *      predefined anchor, with format [ctr_y, ctr_x, h, w], where ctr_y and
3238      *      ctr_x are the center position of the box, and h and w are the height
3239      *      and the width.
3240      * * 3: An {@link ANEURALNETWORKS_FLOAT32} scalar, specifying the scaling
3241      *      factor for dy in bounding box deltas.
3242      * * 4: An {@link ANEURALNETWORKS_FLOAT32} scalar, specifying the scaling
3243      *      factor for dx in bounding box deltas.
3244      * * 5: An {@link ANEURALNETWORKS_FLOAT32} scalar, specifying the scaling
3245      *      factor for dh in bounding box deltas.
3246      * * 6: An {@link ANEURALNETWORKS_FLOAT32} scalar, specifying the scaling
3247      *      factor for dw in bounding box deltas.
3248      * * 7: An {@link ANEURALNETWORKS_BOOL} scalar, set to true to use regular
3249      *      multi-class NMS algorithm that do NMS separately for each class,
3250      *      set to false for a faster algorithm that only do one single NMS
3251      *      using the highest class score..
3252      * * 8: An {@link ANEURALNETWORKS_INT32} scalar, max_num_detections, specifying
3253      *      the maximum number of boxes for the output. Boxes with the lowest
3254      *      scores are discarded to meet the limit.
3255      * * 9: An {@link ANEURALNETWORKS_INT32} scalar, only used when input7 is
3256      *      set to false, specifying the maximum number of classes per detection.
3257      * * 10: An {@link ANEURALNETWORKS_INT32} scalar, only used when input7 is
3258      *       set to true, specifying the maximum number of detections when
3259      *       applying NMS algorithm for each single class.
3260      * * 11: A scalar, score_threshold. Boxes with scores lower than the
3261      *       threshold are filtered before sending to the NMS algorithm. The
3262      *       scalar must be of {@link ANEURALNETWORKS_FLOAT16} if input0 is of
3263      *       {@link ANEURALNETWORKS_TENSOR_FLOAT16} and of
3264      *       {@link ANEURALNETWORKS_FLOAT32} if input0 is of
3265      *       {@link ANEURALNETWORKS_TENSOR_FLOAT32}.
3266      * * 12: A scalar, specifying the IoU threshold for hard NMS. The scalar
3267      *       must be of {@link ANEURALNETWORKS_FLOAT16} if input0 is of
3268      *       {@link ANEURALNETWORKS_TENSOR_FLOAT16} and of
3269      *       {@link ANEURALNETWORKS_FLOAT32} if input0 is of
3270      *       {@link ANEURALNETWORKS_TENSOR_FLOAT32}.
3271      * * 13: An {@link ANEURALNETWORKS_BOOL} scalar, set to true to include
3272      *       background class in the list of label map for the output, set
3273      *       to false to not include the background. When the background
3274      *       class is included, it has label 0 and the output classes start
3275      *       at 1 in the label map, otherwise, the output classes start at 0.
3276      *
3277      * Outputs:
3278      * * 0: A 2-D tensor of the same {@link OperandCode} as input0, with shape
3279      *      [batches, max_num_detections], specifying the score of each output
3280      *      detections.
3281      * * 1: A 3-D tensor of shape [batches, max_num_detections, 4], specifying the
3282      *      coordinates of each output bounding box, with format
3283      *      [y1, x1, y2, x2].
3284      * * 2: A 2-D {@link ANEURALNETWORKS_TENSOR_INT32} tensor, of shape
3285      *      [batches, max_num_detections], specifying the class label for each
3286      *      output detection.
3287      * * 3: An 1-D {@link ANEURALNETWORKS_TENSOR_INT32} tensor, of shape [batches],
3288      *      specifying the number of valid output detections for each batch.
3289      *
3290      * Available since API level 29.
3291      */
3292     ANEURALNETWORKS_DETECTION_POSTPROCESSING = 47,
3293 
3294     /**
3295      * For input tensors x and y, computes x == y elementwise.
3296      *
3297      * Supported tensor {@link OperandCode}:
3298      * * {@link ANEURALNETWORKS_TENSOR_BOOL8}
3299      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
3300      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
3301      * * {@link ANEURALNETWORKS_TENSOR_INT32}
3302      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
3303      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} (since API level 30)
3304      *
3305      * Supported tensor rank: from 1
3306      *
3307      * This operation supports broadcasting.
3308      *
3309      * Inputs:
3310      * * 0: A tensor.
3311      * * 1: A tensor of the same {@link OperandCode} and dimensions compatible
3312      *      with input0.
3313      *
3314      * Outputs:
3315      * * 0: A tensor of {@link ANEURALNETWORKS_TENSOR_BOOL8}.
3316      *
3317      * Available since API level 29.
3318      */
3319     ANEURALNETWORKS_EQUAL = 48,
3320 
3321     /**
3322      * Computes exponential of x element-wise.
3323      *
3324      * Supported tensor {@link OperandCode}:
3325      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
3326      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
3327      *
3328      * Supported tensor rank: from 1.
3329      *
3330      * Inputs:
3331      * * 0: A tensor.
3332      *
3333      * Outputs:
3334      * * 0: The output tensor of same shape as input0.
3335      *
3336      * Available since API level 29.
3337      */
3338     ANEURALNETWORKS_EXP = 49,
3339 
3340     /**
3341      * Inserts a dimension of 1 into a tensor's shape.
3342      *
3343      * Given a tensor input, this operation inserts a dimension of 1 at the
3344      * given dimension index of input's shape. The dimension index starts at
3345      * zero; if you specify a negative dimension index, it is counted backward
3346      * from the end.
3347      *
3348      * Supported tensor {@link OperandCode}:
3349      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
3350      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
3351      * * {@link ANEURALNETWORKS_TENSOR_INT32}
3352      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
3353      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} (since API level 30)
3354      *
3355      * Supported tensor rank: from 1
3356      *
3357      * Inputs:
3358      * * 0: An n-D tensor.
3359      * * 1: An {@link ANEURALNETWORKS_INT32} scalar specifying the dimension
3360      *      index to expand. Must be in the range [-(n + 1), (n + 1)).
3361      *
3362      * Outputs:
3363      * * 0: An (n + 1)-D tensor with the same {@link OperandCode} and data as
3364      *      input0.
3365      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} and
3366      *      {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} tensor,
3367      *      the scale and zeroPoint must be the same as input0.
3368      *
3369      * Available since API level 29.
3370      */
3371     ANEURALNETWORKS_EXPAND_DIMS = 50,
3372 
3373     /**
3374      * Gathers values along an axis.
3375      *
3376      * Produces an output tensor with shape
3377      *     input0.dimension[:axis] + indices.dimension + input0.dimension[axis + 1:]
3378      * where:
3379      *     # Vector indices (output is rank(input0)).
3380      *     output[a_0, ..., a_n, i, b_0, ..., b_n] =
3381      *       input0[a_0, ..., a_n, indices[i], b_0, ..., b_n]
3382      *
3383      *     # Higher rank indices (output is rank(input0) + rank(indices) - 1).
3384      *     output[a_0, ..., a_n, i, ..., j, b_0, ... b_n] =
3385      *       input0[a_0, ..., a_n, indices[i, ..., j], b_0, ..., b_n]
3386      *
3387      * Supported tensor {@link OperandCode}:
3388      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
3389      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
3390      * * {@link ANEURALNETWORKS_TENSOR_INT32}
3391      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
3392      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} (since API level 30)
3393      *
3394      * Supported tensor rank: from 1
3395      *
3396      * Inputs:
3397      * * 0: An n-D tensor from which to gather values.
3398      * * 1: An {@link ANEURALNETWORKS_INT32} scalar specifying the axis.
3399      *      Negative index is used to specify axis from the end
3400      *      (e.g. -1 for the last axis). Must be in the range [-n, n).
3401      * * 2: A k-D tensor {@link ANEURALNETWORKS_TENSOR_INT32} of indices.
3402      *      The values must be in the bounds of the corresponding dimensions
3403      *      of input0.
3404      *
3405      * Outputs:
3406      * * 0: An (n + k - 1)-D tensor with the same {@link OperandCode} as input0.
3407      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} and
3408      *      {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} tensor,
3409      *      the scale and zeroPoint must be the same as input0.
3410      *
3411      * Available since API level 29.
3412      */
3413     ANEURALNETWORKS_GATHER = 51,
3414 
3415     /**
3416      * Generate aixs-aligned bounding box proposals.
3417      *
3418      * Bounding box proposals are generated by applying transformation on a set
3419      * of predefined anchors with the bounding box deltas from bounding box
3420      * regression. A final step of hard NMS is applied to limit the number of
3421      * returned boxes.
3422      *
3423      * Axis-aligned bounding boxes are represented by its upper-left corner
3424      * coordinate (x1,y1) and lower-right corner coordinate (x2,y2). A valid
3425      * bounding box should satisfy x1 <= x2 and y1 <= y2.
3426      *
3427      * Supported tensor {@link OperandCode}:
3428      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
3429      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
3430      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
3431      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} (since API level 30)
3432      *
3433      * Inputs:
3434      * * 0: A 4-D Tensor specifying the score of each anchor at each
3435      *      location. With "NHWC" data layout, the tensor shape is
3436      *      [batches, height, width, num_anchors]. With "NCHW" data layout,
3437      *      the tensor shape is [batches, num_anchors, height, width].
3438      * * 1: A 4-D Tensor specifying the bounding box deltas. With "NHWC" data
3439      *      layout, the tensor shape is [batches, height, width, num_anchors * 4].
3440      *      With "NCHW" data layout, the tensor shape is
3441      *      [batches, num_anchors * 4, height, width]. The box deltas are encoded
3442      *      in the order of [dx, dy, dw, dh], where dx and dy is the linear-scale
3443      *      relative correction factor for the center position of the bounding box
3444      *      with respect to the width and height, dw and dh is the log-scale
3445      *      relative correction factor for the width and height. The last
3446      *      dimensions is the channel dimension.
3447      * * 2: A 2-D Tensor of shape [num_anchors, 4], specifying the shape of each
3448      *      predefined anchor, with format [x1, y1, x2, y2]. For input0 of type
3449      *      {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} or
3450      *      {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED}, this tensor should be of
3451      *      {@link ANEURALNETWORKS_TENSOR_QUANT16_SYMM}, with scale of 0.125.
3452      * * 3: A 2-D Tensor of shape [batches, 2], specifying the size of
3453      *      each image in the batch, with format [image_height, image_width].
3454      *      For input0 of type {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} or
3455      *      {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED}, this
3456      *      tensor should be of {@link ANEURALNETWORKS_TENSOR_QUANT16_SYMM}, with
3457      *      scale of 0.125.
3458      * * 4: An {@link ANEURALNETWORKS_FLOAT32} scalar, specifying the ratio
3459      *      from the height of original image to the height of feature map.
3460      * * 5: An {@link ANEURALNETWORKS_FLOAT32} scalar, specifying the ratio
3461      *      from the width of original image to the width of feature map.
3462      * * 6: An {@link ANEURALNETWORKS_INT32} scalar, specifying the maximum
3463      *      number of boxes before going into the hard NMS algorithm. Boxes
3464      *      with the lowest scores are discarded to meet the limit. Set to
3465      *      a non-positive value for unlimited number.
3466      * * 7: An {@link ANEURALNETWORKS_INT32} scalar, specifying the maximum
3467      *      number of boxes returning from the hard NMS algorithm. Boxes
3468      *      with the lowest scores are discarded to meet the limit. Set to
3469      *      a non-positive value for unlimited number.
3470      * * 8: An {@link ANEURALNETWORKS_FLOAT32} scalar, specifying the IoU
3471      *      threshold for hard NMS.
3472      * * 9: An {@link ANEURALNETWORKS_FLOAT32} scalar, min_size. Boxes with
3473      *      height or width lower than the absolute threshold are filtered out.
3474      * * 10: An {@link ANEURALNETWORKS_BOOL} scalar, set to true to specify
3475      *       NCHW data layout for input0 and input1. Set to false for NHWC.
3476      *
3477      * Outputs:
3478      * * 0: A tensor of the same {@link OperandCode} as input0, of shape
3479      *      [num_output_rois], specifying the score of each output box.
3480      *      The boxes are grouped by batches, but the sequential order in
3481      *      each batch is not guaranteed. For type of
3482      *      {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} or
3483      *      {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED}, the scale and zero
3484      *      point must be the same as input0.
3485      * * 1: A tensor of the same {@link OperandCode} as input3, of shape
3486      *      [num_output_rois, 4], specifying the coordinates of each output
3487      *      bounding box for each class, with format [x1, y1, x2, y2].
3488      *      The sequential order of the boxes corresponds with output0.
3489      *      For type of {@link ANEURALNETWORKS_TENSOR_QUANT16_ASYMM}, the
3490      *      scale must be 0.125 and the zero point must be 0.
3491      * * 2: A 1-D {@link ANEURALNETWORKS_TENSOR_INT32} tensor, of shape
3492      *      [num_output_rois], specifying the batch index of each box. Boxes
3493      *      with the same batch index are grouped together.
3494      *
3495      * Available since API level 29.
3496      */
3497     ANEURALNETWORKS_GENERATE_PROPOSALS = 52,
3498 
3499     /**
3500      * For input tensors x and y, computes x > y elementwise.
3501      *
3502      * Supported tensor {@link OperandCode}:
3503      * * {@link ANEURALNETWORKS_TENSOR_BOOL8}
3504      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
3505      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
3506      * * {@link ANEURALNETWORKS_TENSOR_INT32}
3507      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
3508      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} (since API level 30)
3509      *
3510      * Supported tensor rank: from 1
3511      *
3512      * This operation supports broadcasting.
3513      *
3514      * Inputs:
3515      * * 0: A tensor.
3516      * * 1: A tensor of the same {@link OperandCode} and dimensions compatible
3517      *      with input0.
3518      *
3519      * Outputs:
3520      * * 0: A tensor of {@link ANEURALNETWORKS_TENSOR_BOOL8}.
3521      *
3522      * Available since API level 29.
3523      */
3524     ANEURALNETWORKS_GREATER = 53,
3525     /**
3526      * For input tensors x and y, computes x >= y elementwise.
3527      *
3528      * Supported tensor {@link OperandCode}:
3529      * * {@link ANEURALNETWORKS_TENSOR_BOOL8}
3530      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
3531      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
3532      * * {@link ANEURALNETWORKS_TENSOR_INT32}
3533      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
3534      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} (since API level 30)
3535      *
3536      * Supported tensor rank: from 1
3537      *
3538      * This operation supports broadcasting.
3539      *
3540      * Inputs:
3541      * * 0: A tensor.
3542      * * 1: A tensor of the same {@link OperandCode} and dimensions compatible
3543      *      with input0.
3544      *
3545      * Outputs:
3546      * * 0: A tensor of {@link ANEURALNETWORKS_TENSOR_BOOL8}.
3547      *
3548      * Available since API level 29.
3549      */
3550     ANEURALNETWORKS_GREATER_EQUAL = 54,
3551 
3552     /**
3553      * Performs a grouped 2-D convolution operation.
3554      *
3555      * Given an input tensor of shape [batches, height, width, depth_in] and a
3556      * filter tensor of shape [depth_out, filter_height, filter_width, depth_group]
3557      * containing depth_out convolutional filters of depth depth_group, GROUPED_CONV
3558      * applies a group of different filters to each input channel group, then
3559      * concatenates the results together.
3560      *
3561      * Specifically, the input channels are divided into num_groups groups, each with
3562      * depth depth_group, i.e. depth_in = num_groups * depth_group. The convolutional
3563      * filters are also divided into num_groups groups, i.e. depth_out is divisible
3564      * by num_groups. GROUPED_CONV applies each group of filters to the corresponding
3565      * input channel group, and the result are concatenated together.
3566      *
3567      * The output dimensions are functions of the filter dimensions, stride, and
3568      * padding.
3569      *
3570      * The values in the output tensor are computed as:
3571      *
3572      *     output[b, i, j, g * channel_multiplier + q] =
3573      *         sum_{di, dj, dk} (
3574      *             input[b, strides[1] * i + di, strides[2] * j + dj,
3575      *                   g * depth_group + dk] *
3576      *             filter[g * channel_multiplier + q, di, dj, dk]
3577      *         ) + bias[channel]
3578      *
3579      * where channel_multiplier = depth_out / num_groups
3580      *
3581      * Supported tensor {@link OperandCode} configurations:
3582      * * 16 bit floating point:
3583      * * * {@link ANEURALNETWORKS_TENSOR_FLOAT16} for input, filter, output, and bias.
3584      *
3585      * * 32 bit floating point:
3586      * * * {@link ANEURALNETWORKS_TENSOR_FLOAT32} for input, filter, output, and bias.
3587      *
3588      * * Quantized:
3589      * * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} for input, filter, and output.
3590      * * * {@link ANEURALNETWORKS_TENSOR_INT32} for bias (with scale set to
3591      * * * input.scale * filter.scale).
3592      *
3593      * * Quantized signed (since API level 30):
3594      * * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} for input, filter, and output.
3595      * * * {@link ANEURALNETWORKS_TENSOR_INT32} for bias (with scale set to
3596      * * * input.scale * filter.scale).
3597      *
3598      * * Quantized with symmetric per channel quantization for the filter:
3599      * * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} for input, and output.
3600      * * * {@link ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL} for filter.
3601      * * * {@link ANEURALNETWORKS_TENSOR_INT32} for bias (scale set to 0.0,
3602      * * * each value scaling is separate and equal to input.scale * filter.scales[channel]).
3603      *
3604      * * Quantized signed with filter symmetric per channel quantization (since API level 30):
3605      * * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} for input, and output.
3606      * * * {@link ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL} for filter.
3607      * * * {@link ANEURALNETWORKS_TENSOR_INT32} for bias (scale set to 0.0,
3608      * * * each value scaling is separate and equal to input.scale * filter.scales[channel]).
3609      *
3610      * Supported tensor rank: 4, with "NHWC" or "NCHW" data layout.
3611      * With the default data layout NHWC, the data is stored in the order of:
3612      * [batch, height, width, channels]. Alternatively, the data layout could
3613      * be NCHW, the data storage order of: [batch, channels, height, width].
3614      *
3615      * Both explicit padding and implicit padding are supported.
3616      *
3617      * Inputs (explicit padding):
3618      * * 0: A 4-D tensor, of shape [batches, height, width, depth_in],
3619      *      specifying the input, where depth_in = num_groups * depth_group.
3620      * * 1: A 4-D tensor, of shape
3621      *      [depth_out, filter_height, filter_width, depth_group], specifying
3622      *      the filter, where depth_out must be divisible by num_groups.  For
3623      *      tensor of type {@link ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL}
3624      *      the channel dimension (channelDim at
3625      *      {@link ANeuralNetworksSymmPerChannelQuantParams}) must be set to 0.
3626      * * 2: A 1-D tensor, of shape [depth_out], specifying the bias. For input
3627      *      tensor of type {@link ANEURALNETWORKS_TENSOR_FLOAT32} or
3628      *      {@link ANEURALNETWORKS_TENSOR_FLOAT16}, the bias must be of the same type.
3629      *      For filter tensor of {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} and
3630      *      {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED}
3631      *      the bias should be of {@link ANEURALNETWORKS_TENSOR_INT32}, with zeroPoint
3632      *      of 0 and bias_scale == input_scale * filter_scale. For filter tensor
3633      *      of {@link ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL}, the bias
3634      *      should be of {@link ANEURALNETWORKS_TENSOR_INT32}, with zeroPoint of
3635      *      0 and bias_scale of 0. The actual scale of each value 'i' is equal to
3636      *      bias_scale[i] = input_scale * filter_scale[i].
3637      * * 3: An {@link ANEURALNETWORKS_INT32} scalar, specifying the padding on
3638      *      the left, in the ‘width’ dimension.
3639      * * 4: An {@link ANEURALNETWORKS_INT32} scalar, specifying the padding on
3640      *      the right, in the ‘width’ dimension.
3641      * * 5: An {@link ANEURALNETWORKS_INT32} scalar, specifying the padding on
3642      *      the top, in the ‘height’ dimension.
3643      * * 6: An {@link ANEURALNETWORKS_INT32} scalar, specifying the padding on
3644      *      the bottom, in the ‘height’ dimension.
3645      * * 7: An {@link ANEURALNETWORKS_INT32} scalar, specifying the stride when
3646      *      walking through input in the ‘width’ dimension.
3647      * * 8: An {@link ANEURALNETWORKS_INT32} scalar, specifying the stride when
3648      *      walking through input in the ‘height’ dimension.
3649      * * 9: An {@link ANEURALNETWORKS_INT32} scalar, specifying the number of
3650      *      groups.
3651      * * 10: An {@link ANEURALNETWORKS_INT32} scalar, and has to be one of the
3652      *       {@link FuseCode} values. Specifies the activation to
3653      *       invoke on the result.
3654      * * 11: An {@link ANEURALNETWORKS_BOOL} scalar, set to true to specify
3655      *       NCHW data layout for input0 and output0. Set to false for NHWC.
3656      *
3657      * Inputs (implicit padding):
3658      * * 0: A 4-D tensor, of shape [batches, height, width, depth_in],
3659      *      specifying the input, where depth_in = num_groups * depth_group.
3660      * * 1: A 4-D tensor, of shape
3661      *      [depth_out, filter_height, filter_width, depth_group], specifying
3662      *      the filter, where depth_out must be divisible by num_groups.  For
3663      *      tensor of type {@link ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL}
3664      *      the channel dimension (ANeuralNetworksSymmPerChannelQuantParams::channelDim)
3665      *      must be set to 0.
3666      * * 2: A 1-D tensor, of shape [depth_out], specifying the bias. For input
3667      *      tensor of type {@link ANEURALNETWORKS_TENSOR_FLOAT32} or
3668      *      {@link ANEURALNETWORKS_TENSOR_FLOAT16}, the bias must be of the same
3669      *      {@link ANEURALNETWORKS_TENSOR_FLOAT16}, the bias must be of the same type.
3670      *      For filter tensor of {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} and
3671      *      {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED}
3672      *      the bias should be of {@link ANEURALNETWORKS_TENSOR_INT32}, with zeroPoint
3673      *      of 0 and bias_scale == input_scale * filter_scale. For filter tensor
3674      *      of {@link ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL}, the bias
3675      *      should be of {@link ANEURALNETWORKS_TENSOR_INT32}, with zeroPoint of
3676      *      0 and bias_scale of 0. The actual scale of each value 'i' is equal to
3677      *      bias_scale[i] = input_scale * filter_scale[i].
3678      * * 3: An {@link ANEURALNETWORKS_INT32} scalar, specifying the implicit
3679      *      padding scheme, has to be one of the
3680      *      {@link PaddingCode} values.
3681      * * 4: An {@link ANEURALNETWORKS_INT32} scalar, specifying the stride when
3682      *      walking through input in the ‘width’ dimension.
3683      * * 5: An {@link ANEURALNETWORKS_INT32} scalar, specifying the stride when
3684      *      walking through input in the ‘height’ dimension.
3685      * * 6: An {@link ANEURALNETWORKS_INT32} scalar, specifying the number of
3686      *      groups.
3687      * * 7: An {@link ANEURALNETWORKS_INT32} scalar, and has to be one of the
3688      *      {@link FuseCode} values. Specifies the activation to
3689      *      invoke on the result.
3690      * * 8: An {@link ANEURALNETWORKS_BOOL} scalar, set to true to specify
3691      *      NCHW data layout for input0 and output0. Set to false for NHWC.
3692      *
3693      * Outputs:
3694      * * 0: The output 4-D tensor, of shape
3695      *      [batches, out_height, out_width, depth_out].
3696      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} and
3697      *      {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} tensor,
3698      *      the scale and zeroPoint can be different from inputs' scale and zeroPoint.
3699      *
3700      * Available since API level 29.
3701      */
3702     ANEURALNETWORKS_GROUPED_CONV_2D = 55,
3703 
3704     /**
3705      * Localize the maximum keypoints from heatmaps.
3706      *
3707      * This operation approximates the accurate maximum keypoint scores and
3708      * indices after bicubic upscaling by using Taylor expansion up to the
3709      * quadratic term.
3710      *
3711      * The bounding box is represented by its upper-left corner coordinate
3712      * (x1,y1) and lower-right corner coordinate (x2,y2) in the original image.
3713      * A valid bounding box should satisfy x1 <= x2 and y1 <= y2.
3714      *
3715      * Supported tensor {@link OperandCode}:
3716      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
3717      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
3718      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
3719      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} (since API level 30)
3720      *
3721      * Supported tensor rank: 4, with "NHWC" or "NCHW" data layout.
3722      * With the default data layout NHWC, the data is stored in the order of:
3723      * [batch, height, width, channels]. Alternatively, the data layout could
3724      * be NCHW, the data storage order of: [batch, channels, height, width].
3725      *
3726      * Inputs:
3727      * * 0: A 4-D Tensor of shape
3728      *      [num_boxes, heatmap_size, heatmap_size, num_keypoints],
3729      *      specifying the heatmaps, the height and width of heatmaps should
3730      *      be the same, and must be greater than or equal to 2.
3731      * * 1: A 2-D Tensor of shape [num_boxes, 4], specifying the bounding boxes,
3732      *      each with format [x1, y1, x2, y2]. For input0 of type
3733      *      {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}, this tensor should
3734      *      be of {@link ANEURALNETWORKS_TENSOR_QUANT16_ASYMM}, with zeroPoint
3735      *      of 0 and scale of 0.125.
3736      *      For input0 of type
3737      *      {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED}, this tensor
3738      *      should be of {@link ANEURALNETWORKS_TENSOR_QUANT16_ASYMM}, with
3739      *      zeroPoint of -128 and scale of 0.125.
3740      * * 2: An {@link ANEURALNETWORKS_BOOL} scalar, set to true to specify
3741      *      NCHW data layout for input0. Set to false for NHWC.
3742      *
3743      * Outputs:
3744      * * 0: A tensor of the same {@link OperandCode} as input0, with shape
3745      *      [num_boxes, num_keypoints], specifying score of the keypoints.
3746      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} or
3747      *      {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} tensor,
3748      *      the scale and zeroPoint can be different from input0 scale and zeroPoint.
3749      * * 1: A tensor of the same {@link OperandCode} as input1, with shape
3750      *      [num_boxes, num_keypoints, 2], specifying the location of
3751      *      the keypoints, the second dimension is organized as
3752      *      [keypoint_x, keypoint_y].
3753      *      For type of {@link ANEURALNETWORKS_TENSOR_QUANT16_ASYMM}, the
3754      *      scale must be 0.125 and the zero point must be 0.
3755      *
3756      * Available since API level 29.
3757      */
3758     ANEURALNETWORKS_HEATMAP_MAX_KEYPOINT = 56,
3759 
3760     /**
3761      * Applies instance normalization to the input tensor.
3762      *
3763      * The values in the output tensor are computed as:
3764      *
3765      *     output[b, h, w, c] =
3766      *         (input[b, h, w, c] - mean[b, c]) * gamma /
3767      *         sqrt(var[b, c] + epsilon) + beta
3768      *
3769      * Where the mean and variance are computed across the spatial dimensions:
3770      *
3771      *     mean[b, c] =
3772      *         sum_{h, w}(input[b, h, w, c]) / sum(1)
3773      *
3774      *     var[b, c] =
3775      *         sum_{h, w}(pow(input[b, h, w, c] - mean[b, c], 2)) / sum(1)
3776      *
3777      * Supported tensor {@link OperandCode}:
3778      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
3779      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
3780      *
3781      * Supported tensor rank: 4, with "NHWC" or "NCHW" data layout.
3782      * With the default data layout NHWC, the data is stored in the order of:
3783      * [batch, height, width, channels]. Alternatively, the data layout could
3784      * be NCHW, the data storage order of: [batch, channels, height, width].
3785      *
3786      * Inputs:
3787      * * 0: An n-D tensor, specifying the tensor to be normalized.
3788      * * 1: A scalar, specifying gamma, the scale applied to the normalized
3789      *      tensor. The scalar must be of {@link ANEURALNETWORKS_FLOAT16} if
3790      *      input0 is of {@link ANEURALNETWORKS_TENSOR_FLOAT16} and of
3791      *      {@link ANEURALNETWORKS_FLOAT32} if input0 is of
3792      *      {@link ANEURALNETWORKS_TENSOR_FLOAT32}.
3793      * * 2: A scalar, specifying beta, the offset applied to the normalized
3794      *      tensor. The scalar must be of {@link ANEURALNETWORKS_FLOAT16} if
3795      *      input0 is of {@link ANEURALNETWORKS_TENSOR_FLOAT16} and of
3796      *      {@link ANEURALNETWORKS_FLOAT32} if input0 is of
3797      *      {@link ANEURALNETWORKS_TENSOR_FLOAT32}.
3798      * * 3: A scalar, specifying epsilon, the small value added to variance to
3799      *      avoid dividing by zero. The scalar must be of {@link ANEURALNETWORKS_FLOAT16} if
3800      *      input0 is of {@link ANEURALNETWORKS_TENSOR_FLOAT16} and of
3801      *      {@link ANEURALNETWORKS_FLOAT32} if input0 is of
3802      *      {@link ANEURALNETWORKS_TENSOR_FLOAT32}.
3803      * * 4: An {@link ANEURALNETWORKS_BOOL} scalar, set to true to specify
3804      *      NCHW data layout for input0 and output0. Set to false for NHWC.
3805      *
3806      * Outputs:
3807      * * 0: A tensor of the same {@link OperandCode} and same shape as input0.
3808      *
3809      * Available since API level 29.
3810      */
3811     ANEURALNETWORKS_INSTANCE_NORMALIZATION = 57,
3812 
3813     /**
3814      * For input tensors x and y, computes x < y elementwise.
3815      *
3816      * Supported tensor {@link OperandCode}:
3817      * * {@link ANEURALNETWORKS_TENSOR_BOOL8}
3818      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
3819      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
3820      * * {@link ANEURALNETWORKS_TENSOR_INT32}
3821      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
3822      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} (since API level 30)
3823      *
3824      * Supported tensor rank: from 1
3825      *
3826      * This operation supports broadcasting.
3827      *
3828      * Inputs:
3829      * * 0: A tensor.
3830      * * 1: A tensor of the same {@link OperandCode} and dimensions compatible
3831      *      with input0.
3832      *
3833      * Outputs:
3834      * * 0: A tensor of {@link ANEURALNETWORKS_TENSOR_BOOL8}.
3835      *
3836      * Available since API level 29.
3837      */
3838     ANEURALNETWORKS_LESS = 58,
3839 
3840     /**
3841      * For input tensors x and y, computes x <= y elementwise.
3842      *
3843      * Supported tensor {@link OperandCode}:
3844      * * {@link ANEURALNETWORKS_TENSOR_BOOL8}
3845      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
3846      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
3847      * * {@link ANEURALNETWORKS_TENSOR_INT32}
3848      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
3849      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} (since API level 30)
3850      *
3851      * Supported tensor rank: from 1
3852      *
3853      * This operation supports broadcasting.
3854      *
3855      * Inputs:
3856      * * 0: A tensor.
3857      * * 1: A tensor of the same {@link OperandCode} and dimensions compatible
3858      *      with input0.
3859      *
3860      * Outputs:
3861      * * 0: A tensor of {@link ANEURALNETWORKS_TENSOR_BOOL8}.
3862      *
3863      * Available since API level 29.
3864      */
3865     ANEURALNETWORKS_LESS_EQUAL = 59,
3866 
3867     /**
3868      * Computes natural logarithm of x element-wise.
3869      *
3870      * Supported tensor {@link OperandCode}:
3871      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
3872      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
3873      *
3874      * Supported tensor rank: from 1.
3875      *
3876      * Inputs:
3877      * * 0: A tensor.
3878      *
3879      * Outputs:
3880      * * 0: The output tensor of same shape as input0.
3881      *
3882      * Available since API level 29.
3883      */
3884     ANEURALNETWORKS_LOG = 60,
3885 
3886     /**
3887      * Returns the truth value of x AND y element-wise.
3888      *
3889      * Supported tensor {@link OperandCode}:
3890      * * {@link ANEURALNETWORKS_TENSOR_BOOL8}
3891      *
3892      * Supported tensor rank: from 1
3893      *
3894      * This operation supports broadcasting.
3895      *
3896      * Inputs:
3897      * * 0: A tensor of {@link ANEURALNETWORKS_TENSOR_BOOL8}.
3898      * * 1: A tensor of {@link ANEURALNETWORKS_TENSOR_BOOL8} and dimensions
3899      *      compatible with input0.
3900      *
3901      * Outputs:
3902      * * 0: A tensor of {@link ANEURALNETWORKS_TENSOR_BOOL8}.
3903      *
3904      * Available since API level 29.
3905      */
3906     ANEURALNETWORKS_LOGICAL_AND = 61,
3907 
3908     /**
3909      * Computes the truth value of NOT x element-wise.
3910      *
3911      * Supported tensor {@link OperandCode}:
3912      * * {@link ANEURALNETWORKS_TENSOR_BOOL8}
3913      *
3914      * Supported tensor rank: from 1.
3915      *
3916      * Inputs:
3917      * * 0: A tensor.
3918      *
3919      * Outputs:
3920      * * 0: The output tensor of same shape as input0.
3921      *
3922      * Available since API level 29.
3923      */
3924     ANEURALNETWORKS_LOGICAL_NOT = 62,
3925 
3926     /**
3927      * Returns the truth value of x OR y element-wise.
3928      *
3929      * Supported tensor {@link OperandCode}:
3930      * * {@link ANEURALNETWORKS_TENSOR_BOOL8}
3931      *
3932      * Supported tensor rank: from 1
3933      *
3934      * This operation supports broadcasting.
3935      *
3936      * Inputs:
3937      * * 0: A tensor of {@link ANEURALNETWORKS_TENSOR_BOOL8}.
3938      * * 1: A tensor of {@link ANEURALNETWORKS_TENSOR_BOOL8} and dimensions
3939      *      compatible with input0.
3940      *
3941      * Outputs:
3942      * * 0: A tensor of {@link ANEURALNETWORKS_TENSOR_BOOL8}.
3943      *
3944      * Available since API level 29.
3945      */
3946     ANEURALNETWORKS_LOGICAL_OR = 63,
3947 
3948     /**
3949      * Computes the log softmax activations given logits.
3950      *
3951      * The output is calculated using this formula:
3952      *
3953      *     output = logits * beta - log(reduce_sum(exp(logits * beta), axis))
3954      *
3955      * Supported tensor {@link OperandCode}:
3956      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
3957      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
3958      *
3959      * Supported tensor rank: from 1.
3960      *
3961      * Inputs:
3962      * * 0: A tensor specifying the input logits.
3963      * * 1: A scalar, specifying the positive scaling factor for the exponent,
3964      *      beta.
3965      *      For input tensor of {@link ANEURALNETWORKS_TENSOR_FLOAT16}, the beta
3966      *      value must be of {@link ANEURALNETWORKS_FLOAT16}.
3967      *      For input tensor of {@link ANEURALNETWORKS_TENSOR_FLOAT32}, the beta
3968      *      value must be of {@link ANEURALNETWORKS_FLOAT32}.
3969      * * 2: An {@link ANEURALNETWORKS_INT32} scalar specifying the axis to
3970      *      reduce across. Negative index is used to specify axis from the
3971      *      end (e.g. -1 for the last axis). Must be in the range [-n, n).
3972      *
3973      * Outputs:
3974      * * 0: The output tensor of the same {@link OperandCode} and shape as
3975      *      input0.
3976      *
3977      * Available since API level 29.
3978      */
3979     ANEURALNETWORKS_LOG_SOFTMAX = 64,
3980 
3981     /**
3982      * Returns the element-wise maximum of two tensors.
3983      *
3984      * Supported tensor {@link OperandCode}:
3985      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
3986      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
3987      * * {@link ANEURALNETWORKS_TENSOR_INT32}
3988      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
3989      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} (since API level 30)
3990      *
3991      * Supported tensor rank: from 1.
3992      *
3993      * Inputs:
3994      * * 0: A tensor.
3995      * * 1: A tensor of the same {@link OperandCode} and compatible dimensions
3996      *      with input0.
3997      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} tensor,
3998      *      the scales and zeroPoint can be different from input0 scale and zeroPoint.
3999      *
4000      * Outputs:
4001      * * 0: A tensor of the same {@link OperandCode} as input0.
4002      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} and
4003      *      {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} tensor,
4004      *      the scale and zeroPoint can be different from inputs' scale and zeroPoint.
4005      *
4006      * Available since API level 29.
4007      */
4008     ANEURALNETWORKS_MAXIMUM = 65,
4009 
4010     /**
4011      * Returns the element-wise minimum of two tensors.
4012      *
4013      * Supported tensor {@link OperandCode}:
4014      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
4015      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
4016      * * {@link ANEURALNETWORKS_TENSOR_INT32}
4017      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
4018      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} (since API level 30)
4019      *
4020      * Supported tensor rank: from 1.
4021      *
4022      * Inputs:
4023      * * 0: A tensor.
4024      * * 1: A tensor of the same {@link OperandCode} and compatible dimensions
4025      *      with input0.
4026      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} tensor,
4027      *      the scales and zeroPoint can be different from input0 scale and zeroPoint.
4028      *
4029      * Outputs:
4030      * * 0: A tensor of the same {@link OperandCode} as input0.
4031      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} and
4032      *      {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} tensor,
4033      *      the scale and zeroPoint can be different from inputs' scale and zeroPoint.
4034      *
4035      * Available since API level 29.
4036      */
4037     ANEURALNETWORKS_MINIMUM = 66,
4038 
4039     /**
4040      * Computes numerical negative value element-wise.
4041      *
4042      * Supported tensor {@link OperandCode}:
4043      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
4044      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
4045      * * {@link ANEURALNETWORKS_TENSOR_INT32}
4046      *
4047      * Supported tensor rank: from 1.
4048      *
4049      * Inputs:
4050      * * 0: A tensor.
4051      *
4052      * Outputs:
4053      * * 0: The output tensor of same shape as input0.
4054      *
4055      * Available since API level 29.
4056      */
4057     ANEURALNETWORKS_NEG = 67,
4058 
4059     /**
4060      * For input tensors x and y, computes x != y elementwise.
4061      *
4062      * Supported tensor {@link OperandCode}:
4063      * * {@link ANEURALNETWORKS_TENSOR_BOOL8}
4064      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
4065      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
4066      * * {@link ANEURALNETWORKS_TENSOR_INT32}
4067      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
4068      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} (since API level 30)
4069      *
4070      * Supported tensor rank: from 1
4071      *
4072      * This operation supports broadcasting.
4073      *
4074      * Inputs:
4075      * * 0: A tensor.
4076      * * 1: A tensor of the same {@link OperandCode} and dimensions compatible
4077      *      with input0.
4078      *
4079      * Outputs:
4080      * * 0: A tensor of {@link ANEURALNETWORKS_TENSOR_BOOL8}.
4081      *
4082      * Available since API level 29.
4083      */
4084     ANEURALNETWORKS_NOT_EQUAL = 68,
4085 
4086     /**
4087      * Pads a tensor with the given constant value according to the specified
4088      * paddings.
4089      *
4090      * Supported tensor {@link OperandCode}:
4091      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
4092      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
4093      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
4094      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} (since API level 30)
4095      *
4096      * Supported tensor rank: up to 4
4097      *
4098      * Inputs:
4099      * * 0: An n-D tensor, specifying the tensor to be padded.
4100      * * 1: A 2-D Tensor of {@link ANEURALNETWORKS_TENSOR_INT32}, the paddings
4101      *      for each spatial dimension of the input tensor. The shape of the
4102      *      tensor must be {rank(input0), 2}.
4103      *      padding[i, 0] specifies the number of elements to be padded in the
4104      *      front of dimension i.
4105      *      padding[i, 1] specifies the number of elements to be padded after
4106      *      the end of dimension i.
4107      * * 2: An scalar specifying the value to use for padding input0.
4108      *      For input tensor of {@link ANEURALNETWORKS_TENSOR_FLOAT16}, the
4109      *      pad value must be of {@link ANEURALNETWORKS_FLOAT16}.
4110      *      For input tensor of {@link ANEURALNETWORKS_TENSOR_FLOAT32}, the
4111      *      pad value must be of {@link ANEURALNETWORKS_FLOAT32}.
4112      *      For input tensor of {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} and
4113      *      {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED},
4114      *      the pad value must be of {@link ANEURALNETWORKS_INT32}. The
4115      *      scale and zeroPoint are assumed to be the same as in input0.
4116      *
4117      * Outputs:
4118      * * 0: A tensor of the same {@link OperandCode} as input0. The
4119      *      output tensor has the same rank as input0, and each
4120      *      dimension of the output tensor has the same size as the
4121      *      corresponding dimension of the input tensor plus the size
4122      *      of the padding:
4123      *          output0.dimension[i] =
4124      *              padding[i, 0] + input0.dimension[i] + padding[i, 1]
4125      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} and
4126      *      {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} tensor,
4127      *      the scale and zeroPoint must be the same as input0.
4128      *
4129      * Available since API level 29.
4130      */
4131     ANEURALNETWORKS_PAD_V2 = 69,
4132 
4133     /**
4134      * Computes the power of one value to another.
4135      *
4136      * Given a tensor base and a tensor exponent, this operation computes
4137      * base^exponent elementwise.
4138      *
4139      * This operations supports broadcasting. The size of the output is the
4140      * maximum size along each dimension of the input operands. It starts with
4141      * the trailing dimensions, and works its way forward.
4142      *
4143      * For example:
4144      *     base.dimension     =    {4, 1, 2}
4145      *     exponent.dimension = {5, 4, 3, 1}
4146      *     output.dimension   = {5, 4, 3, 2}
4147      *
4148      * Supported tensor {@link OperandCode}:
4149      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
4150      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
4151      *
4152      * Supported tensor rank: from 1
4153      *
4154      * Inputs:
4155      * * 0: A tensor specifying the base.
4156      * * 1: A tensor specifying the exponent.
4157      *
4158      * Outputs:
4159      * * 0: An output tensor.
4160      *
4161      * Available since API level 29.
4162      */
4163     ANEURALNETWORKS_POW = 70,
4164 
4165     /**
4166      * Parametric Rectified Linear Unit.
4167      *
4168      * It follows: f(x) = alpha * x for x < 0, f(x) = x for x >= 0, where alpha
4169      * is a learned array with the same {@link OperandCode} and compatible
4170      * dimensions as input x.
4171      *
4172      * Two dimensions are compatible when:
4173      *     1. they are equal, or
4174      *     2. one of them is 1
4175      *
4176      * The size of the output is the maximum size along each dimension of the
4177      * input operands. It starts with the trailing dimensions, and works its way
4178      * forward.
4179      *
4180      * Example:
4181      *     input.dimension  =    {4, 1, 2}
4182      *     alpha.dimension  = {5, 4, 3, 1}
4183      *     output.dimension = {5, 4, 3, 2}
4184      *
4185      * Supported tensor {@link OperandCode}:
4186      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
4187      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
4188      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
4189      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} (since API level 30)
4190      *
4191      * Supported tensor rank: from 1
4192      *
4193      * Inputs:
4194      * * 0: A tensor, specifying the input.
4195      * * 1: A tensor of the same {@link OperandCode}, and compatible dimensions
4196      *      as input0, specifying the alpha.
4197      *
4198      * Outputs:
4199      * * 0: A tensor of the same {@link OperandCode} as input0.
4200      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} and
4201      *      {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} tensor,
4202      *      the scales and zeroPoint can be different from input0 scale and zeroPoint.
4203      *
4204      * Available since API level 29.
4205      */
4206     ANEURALNETWORKS_PRELU = 71,
4207 
4208     /**
4209      * Quantizes the input tensor.
4210      *
4211      * The formula for {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} output tensor is:
4212      *
4213      *     output = max(0, min(255, round(input / scale) + zeroPoint)
4214      *
4215      * The formula for {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} output
4216      * tensor is:
4217      *
4218      *     output = max(-128, min(127, round(input / scale) + zeroPoint)
4219      *
4220      * Supported input tensor {@link OperandCode}:
4221      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
4222      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
4223      *
4224      * Supported output tensor {@link OperandCode}:
4225      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
4226      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} (since API level 30)
4227      *
4228      * Supported tensor rank: from 1
4229      *
4230      * Inputs:
4231      * * 0: A tensor, may be zero-sized.
4232      *
4233      * Outputs:
4234      * * 0: The output tensor of same shape as input0, but with
4235      *      {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} or.
4236      *      {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED}.
4237      *
4238      * Available since API level 29.
4239      */
4240     ANEURALNETWORKS_QUANTIZE = 72,
4241 
4242     /**
4243      * A version of quantized LSTM, using 16 bit quantization for internal
4244      * state.
4245      *
4246      * There is no projection layer, so cell state size is equal to the output
4247      * size.
4248      *
4249      * Inputs:
4250      * * 0: A 2-D tensor of type {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
4251      *      and shape [numBatches, inputSize] specifying the input to the LSTM
4252      *      cell. Tensor is quantized with a fixed quantization range of
4253      *      [-1, 127/128] (scale = 1/128, zeroPoint = 128).
4254      * * 1: The input-to-input weights.
4255      *      A 2-D tensor of type {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
4256      *      and shape [outputSize, inputSize] specifying input-to-input part of
4257      *      weights for fully-connected layer inside the LSTM cell.
4258      *      Quantization zero point and scale must be the same across all the
4259      *      weights.
4260      * * 2: The input-to-forget weights.
4261      *      A 2-D tensor of type {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
4262      *      and shape [outputSize, inputSize] specifying input-to-forget part of
4263      *      weights for fully-connected layer inside the LSTM cell.
4264      *      Quantization zero point and scale must be the same across all the
4265      *      weights.
4266      * * 3: The input-to-cell weights.
4267      *      A 2-D tensor of type {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
4268      *      and shape [outputSize, inputSize] specifying input-to-cell part of
4269      *      weights for fully-connected layer inside the LSTM cell.
4270      *      Quantization zero point and scale must be the same across all the
4271      *      weights.
4272      * * 4: The input-to-output weights.
4273      *      A 2-D tensor of type {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
4274      *      and shape [outputSize, inputSize] specifying input-to-output part of
4275      *      weights for fully-connected layer inside the LSTM cell.
4276      *      Quantization zero point and scale must be the same across all the
4277      *      weights.
4278      * * 5: The recurrent-to-input weights.
4279      *      A 2-D tensor of type {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
4280      *      and shape [outputSize, outputSize] specifying recurrent-to-input part
4281      *      of weights for fully-connected layer inside the LSTM cell.
4282      *      Quantization zero point and scale must be the same across all the
4283      *      weights.
4284      * * 6: The recurrent-to-forget weights.
4285      *      A 2-D tensor of type {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
4286      *      and shape [outputSize, outputSize] specifying recurrent-to-forget
4287      *      part of weights for fully-connected layer inside the LSTM cell.
4288      *      Quantization zero point and scale must be the same across all the
4289      *      weights.
4290      * * 7: The recurrent-to-cell weights.
4291      *      A 2-D tensor of type {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
4292      *      and shape [outputSize, outputSize] specifying recurrent-to-cell part
4293      *      of weights for fully-connected layer inside the LSTM cell.
4294      *      Quantization zero point and scale must be the same across all the
4295      *      weights.
4296      * * 8: The recurrent-to-output weights.
4297      *      A 2-D tensor of type {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
4298      *      and shape [outputSize, outputSize] specifying recurrent-to-output
4299      *      part of weights for fully-connected layer inside the LSTM cell.
4300      *      Quantization zero point and scale must be the same across all the
4301      *      weights.
4302      * * 9: The input gate bias.
4303      *      A 1-D tensor of type {@link ANEURALNETWORKS_TENSOR_INT32} and shape
4304      *      [outputSize] specifying the bias for the fully-connected layer
4305      *      inside the LSTM cell. Bias is quantized with scale being a product
4306      *      of input and weights scales and zeroPoint equal to 0.
4307      * * 10:The forget gate bias.
4308      *      A 1-D tensor of type {@link ANEURALNETWORKS_TENSOR_INT32} and shape
4309      *      [outputSize] specifying the bias for the fully-connected layer
4310      *      inside the LSTM cell. Bias is quantized with scale being a product
4311      *      of input and weights scales and zeroPoint equal to 0.
4312      * * 11:The cell bias.
4313      *      A 1-D tensor of type {@link ANEURALNETWORKS_TENSOR_INT32} and shape
4314      *      [outputSize] specifying the bias for the fully-connected layer
4315      *      inside the LSTM cell. Bias is quantized with scale being a product
4316      *      of input and weights scales and zeroPoint equal to 0.
4317      * * 12:The output gate bias.
4318      *      A 1-D tensor of type {@link ANEURALNETWORKS_TENSOR_INT32} and shape
4319      *      [outputSize] specifying the bias for the fully-connected layer
4320      *      inside the LSTM cell. Bias is quantized with scale being a product
4321      *      of input and weights scales and zeroPoint equal to 0.
4322      * * 13: A 2-D tensor of type {@link ANEURALNETWORKS_TENSOR_QUANT16_SYMM}
4323      *       and shape [numBatches, outputSize] specifying the cell state from the
4324      *       previous time step of the LSTM cell. It is quantized using a
4325      *       quantization range of [-2^4, 2^4 * 32767/32768] (scale = 2^4 /
4326      *       32768, zeroPoint = 0).
4327      * * 14: A 2-D tensor of type {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
4328      *       and shape [numBathes, outputSize] specifying the output of the LSTM
4329      *       cell from previous time-step. Tensor is quantized with a fixed
4330      *       quantization range of [-1, 127/128] (scale = 1/128, zeroPoint =
4331      *       128).
4332      *
4333      *
4334      * Outputs:
4335      * * 0: A 2-D tensor of type {@link ANEURALNETWORKS_TENSOR_QUANT16_SYMM}
4336      *      and shape [numBatches, outputSize] which contains a cell state from
4337      *      the current time step. Tensor is quantized using a quantization
4338      *      range of [-2^4, 2^4 * 32767/32768] (scale = 2^4 / 32768, zeroPoint =
4339      *      0).
4340      * * 1: A 2-D tensor of type {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
4341      *      and shape [numBathes, outputSize] which contains the output value.
4342      *      Tensor is quantized with a fixed quantization range of [-1, 127/128]
4343      *      (scale = 1/128, zeroPoint = 128).
4344      */
4345     ANEURALNETWORKS_QUANTIZED_16BIT_LSTM = 73,
4346 
4347     /**
4348      * Draws samples from a multinomial distribution.
4349      *
4350      * Supported tensor {@link OperandCode}:
4351      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
4352      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
4353      *
4354      * Inputs:
4355      * * 0: A 2-D tensor with shape [batches, classes], specifying the
4356      *      unnormalized log-probabilities for all classes.
4357      * * 1: A scalar {@link ANEURALNETWORKS_INT32}, specifying the number of
4358      *      independent samples to draw for each row slice.
4359      * * 2: A 1-D {@link ANEURALNETWORKS_TENSOR_INT32} tensor with shape [2],
4360      *      specifying seeds used to initialize the random distribution. If both
4361      *      provided seeds are 0, both will be randomly generated.
4362      * Outputs:
4363      * * 0: A 2-D {@link ANEURALNETWORKS_TENSOR_INT32} tensor with shape
4364      *      [batches, samples], containing the drawn samples.
4365      *
4366      * Available since API level 29.
4367      */
4368     ANEURALNETWORKS_RANDOM_MULTINOMIAL = 74,
4369 
4370     /**
4371      * Reduces a tensor by computing the "logical and" of elements along given
4372      * dimensions.
4373      *
4374      * If keep_dims is true, the reduced dimensions are
4375      * retained with length 1. Otherwise, the rank of the tensor is reduced by
4376      * 1 for each entry in dimensions.
4377      *
4378      * Supported tensor {@link OperandCode}:
4379      * * {@link ANEURALNETWORKS_TENSOR_BOOL8}
4380      *
4381      * Supported tensor rank: up to 4
4382      *
4383      * Inputs:
4384      * * 0: An n-D tensor.
4385      * * 1: A 1-D tensor of {@link ANEURALNETWORKS_TENSOR_INT32}. The dimensions
4386      *      to reduce. Dimension values must be in the range [-n, n).
4387      * * 2: An {@link ANEURALNETWORKS_BOOL} scalar, keep_dims. If true,
4388      *      retains reduced dimensions with length 1.
4389      *
4390      * Outputs:
4391      * * 0: A tensor of the same {@link OperandCode} as input0.
4392      *      If all dimensions are reduced and keep_dims is false, the output
4393      *      shape is [1].
4394      *
4395      * Available since API level 29.
4396      */
4397     ANEURALNETWORKS_REDUCE_ALL = 75,
4398 
4399     /**
4400      * Reduces a tensor by computing the "logical or" of elements along given
4401      * dimensions.
4402      *
4403      * If keep_dims is true, the reduced dimensions are
4404      * retained with length 1. Otherwise, the rank of the tensor is reduced by
4405      * 1 for each entry in dimensions.
4406      *
4407      * Supported tensor {@link OperandCode}:
4408      * * {@link ANEURALNETWORKS_TENSOR_BOOL8}
4409      *
4410      * Supported tensor rank: up to 4
4411      *
4412      * Inputs:
4413      * * 0: An n-D tensor.
4414      * * 1: A 1-D tensor of {@link ANEURALNETWORKS_TENSOR_INT32}. The dimensions
4415      *      to reduce. Dimension values must be in the range [-n, n).
4416      * * 2: An {@link ANEURALNETWORKS_BOOL} scalar, keep_dims. If true,
4417      *      retains reduced dimensions with length 1.
4418      *
4419      * Outputs:
4420      * * 0: A tensor of the same {@link OperandCode} as input0.
4421      *      If all dimensions are reduced and keep_dims is false, the output
4422      *      shape is [1].
4423      *
4424      * Available since API level 29.
4425      */
4426     ANEURALNETWORKS_REDUCE_ANY = 76,
4427 
4428     /**
4429      * Reduces a tensor by computing the maximum of elements along given
4430      * dimensions.
4431      *
4432      * If keep_dims is true, the reduced dimensions are
4433      * retained with length 1. Otherwise, the rank of the tensor is reduced by
4434      * 1 for each entry in dimensions.
4435      *
4436      * Supported tensor {@link OperandCode}:
4437      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
4438      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
4439      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
4440      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} (since API level 30)
4441      *
4442      * Supported tensor rank: up to 4
4443      *
4444      * Inputs:
4445      * * 0: An n-D tensor.
4446      * * 1: A 1-D tensor of {@link ANEURALNETWORKS_TENSOR_INT32}. The dimensions
4447      *      to reduce. Dimension values must be in the range [-n, n).
4448      * * 2: An {@link ANEURALNETWORKS_BOOL} scalar, keep_dims. If true,
4449      *      retains reduced dimensions with length 1.
4450      *
4451      * Outputs:
4452      * * 0: A tensor of the same {@link OperandCode} as input0.
4453      *      If all dimensions are reduced and keep_dims is false, the output
4454      *      shape is [1].
4455      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} and
4456      *      {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} tensor,
4457      *      the scale and zeroPoint must be the same as input0.
4458      *
4459      * Available since API level 29.
4460      */
4461     ANEURALNETWORKS_REDUCE_MAX = 77,
4462 
4463     /**
4464      * Reduces a tensor by computing the minimum of elements along given
4465      * dimensions.
4466      *
4467      * If keep_dims is true, the reduced dimensions are
4468      * retained with length 1. Otherwise, the rank of the tensor is reduced by
4469      * 1 for each entry in dimensions.
4470      *
4471      * Supported tensor {@link OperandCode}:
4472      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
4473      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
4474      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
4475      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} (since API level 30)
4476      *
4477      * Supported tensor rank: up to 4
4478      *
4479      * Inputs:
4480      * * 0: An n-D tensor.
4481      * * 1: A 1-D tensor of {@link ANEURALNETWORKS_TENSOR_INT32}. The dimensions
4482      *      to reduce. Dimension values must be in the range [-n, n).
4483      * * 2: An {@link ANEURALNETWORKS_BOOL} scalar, keep_dims. If true,
4484      *      retains reduced dimensions with length 1.
4485      *
4486      * Outputs:
4487      * * 0: A tensor of the same {@link OperandCode} as input0.
4488      *      If all dimensions are reduced and keep_dims is false, the output
4489      *      shape is [1].
4490      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} and
4491      *      {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} tensor,
4492      *      the scale and zeroPoint must be the same as input0.
4493      *
4494      * Available since API level 29.
4495      */
4496     ANEURALNETWORKS_REDUCE_MIN = 78,
4497 
4498     /**
4499      * Reduces a tensor by multiplying elements along given dimensions.
4500      *
4501      * If keep_dims is true, the reduced dimensions are
4502      * retained with length 1. Otherwise, the rank of the tensor is reduced by
4503      * 1 for each entry in dimensions.
4504      *
4505      * Supported tensor {@link OperandCode}:
4506      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
4507      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
4508      *
4509      * Supported tensor rank: up to 4
4510      *
4511      * Inputs:
4512      * * 0: An n-D tensor.
4513      * * 1: A 1-D tensor of {@link ANEURALNETWORKS_TENSOR_INT32}. The dimensions
4514      *      to reduce. Dimension values must be in the range [-n, n).
4515      * * 2: An {@link ANEURALNETWORKS_BOOL} scalar, keep_dims. If true,
4516      *      retains reduced dimensions with length 1.
4517      *
4518      * Outputs:
4519      * * 0: A tensor of the same {@link OperandCode} as input0.
4520      *      If all dimensions are reduced and keep_dims is false, the output
4521      *      shape is [1].
4522      *
4523      * Available since API level 29.
4524      */
4525     ANEURALNETWORKS_REDUCE_PROD = 79,
4526 
4527     /**
4528      * Reduces a tensor by summing elements along given dimensions.
4529      *
4530      * If keep_dims is true, the reduced dimensions are
4531      * retained with length 1. Otherwise, the rank of the tensor is reduced by
4532      * 1 for each entry in dimensions.
4533      *
4534      * Supported tensor {@link OperandCode}:
4535      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
4536      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
4537      *
4538      * Supported tensor rank: up to 4
4539      *
4540      * Inputs:
4541      * * 0: An n-D tensor.
4542      * * 1: A 1-D tensor of {@link ANEURALNETWORKS_TENSOR_INT32}. The dimensions
4543      *      to reduce. Dimension values must be in the range [-n, n).
4544      * * 2: An {@link ANEURALNETWORKS_BOOL} scalar, keep_dims. If true,
4545      *      retains reduced dimensions with length 1.
4546      *
4547      * Outputs:
4548      * * 0: A tensor of the same {@link OperandCode} as input0.
4549      *      If all dimensions are reduced and keep_dims is false, the output
4550      *      shape is [1].
4551      *
4552      * Available since API level 29.
4553      */
4554     ANEURALNETWORKS_REDUCE_SUM = 80,
4555 
4556     /**
4557      * Select and scale the feature map of each region of interest to a unified
4558      * output size by average pooling sampling points from bilinear interpolation.
4559      *
4560      * The region of interest is represented by its upper-left corner coordinate
4561      * (x1,y1) and lower-right corner coordinate (x2,y2) in the original image.
4562      * A spatial scaling factor is applied to map into feature map coordinate.
4563      * A valid region of interest should satisfy x1 <= x2 and y1 <= y2.
4564      *
4565      * No rounding is applied in this operation. The sampling points are unified
4566      * distributed in the pooling bin and their values are calculated by bilinear
4567      * interpolation.
4568      *
4569      * Supported tensor {@link OperandCode}:
4570      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
4571      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
4572      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
4573      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} (since API level 30)
4574      *
4575      * Supported tensor rank: 4, with "NHWC" or "NCHW" data layout.
4576      * With the default data layout NHWC, the data is stored in the order of:
4577      * [batch, height, width, channels]. Alternatively, the data layout could
4578      * be NCHW, the data storage order of: [batch, channels, height, width].
4579      *
4580      * Inputs:
4581      * * 0: A 4-D tensor, specifying the feature map.
4582      * * 1: A 2-D Tensor of shape [num_rois, 4], specifying the locations of
4583      *      the regions of interest, each line with format [x1, y1, x2, y2].
4584      *      For input0 of type {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM},
4585      *      this tensor should be of {@link ANEURALNETWORKS_TENSOR_QUANT16_ASYMM},
4586      *      with zeroPoint of 0 and scale of 0.125. Zero num_rois is
4587      *      supported for this tensor.
4588      * * 2: An 1-D {@link ANEURALNETWORKS_TENSOR_INT32} tensor, of shape
4589      *      [num_rois], specifying the batch index of each box. Boxes with
4590      *      the same batch index are grouped together. Zero num_rois is
4591      *      supported for this tensor.
4592      * * 3: An {@link ANEURALNETWORKS_INT32} scalar, specifying the output
4593      *      height of the output tensor.
4594      * * 4: An {@link ANEURALNETWORKS_INT32} scalar, specifying the output
4595      *      width of the output tensor.
4596      * * 5: An {@link ANEURALNETWORKS_FLOAT32} scalar, specifying the ratio
4597      *      from the height of original image to the height of feature map.
4598      * * 6: An {@link ANEURALNETWORKS_FLOAT32} scalar, specifying the ratio
4599      *      from the width of original image to the width of feature map.
4600      * * 7: An {@link ANEURALNETWORKS_INT32} scalar, specifying the number of
4601      *      sampling points in height dimension used to compute the output.
4602      *      Set to 0 for adaptive value of ceil(roi_height/out_height).
4603      * * 8: An {@link ANEURALNETWORKS_INT32} scalar, specifying the number of
4604      *      sampling points in width dimension used to compute the output.
4605      *      Set to 0 for adaptive value of ceil(roi_width/out_width).
4606      * * 9: An {@link ANEURALNETWORKS_BOOL} scalar, set to true to specify
4607      *      NCHW data layout for input0 and output0. Set to false for NHWC.
4608      *
4609      * Outputs:
4610      * * 0: A tensor of the same {@link OperandCode} as input0. The output
4611      *      shape is [num_rois, out_height, out_width, depth].
4612      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} and
4613      *      {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} tensor,
4614      *      the scale and zeroPoint can be different from the input0 scale and zeroPoint.
4615      *
4616      * Available since API level 29.
4617      */
4618     ANEURALNETWORKS_ROI_ALIGN = 81,
4619 
4620     /**
4621      * Select and scale the feature map of each region of interest to a unified
4622      * output size by max-pooling.
4623      *
4624      * The region of interest is represented by its upper-left corner coordinate
4625      * (x1,y1) and lower-right corner coordinate (x2,y2) in the original image.
4626      * A spatial scaling factor is applied to map into feature map coordinate.
4627      * A valid region of interest should satisfy x1 <= x2 and y1 <= y2.
4628      *
4629      * Rounding is applied in this operation to ensure integer boundary for
4630      * regions of interest and pooling bins.
4631      *
4632      * Supported tensor {@link OperandCode}:
4633      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
4634      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
4635      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
4636      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} (since API level 30)
4637      *
4638      * Supported tensor rank: 4, with "NHWC" or "NCHW" data layout.
4639      * With the default data layout NHWC, the data is stored in the order of:
4640      * [batch, height, width, channels]. Alternatively, the data layout could
4641      * be NCHW, the data storage order of: [batch, channels, height, width].
4642      *
4643      * Inputs:
4644      * * 0: A 4-D tensor, specifying the feature map.
4645      * * 1: A 2-D Tensor of shape [num_rois, 4], specifying the locations of
4646      *      the regions of interest, each line with format [x1, y1, x2, y2].
4647      *      For input0 of type {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} and
4648      *      {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} tensor,
4649      *      this tensor should be of {@link ANEURALNETWORKS_TENSOR_QUANT16_ASYMM},
4650      *      with zeroPoint of 0 and scale of 0.125.
4651      * * 2: An 1-D {@link ANEURALNETWORKS_TENSOR_INT32} tensor, of shape
4652      *      [num_rois], specifying the batch index of each box. Boxes with
4653      *      the same batch index are grouped together.
4654      * * 3: An {@link ANEURALNETWORKS_INT32} scalar, specifying the output
4655      *      height of the output tensor.
4656      * * 4: An {@link ANEURALNETWORKS_INT32} scalar, specifying the output
4657      *      width of the output tensor.
4658      * * 5: An {@link ANEURALNETWORKS_FLOAT32} scalar, specifying the ratio
4659      *      from the height of original image to the height of feature map.
4660      * * 6: An {@link ANEURALNETWORKS_FLOAT32} scalar, specifying the ratio
4661      *      from the width of original image to the width of feature map.
4662      * * 7: An {@link ANEURALNETWORKS_BOOL} scalar, set to true to specify
4663      *      NCHW data layout for input0 and output0. Set to false for NHWC.
4664      *
4665      * Outputs:
4666      * * 0: A tensor of the same {@link OperandCode} as input0. The output
4667      *      shape is [num_rois, out_height, out_width, depth].
4668      *      For input0 of type {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} and
4669      *      {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} tensor,
4670      *      the scale and zeroPoint must be the same as input0.
4671      *
4672      * Available since API level 29.
4673      */
4674     ANEURALNETWORKS_ROI_POOLING = 82,
4675 
4676     /**
4677      * Computes reciprocal of square root of x element-wise.
4678      *
4679      * Supported tensor {@link OperandCode}:
4680      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
4681      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
4682      *
4683      * Supported tensor rank: from 1.
4684      *
4685      * Inputs:
4686      * * 0: A tensor.
4687      *
4688      * Outputs:
4689      * * 0: The output tensor of same shape as input0.
4690      *
4691      * Available since API level 29.
4692      */
4693     ANEURALNETWORKS_RSQRT = 83,
4694 
4695     /**
4696      * Using a tensor of booleans c and input tensors x and y select values
4697      * elementwise from both input tensors:
4698      *
4699      * O[i] = C[i] ? x[i] : y[i].
4700      *
4701      * Supported tensor {@link OperandCode}:
4702      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
4703      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
4704      * * {@link ANEURALNETWORKS_TENSOR_INT32}
4705      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
4706      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} (since API level 30)
4707      *
4708      * Supported tensor rank: from 1
4709      *
4710      * Inputs:
4711      * * 0: A tensor of type {@link ANEURALNETWORKS_TENSOR_BOOL8} acting as a
4712      *      mask that chooses, based on the value at each element, whether the
4713      *      corresponding element in the output should be taken from input1 (if
4714      *      true) or input2 (if false).
4715      * * 1: An input tensor of the same shape as input0.
4716      * * 2: An input tensor of the same shape and type as input1.
4717      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
4718      *      and {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} tensor,
4719      *      the scales and zeroPoint can be different from input1 scale and zeroPoint.
4720      *
4721      * Outputs:
4722      * * 0: A tensor of the same type and shape as input1 and input2.
4723      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} tensor,
4724      *      the scale and zeroPoint can be different from inputs' scale and zeroPoint.
4725      *
4726      * Available since API level 29.
4727      */
4728     ANEURALNETWORKS_SELECT = 84,
4729 
4730     /**
4731      * Computes sin of x element-wise.
4732      *
4733      * Supported tensor {@link OperandCode}:
4734      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
4735      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
4736      *
4737      * Supported tensor rank: from 1.
4738      *
4739      * Inputs:
4740      * * 0: A tensor.
4741      *
4742      * Outputs:
4743      * * 0: The output tensor of same shape as input0.
4744      *
4745      * Available since API level 29.
4746      */
4747     ANEURALNETWORKS_SIN = 85,
4748 
4749     /**
4750      * Extracts a slice of specified size from the input tensor starting at a
4751      * specified location.
4752      *
4753      * The starting location is specified as a 1-D tensor containing offsets
4754      * for each dimension. The size is specified as a 1-D tensor containing
4755      * either size of a slice along corresponding dimension or -1. In the latter
4756      * case, all the remaining elements in dimension are included in the slice.
4757      *
4758      * A sum of begin offset and a size of a slice must not exceed size of a
4759      * corresponding dimension.
4760      *
4761      * Supported tensor {@link OperandCode}:
4762      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
4763      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
4764      * * {@link ANEURALNETWORKS_TENSOR_INT32}
4765      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
4766      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} (since API level 30)
4767      *
4768      * Supported tensor rank: from 1
4769      *
4770      * Inputs:
4771      * * 0: An n-D tensor to take slice from, may be zero-sized.
4772      * * 1: A 1-D tensor of type {@link ANEURALNETWORKS_TENSOR_INT32} specifying
4773      *      the beginning indices of the slice in each dimension.
4774      * * 2: A 1-D tensor of type {@link ANEURALNETWORKS_TENSOR_INT32} specifying
4775      *      the size of the slice in each dimension.
4776      *
4777      * Outputs:
4778      * * 0: An n-D tensor of the same type as the input containing the slice.
4779      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} and
4780      *      {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} tensor,
4781      *      its scale and zeroPoint has to be same as the input0 scale and zeroPoint.
4782      *
4783      * Available since API level 29.
4784      */
4785     ANEURALNETWORKS_SLICE = 86,
4786 
4787     /**
4788      * Splits a tensor along a given axis into num_splits subtensors.
4789      *
4790      * Supported tensor {@link OperandCode}:
4791      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
4792      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
4793      * * {@link ANEURALNETWORKS_TENSOR_INT32}
4794      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
4795      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} (since API level 30)
4796      *
4797      * Supported tensor rank: from 1
4798      *
4799      * Inputs:
4800      * * 0: An n-D tensor to split.
4801      * * 1: An {@link ANEURALNETWORKS_INT32} scalar specifying the axis along
4802      *      which to split.
4803      * * 2: An {@link ANEURALNETWORKS_INT32} scalar indicating the number of
4804      *      splits along given axis. Must evenly divide axis size.
4805      *
4806      * Outputs:
4807      * * 0 ~ (num_splits - 1): Resulting subtensors.
4808      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} and
4809      *      {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} tensor,
4810      *      the scale and zeroPoint must be the same as input0.
4811      *
4812      * Available since API level 29.
4813      */
4814     ANEURALNETWORKS_SPLIT = 87,
4815 
4816     /**
4817      * Computes square root of x element-wise.
4818      *
4819      * Supported tensor {@link OperandCode}:
4820      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
4821      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
4822      *
4823      * Supported tensor rank: from 1.
4824      *
4825      * Inputs:
4826      * * 0: A tensor.
4827      *
4828      * Outputs:
4829      * * 0: The output tensor of same shape as input0.
4830      *
4831      * Available since API level 29.
4832      */
4833     ANEURALNETWORKS_SQRT = 88,
4834 
4835     /**
4836      * Constructs a tensor by tiling a given tensor.
4837      *
4838      * This operation creates a new tensor by replicating `input` `multiples`
4839      * times. The output tensor's i-th dimension has `input.dims(i) * multiples[i]`
4840      * elements, and the values of `input` are replicated `multiples[i]` times
4841      * along the i-th dimension.
4842      * For example, tiling `[a b c d]` by `[2]` produces `[a b c d a b c d]`.
4843      *
4844      * Supported tensor {@link OperandCode}:
4845      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
4846      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
4847      * * {@link ANEURALNETWORKS_TENSOR_INT32}
4848      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
4849      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} (since API level 30)
4850      *
4851      * Supported tensor rank: from 1
4852      *
4853      * Inputs:
4854      * * 0: input, an n-D tensor specifying the input.
4855      * * 1: multiples, a 1-D tensor of {@link ANEURALNETWORKS_TENSOR_INT32}.
4856      *      The length of multiples must be n.
4857      *
4858      * Outputs:
4859      * * 0: A tiled tensor of the same {@link OperandCode} and rank as `input`.
4860      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} and
4861      *      {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} tensor,
4862      *      the scale and zeroPoint must be the same as input0.
4863      *
4864      * Available since API level 29.
4865      */
4866     ANEURALNETWORKS_TILE = 89,
4867 
4868     /**
4869      * Finds values and indices of the k largest entries for the last dimension.
4870      *
4871      * Resulting values in each dimensions are sorted in descending order. If
4872      * two values are equal, the one with larger index appears first.
4873      *
4874      * Supported tensor {@link OperandCode}:
4875      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
4876      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
4877      * * {@link ANEURALNETWORKS_TENSOR_INT32}
4878      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
4879      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} (since API level 30)
4880      *
4881      * Supported tensor rank: from 1
4882      *
4883      * Inputs:
4884      * * 0: input, an n-D tensor specifying the input.
4885      * * 1: k, an {@link ANEURALNETWORKS_INT32} scalar, specifying the number of
4886      *      top elements to look for along the last dimension.
4887      *
4888      * Outputs:
4889      * * 0: An n-D tensor of the same type as the input, containing the k
4890      *      largest elements along each last dimensional slice.
4891      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} and
4892      *      {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} tensor,
4893      *      the scale and zeroPoint must be the same as input0.
4894      * * 1: An n-D tensor of type {@link ANEURALNETWORKS_TENSOR_INT32}
4895      *      containing the indices of values within the last dimension of input.
4896      *
4897      * Available since API level 29.
4898      */
4899     ANEURALNETWORKS_TOPK_V2 = 90,
4900 
4901     /**
4902      * Performs the transpose of 2-D convolution operation.
4903      *
4904      * This operation is sometimes called "deconvolution" after Deconvolutional
4905      * Networks, but is actually the transpose (gradient) of
4906      * {@link ANEURALNETWORKS_CONV_2D} rather than an actual deconvolution.
4907      *
4908      * The output dimensions are functions of the filter dimensions, stride, and
4909      * padding.
4910      *
4911      * Supported tensor {@link OperandCode} configurations:
4912      * * 16 bit floating point:
4913      * * * {@link ANEURALNETWORKS_TENSOR_FLOAT16} for input, filter, output, and bias.
4914      *
4915      * * 32 bit floating point:
4916      * * * {@link ANEURALNETWORKS_TENSOR_FLOAT32} for input, filter, output, and bias.
4917      *
4918      * * Quantized:
4919      * * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} for input, filter, and output.
4920      * * * {@link ANEURALNETWORKS_TENSOR_INT32} for bias (with scale set to
4921      * * * input.scale * filter.scale).
4922      *
4923      * * Quantized with symmetric per channel quantization for the filter:
4924      * * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} for input, and output.
4925      * * * {@link ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL} for filter.
4926      * * * {@link ANEURALNETWORKS_TENSOR_INT32} for bias (scale set to 0.0,
4927      * * * each value scaling is separate and equal to input.scale * filter.scales[channel]).
4928      *
4929      * Available since API level 30:
4930      * * Quantized signed (since API level 30):
4931      * * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} for input, filter, and output.
4932      * * * {@link ANEURALNETWORKS_TENSOR_INT32} for bias (with scale set to
4933      * * * input.scale * filter.scale).
4934      *
4935      * * Quantized signed with filter symmetric per channel quantization (since API level 30):
4936      * * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} for input, and output.
4937      * * * {@link ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL} for filter.
4938      * * * {@link ANEURALNETWORKS_TENSOR_INT32} for bias (scale set to 0.0,
4939      * * * each value scaling is separate and equal to input.scale * filter.scales[channel]).
4940      *
4941      * Supported tensor rank: 4, with "NHWC" or "NCHW" data layout.
4942      * With the default data layout NHWC, the data is stored in the order of:
4943      * [batch, height, width, channels]. Alternatively, the data layout could
4944      * be NCHW, the data storage order of: [batch, channels, height, width].
4945      *
4946      * Both explicit padding and implicit padding are supported.
4947      *
4948      * Inputs (explicit padding):
4949      * * 0: A 4-D tensor, of shape [batches, height, width, depth_in],
4950      *      specifying the input.
4951      *      Since API level 29, zero batches is supported for this tensor.
4952      * * 1: A 4-D tensor, of shape
4953      *      [depth_out, filter_height, filter_width, depth_in], specifying the
4954      *      filter. For tensor of type
4955      *      {@link ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL} the channel
4956      *      dimension (ANeuralNetworksSymmPerChannelQuantParams::channelDim) must be set to 0.
4957      * * 2: A 1-D tensor, of shape [depth_out], specifying the bias. For input
4958      *      tensor of type {@link ANEURALNETWORKS_TENSOR_FLOAT32} or
4959      *      {@link ANEURALNETWORKS_TENSOR_FLOAT16}, the bias must be of the
4960      *      same type.
4961      *      For filter tensor of {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
4962      *      and {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED},
4963      *      the bias should be of {@link ANEURALNETWORKS_TENSOR_INT32},
4964      *      with zeroPoint of 0 and bias_scale == input_scale * filter_scale.
4965      *      For filter tensor of {@link ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL},
4966      *      the bias must be of {@link ANEURALNETWORKS_TENSOR_INT32}, with zeroPoint of 0
4967      *      and bias_scale of 0. The actual scale of each value 'i' is equal to
4968      *      bias_scale[i] = input_scale * filter_scale[i].
4969      * * 3: An {@link ANEURALNETWORKS_INT32} scalar, specifying the padding on
4970      *      the left, in the ‘width’ dimension.
4971      * * 4: An {@link ANEURALNETWORKS_INT32} scalar, specifying the padding on
4972      *      the right, in the ‘width’ dimension.
4973      * * 5: An {@link ANEURALNETWORKS_INT32} scalar, specifying the padding on
4974      *      the top, in the ‘height’ dimension.
4975      * * 6: An {@link ANEURALNETWORKS_INT32} scalar, specifying the padding on
4976      *      the bottom, in the ‘height’ dimension.
4977      * * 7: An {@link ANEURALNETWORKS_INT32} scalar, specifying the stride when
4978      *      walking through input in the ‘width’ dimension.
4979      * * 8: An {@link ANEURALNETWORKS_INT32} scalar, specifying the stride when
4980      *      walking through input in the ‘height’ dimension.
4981      * * 9: An {@link ANEURALNETWORKS_INT32} scalar, and has to be one of the
4982      *      {@link FuseCode} values. Specifies the activation to
4983      *      invoke on the result.
4984      * * 10: An {@link ANEURALNETWORKS_BOOL} scalar, set to true to specify
4985      *       NCHW data layout for input0 and output0. Set to false for NHWC.
4986      *
4987      * Inputs (implicit padding):
4988      * * 0: A 4-D tensor, of shape [batches, height, width, depth_in],
4989      *      specifying the input.
4990      *      Since API level 29, zero batches is supported for this tensor.
4991      * * 1: A 4-D tensor, of shape
4992      *      [depth_out, filter_height, filter_width, depth_in], specifying the
4993      *      filter. For tensor of type
4994      *      {@link ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL} the channel
4995      *      dimension (ANeuralNetworksSymmPerChannelQuantParams::channelDim) must be set to 0.
4996      * * 2: A 1-D tensor, of shape [depth_out], specifying the bias. For input
4997      *      tensor of type {@link ANEURALNETWORKS_TENSOR_FLOAT32} or
4998      *      {@link ANEURALNETWORKS_TENSOR_FLOAT16}, the bias should be of the
4999      *      same type.
5000      *      For filter tensor of {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
5001      *      and {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED},
5002      *      the bias should be of {@link ANEURALNETWORKS_TENSOR_INT32},
5003      *      with zeroPoint of 0 and bias_scale == input_scale * filter_scale.
5004      *      For filter tensor of {@link ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL},
5005      *      the bias must be of {@link ANEURALNETWORKS_TENSOR_INT32}, with zeroPoint of 0
5006      *      and bias_scale of 0. The actual scale of each value 'i' is equal to
5007      *      bias_scale[i] = input_scale * filter_scale[i].
5008      * * 3: An {@link ANEURALNETWORKS_TENSOR_INT32} tensor, specifying the output
5009      *      tensor shape.
5010      * * 4: An {@link ANEURALNETWORKS_INT32} scalar, specifying the implicit
5011      *      padding scheme, has to be one of the
5012      *      {@link PaddingCode} values.
5013      * * 5: An {@link ANEURALNETWORKS_INT32} scalar, specifying the stride when
5014      *      walking through input in the ‘width’ dimension.
5015      * * 6: An {@link ANEURALNETWORKS_INT32} scalar, specifying the stride when
5016      *      walking through input in the ‘height’ dimension.
5017      * * 7: An {@link ANEURALNETWORKS_INT32} scalar, and has to be one of the
5018      *      {@link FuseCode} values. Specifies the activation to
5019      *      invoke on the result.
5020      * * 8: An {@link ANEURALNETWORKS_BOOL} scalar, set to true to specify
5021      *      NCHW data layout for input0 and output0. Set to false for NHWC.
5022      *
5023      * Outputs:
5024      * * 0: The output 4-D tensor, of shape
5025      *      [batches, out_height, out_width, depth_out].
5026      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} and
5027      *      {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} tensor,
5028      *      the scale and zeroPoint can be different from inputs' scale and zeroPoint.
5029      *
5030      * Available since API level 29.
5031      */
5032     ANEURALNETWORKS_TRANSPOSE_CONV_2D = 91,
5033 
5034     /**
5035      * A recurrent neural network specified by an LSTM cell.
5036      *
5037      * Performs (fully) dynamic unrolling of input.
5038      *
5039      * This Op unrolls the input along the time dimension, and implements the
5040      * following operation for each element in the sequence
5041      * s = 1...sequence_length:
5042      *   outputs[s] = projection(state = activation(LSTMOp(inputs[s])))
5043      *
5044      * Where LSTMOp is the LSTM op as in {@link ANEURALNETWORKS_LSTM},
5045      * the "projection" is an optional projection layer from state and output
5046      * and the “activation” is the function passed as the
5047      * “fused_activation_function” argument (if not “NONE”).
5048      *
5049      * Supported tensor {@link OperandCode}:
5050      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
5051      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
5052      *
5053      * Supported tensor rank: 3, either time-major or batch-major.
5054      *
5055      * All input and output tensors must be of the same type.
5056      *
5057      * Inputs:
5058      * * 0: The input (\f$x_t\f$).
5059      *      A 3-D tensor of shape:
5060      *        If time-major: [max_time, batch_size, input_size]
5061      *        If batch-major: [batch_size, max_time, input_size]
5062      *      where “max_time” is the number of timesteps (sequence length),
5063      *      “batch_size” corresponds to the batching dimension, and
5064      *      “input_size” is the size of the input.
5065      * * 1: The input-to-input weights (\f$W_{xi}\f$). Optional.
5066      *      A 2-D tensor of shape [num_units, input_size], where “num_units”
5067      *      corresponds to the number of cell units.
5068      * * 2: The input-to-forget weights (\f$W_{xf}\f$).
5069      *      A 2-D tensor of shape [num_units, input_size].
5070      * * 3: The input-to-cell weights (\f$W_{xc}\f$).
5071      *      A 2-D tensor of shape [num_units, input_size].
5072      * * 4: The input-to-output weights (\f$W_{xo}\f$).
5073      *      A 2-D tensor of shape [num_units, input_size].
5074      * * 5: The recurrent-to-input weights (\f$W_{hi}\f$). Optional.
5075      *      A 2-D tensor of shape [num_units, output_size], where “output_size”
5076      *      corresponds to either the number of cell units (i.e., “num_units”),
5077      *      or the second dimension of the “projection_weights”, if defined.
5078      * * 6: The recurrent-to-forget weights (\f$W_{hf}\f$).
5079      *      A 2-D tensor of shape [num_units, output_size].
5080      * * 7: The recurrent-to-cell weights (\f$W_{hc}\f$).
5081      *      A 2-D tensor of shape [num_units, output_size].
5082      * * 8: The recurrent-to-output weights (\f$W_{ho}\f$).
5083      *      A 2-D tensor of shape [num_units, output_size].
5084      * * 9: The cell-to-input weights (\f$W_{ci}\f$). Optional.
5085      *      A 1-D tensor of shape [num_units].
5086      * * 10:The cell-to-forget weights (\f$W_{cf}\f$). Optional.
5087      *      A 1-D tensor of shape [num_units].
5088      * * 11:The cell-to-output weights (\f$W_{co}\f$). Optional.
5089      *      A 1-D tensor of shape [num_units].
5090      * * 12:The input gate bias (\f$b_i\f$). Optional.
5091      *      A 1-D tensor of shape [num_units].
5092      * * 13:The forget gate bias (\f$b_f\f$).
5093      *      A 1-D tensor of shape [num_units].
5094      * * 14:The cell bias (\f$b_c\f$).
5095      *      A 1-D tensor of shape [num_units].
5096      * * 15:The output gate bias (\f$b_o\f$).
5097      *      A 1-D tensor of shape [num_units].
5098      * * 16:The projection weights (\f$W_{proj}\f$). Optional.
5099      *      A 2-D tensor of shape [output_size, num_units].
5100      * * 17:The projection bias (\f$b_{proj}\f$). Optional.
5101      *      A 1-D tensor of shape [output_size].
5102      * * 18:The output state (in) (\f$h_{t-1}\f$).
5103      *      A 2-D tensor of shape [batch_size, output_size].
5104      * * 19:The cell state (in) (\f$C_{t-1}\f$).
5105      *      A 2-D tensor of shape [batch_size, num_units].
5106      * * 20:The activation function (\f$g\f$).
5107      *      A value indicating the activation function:
5108      *      <ul>
5109      *      <li>0: None;
5110      *      <li>1: Relu;
5111      *      <li>3: Relu6;
5112      *      <li>4: Tanh;
5113      *      <li>6: Sigmoid.
5114      *      </ul>
5115      * * 21:The clipping threshold (\f$t_{cell}\f$) for the cell state, such
5116      *      that values are bound within [-cell_clip, cell_clip]. If set to 0.0
5117      *      then clipping is disabled.
5118      * * 22:The clipping threshold (\f$t_{proj}\f$) for the output from the
5119      *      projection layer, such that values are bound within
5120      *      [-proj_clip, proj_clip]. If set to 0.0 then clipping is disabled.
5121      * * 23:Time-major if true, batch-major if false.
5122      * * 24:The input layer normalization weights. Optional.
5123      *      A 1-D tensor of shape [num_units]. Used to rescale normalized inputs
5124      *      to activation at input gate.
5125      * * 25:The forget layer normalization weights. Optional.
5126      *      A 1-D tensor of shape [num_units]. Used to rescale normalized inputs
5127      *      to activation at forget gate.
5128      * * 26:The cell layer normalization weights. Optional.
5129      *      A 1-D tensor of shape [num_units]. Used to rescale normalized inputs
5130      *      to activation at cell gate.
5131      * * 27:The output layer normalization weights. Optional.
5132      *      A 1-D tensor of shape [num_units]. Used to rescale normalized inputs
5133      *      to activation at output gate.
5134      *
5135      * Outputs:
5136      * * 0: The output (\f$o_t\f$).
5137      *      A 3-D tensor of shape:
5138      *        If time-major: [max_time, batch_size, output_size]
5139      *        If batch-major: [batch_size, max_time, output_size]
5140      * * 1: A tensor of shape [batch_size, output_size] containing a hidden
5141      *      state from the last time step in the sequence. This output is
5142      *      optional and can be omitted. If this output is present then
5143      *      output #2 must be present as well.
5144      *      Available since API level 30.
5145      * * 2: A tensor of shape [batch_size, cell_size] containing a cell state
5146      *      from the last time step in the sequence. This output is optional
5147      *      and can be omitted.
5148      *      Available since API level 30.
5149      *
5150      * Available since API level 29.
5151      *
5152      * Important: As of API level 29, there is no way to get the output state tensors out and NNAPI
5153      * does not maintain internal states. This operator does not support the usage pattern in which
5154      * multiple cells are chained and state tensors are propagated.
5155      */
5156     ANEURALNETWORKS_UNIDIRECTIONAL_SEQUENCE_LSTM = 92,
5157 
5158     /**
5159      * A recurrent neural network layer that applies a basic RNN cell to a
5160      * sequence of inputs.
5161      *
5162      * This layer unrolls the input along the sequence dimension, and implements
5163      * the following operation
5164      * for each element in the sequence s = 1...sequence_length:
5165      *   outputs[s] = state = activation(inputs[s] * input_weights’ + state *
5166      *   recurrent_weights’ + bias)
5167      *
5168      * Where:
5169      * * “input_weights” is a weight matrix that multiplies the inputs;
5170      * * “recurrent_weights” is a weight matrix that multiplies the current
5171      *    “state” which itself is the output from the previous time step
5172      *    computation;
5173      * * “bias” is a bias vector (added to each output vector in the batch);
5174      * * “activation” is the function passed as the “fused_activation_function”
5175      *   argument (if not “NONE”).
5176      *
5177      * Supported tensor {@link OperandCode}:
5178      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
5179      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
5180      *
5181      * The input tensors must all be the same type.
5182      *
5183      * Inputs:
5184      * * 0: input.
5185      *      A 3-D tensor. The shape is defined by the input 6 (timeMajor). If
5186      *      it is set to 1, then the input has a shape [maxTime, batchSize,
5187      *      inputSize], otherwise the input has a shape [batchSize, maxTime,
5188      *      inputSize].
5189      * * 1: weights.
5190      *      A 2-D tensor of shape [numUnits, inputSize].
5191      * * 2: recurrent_weights.
5192      *      A 2-D tensor of shape [numUnits, numUnits].
5193      * * 3: bias.
5194      *      A 1-D tensor of shape [numUnits].
5195      * * 4: hidden state
5196      *      A 2-D tensor of shape [batchSize, numUnits]. Specifies a hidden
5197      *      state input for the first time step of the computation.
5198      * * 5: fusedActivationFunction.
5199      *      A {@link FuseCode} value indicating the activation function. If
5200      *      “NONE” is specified then it results in a linear activation.
5201      * * 6: timeMajor
5202      *      An {@link ANEURALNETWORKS_INT32} scalar specifying the shape format
5203      *      of input and output tensors. Must be set to either 0 or 1.
5204      * Outputs:
5205      * * 0: output.
5206      *      A 3-D tensor. The shape is defined by the input 6 (timeMajor). If
5207      *      it is set to 1, then the output has a shape [maxTime, batchSize,
5208      *      numUnits], otherwise the output has a shape [batchSize, maxTime,
5209      *      numUnits].
5210      * * 1: A tensor of shape [batchSize, numUnits] containing hidden state
5211      *      from the last time step in the sequence. This output is optional
5212      *      and can be omitted.
5213      *      Available since API level 30.
5214      *
5215      * Available since API level 29.
5216      *
5217      * Important: As of API level 29, there is no way to get the output state tensors out and NNAPI
5218      * does not maintain internal states. This operator does not support the usage pattern in which
5219      * multiple cells are chained and state tensors are propagated.
5220      */
5221     ANEURALNETWORKS_UNIDIRECTIONAL_SEQUENCE_RNN = 93,
5222 
5223     /**
5224      * Resizes images to given size using the nearest neighbor interpretation.
5225      *
5226      * Resized images must be distorted if their output aspect ratio is not the
5227      * same as input aspect ratio. The corner pixels of output may not be the
5228      * same as corner pixels of input.
5229      *
5230      * Supported tensor {@link OperandCode}:
5231      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
5232      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
5233      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
5234      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} (since API level 30)
5235      *
5236      * Supported tensor rank: 4, with "NHWC" or "NCHW" data layout.
5237      * With the default data layout NHWC, the data is stored in the order of:
5238      * [batch, height, width, channels]. Alternatively, the data layout could
5239      * be NCHW, the data storage order of: [batch, channels, height, width].
5240      *
5241      * Both resizing by shape and resizing by scale are supported.
5242      *
5243      * Inputs (resizing by shape):
5244      * * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying
5245      *      the input. Zero batches is supported for this tensor.
5246      * * 1: An {@link ANEURALNETWORKS_INT32} scalar, specifying the output
5247      *      width of the output tensor.
5248      * * 2: An {@link ANEURALNETWORKS_INT32} scalar, specifying the output
5249      *      height of the output tensor.
5250      * * 3: An {@link ANEURALNETWORKS_BOOL} scalar, default to false.
5251      *      Set to true to specify NCHW data layout for input0 and output0.
5252      * * 4: Align corners. An optional {@link ANEURALNETWORKS_BOOL}
5253      *      scalar, default to false.  If True, the centers of the 4 corner
5254      *      pixels of the input and output tensors are aligned, preserving the
5255      *      values at the corner pixels.
5256      *      Available since API level 30.
5257      * * 5: Half pixel centers. An optional {@link ANEURALNETWORKS_BOOL}
5258      *      scalar, default to false. If True, the pixel centers are assumed to
5259      *      be at (0.5, 0.5). This is the default behavior of image.resize in
5260      *      TF 2.0. If this parameter is True, then align_corners parameter
5261      *      must be False.
5262      *      Available since API level 30.
5263      *
5264      * Inputs (resizing by scale):
5265      * * 0: A 4-D tensor, of shape [batches, height, width, depth], specifying
5266      *      the input. Zero batches is supported for this tensor.
5267      * * 1: A scalar, specifying width_scale, the scaling factor of the width
5268      *      dimension from the input tensor to the output tensor. The output
5269      *      width is calculated as new_width = floor(width * width_scale).
5270      *      The scalar must be of {@link ANEURALNETWORKS_FLOAT16} if input0 is
5271      *      of {@link ANEURALNETWORKS_TENSOR_FLOAT16} and of
5272      *      {@link ANEURALNETWORKS_FLOAT32} otherwise.
5273      * * 2: A scalar, specifying height_scale, the scaling factor of the height
5274      *      dimension from the input tensor to the output tensor. The output
5275      *      height is calculated as new_height = floor(height * height_scale).
5276      *      The scalar must be of {@link ANEURALNETWORKS_FLOAT16} if input0 is
5277      *      of {@link ANEURALNETWORKS_TENSOR_FLOAT16} and of
5278      *      {@link ANEURALNETWORKS_FLOAT32} otherwise.
5279      * * 3: An {@link ANEURALNETWORKS_BOOL} scalar, default to false.
5280      *      Set to true to specify NCHW data layout for input0 and output0.
5281      * * 4: Align corners. An optional {@link ANEURALNETWORKS_BOOL}
5282      *      scalar, default to false.  If True, the centers of the 4 corner
5283      *      pixels of the input and output tensors are aligned, preserving the
5284      *      values at the corner pixels.
5285      *      Available since API level 30.
5286      * * 5: Half pixel centers. An optional {@link ANEURALNETWORKS_BOOL}
5287      *      scalar, default to false. If True, the pixel centers are assumed to
5288      *      be at (0.5, 0.5). This is the default behavior of image.resize in
5289      *      TF 2.0. If this parameter is True, then align_corners parameter
5290      *      must be False.
5291      *      Available since API level 30.
5292      *
5293      * Outputs:
5294      * * 0: The output 4-D tensor, of shape
5295      *      [batches, new_height, new_width, depth].
5296      *      For a {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM} and
5297      *      {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED} tensor,
5298      *      the scale and zeroPoint must be the same as input0.
5299      *
5300      * Available since API level 29.
5301      */
5302     ANEURALNETWORKS_RESIZE_NEAREST_NEIGHBOR = 94,
5303 
5304     // Operations below are available since API level 30.
5305 
5306     /**
5307      * Quantized version of {@link ANEURALNETWORKS_LSTM}.
5308      *
5309      * The input and the output use asymmetric quantized types, while the rest
5310      * use symmetric ones.
5311      *
5312      * Inputs:
5313      * * 0: The input to the LSTM cell.
5314      *      Type: {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED}
5315      *      Shape: [batchSize, inputSize]
5316      * * 1: The input-to-input weights. Optional.
5317      *      Type: {@link ANEURALNETWORKS_TENSOR_QUANT8_SYMM}
5318      *      Shape: [numUnits, inputSize]
5319      * * 2: The input-to-forget weights.
5320      *      Type: {@link ANEURALNETWORKS_TENSOR_QUANT8_SYMM}
5321      *      Shape: [numUnits, inputSize]
5322      * * 3: The input-to-cell weights.
5323      *      Type: {@link ANEURALNETWORKS_TENSOR_QUANT8_SYMM}
5324      *      Shape: [numUnits, inputSize]
5325      * * 4: The input-to-output weights.
5326      *      Type: {@link ANEURALNETWORKS_TENSOR_QUANT8_SYMM}
5327      *      Shape: [numUnits, inputSize]
5328      * * 5: The recurrent-to-input weights. Optional.
5329      *      Type: {@link ANEURALNETWORKS_TENSOR_QUANT8_SYMM}
5330      *      Shape: [numUnits, outputSize]
5331      * * 6: The recurrent-to-forget weights.
5332      *      Type: {@link ANEURALNETWORKS_TENSOR_QUANT8_SYMM}
5333      *      Shape: [numUnits, outputSize]
5334      * * 7: The recurrent-to-cell weights.
5335      *      Type: {@link ANEURALNETWORKS_TENSOR_QUANT8_SYMM}
5336      *      Shape: [numUnits, outputSize]
5337      * * 8: The recurrent-to-output weights.
5338      *      Type: {@link ANEURALNETWORKS_TENSOR_QUANT8_SYMM}
5339      *      Shape: [numUnits, outputSize]
5340      * * 9: The cell-to-input weights (for peephole). Optional.
5341      *      Type: {@link ANEURALNETWORKS_TENSOR_QUANT16_SYMM}
5342      *      Shape: [numUnits]
5343      * * 10: The cell-to-forget weights (for peephole). Optional.
5344      *       Type: {@link ANEURALNETWORKS_TENSOR_QUANT16_SYMM}
5345      *       Shape: [numUnits]
5346      * * 11: The cell-to-output weights (for peephole). Optional.
5347      *       Type: {@link ANEURALNETWORKS_TENSOR_QUANT16_SYMM}
5348      *       Shape: [numUnits]
5349      * * 12: The input gate bias. Quantized with scale being the
5350      *       product of input and weights scales and zeroPoint equal to 0.
5351      *       Optional.
5352      *       Type: {@link ANEURALNETWORKS_TENSOR_INT32}
5353      *       Shape: [numUnits]
5354      * * 13: The forget gate bias. Quantized with scale being the
5355      *       product of input and weights scales and zeroPoint equal to 0.
5356      *       Type: {@link ANEURALNETWORKS_TENSOR_INT32}
5357      *       Shape: [numUnits]
5358      * * 14: The cell bias. Quantized with scale being the
5359      *       product of input and weights scales and zeroPoint equal to 0.
5360      *       Type: {@link ANEURALNETWORKS_TENSOR_INT32}
5361      *       Shape: [numUnits]
5362      * * 15: The output gate bias. Quantized with scale being the
5363      *       product of input and weights scales and zeroPoint equal to 0.
5364      *       Type: {@link ANEURALNETWORKS_TENSOR_INT32}
5365      *       Shape: [numUnits]
5366      * * 16: The projection weights. Optional.
5367      *       Type: {@link ANEURALNETWORKS_TENSOR_QUANT8_SYMM}
5368      *       Shape: [outputSize, numUnits]
5369      * * 17: The projection bias. Quantized with scale being the
5370      *       product of input and weights scales and zeroPoint equal to 0.
5371      *       Optional.
5372      *       Type: {@link ANEURALNETWORKS_TENSOR_INT32}
5373      *       Shape: [outputSize]
5374      * * 18: The output from the previous time step.
5375      *       Type: {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED}
5376      *       Shape: [batchSize, outputSize]
5377      * * 19: The cell state from the previous time step.
5378      *       Type: {@link ANEURALNETWORKS_TENSOR_QUANT16_SYMM}
5379      *       Shape: [batchSize, numUnits]
5380      * * 20: The input layer normalization weights. Used to rescale
5381      *       normalized inputs to activation at input gate. Optional.
5382      *       Type: {@link ANEURALNETWORKS_TENSOR_QUANT16_SYMM}
5383      *       Shape: [numUnits]
5384      * * 21: The forget layer normalization weights. Used to
5385      *       rescale normalized inputs to activation at forget gate. Optional.
5386      *       Type: {@link ANEURALNETWORKS_TENSOR_QUANT16_SYMM}
5387      *       Shape: [numUnits]
5388      * * 22: The cell layer normalization weights. Used to rescale
5389      *       normalized inputs to activation at cell gate. Optional.
5390      *       Type: {@link ANEURALNETWORKS_TENSOR_QUANT16_SYMM}
5391      *       Shape: [numUnits]
5392      * * 23: The output layer normalization weights. Used to
5393      *       rescale normalized inputs to activation at output gate. Optional.
5394      *       Type: {@link ANEURALNETWORKS_TENSOR_QUANT16_SYMM}
5395      *       Shape: [numUnits]
5396      * * 24: The cell clip. If provided the cell state is clipped
5397      *       by this value prior to the cell output activation. Optional.
5398      *       Type: {@link ANEURALNETWORKS_FLOAT32}.
5399      * * 25: The projection clip. If provided and projection is enabled,
5400      *       this is used for clipping the projected values. Optional.
5401      *       Type: {@link ANEURALNETWORKS_FLOAT32}.
5402      * * 26: The scale of the intermediate result of matmul,
5403      *       i.e. input to layer normalization, at input gate.
5404      *       Type: {@link ANEURALNETWORKS_FLOAT32}.
5405      * * 27: The scale of the intermediate result of matmul,
5406      *       i.e. input to layer normalization, at forget gate.
5407      *       Type: {@link ANEURALNETWORKS_FLOAT32}.
5408      * * 28: The scale of the intermediate result of matmul,
5409      *       i.e. input to layer normalization, at cell gate.
5410      *       Type: {@link ANEURALNETWORKS_FLOAT32}.
5411      * * 29: The scale of the intermediate result of matmul,
5412      *       i.e. input to layer normalization, at output gate.
5413      *       Type: {@link ANEURALNETWORKS_FLOAT32}.
5414      * * 30: The zero point of the hidden state, i.e. input to
5415      *       projection.
5416      *       Type: {@link ANEURALNETWORKS_INT32}.
5417      * * 31: The scale of the hidden state, i.e. input to
5418      *       projection.
5419      *       Type: {@link ANEURALNETWORKS_FLOAT32}.
5420      *
5421      * Outputs:
5422      * * 0: The output state (out).
5423      *      Type: {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED}
5424      *      Shape: [batchSize, outputSize]
5425      * * 1: The cell state (out).
5426      *      Type: {@link ANEURALNETWORKS_TENSOR_QUANT16_SYMM}
5427      *      Shape: [batchSize, numUnits]
5428      * * 2: The output. This is effectively the same as the current
5429      *      "output state (out)" value.
5430      *      Type: {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED}
5431      *      Shape: [batchSize, outputSize]
5432      *
5433      * Available since API level 30.
5434      */
5435     ANEURALNETWORKS_QUANTIZED_LSTM = 95,
5436 
5437     /**
5438      * Executes one of the two referenced models as determined by a boolean
5439      * value.
5440      *
5441      * The inputs and outputs of the two referenced models must agree with the
5442      * signature of this operation. That is, if the operation has (3 + n) inputs
5443      * and m outputs, both models must have n inputs and m outputs with the same
5444      * types, ranks (if specified), dimensions (if specified), scales,
5445      * zeroPoints, and other operand parameters as the corresponding operation
5446      * inputs and outputs.
5447      *
5448      * Inputs:
5449      * * 0: A value of type {@link ANEURALNETWORKS_TENSOR_BOOL8} and shape [1]
5450      *      that determines which of the two referenced models to execute.
5451      *      The operand must have fully specified dimensions.
5452      * * 1: A {@link ANEURALNETWORKS_MODEL} reference to the model to be
5453      *      executed if the condition is true.
5454      * * 2: A {@link ANEURALNETWORKS_MODEL} reference to the model to be
5455      *      executed if the condition is false.
5456      * * 3 ~ (n + 2): Inputs to be passed to the model selected for execution.
5457      *
5458      * Outputs:
5459      * * 0 ~ (m - 1): Outputs produced by the selected model.
5460      *
5461      * Available since API level 30.
5462      */
5463     ANEURALNETWORKS_IF = 96,
5464 
5465     /**
5466      * Executes the body model until the condition model outputs false.
5467      *
5468      * The inputs to this operation are the condition model, the body model,
5469      * and operand values for the first iteration of the loop. The values are
5470      * implicitly split into three groups of input-output, state-only, and
5471      * input-only values, as described below.
5472      *
5473      * The outputs of this operation are the final values of input-output
5474      * operands.
5475      *
5476      * Both the condition and body model receive (m + k + n) inputs.
5477      * * The first m (m >= 1) inputs are input-output operands. For the first
5478      *   iteration, these are initialized from the corresponding inputs of the
5479      *   WHILE operation. In subsequent iterations, their values come from the
5480      *   corresponding outputs of the body model produced during the previous
5481      *   iteration.
5482      * * The next k (k >= 0) inputs are state-only operands. They are similar to
5483      *   the input-output operands, except that their values are no longer
5484      *   available after the loop terminates.
5485      * * The last n (n >= 0) inputs are input-only operands. Their values come
5486      *   from the corresponding inputs of the WHILE operation.
5487      *
5488      * The body model produces (m + k) outputs.
5489      * * The first m outputs are input-output operands. They become the outputs
5490      *   of the WHILE operation when a termination condition is reached.
5491      * * The last k outputs are state-only operands. Their values are no longer
5492      *   available after the loop terminates.
5493      *
5494      * The numbers m, k, and n are inferred by the runtime as follows:
5495      *     m = (WHILE operation output count)
5496      *     k = (body model output count) - m
5497      *     n = (body model input count) - m - k
5498      *
5499      * The pseudo-code below illustrates the flow of a WHILE operation with
5500      * inputs condition, body, initial_input_output, initial_state, input_only
5501      * (m = 1, k = 1, n = 1):
5502      *
5503      *     input_output = initial_input_output
5504      *     state = initial_state
5505      *     while condition(input_output, state, input_only):
5506      *         input_output, state = body(input_output, state, input_only)
5507      *     return input_output
5508      *
5509      * To prevent infinite loops, there is an implicit execution timeout
5510      * associated with each loop ("loop timeout duration"). See {@link
5511      * ANeuralNetworksExecution_setLoopTimeout}.
5512      *
5513      * Inputs:
5514      * * 0: A {@link ANEURALNETWORKS_MODEL} reference to the condition
5515      *      model. The model must have (m + k + n) inputs with
5516      *      the same types, ranks (if specified), dimensions (if specified),
5517      *      scales, zeroPoints, and other operand parameters as the
5518      *      corresponding inputs of the WHILE operation and exactly one output
5519      *      of {@link ANEURALNETWORKS_TENSOR_BOOL8} and shape [1].
5520      *      The output operand must have fully specified dimensions.
5521      * * 1: A {@link ANEURALNETWORKS_MODEL} reference to the body model.
5522      *      The model must have (m + k + n) inputs and (m + k) outputs with
5523      *      the same types, ranks (if specified), dimensions (if specified),
5524      *      scales, zeroPoints, and other operand parameters as the
5525      *      corresponding inputs and outputs of the WHILE operation.
5526      * * (m inputs): Initial values for input-output operands.
5527      * * (k inputs): Initial values for state-only operands.
5528      * * (n inputs): Values for input-only operands.
5529      *
5530      * Outputs:
5531      * * 0 ~ (m - 1): Outputs produced by the loop.
5532      *
5533      * Available since API level 30.
5534      */
5535     ANEURALNETWORKS_WHILE = 97,
5536 
5537     /**
5538      * Computes exponential linear activation on the input tensor element-wise.
5539      *
5540      * The output is calculated using the following formula:
5541      *
5542      *     ELU(x) = max(0, x) + min(0, alpha * (exp(x) - 1))
5543      *
5544      * Supported tensor {@link OperandCode}:
5545      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
5546      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
5547      *
5548      * Supported tensor rank: from 1.
5549      *
5550      * Inputs:
5551      * * 0: A tensor, specifying the input. May be zero-sized.
5552      * * 1: A scalar, specifying the alpha parameter.
5553      *      For input tensor of {@link ANEURALNETWORKS_TENSOR_FLOAT16},
5554      *      the alpha value must be of {@link ANEURALNETWORKS_FLOAT16}.
5555      *      For input tensor of {@link ANEURALNETWORKS_TENSOR_FLOAT32},
5556      *      the alpha value must be of {@link ANEURALNETWORKS_FLOAT32}.
5557      *
5558      * Outputs:
5559      * * 0: The output tensor of same shape and type as input0.
5560      *
5561      * Available since API level 30.
5562      */
5563     ANEURALNETWORKS_ELU = 98,
5564 
5565     /**
5566      * Computes hard-swish activation on the input tensor element-wise.
5567      *
5568      * Hard swish activation is introduced in
5569      * https://arxiv.org/pdf/1905.02244.pdf
5570      *
5571      * The output is calculated using the following formula:
5572      *
5573      *     h-swish(x) = x * max(0, min(6, (x + 3))) / 6
5574 
5575      * Supported tensor {@link OperandCode}:
5576      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
5577      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
5578      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
5579      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED}
5580      *
5581      * Supported tensor rank: from 1.
5582      *
5583      * Inputs:
5584      * * 0: A tensor, specifying the input. May be zero-sized.
5585      *
5586      * Outputs:
5587      * * 0: The output tensor of same shape and type as input0.
5588      *      Scale and zero point of this tensor may be different from the input
5589      *      tensor's parameters.
5590      *
5591      * Available since API level 30.
5592      */
5593     ANEURALNETWORKS_HARD_SWISH = 99,
5594 
5595     /**
5596      * Creates a tensor filled with a scalar value.
5597      *
5598      * Supported output tensor {@link OperandCode}:
5599      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
5600      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
5601      * * {@link ANEURALNETWORKS_TENSOR_INT32}
5602      *
5603      * Supported tensor rank: from 1.
5604      *
5605      * Inputs:
5606      * * 0: A 1-D tensor, specifying the desired output tensor shape.
5607      * * 1: A scalar, specifying the value to fill the output tensors with.
5608      *      For output tensor of {@link ANEURALNETWORKS_TENSOR_FLOAT16},
5609      *      the scalar must be of {@link ANEURALNETWORKS_FLOAT16}.
5610      *      For output tensor of {@link ANEURALNETWORKS_TENSOR_FLOAT32},
5611      *      the scalar must be of {@link ANEURALNETWORKS_FLOAT32}.
5612      *      For output tensor of {@link ANEURALNETWORKS_TENSOR_INT32},
5613      *      the scalar must be of {@link ANEURALNETWORKS_INT32}.
5614      *
5615      * Outputs:
5616      * * 0: The output tensor.
5617      *
5618      * Available since API level 30.
5619      */
5620     ANEURALNETWORKS_FILL = 100,
5621 
5622     /**
5623      * Returns the rank of a tensor.
5624      *
5625      * The rank of a tensor is the number of dimensions in it. Also known as
5626      * "order", "degree", "ndims".
5627      *
5628      * Supported tensor {@link OperandCode}:
5629      * * {@link ANEURALNETWORKS_TENSOR_FLOAT16}
5630      * * {@link ANEURALNETWORKS_TENSOR_FLOAT32}
5631      * * {@link ANEURALNETWORKS_TENSOR_INT32}
5632      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}
5633      * * {@link ANEURALNETWORKS_TENSOR_QUANT16_SYMM}
5634      * * {@link ANEURALNETWORKS_TENSOR_BOOL8}
5635      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL}
5636      * * {@link ANEURALNETWORKS_TENSOR_QUANT16_ASYMM}
5637      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_SYMM}
5638      * * {@link ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED}
5639      *
5640      * Supported tensor rank: from 1.
5641      *
5642      * Inputs:
5643      * * 0: The input tensor.
5644      *
5645      * Outputs:
5646      * * 0: A scalar of {@link ANEURALNETWORKS_INT32}, specifying the rank
5647      *      of the input tensor.
5648      *
5649      * Available since API level 30.
5650      */
5651     ANEURALNETWORKS_RANK = 101,
5652 } OperationCode;
5653 
5654 /**
5655  * Fused activation function types.
5656  *
5657  *
5658  * Available since API level 27.
5659  */
5660 typedef enum {
5661     /** NO fused activation function. */
5662     ANEURALNETWORKS_FUSED_NONE = 0,
5663     /** Fused ReLU activation function. */
5664     ANEURALNETWORKS_FUSED_RELU = 1,
5665     /** Fused ReLU1 activation function. */
5666     ANEURALNETWORKS_FUSED_RELU1 = 2,
5667     /** Fused ReLU6 activation function. */
5668     ANEURALNETWORKS_FUSED_RELU6 = 3,
5669 } FuseCode;
5670 
5671 /**
5672  * Implicit padding algorithms.
5673  *
5674  *
5675  * Available since API level 27.
5676  */
5677 typedef enum {
5678     /**
5679      * SAME padding.
5680      * Padding on both ends are the "same":
5681      *     padding_to_beginning =  total_padding / 2
5682      *     padding_to_end       = (total_padding + 1)/2.
5683      * i.e., for even number of padding, padding to both ends are exactly
5684      * the same; for odd number of padding, padding to the ending is bigger
5685      * than the padding to the beginning by 1.
5686      *
5687      * total_padding is a function of input, stride, dilation and filter size.
5688      * It could be computed as follows:
5689      *    out_size = (input + stride - 1) / stride
5690      *    effective_filter_size = (filter_size - 1) * dilation + 1
5691      *    needed_input = (out_size - 1) * stride + effective_filter_size
5692      *    total_padding = max(0, needed_input - input_size)
5693      *  The computation is the same for the horizontal and vertical directions.
5694      */
5695     ANEURALNETWORKS_PADDING_SAME = 1,
5696 
5697     /**
5698      * VALID padding.
5699      * No padding. When the input size is not evenly divisible by
5700      * the filter size, the input at the end that could not fill
5701      * the whole filter tile will simply be ignored.
5702      */
5703     ANEURALNETWORKS_PADDING_VALID = 2,
5704 } PaddingCode;
5705 
5706 /**
5707  * Execution preferences.
5708  *
5709  * Available since API level 27.
5710  */
5711 typedef enum {
5712     /**
5713      * Prefer executing in a way that minimizes battery drain.
5714      * This is desirable for compilations that will be executed often.
5715      */
5716     ANEURALNETWORKS_PREFER_LOW_POWER = 0,
5717     /**
5718      * Prefer returning a single answer as fast as possible, even if this causes
5719      * more power consumption.
5720      */
5721     ANEURALNETWORKS_PREFER_FAST_SINGLE_ANSWER = 1,
5722     /**
5723      * Prefer maximizing the throughput of successive frames, for example when
5724      * processing successive frames coming from the camera.
5725      */
5726     ANEURALNETWORKS_PREFER_SUSTAINED_SPEED = 2,
5727 } PreferenceCode;
5728 
5729 /**
5730  * Device types.
5731  *
5732  * The type of NNAPI device.
5733  */
5734 typedef enum {
5735     /** The device type cannot be provided. */
5736     ANEURALNETWORKS_DEVICE_UNKNOWN = 0,
5737     /** The device does not fall into any category below. */
5738     ANEURALNETWORKS_DEVICE_OTHER = 1,
5739     /** The device runs NNAPI models on single or multi-core CPU. */
5740     ANEURALNETWORKS_DEVICE_CPU = 2,
5741     /** The device can run NNAPI models and also accelerate graphics APIs such
5742      * as OpenGL ES and Vulkan. */
5743     ANEURALNETWORKS_DEVICE_GPU = 3,
5744     /** Dedicated accelerator for Machine Learning workloads. */
5745     ANEURALNETWORKS_DEVICE_ACCELERATOR = 4,
5746 } DeviceTypeCode;
5747 
5748 /**
5749  * Result codes.
5750  *
5751  * <p>Any NNAPI function can return any result code, including result codes not
5752  * currently documented. Any value other than {@link ANEURALNETWORKS_NO_ERROR}
5753  * indicates a failure of some kind.</p>
5754  *
5755  * <p>Additional information about the nature of a failure can be obtained from
5756  * the device log after enabling NNAPI debugging by setting the debug.nn.vlog
5757  * property to 1, e.g., by calling "adb shell setprop debug.nn.vlog 1".</p>
5758  *
5759  * Available since API level 27.
5760  */
5761 typedef enum {
5762     /**
5763      * Operation was succesful.
5764      */
5765     ANEURALNETWORKS_NO_ERROR = 0,
5766 
5767     /**
5768      * Failure caused by not enough available memory.
5769      */
5770     ANEURALNETWORKS_OUT_OF_MEMORY = 1,
5771 
5772     ANEURALNETWORKS_INCOMPLETE = 2,
5773 
5774     /**
5775      * Failure caused by unexpected null argument.
5776      */
5777     ANEURALNETWORKS_UNEXPECTED_NULL = 3,
5778 
5779     /**
5780      * Failure caused by invalid function arguments, invalid model definition,
5781      * invalid execution definition or invalid data at execution time.
5782      */
5783     ANEURALNETWORKS_BAD_DATA = 4,
5784 
5785     /**
5786      * Failure caused by failed model execution.
5787      */
5788     ANEURALNETWORKS_OP_FAILED = 5,
5789 
5790     /**
5791      * Failure caused by object being in the wrong state.
5792      */
5793     ANEURALNETWORKS_BAD_STATE = 6,
5794 
5795     /**
5796      * Failure caused by not being able to map a file into memory.
5797      * This may be caused by a file descriptor not being mappable, or an AHardwareBuffer
5798      * not supported by the device.
5799      * Mitigate by reading its content into memory.
5800      */
5801     ANEURALNETWORKS_UNMAPPABLE = 7,
5802 
5803     /**
5804      * Failure caused by insufficient buffer size provided to a model output.
5805      */
5806     ANEURALNETWORKS_OUTPUT_INSUFFICIENT_SIZE = 8,
5807 
5808     /**
5809      * Failure caused by a device not being available.
5810      */
5811     ANEURALNETWORKS_UNAVAILABLE_DEVICE = 9,
5812 
5813     /**
5814      * Failure because a deadline could not be met for a task, but future
5815      * deadlines may still be met for the same task after a short delay.
5816      *
5817      * Available since API level 30.
5818      */
5819     ANEURALNETWORKS_MISSED_DEADLINE_TRANSIENT = 10,
5820 
5821     /**
5822      * Failure because a deadline could not be met for a task, and future
5823      * deadlines will likely also not be met for the same task even after a
5824      * short delay.
5825      *
5826      * Available since API level 30.
5827      */
5828     ANEURALNETWORKS_MISSED_DEADLINE_PERSISTENT = 11,
5829 
5830     /**
5831      * Failure because of a resource limitation within the driver, but future
5832      * calls for the same task may still succeed after a short delay.
5833      *
5834      * Available since API level 30.
5835      */
5836     ANEURALNETWORKS_RESOURCE_EXHAUSTED_TRANSIENT = 12,
5837 
5838     /**
5839      * Failure because of a resource limitation within the driver, and future
5840      * calls for the same task will likely also fail even after a short
5841      * delay.
5842      *
5843      * Available since API level 30.
5844      */
5845     ANEURALNETWORKS_RESOURCE_EXHAUSTED_PERSISTENT = 13,
5846 
5847     /**
5848      * Failure indicating an object is in a dead state.
5849      *
5850      * Available since API level 30.
5851      */
5852     ANEURALNETWORKS_DEAD_OBJECT = 14,
5853 } ResultCode;
5854 
5855 /**
5856  * For {@link ANeuralNetworksModel_setOperandValue}, values with a
5857  * length smaller or equal to this will be immediately copied into
5858  * the model. The size is in bytes.
5859  *
5860  * Available since API level 27.
5861  */
5862 enum { ANEURALNETWORKS_MAX_SIZE_OF_IMMEDIATELY_COPIED_VALUES = 128 };
5863 
5864 /**
5865  * For {@link ANeuralNetworksCompilation_setCaching}, specify the size
5866  * of the cache token required from the application. The size is in bytes.
5867  *
5868  * Available since API level 29.
5869  */
5870 enum { ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN = 32 };
5871 
5872 /**
5873  * Different duration measurements.
5874  *
5875  * Durations are measured in nanoseconds.
5876  *
5877  * Available since API level 29.
5878  */
5879 typedef enum {
5880     // Execution time on hardware (not driver, which runs on host processor).
5881     ANEURALNETWORKS_DURATION_ON_HARDWARE = 0,
5882     // Execution time in driver (including time on hardware).  Excludes overhead
5883     // such as that of the runtime itself and the IPC needed for the runtime to
5884     // communicate with the driver.
5885     ANEURALNETWORKS_DURATION_IN_DRIVER = 1,
5886     // Execution time on hardware, after all dependencies have been signaled.
5887     // If no dependencies specified (for example, if the execution was scheduled other
5888     // than with {@link ANeuralNetworksExecution_startComputeWithDependencies}), the
5889     // reported time will be the same as ANEURALNETWORKS_DURATION_ON_HARDWARE.
5890     // Available since API level 30.
5891     ANEURALNETWORKS_FENCED_DURATION_ON_HARDWARE = 2,
5892     // Execution time in driver, after all dependencies have been signaled. Excludes
5893     // overhead such as that of the runtime itself and the IPC needed for the runtime
5894     // to communicate with the driver.
5895     // If no dependencies specified (for example, if the execution was scheduled other
5896     // than with {@link ANeuralNetworksExecution_startComputeWithDependencies}), the
5897     // reported time will be the same as ANEURALNETWORKS_DURATION_IN_DRIVER.
5898     // Available since API level 30.
5899     ANEURALNETWORKS_FENCED_DURATION_IN_DRIVER = 3,
5900 } DurationCode;
5901 
5902 /**
5903  * Relative execution priority.
5904  *
5905  * Available since API level 30.
5906  */
5907 typedef enum {
5908     ANEURALNETWORKS_PRIORITY_LOW = 90,
5909     ANEURALNETWORKS_PRIORITY_MEDIUM = 100,
5910     ANEURALNETWORKS_PRIORITY_HIGH = 110,
5911     ANEURALNETWORKS_PRIORITY_DEFAULT = ANEURALNETWORKS_PRIORITY_MEDIUM,
5912 } PriorityCode;
5913 
5914 /**
5915  * ANeuralNetworksMemory is an opaque type that represents memory.
5916  *
5917  * This type is used to represent shared memory, memory mapped files,
5918  * and similar memories.
5919  *
5920  * By using shared memory, a program can efficiently communicate to the
5921  * runtime and drivers the tensors that define a model. See
5922  * {@link ANeuralNetworksModel_setOperandValueFromMemory}. An application
5923  * should typically create one shared memory object that contains every constant tensor
5924  * needed to define a model. {@link ANeuralNetworksMemory_createFromFd} can be used to
5925  * create shared memory from a file handle.
5926  * {@link ANeuralNetworksMemory_createFromAHardwareBuffer} can be used to
5927  * create shared memory from an AHardwareBuffer handle.
5928  *
5929  * Memory objects can also be used to specify the input and output arguments of
5930  * an execution. See {@link ANeuralNetworksExecution_setInputFromMemory}
5931  * and {@link ANeuralNetworksExecution_setOutputFromMemory}.
5932  *
5933  * When calling {@link ANeuralNetworksModel_setOperandValueFromMemory},
5934  * {@link ANeuralNetworksExecution_setInputFromMemory} and
5935  * {@link ANeuralNetworksExecution_setOutputFromMemory}, each operand in the shared
5936  * memory object must be aligned on a boundary of a byte size that is a multiple
5937  * of the element type byte size, e.g., a tensor with
5938  * {@link ANEURALNETWORKS_TENSOR_FLOAT32} type must be aligned on 4-byte boundary.
5939  *
5940  * It is the application's responsibility to ensure that there are no uses of
5941  * the memory after calling {@link ANeuralNetworksMemory_free}. This includes
5942  * any model which references this memory because of a call to
5943  * {@link ANeuralNetworksModel_setOperandValueFromMemory}, any compilation
5944  * created using such a model, any execution object or burst object created
5945  * using such a compilation, or any execution which references this memory
5946  * because of a call to {@link ANeuralNetworksExecution_setInputFromMemory} or
5947  * {@link ANeuralNetworksExecution_setOutputFromMemory}.
5948  *
5949  * Available since API level 27.
5950  *
5951  * Starting at API level 30, the application may request creation of device native memory from
5952  * {@link ANeuralNetworksMemoryDesc} to avoid potential memory copying and transformation
5953  * overhead between executions. See also {@link ANeuralNetworksMemoryDesc} and
5954  * {@link ANeuralNetworksMemory_createFromDesc}.
5955  */
5956 typedef struct ANeuralNetworksMemory ANeuralNetworksMemory;
5957 
5958 /**
5959  * ANeuralNetworksModel is an opaque type that contains a description of the
5960  * mathematical operations that constitute the model.
5961  *
5962  * <p>Build the model by calling<ul>
5963  * <li>{@link ANeuralNetworksModel_create}</li>
5964  * <li>{@link ANeuralNetworksModel_addOperation}</li>
5965  * <li>{@link ANeuralNetworksModel_addOperand}</li>
5966  * </ul>
5967  *
5968  * This forms a graph in which each operation and operand is a node, a
5969  * directed edge from an operand to an operation indicates that the
5970  * operand is an input to the operation, and a directed edge from an
5971  * operation to an operand indicates that the operand is an output
5972  * from the operation. This graph must be acyclic.
5973  *
5974  * A model is completed by calling {@link ANeuralNetworksModel_finish}.
5975  * A model is destroyed by calling {@link ANeuralNetworksModel_free}.
5976  *
5977  * <p>A model cannot be modified once {@link ANeuralNetworksModel_finish}
5978  * has been called on it.</p>
5979  *
5980  * <p>It is the application's responsibility to make sure that only one thread
5981  * modifies a model at a given time. It is however safe for more than one
5982  * thread to use the model once {@link ANeuralNetworksModel_finish} has returned.</p>
5983  *
5984  * <p>It is also the application's responsibility to ensure that there are no
5985  * other uses of the model after calling {@link ANeuralNetworksModel_free}.
5986  * This includes any compilation, execution object or burst object created using
5987  * the model.</p>
5988  *
5989  * Available since API level 27.
5990  */
5991 typedef struct ANeuralNetworksModel ANeuralNetworksModel;
5992 
5993 /**
5994  * ANeuralNetworksCompilation is an opaque type that can be used to compile
5995  * a machine learning model.
5996  *
5997  * <p>To use:<ul>
5998  *    <li>Create a new compilation instance by calling the
5999  *        {@link ANeuralNetworksCompilation_create} function or
6000  *        {@link ANeuralNetworksCompilation_createForDevices}.</li>
6001  *    <li>Set any desired properties on the compilation (for example,
6002  *        {@link ANeuralNetworksCompilation_setPreference}).</li>
6003  *    <li>Optionally, set the caching signature and the cache directory on the
6004  *        compilation by calling {@link ANeuralNetworksCompilation_setCaching}.</li>
6005  *    <li>Complete the compilation with {@link ANeuralNetworksCompilation_finish}.</li>
6006  *    <li>Use the compilation as many times as needed
6007  *        with {@link ANeuralNetworksExecution_create} and
6008  *        {@link ANeuralNetworksBurst_create}.</li>
6009  *    <li>Destroy the compilation with {@link ANeuralNetworksCompilation_free}
6010  *        once all executions using the compilation have completed.</li></ul></p>
6011  *
6012  * A compilation is completed by calling {@link ANeuralNetworksCompilation_finish}.
6013  * A compilation is destroyed by calling {@link ANeuralNetworksCompilation_free}.
6014  *
6015  * <p>A compilation cannot be modified once {@link ANeuralNetworksCompilation_finish}
6016  * has been called on it.</p>
6017  *
6018  * <p>It is the application's responsibility to make sure that only
6019  * one thread modifies a compilation at a given time. It is however
6020  * safe for more than one thread to use the compilation once
6021  * {@link ANeuralNetworksCompilation_finish} has returned.</p>
6022  *
6023  * <p>It is also the application's responsibility to ensure that there are no other
6024  * uses of the compilation after calling {@link ANeuralNetworksCompilation_free}.
6025  * This includes any execution object or burst object created using the compilation,
6026  * or any memory descriptor with the compilation as part of one of the roles specified by
6027  * {@link ANeuralNetworksMemoryDesc_addInputRole} or
6028  * {@link ANeuralNetworksMemoryDesc_addOutputRole}.</p>
6029  *
6030  * Available since API level 27.
6031  */
6032 typedef struct ANeuralNetworksCompilation ANeuralNetworksCompilation;
6033 
6034 /**
6035  * ANeuralNetworksExecution is an opaque type that can be used to apply a machine
6036  * learning model to a set of inputs.
6037  *
6038  * <p>To use:<ul>
6039  *    <li>Create a new execution instance by calling the
6040  *        {@link ANeuralNetworksExecution_create} function.</li>
6041  *    <li>Associate input buffers or memory regions to the model inputs with
6042  *        {@link ANeuralNetworksExecution_setInput} or
6043  *        {@link ANeuralNetworksExecution_setInputFromMemory}.</li>
6044  *    <li>Associate output buffers or memory regions to the model outputs with
6045  *        {@link ANeuralNetworksExecution_setOutput} or
6046  *        {@link ANeuralNetworksExecution_setOutputFromMemory}.</li>
6047  *    <li>Apply the model with one of the following:</li><ul>
6048  *        <li>Asynchronously with {@link ANeuralNetworksExecution_startCompute}
6049  *            or with {@link ANeuralNetworksExecution_startComputeWithDependencies},
6050  *            waiting for the execution to complete with
6051  *            {@link ANeuralNetworksEvent_wait}.</li>
6052  *        <li>Synchronously with {@link ANeuralNetworksExecution_compute}.</li>
6053  *        <li>Synchronously as part of an execution burst with
6054  *            {@link ANeuralNetworksExecution_burstCompute}.</li></ul>
6055  *    <li>Destroy the execution with
6056  *        {@link ANeuralNetworksExecution_free}.</li></ul></p>
6057  *
6058  * <p>An output buffer or memory region must not overlap with any
6059  * other output buffer or memory region, with an input buffer or
6060  * memory region, or with an operand value in a memory object
6061  * ({@link ANeuralNetworksModel_setOperandValueFromMemory}).</p>
6062  *
6063  * <p>An execution cannot be modified once
6064  * {@link ANeuralNetworksExecution_burstCompute},
6065  * {@link ANeuralNetworksExecution_compute},
6066  * {@link ANeuralNetworksExecution_startCompute} or
6067  * {@link ANeuralNetworksExecution_startComputeWithDependencies} has been called on it.</p>
6068  *
6069  * <p>An execution can be applied to a model with
6070  * {@link ANeuralNetworksExecution_burstCompute},
6071  * {@link ANeuralNetworksExecution_compute},
6072  * {@link ANeuralNetworksExecution_startCompute} or
6073  * {@link ANeuralNetworksExecution_startComputeWithDependencies} only once. Create new
6074  * executions to do new evaluations of the model.</p>
6075  *
6076  * <p>It is the application's responsibility to make sure that only one thread
6077  * modifies an execution at a given time. It is however safe for more than one
6078  * thread to use {@link ANeuralNetworksEvent_wait} at the same time.</p>
6079  *
6080  * <p>It is also the application's responsibility to ensure that the execution
6081  * either has never been scheduled or has completed (i.e., that
6082  * {@link ANeuralNetworksExecution_burstCompute},
6083  * {@link ANeuralNetworksExecution_compute}, or
6084  * {@link ANeuralNetworksEvent_wait} has returned) before calling
6085  * {@link ANeuralNetworksExecution_free}.</p>.
6086  *
6087  * <p>It is also the application's responsibility to ensure that there are no other
6088  * uses of the execution after calling {@link ANeuralNetworksExecution_free}.</p>
6089  *
6090  * <p>Multiple executions can be scheduled and evaluated concurrently, either by
6091  * means of {@link ANeuralNetworksExecution_compute} or
6092  * {@link ANeuralNetworksExecution_burstCompute} (which are synchronous) in
6093  * different threads, or by means of
6094  * {@link ANeuralNetworksExecution_startCompute} or
6095  * {@link ANeuralNetworksExecution_startComputeWithDependencies} (which are asynchronous).
6096  * (Concurrent uses of {@link ANeuralNetworksExecution_burstCompute} must be on
6097  * different burst objects.) The runtime makes no guarantee on the ordering of
6098  * completion of executions. If it's important to the application, the
6099  * application should enforce the ordering by ensuring that one execution
6100  * completes before the next is scheduled (for example, by scheduling all
6101  * executions synchronously within a single thread, or by scheduling all
6102  * executions asynchronously and using {@link ANeuralNetworksEvent_wait} between
6103  * calls to {@link ANeuralNetworksExecution_startCompute}); or by using
6104  * {@link ANeuralNetworksExecution_startComputeWithDependencies} to make the execution wait for a
6105  * list of events to be signaled before starting the actual evaluation.</p>
6106  *
6107  * Available since API level 27.
6108  */
6109 typedef struct ANeuralNetworksExecution ANeuralNetworksExecution;
6110 
6111 #if __ANDROID_API__ >= 29
6112 /**
6113  * Parameters for ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL operand.
6114  */
6115 typedef struct ANeuralNetworksSymmPerChannelQuantParams {
6116     /* The index of the channel dimension. */
6117     uint32_t channelDim;
6118     /** The size of the scale array. Should be equal to dimension[channelDim] of the Operand. */
6119     uint32_t scaleCount;
6120     /** The array of scaling values for each channel. Each value must be greater than zero. */
6121     const float* scales;
6122 } ANeuralNetworksSymmPerChannelQuantParams;
6123 
6124 /**
6125  * ANeuralNetworksBurst is an opaque type that can be used to reduce the latency
6126  * of a rapid sequence of executions. It will likely cause overhead if only used
6127  * for a single execution.
6128  *
6129  * ANeuralNetworksBurst serves as a context object for any number of inferences
6130  * using {@link ANeuralNetworksExecution} objects. An ANeuralNetworksBurst
6131  * object and the {@link ANeuralNetworksExecution} objects used with it must all
6132  * have been created from the same {@link ANeuralNetworksCompilation} object.
6133  *
6134  * This object is also used as a hint to drivers, providing insight to the
6135  * lifetime of a rapid sequence of executions. For example, a driver may choose
6136  * to increase the clock frequency of its accelerator for the lifetime of a
6137  * burst object.
6138  *
6139  * <p>To use:<ul>
6140  *    <li>Create a new burst object by calling the
6141  *        {@link ANeuralNetworksBurst_create} function.</li>
6142  *    <li>For each execution:</li><ul>
6143  *        <li>Create {@link ANeuralNetworksExecution} and configure its
6144  *            properties (see {@link ANeuralNetworksExecution} for details).</li>
6145  *        <li>Apply the model synchronously with
6146  *            {@link ANeuralNetworksExecution_burstCompute}, reusing the same
6147  *            {@link ANeuralNetworksBurst} with the new
6148  *            {@link ANeuralNetworksExecution}.</li>
6149  *        <li>Use and free the {@link ANeuralNetworksExecution}.</li></ul>
6150  *    <li>Destroy the burst with
6151  *        {@link ANeuralNetworksBurst_free}.</li></ul></p>
6152  *
6153  * Available since API level 29.
6154  */
6155 typedef struct ANeuralNetworksBurst ANeuralNetworksBurst;
6156 #endif  //  __ANDROID_API__ >= 29
6157 
6158 /**
6159  * ANeuralNetworksOperandType describes the type of an operand.
6160  *
6161  * This structure is used to describe both scalars and tensors.
6162  *
6163  * A tensor operand type with all dimensions specified is "fully
6164  * specified".  Whenever possible (i.e., whenever the dimensions are
6165  * known at model construction time), a tensor operand type should be
6166  * (but is not required to be) fully specified, in order to enable the
6167  * best possible performance.
6168  *
6169  * If a tensor operand's type is not fully specified, the dimensions
6170  * of the operand are deduced from the operand types and values of the
6171  * operation for which that operand is an output or from the corresponding
6172  * {@link ANEURALNETWORKS_IF} or {@link ANEURALNETWORKS_WHILE} operation input
6173  * operand type in the case of referenced model input operands.
6174  *
6175  * <p>In the following situations, a tensor operand type must be fully
6176  * specified:<ul>
6177  *     <li>The operand has a constant value, set by
6178  *         {@link ANeuralNetworksModel_setOperandValue} (with a
6179  *         non-nullptr buffer) or
6180  *         {@link ANeuralNetworksModel_setOperandValueFromMemory}.</li>
6181  *     <li>The operand is a model input (see
6182  *         {@link ANeuralNetworksModel_identifyInputsAndOutputs}) of the main
6183  *         model within a compilation.  A fully specified tensor operand type
6184  *         must either be provided to {@link ANeuralNetworksModel_addOperand};
6185  *         or it must be provided to the corresponding
6186  *         {@link ANeuralNetworksExecution_setInput}, or
6187  *         {@link ANeuralNetworksExecution_setInputFromMemory}.
6188  *         EXCEPTION: If the input is optional and omitted
6189  *         (by passing nullptr for buffer to
6190  *         {@link ANeuralNetworksExecution_setInput}) then it need
6191  *         not have a fully specified tensor operand type.</li>
6192  *     <li>The operand is a model output (see
6193  *         {@link ANeuralNetworksModel_identifyInputsAndOutputs}) of the main
6194  *         model within a compilation and is to be used with {@link
6195  *         ANeuralNetworksExecution_startComputeWithDependencies}.
6196  *         A fully specified tensor operand type must either be provided
6197  *         to {@link ANeuralNetworksModel_addOperand}; or it must be
6198  *         provided to the corresponding
6199  *         {@link ANeuralNetworksExecution_setOutput}, or
6200  *         {@link ANeuralNetworksExecution_setOutputFromMemory}.</li></ul>
6201  *
6202  * A tensor operand type of specified rank but some number of
6203  * unspecified dimensions is represented by setting dimensionCount to
6204  * the rank and each unspecified dimension to 0.
6205  *
6206  * Available since API level 27.
6207  *
6208  * Starting at API level 29, a tensor operand type of unspecified rank is
6209  * represented by setting dimensionCount to 0 and dimensions to NULL (just as if
6210  * it were a scalar operand type).
6211  */
6212 typedef struct ANeuralNetworksOperandType {
6213     /**
6214      * The data type, e.g ANEURALNETWORKS_FLOAT32.
6215      */
6216     int32_t type;
6217 
6218     /**
6219      * The number of dimensions (rank).
6220      *
6221      * Must be 0 for scalars.
6222      */
6223     uint32_t dimensionCount;
6224 
6225     /**
6226      * The dimensions of the tensor.
6227      *
6228      * Must be nullptr for scalars.
6229      */
6230     const uint32_t* dimensions;
6231 
6232     /**
6233      * The quantization scale.
6234      *
6235      * Must be 0 when not applicable to an operand type.
6236      *
6237      * See {@link OperandCode}.
6238      */
6239     float scale;
6240 
6241     /**
6242      * The quantization zero point.
6243      *
6244      * Must be 0 when not applicable to an operand type.
6245      *
6246      * See {@link OperandCode}.
6247      */
6248     int32_t zeroPoint;
6249 } ANeuralNetworksOperandType;
6250 
6251 typedef int32_t ANeuralNetworksOperationType;
6252 
6253 /**
6254  * ANeuralNetworksEvent is an opaque type that represents an event
6255  * that will be signaled once an execution completes.
6256  *
6257  * Available since API level 27.
6258  */
6259 typedef struct ANeuralNetworksEvent ANeuralNetworksEvent;
6260 
6261 #if __ANDROID_API__ >= 29
6262 
6263 /**
6264  * ANeuralNetworksDevice is an opaque type that represents a device.
6265  *
6266  * This type is used to query basic properties and supported operations of the corresponding
6267  * device, and control which device(s) a model is to be run on.
6268  *
6269  * Available since API level 29.
6270  */
6271 typedef struct ANeuralNetworksDevice ANeuralNetworksDevice;
6272 
6273 #endif  // __ANDROID_API__ >= 29
6274 
6275 #if __ANDROID_API__ >= 30
6276 
6277 /**
6278  * ANeuralNetworksMemoryDesc is an opaque type that represents a memory descriptor.
6279  *
6280  * A memory descriptor describes the properties of a memory object, and is used by
6281  * {@link ANeuralNetworksMemory_createFromDesc}.
6282  *
6283  * To use:
6284  *   - Create a new memory descriptor by calling {@link ANeuralNetworksMemoryDesc_create}.
6285  *   - Specify all of the intended input and output roles by calling
6286  *     {@link ANeuralNetworksMemoryDesc_addInputRole} and
6287  *     {@link ANeuralNetworksMemoryDesc_addOutputRole}.
6288  *   - Optionally, specify the memory dimensions by calling
6289  *     {@link ANeuralNetworksMemoryDesc_setDimensions}.
6290  *   - Complete the memory descriptor with {@link ANeuralNetworksMemoryDesc_finish}.
6291  *   - Use the memory descriptor as many times as needed with
6292  *     {@link ANeuralNetworksMemory_createFromDesc}.
6293  *   - Destroy the memory descriptor with {@link ANeuralNetworksMemoryDesc_free}.
6294  *
6295  * A memory descriptor is completed by calling {@link ANeuralNetworksMemoryDesc_finish}.
6296  * A memory descriptor is destroyed by calling {@link ANeuralNetworksMemoryDesc_free}.
6297  *
6298  * A memory descriptor must not be modified once {@link ANeuralNetworksMemoryDesc_finish}
6299  * has been called on it.
6300  *
6301  * It is the application's responsibility to make sure that only
6302  * one thread modifies a memory descriptor at a given time. It is however
6303  * safe for more than one thread to use the memory descriptor once
6304  * {@link ANeuralNetworksMemoryDesc_finish} has returned.
6305  *
6306  * It is also the application's responsibility to ensure that there are no other
6307  * uses of the memory descriptor after calling {@link ANeuralNetworksMemoryDesc_free}.
6308  * It is however safe to continue using a {@link ANeuralNetworksMemory} object created
6309  * from the memory descriptor.
6310  *
6311  * Available since API level 30.
6312  */
6313 typedef struct ANeuralNetworksMemoryDesc ANeuralNetworksMemoryDesc;
6314 
6315 /**
6316  * Create a {@link ANeuralNetworksMemoryDesc} with no properties.
6317  *
6318  * This only creates the memory descriptor. Its properties should be set with calls to
6319  * {@link ANeuralNetworksMemoryDesc_addInputRole},
6320  * {@link ANeuralNetworksMemoryDesc_addOutputRole}, and
6321  * {@link ANeuralNetworksMemoryDesc_setDimensions}.
6322  *
6323  * {@link ANeuralNetworksMemoryDesc_finish} must be called once all properties have been set.
6324  *
6325  * {@link ANeuralNetworksMemoryDesc_free} must be called once the memory descriptor
6326  * is no longer needed.
6327  *
6328  * Available since API level 30.
6329  *
6330  * @param desc The {@link ANeuralNetworksMemoryDesc} to be created.
6331  *             Set to NULL if unsuccessful.
6332  *
6333  * @return ANEURALNETWORKS_NO_ERROR if successful.
6334  */
6335 int ANeuralNetworksMemoryDesc_create(ANeuralNetworksMemoryDesc** desc) __INTRODUCED_IN(30);
6336 
6337 /**
6338  * Destroy a memory descriptor.
6339  *
6340  * The memory descriptor need not have been finished by a call to
6341  * {@link ANeuralNetworksMemoryDesc_finish}.
6342  *
6343  * See {@link ANeuralNetworksMemoryDesc} for information on multithreaded usage.
6344  *
6345  * Available since API level 30.
6346  *
6347  * @param desc The memory descriptor to be destroyed. Passing NULL is acceptable and
6348  *             results in no operation.
6349  */
6350 void ANeuralNetworksMemoryDesc_free(ANeuralNetworksMemoryDesc* desc) __INTRODUCED_IN(30);
6351 
6352 /**
6353  * Specify that a memory object will be playing the role of an input to an execution created from a
6354  * particular compilation.
6355  *
6356  * The compilation and the input index fully specify an input operand. This function
6357  * may be invoked multiple times on the same memory descriptor with different input operands,
6358  * and the same input operand may be specified on multiple memory descriptors. However,
6359  * specifying the same input operand on the same memory descriptor more than once will
6360  * return an error.
6361  *
6362  * The dimensions of the corresponding model operands of all the roles specified by
6363  * {@link ANeuralNetworksMemoryDesc_addInputRole} and
6364  * {@link ANeuralNetworksMemoryDesc_addOutputRole} must be compatible with each other. Two
6365  * dimensions are incompatible if both ranks are fully specified but have different values, or if
6366  * there is at least one axis that is fully specified in both but has different values.
6367  *
6368  * At least one of {@link ANeuralNetworksMemoryDesc_addInputRole} and
6369  * {@link ANeuralNetworksMemoryDesc_addOutputRole} must be called on a memory descriptor
6370  * before invoking {@link ANeuralNetworksMemoryDesc_finish}.
6371  *
6372  * Attempting to modify a memory descriptor once {@link ANeuralNetworksMemoryDesc_finish} has been
6373  * called will return an error.
6374  *
6375  * See {@link ANeuralNetworksMemoryDesc} for information on multithreaded usage.
6376  *
6377  * Available since API level 30.
6378  *
6379  * @param desc The memory descriptor to be modified.
6380  * @param compilation The compilation object. It must already have been finished by calling
6381  *                    {@link ANeuralNetworksCompilation_finish}, and must outlive the memory
6382  *                    descriptor.
6383  * @param index The index of the input argument we are referencing from the compilation. It is
6384  *              an index into the inputs list passed to
6385  *              {@link ANeuralNetworksModel_identifyInputsAndOutputs}. It is not
6386  *              the index associated with {@link ANeuralNetworksModel_addOperand}.
6387  * @param frequency A floating-point value within the range (0.0, 1.0]. Describes how likely the
6388  *                  memory is to be used in the specified role. This is provided as a hint to
6389  *                  optimize the case when different roles prefer different memory locations or data
6390  *                  layouts.
6391  *
6392  * @return ANEURALNETWORKS_NO_ERROR if successful.
6393  */
6394 int ANeuralNetworksMemoryDesc_addInputRole(ANeuralNetworksMemoryDesc* desc,
6395                                            const ANeuralNetworksCompilation* compilation,
6396                                            uint32_t index, float frequency) __INTRODUCED_IN(30);
6397 
6398 /**
6399  * Specify that a memory object will be playing the role of an output to an execution created from a
6400  * particular compilation.
6401  *
6402  * The compilation and the output index fully specify an output operand. This function
6403  * may be invoked multiple times on the same memory descriptor with different output operands,
6404  * and the same output operand may be specified on multiple memory descriptors. However,
6405  * specifying the same output operand on the same memory descriptor object more than once will
6406  * return an error.
6407  *
6408  * The dimensions of the corresponding model operands of all the roles specified by
6409  * {@link ANeuralNetworksMemoryDesc_addInputRole} and
6410  * {@link ANeuralNetworksMemoryDesc_addOutputRole} must be compatible with each other. Two
6411  * dimensions are incompatible if both ranks are fully specified but have different values, or if
6412  * there is at least one axis that is fully specified in both but has different values.
6413  *
6414  * At least one of {@link ANeuralNetworksMemoryDesc_addInputRole} and
6415  * {@link ANeuralNetworksMemoryDesc_addOutputRole} must be called on the memory descriptor
6416  * before invoking {@link ANeuralNetworksMemoryDesc_finish}.
6417  *
6418  * Attempting to modify a memory descriptor once {@link ANeuralNetworksMemoryDesc_finish} has been
6419  * called will return an error.
6420  *
6421  * See {@link ANeuralNetworksMemoryDesc} for information on multithreaded usage.
6422  *
6423  * Available since API level 30.
6424  *
6425  * @param desc The memory descriptor to be modified.
6426  * @param compilation The compilation object. It must already have been finished by calling
6427  *                    {@link ANeuralNetworksCompilation_finish}, and must outlive the memory
6428  *                    descriptor.
6429  * @param index The index of the output argument we are referencing from the compilation. It is
6430  *              an index into the outputs list passed to
6431  *              {@link ANeuralNetworksModel_identifyInputsAndOutputs}. It is not
6432  *              the index associated with {@link ANeuralNetworksModel_addOperand}.
6433  * @param frequency A floating-point value within the range (0.0, 1.0]. Describes how likely the
6434  *                  memory is to be used in the specified role. This is provided as a hint to
6435  *                  optimize the case when multiple roles prefer different memory locations or data
6436  *                  layouts.
6437  *
6438  * @return ANEURALNETWORKS_NO_ERROR if successful.
6439  */
6440 int ANeuralNetworksMemoryDesc_addOutputRole(ANeuralNetworksMemoryDesc* desc,
6441                                             const ANeuralNetworksCompilation* compilation,
6442                                             uint32_t index, float frequency) __INTRODUCED_IN(30);
6443 
6444 /**
6445  * Set the dimensional information of the memory descriptor.
6446  *
6447  * The specified dimensions must be compatible with the dimensions of the corresponding model
6448  * operands of all the roles specified by {@link ANeuralNetworksMemoryDesc_addInputRole} and
6449  * {@link ANeuralNetworksMemoryDesc_addOutputRole}. Two dimensions are incompatible if both ranks
6450  * are fully specified but have different values, or if there is at least one axis that is fully
6451  * specified in both but has different values.
6452  *
6453  * Attempting to modify a memory descriptor once {@link ANeuralNetworksMemoryDesc_finish} has been
6454  * called will return an error.
6455  *
6456  * See {@link ANeuralNetworksMemoryDesc} for information on multithreaded usage.
6457  *
6458  * Available since API level 30.
6459  *
6460  * @param desc The memory descriptor to be modified.
6461  * @param rank The number of dimensions. Must be 0 for scalars.
6462  * @param dimensions An array of dimensions. An entry with the value 0 indicates that the
6463  *                   corresponding axis has an unknown size.
6464  *
6465  * @return ANEURALNETWORKS_NO_ERROR if successful.
6466  */
6467 int ANeuralNetworksMemoryDesc_setDimensions(ANeuralNetworksMemoryDesc* desc, uint32_t rank,
6468                                             const uint32_t* dimensions) __INTRODUCED_IN(30);
6469 
6470 /**
6471  * Indicate that we have finished modifying a memory descriptor. Required before calling
6472  * {@link ANeuralNetworksMemory_createFromDesc}.
6473  *
6474  * This function must only be called once for a given memory descriptor.
6475  *
6476  * See {@link ANeuralNetworksMemoryDesc} for information on multithreaded usage.
6477  *
6478  * Available since API level 30.
6479  *
6480  * @param desc The memory descriptor to be finished.
6481  *
6482  * @return ANEURALNETWORKS_NO_ERROR if successful.
6483  */
6484 int ANeuralNetworksMemoryDesc_finish(ANeuralNetworksMemoryDesc* desc) __INTRODUCED_IN(30);
6485 
6486 /**
6487  * Creates a memory object from a memory descriptor.
6488  *
6489  * The memory object is created with an uninitialized buffer. A memory object with an uninitialized
6490  * buffer may only be used according to the roles specified by {@link
6491  * ANeuralNetworksMemoryDesc_addOutputRole}, or as the destination memory in {@link
6492  * ANeuralNetworksMemory_copy}. The buffer of a memory object is initialized after the memory object
6493  * is used as an output in a successful execution, or used as the destination memory in a successful
6494  * {@link ANeuralNetworksMemory_copy}. A memory object with an initialized buffer may be used
6495  * according to all roles specified in {@link ANeuralNetworksMemoryDesc}, or as the source or
6496  * destination memory in {@link ANeuralNetworksMemory_copy}. The buffer of a memory object will
6497  * return to the uninitialized state if the memory object is used as an output in a failed
6498  * execution, or used as the destination memory in a failed {@link ANeuralNetworksMemory_copy}.
6499  *
6500  * The dimensions of the memory descriptor are deduced from the dimensions of the corresponding
6501  * model operands of all the roles specified by {@link ANeuralNetworksMemoryDesc_addInputRole} and
6502  * {@link ANeuralNetworksMemoryDesc_addOutputRole}, as well as the dimensions set by the call to
6503  * {@link ANeuralNetworksMemoryDesc_setDimensions}, if any. The memory descriptor may have
6504  * unspecified dimensions or rank. In such a case, the same memory object may be used with different
6505  * shapes of outputs in different executions. When the memory is used as an input, the input shape
6506  * must be the same as the output shape from the last execution using this memory object as an
6507  * output, or the last {@link ANeuralNetworkMemory_copy} using this memory object as the destination
6508  * memory. Creating a memory object with unspecified dimensions or rank may fail for certain sets of
6509  * roles.
6510  *
6511  * Using the memory in roles or shapes that are not compatible with the rules specified above will
6512  * return an error.
6513  *
6514  * When calling {@link ANeuralNetworksExecution_setInputFromMemory} or
6515  * {@link ANeuralNetworksExecution_setOutputFromMemory} with the memory object,
6516  * both offset and length must be set to zero and the entire memory region will be
6517  * associated with the specified input or output operand.
6518  *
6519  * Calling {@link ANeuralNetworksModel_setOperandValueFromMemory} with the memory created from this
6520  * function will return an error.
6521  *
6522  * {@link ANeuralNetworksMemory_free} must be called once the memory is no longer needed.
6523  *
6524  * Attempting to create memory from an unfinished memory descriptor will return an error.
6525  *
6526  * The provided {@link ANeuralNetworksMemoryDesc} need not outlive the {@link ANeuralNetworksMemory}
6527  * object.
6528  *
6529  * Available since API level 30.
6530  *
6531  * @param desc The memory descriptor.
6532  * @param memory The memory object to be created.
6533  *               Set to NULL if unsuccessful.
6534  *
6535  * @return ANEURALNETWORKS_NO_ERROR if successful; ANEURALNETWORKS_OP_FAILED if the memory is
6536  *         created with unspecified dimensions or rank and it is not supported for this set of
6537  *         roles.
6538  */
6539 int ANeuralNetworksMemory_createFromDesc(const ANeuralNetworksMemoryDesc* desc,
6540                                          ANeuralNetworksMemory** memory) __INTRODUCED_IN(30);
6541 
6542 /**
6543  * Copies data from one memory object to another.
6544  *
6545  * If at most one of the src and dst is created from {@link ANeuralNetworksMemory_createFromDesc},
6546  * the src and dst must have the same logical size:
6547  * - If the memory is created from {@link ANeuralNetworksMemory_createFromFd}, or if it is created
6548  *   from {@link ANeuralNetworksMemory_createFromAHardwareBuffer} with format of
6549  *   AHARDWAREBUFFER_FORMAT_BLOB, the logical size equals the size of the memory.
6550  * - If the memory is created from {@link ANeuralNetworksMemory_createFromAHardwareBuffer} with a
6551  *   format other than AHARDWAREBUFFER_FORMAT_BLOB, the logical size equals the size when there is
6552  *   no padding and the data is tightly packed. This function may fail if the AHardwareBuffer
6553  *   cannot be accessed.
6554  * - If the memory is created from {@link ANeuralNetworksMemory_createFromDesc}, the logical size
6555  *   equals the size indicated by the {@link OperandCode} multiplied by the number of elements. This
6556  *   function will fail if the number of elements is unknown.
6557  *
6558  * If both src and dst are created from {@link ANeuralNetworksMemory_createFromDesc}, they must have
6559  * compatible dimensions. Two dimensions are incompatible if both ranks are fully specified but
6560  * have different values, or if there is at least one axis that is fully specified in both but has
6561  * different values. The dst may have unspecified dimensions or rank. In such a case, the dimensions
6562  * of dst will get updated according to the dimensions of the src.
6563  *
6564  * In both cases, if the src is created from {@link ANeuralNetworksMemory_createFromDesc}, it must
6565  * have been used as an output in a successful execution, or used as the destination memory in a
6566  * successful {@link ANeuralNetworksMemory_copy}.
6567  *
6568  * The src and dst may have different data layout, in which case the data copying is performed
6569  * logically with data layout transformation.
6570  *
6571  * Available since API level 30.
6572  *
6573  * @param src The source memory object.
6574  * @param dst The destination memory object.
6575  *
6576  * @return ANEURALNETWORKS_NO_ERROR if successful.
6577  */
6578 int ANeuralNetworksMemory_copy(const ANeuralNetworksMemory* src, const ANeuralNetworksMemory* dst)
6579         __INTRODUCED_IN(30);
6580 
6581 #endif  // __ANDROID_API__ >= 30
6582 
6583 #if __ANDROID_API__ >= 29
6584 
6585 /**
6586  * Get the number of available devices.
6587  *
6588  * @param numDevices Used to return the number of devices.
6589  *
6590  * @return ANEURALNETWORKS_NO_ERROR if successful.
6591  *
6592  * Available since API level 29.
6593  */
6594 int ANeuralNetworks_getDeviceCount(uint32_t* numDevices) __INTRODUCED_IN(29);
6595 
6596 /**
6597  * Get the representation of the specified device.
6598  *
6599  * @param devIndex The index of the specified device. Must be less than the
6600                    number of available devices.
6601  * @param device The representation of the specified device.
6602  *               The same representation will always be returned for the specified
6603  *               device.
6604  *
6605  * @return ANEURALNETWORKS_NO_ERROR if successful.
6606  *
6607  * Available since API level 29.
6608  */
6609 int ANeuralNetworks_getDevice(uint32_t devIndex, ANeuralNetworksDevice** device)
6610         __INTRODUCED_IN(29);
6611 
6612 /**
6613  * Get the name of the specified device.
6614  *
6615  * @param device The representation of the specified device.
6616  * @param name   The returned name of the specified device. The name will be in UTF-8
6617  *               and will be null-terminated. It will be recognizable as a known device name
6618  *               rather than a cryptic string. For devices with feature level reported by
6619  *               {@link ANeuralNetworksDevice_getFeatureLevel} that is 29 and above, the
6620  *               format of the name is {VENDOR}-{DEVICE}. For devices with feature level 28
6621  *               or lower, the format of the name is undefined.
6622  *               The name will remain valid for the duration of the application.
6623  *
6624  * @return ANEURALNETWORKS_NO_ERROR if successful.
6625  *
6626  * Available since API level 29.
6627  */
6628 int ANeuralNetworksDevice_getName(const ANeuralNetworksDevice* device, const char** name)
6629         __INTRODUCED_IN(29);
6630 
6631 /**
6632  * Get the type of a given device.
6633  *
6634  * The device type can be used to help application developers to distribute Machine Learning
6635  * workloads and other workloads such as graphical rendering.
6636  * E.g., for an app which renders AR scenes based on real time object detection results,
6637  * the developer could choose an ACCELERATOR type device for ML workloads, and reserve GPU
6638  * for graphical rendering.
6639  *
6640  * @param device The representation of the specified device.
6641  * @param type The returned {@link DeviceTypeCode} of the specified device.
6642  *
6643  * @return ANEURALNETWORKS_NO_ERROR if successful.
6644  *
6645  * Available since API level 29.
6646  */
6647 int ANeuralNetworksDevice_getType(const ANeuralNetworksDevice* device, int32_t* type)
6648         __INTRODUCED_IN(29);
6649 
6650 /**
6651  * Get the version of the driver implementation of the specified device.
6652  *
6653  * It’s the responsibility of the driver implementor to insure that this version string
6654  * uniquely distinguishes this implementation from all previous implementations.
6655  *
6656  * This version string must not be confused with the feature level which is solely defined
6657  * by {@link ANeuralNetworksDevice_getFeatureLevel}. There is no implicit ordering of the versions.
6658  * For example, it is not possible to filter all drivers older than a certain version.
6659  *
6660  * Application developers may use this version string to avoid or prefer specific driver
6661  * implementations. For example, an application may want to do so because:
6662  *     - A specific version of the driver does not provide the required performance,
6663  *       perhaps because of a performance regression.
6664  *     - A specific version of the driver has a bug or returns results that don’t match
6665  *       the minimum precision requirement for the application.
6666  *
6667  * @param device The representation of the specified device.
6668  * @param version The returned version string of the driver for the specified device. The
6669  *                string will be in UTF-8 and will be null-terminated. For devices with feature
6670  *                level 28 or lower, "UNKNOWN" will be returned. The version string will remain
6671  *                valid for the duration of the application.
6672  *
6673  * @return ANEURALNETWORKS_NO_ERROR if successful.
6674  *
6675  * Available since API level 29.
6676  */
6677 int ANeuralNetworksDevice_getVersion(const ANeuralNetworksDevice* device, const char** version)
6678         __INTRODUCED_IN(29);
6679 
6680 /**
6681  * Get the supported NNAPI version of the specified device.
6682  *
6683  * Each device has a supported feature level, which is the most advanced feature this driver
6684  * implements. For example, if the driver implements the features introduced in Android P,
6685  * but does not implement the features introduced after Android P, the value would be 28.
6686  * Developers could decide whether or not the specified device should be used for a Model that
6687  * has certain feature requirements.
6688  *
6689  * @param device The representation of the specified device.
6690  * @param featureLevel The API level of the most advanced feature this driver implements.
6691  *
6692  * @return ANEURALNETWORKS_NO_ERROR if successful.
6693  *
6694  * Available since API level 29.
6695  */
6696 int ANeuralNetworksDevice_getFeatureLevel(const ANeuralNetworksDevice* device,
6697                                           int64_t* featureLevel) __INTRODUCED_IN(29);
6698 
6699 #if __ANDROID_API__ >= 30
6700 
6701 /**
6702  * Wait until the device is in a live state.
6703  *
6704  * A device may encounter internal errors and temporarily enter a dead state. A
6705  * call that uses a device in such a state will return with the error
6706  * {@link ANEURALNETWORKS_DEAD_OBJECT}. ANeuralNetworksDevice_wait will block until
6707  * the device is in a live state.
6708  *
6709  * @param device The representation of the specified device.
6710  *
6711  * @return ANEURALNETWORKS_NO_ERROR if successful.
6712  *
6713  * Available since API level 30.
6714  */
6715 int ANeuralNetworksDevice_wait(const ANeuralNetworksDevice* device) __INTRODUCED_IN(30);
6716 
6717 #endif  // __ANDROID_API__ >= 30
6718 
6719 /**
6720  * Get the supported operations for a specified set of devices. If multiple devices
6721  * are selected, the supported operation list is a union of supported operations of all
6722  * selected devices.
6723  *
6724  * @param model The model to be queried.
6725  * @param devices The set of devices. Must not contain duplicates.
6726  * @param numDevices The number of devices in the set.
6727  * @param supportedOps The boolean array to be filled. True means supported. The size of the
6728  *                     boolean array must be at least as large as the number of operations
6729  *                     in the model. The order of elements in the supportedOps array matches
6730  *                     the order in which the corresponding operations were added to the model.
6731  *
6732  * @return ANEURALNETWORKS_NO_ERROR if successful.
6733  *
6734  * Available since API level 29.
6735  */
6736 int ANeuralNetworksModel_getSupportedOperationsForDevices(
6737         const ANeuralNetworksModel* model, const ANeuralNetworksDevice* const* devices,
6738         uint32_t numDevices, bool* supportedOps) __INTRODUCED_IN(29);
6739 
6740 /**
6741  * Create a {@link ANeuralNetworksCompilation} to compile the given model for a specified set
6742  * of devices. If more than one device is specified, the compilation will
6743  * distribute the workload automatically across the devices. The model must be fully
6744  * supported by the specified set of devices. This means that
6745  * ANeuralNetworksModel_getSupportedOperationsForDevices() must have returned true for every
6746  * operation for that model/devices pair.
6747  *
6748  * The user must handle all compilation and execution failures from the
6749  * specified set of devices. This is in contrast to a use of {@link
6750  * ANeuralNetworksCompilation_create}, where the runtime will attempt to recover
6751  * from such failures.
6752  *
6753  * The model passed to this function is termed the "main model" of the
6754  * compilation, to distinguish it from other models referred to by an Operand
6755  * of type {@link ANEURALNETWORKS_MODEL} within this compilation.
6756  *
6757  * @param model The {@link ANeuralNetworksModel} to be compiled.
6758  * @param devices The set of devices. Must not contain duplicates.
6759  * @param numDevices The number of devices in the set.
6760  * @param compilation The newly created object or NULL if unsuccessful.
6761  *
6762  * @return ANEURALNETWORKS_NO_ERROR if successful, ANEURALNETWORKS_BAD_DATA
6763  *         if the model is invalid.
6764  *
6765  * Available since API level 29.
6766  */
6767 int ANeuralNetworksCompilation_createForDevices(ANeuralNetworksModel* model,
6768                                                 const ANeuralNetworksDevice* const* devices,
6769                                                 uint32_t numDevices,
6770                                                 ANeuralNetworksCompilation** compilation)
6771         __INTRODUCED_IN(29);
6772 
6773 /**
6774  * Sets the compilation caching signature and the cache directory.
6775  *
6776  * Provides optional caching information to the runtime for faster repeated
6777  * compilation.
6778  *
6779  * See {@link ANeuralNetworksCompilation} for information on multithreaded usage.
6780  *
6781  * @param compilation The compilation to be modified.
6782  * @param cacheDir The cache directory for the runtime to store and retrieve caching
6783  *                 data. It is recommended to use the code cache directory provided
6784  *                 by the Android runtime. If not using the code cache directory, the
6785  *                 user should choose a directory local to the application, and is
6786  *                 responsible for managing the cache entries.
6787  * @param token The token provided by the user to specify a model must be of length
6788  *              ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN. The user should ensure that
6789  *              the token is unique to a model within the application. The NNAPI
6790  *              runtime cannot detect token collisions; a collision will result in a
6791  *              failed execution or in a successful execution that produces incorrect
6792  *              output values.
6793  *
6794  * @return ANEURALNETWORKS_NO_ERROR if successful.
6795  *
6796  * Available since API level 29.
6797  */
6798 int ANeuralNetworksCompilation_setCaching(ANeuralNetworksCompilation* compilation,
6799                                           const char* cacheDir, const uint8_t* token)
6800         __INTRODUCED_IN(29);
6801 
6802 /**
6803  * Schedule synchronous evaluation of the execution.
6804  *
6805  * <p>Schedules synchronous evaluation of the execution. Returns once the
6806  * execution has completed and the outputs are ready to be consumed.
6807  * </p>
6808  *
6809  * If {@link ANeuralNetworksExecution_setTimeout} was called on this execution,
6810  * and the execution is not able to complete before the timeout duration is
6811  * exceeded, then execution may be aborted, in which case
6812  * {@link ANEURALNETWORKS_MISSED_DEADLINE_*} will be returned. If the device has
6813  * a feature level reported by {@link ANeuralNetworksDevice_getFeatureLevel}
6814  * that is lower than 30, then the timeout duration hint will be ignored.
6815  *
6816  * If this execution contains a {@link ANEURALNETWORKS_WHILE} operation, and
6817  * the condition model does not output false within the loop timeout duration,
6818  * then execution will be aborted and {@link ANEURALNETWORKS_MISSED_DEADLINE_*}
6819  * will be returned.
6820  *
6821  * See {@link ANeuralNetworksExecution} for information on multithreaded usage.
6822  *
6823  * See {@link ANeuralNetworksExecution_burstCompute} for burst synchronous execution.
6824  * See {@link ANeuralNetworksExecution_startCompute} for regular asynchronous execution.
6825  * See {@link ANeuralNetworksExecution_startComputeWithDependencies} for
6826  * asynchronous execution with dependencies.
6827  *
6828  * Available since API level 29.
6829  *
6830  * @param execution The execution to be scheduled and executed.
6831  *
6832  * @return ANEURALNETWORKS_NO_ERROR if the execution completed normally.
6833  *         ANEURALNETWORKS_UNMAPPABLE if the execution input or output memory cannot
6834  *         be properly mapped.
6835  */
6836 int ANeuralNetworksExecution_compute(ANeuralNetworksExecution* execution) __INTRODUCED_IN(29);
6837 
6838 /**
6839  * Get the dimensional information of the specified output operand of the model of the
6840  * {@link ANeuralNetworksExecution}.
6841  *
6842  * The execution must have completed.  On asynchronous execution initiated by
6843  * {@link ANeuralNetworksExecution_startCompute} or
6844  * {@link ANeuralNetworksExecution_startComputeWithDependencies},
6845  * {@link ANeuralNetworksEvent_wait} must be called prior to this function.
6846  *
6847  * @param execution The execution to be queried.
6848  * @param index The index of the output argument we are querying. It is
6849  *              an index into the lists passed to
6850  *              {@link ANeuralNetworksModel_identifyInputsAndOutputs}. It is not
6851  *              the index associated with {@link ANeuralNetworksModel_addOperand}.
6852  * @param rank The rank of the output operand.
6853  *
6854  * @return ANEURALNETWORKS_NO_ERROR if successful, ANEURALNETWORKS_OUTPUT_INSUFFICIENT_SIZE
6855  *         if the target output is provided an insufficient buffer at execution time,
6856  *         ANEURALNETWORKS_BAD_DATA if the index is invalid.
6857  *
6858  * Available since API level 29.
6859  */
6860 int ANeuralNetworksExecution_getOutputOperandRank(ANeuralNetworksExecution* execution,
6861                                                   int32_t index, uint32_t* rank)
6862         __INTRODUCED_IN(29);
6863 
6864 /**
6865  * Get the dimensional information of the specified output operand of the model of the
6866  * {@link ANeuralNetworksExecution}. The target output operand cannot be a scalar.
6867  *
6868  * The execution must have completed.  On asynchronous execution initiated by
6869  * {@link ANeuralNetworksExecution_startCompute} or
6870  * {@link ANeuralNetworksExecution_startComputeWithDependencies},
6871  * {@link ANeuralNetworksEvent_wait} must be called prior to this function.
6872  *
6873  * @param execution The execution to be queried.
6874  * @param index The index of the output argument we are querying. It is an index into the lists
6875  *              passed to {@link ANeuralNetworksModel_identifyInputsAndOutputs}. It is not
6876  *              the index associated with {@link ANeuralNetworksModel_addOperand}.
6877  * @param dimensions The dimension array to be filled. The size of the array must be exactly as
6878  *                   large as the rank of the output operand to be queried in the model.
6879  *
6880  * @return ANEURALNETWORKS_NO_ERROR if successful, ANEURALNETWORKS_OUTPUT_INSUFFICIENT_SIZE
6881  *         if the target output is provided an insufficient buffer at execution time,
6882  *         ANEURALNETWORKS_BAD_DATA if the index is invalid or if the target is a scalar.
6883  *
6884  * Available since API level 29.
6885  */
6886 int ANeuralNetworksExecution_getOutputOperandDimensions(ANeuralNetworksExecution* execution,
6887                                                         int32_t index, uint32_t* dimensions)
6888         __INTRODUCED_IN(29);
6889 
6890 /**
6891  * Create a {@link ANeuralNetworksBurst} to apply the given compilation.
6892  * This only creates the burst object. Computation is only performed once
6893  * {@link ANeuralNetworksExecution_burstCompute} is invoked with a valid
6894  * {@link ANeuralNetworksExecution} and {@link ANeuralNetworksBurst}.
6895  *
6896  * <p>The provided compilation must outlive the burst object.</p>
6897  *
6898  * Available since API level 29.
6899  *
6900  * @param compilation The {@link ANeuralNetworksCompilation} to be evaluated.
6901  * @param burst The newly created object or NULL if unsuccessful.
6902  *
6903  * @return ANEURALNETWORKS_NO_ERROR if successful, ANEURALNETWORKS_BAD_DATA
6904  *         if the compilation is invalid.
6905  */
6906 int ANeuralNetworksBurst_create(ANeuralNetworksCompilation* compilation,
6907                                 ANeuralNetworksBurst** burst) __INTRODUCED_IN(29);
6908 
6909 /**
6910  * Destroys the burst object.
6911  *
6912  * Available since API level 29.
6913  *
6914  * @param burst The burst object to be destroyed. Passing NULL is acceptable and
6915  *              results in no operation.
6916  */
6917 void ANeuralNetworksBurst_free(ANeuralNetworksBurst* burst) __INTRODUCED_IN(29);
6918 
6919 /**
6920  * Schedule synchronous evaluation of the execution on a burst object.
6921  *
6922  * <p>Schedules synchronous evaluation of the execution. Returns once the
6923  * execution has completed and the outputs are ready to be consumed.</p>
6924  *
6925  * If {@link ANeuralNetworksExecution_setTimeout} was called on the execution,
6926  * and the execution is not able to complete before the timeout duration is
6927  * exceeded, then execution may be aborted, in which case
6928  * {@link ANEURALNETWORKS_MISSED_DEADLINE_*} will be returned.
6929  *
6930  * If the execution contains a {@link ANEURALNETWORKS_WHILE} operation, and
6931  * the condition model does not output false within the loop timeout duration,
6932  * then execution will be aborted and {@link ANEURALNETWORKS_MISSED_DEADLINE_*}
6933  * will be returned. If the device has a feature level reported by
6934  * {@link ANeuralNetworksDevice_getFeatureLevel} that is lower than 30, then the
6935  * timeout duration hint will be ignored.
6936  *
6937  * <p>There must be at most one {@link ANeuralNetworksExecution} processing at
6938  * any given time for any given burst object. Any
6939  * {@link ANeuralNetworksExecution} launched before the previous has finished
6940  * will result in ANEURALNETWORKS_BAD_STATE.</p>
6941  *
6942  * See {@link ANeuralNetworksExecution_compute} for synchronous execution.
6943  * See {@link ANeuralNetworksExecution_startCompute} for regular asynchronous execution.
6944  * See {@link ANeuralNetworksExecution_startComputeWithDependencies} for
6945  * asynchronous execution with dependencies.
6946  *
6947  * Available since API level 29.
6948  *
6949  * @param burst The burst object to execute on.
6950  * @param execution The execution to be scheduled and executed. The execution
6951  *                  must be created from the same {@link
6952  *                  ANeuralNetworksCompilation} as the burst object.
6953  *
6954  * @return ANEURALNETWORKS_NO_ERROR if the execution completed normally.
6955  */
6956 int ANeuralNetworksExecution_burstCompute(ANeuralNetworksExecution* execution,
6957                                           ANeuralNetworksBurst* burst) __INTRODUCED_IN(29);
6958 
6959 /**
6960  * Creates a shared memory object from an AHardwareBuffer handle.
6961  *
6962  * If the shared memory is backed by an AHardwareBuffer of AHARDWAREBUFFER_FORMAT_BLOB
6963  * format, it can be used the same way as shared memory created from a file handle. See
6964  * {@link ANeuralNetworksMemory} for a description on how to use this shared memory.
6965  *
6966  * If the shared memory is backed by an AHardwareBuffer of a format other than
6967  * AHARDWAREBUFFER_FORMAT_BLOB, it can only be used for Model inputs and outputs.
6968  * When calling {@link ANeuralNetworksExecution_setInputFromMemory} or
6969  * {@link ANeuralNetworksExecution_setOutputFromMemory} with the shared memory, both
6970  * offset and length must be set to zero and the entire memory region will be
6971  * associated with the specified input or output operand. There is no guarantee
6972  * that an arbitrary AHardwareBuffer_Format and AHardwareBuffer_UsageFlags combination
6973  * can be used by arbitrary devices. The execution will fail if the selected set of
6974  * devices cannot consume the buffer.
6975  *
6976  * Calling {@link ANeuralNetworksModel_setOperandValueFromMemory} with shared memory
6977  * backed by an AHardwareBuffer of a format other than AHARDWAREBUFFER_FORMAT_BLOB is
6978  * disallowed.
6979  *
6980  * The provided AHardwareBuffer must outlive the ANeuralNetworksMemory object.
6981  *
6982  * Available since API level 29.
6983  *
6984  * @param ahwb The AHardwareBuffer handle.
6985  * @param memory The memory object to be created.
6986  *               Set to NULL if unsuccessful.
6987  *
6988  * @return ANEURALNETWORKS_NO_ERROR if the request completed normally.
6989  *
6990  * @see AHardwareBuffer
6991  */
6992 int ANeuralNetworksMemory_createFromAHardwareBuffer(const AHardwareBuffer* ahwb,
6993                                                     ANeuralNetworksMemory** memory)
6994         __INTRODUCED_IN(29);
6995 
6996 /**
6997 
6998  * Specifies whether duration of the {@link ANeuralNetworksExecution} is to be
6999  * measured. Evaluation of the execution must not have been scheduled.
7000  *
7001  * By default, duration is not measured.
7002  *
7003  * The {@link ANeuralNetworksExecution} must have been created from an
7004  * {@link ANeuralNetworksCompilation} which in turn was created from
7005  * {@link ANeuralNetworksCompilation_createForDevices} with numDevices = 1.
7006  * If the device has a feature level reported by
7007  * {@link ANeuralNetworksDevice_getFeatureLevel} that is lower than 29, then the
7008  * duration will not be measured.
7009  *
7010  * See {@link ANeuralNetworksExecution} for information on multithreaded usage.
7011  *
7012  * Available since API level 29.
7013  *
7014  * @param execution The execution to be modified.
7015  * @param measure 'true' if duration is to be measured, 'false' if not.
7016  *
7017  * @return ANEURALNETWORKS_NO_ERROR if successful.
7018  */
7019 int ANeuralNetworksExecution_setMeasureTiming(ANeuralNetworksExecution* execution, bool measure)
7020         __INTRODUCED_IN(29);
7021 
7022 /**
7023  * Get the time spent in the specified {@link ANeuralNetworksExecution}, in nanoseconds.
7024  *
7025  * The execution must have completed.  On asynchronous execution initiated by
7026  * {@link ANeuralNetworksExecution_startCompute} or
7027  * {@link ANeuralNetworksExecution_startComputeWithDependencies},
7028  * {@link ANeuralNetworksEvent_wait} must be called prior to this function.
7029  *
7030  * @param execution The execution to be queried.
7031  * @param durationCode The measurement to be queried, specified by {@link DurationCode}.
7032  * @param duration The returned duration. If no measurement was requested by
7033  *                 {@link ANeuralNetworksExecution_setMeasureTiming}, if the
7034  *                 device is has a feature level reported by
7035  *                 {@link ANeuralNetworksDevice_getFeatureLevel} that is lower
7036  *                 than 29, or for some other reason the duration is not
7037  *                 available, UINT64_MAX will be returned. A particular device
7038  *                 need not support any given measurement.
7039  *
7040  * @return ANEURALNETWORKS_NO_ERROR if successful.
7041  *
7042  * Available since API level 29.
7043  */
7044 int ANeuralNetworksExecution_getDuration(const ANeuralNetworksExecution* execution,
7045                                          int32_t durationCode, uint64_t* duration)
7046         __INTRODUCED_IN(29);
7047 
7048 #endif  // __ANDROID_API__ >= 29
7049 
7050 #if __ANDROID_API__ >= 27
7051 
7052 /**
7053  * Creates a shared memory object from a file descriptor.
7054  *
7055  * The shared memory is backed by a file descriptor via mmap.
7056  * See {@link ANeuralNetworksMemory} for a description on how to use
7057  * this shared memory.
7058  *
7059  * Available since API level 27.
7060  *
7061  * @param size The requested size in bytes.
7062  *             Must not be larger than the file size.
7063  * @param prot The desired memory protection for the mapping.
7064  *             It is either PROT_NONE or the bitwise OR of one or
7065  *             more of the following flags: PROT_READ, PROT_WRITE.
7066  * @param fd The requested file descriptor.
7067  *           The file descriptor has to be mmap-able. The file
7068  *           descriptor will be duplicated.
7069  * @param offset The offset to the beginning of the file of the area to map.
7070  *               The offset has to be aligned to a page size.
7071  * @param memory The memory object to be created.
7072  *               Set to NULL if unsuccessful.
7073  *
7074  * @return ANEURALNETWORKS_NO_ERROR if the request completed normally.
7075  */
7076 int ANeuralNetworksMemory_createFromFd(size_t size, int protect, int fd, size_t offset,
7077                                        ANeuralNetworksMemory** memory) __INTRODUCED_IN(27);
7078 
7079 /**
7080  * Delete a memory object.
7081  *
7082  * Destroys the object used by the run time to keep track of the memory.
7083  * This will free the underlying actual memory if no other code has open
7084  * handles to this memory.
7085  *
7086  * Available since API level 27.
7087  *
7088  * @param memory The memory object to be freed. Passing NULL is acceptable and
7089  *               results in no operation.
7090  */
7091 void ANeuralNetworksMemory_free(ANeuralNetworksMemory* memory) __INTRODUCED_IN(27);
7092 
7093 /**
7094  * Create an empty {@link ANeuralNetworksModel}.
7095  *
7096  * <p>This only creates the object. Computation is performed once
7097  * {@link ANeuralNetworksExecution_burstCompute},
7098  * {@link ANeuralNetworksExecution_compute},
7099  * {@link ANeuralNetworksExecution_startCompute} or
7100  * {@link ANeuralNetworksExecution_startComputeWithDependencies} is invoked.
7101  *
7102  * The model should be constructed with calls to
7103  * {@link ANeuralNetworksModel_addOperation} and
7104  * {@link ANeuralNetworksModel_addOperand}
7105  *
7106  * <p>{@link ANeuralNetworksModel_finish} should be called once the model
7107  * has been fully constructed.</p>
7108  *
7109  * <p>{@link ANeuralNetworksModel_free} should be called once the model
7110  * is no longer needed.</p>
7111  *
7112  * Available since API level 27.
7113  *
7114  * @param model The {@link ANeuralNetworksModel} to be created.
7115  *              Set to NULL if unsuccessful.
7116  *
7117  * @return ANEURALNETWORKS_NO_ERROR if successful.
7118  */
7119 int ANeuralNetworksModel_create(ANeuralNetworksModel** model) __INTRODUCED_IN(27);
7120 
7121 /**
7122  * Destroy a model.
7123  *
7124  * The model need not have been finished by a call to
7125  * {@link ANeuralNetworksModel_finish}.
7126  *
7127  * See {@link ANeuralNetworksModel} for information on multithreaded usage.
7128  *
7129  * Available since API level 27.
7130  *
7131  * @param model The model to be destroyed. Passing NULL is acceptable and
7132  *              results in no operation.
7133  */
7134 void ANeuralNetworksModel_free(ANeuralNetworksModel* model) __INTRODUCED_IN(27);
7135 
7136 /**
7137  * Indicate that we have finished modifying a model. Required before
7138  * calling {@link ANeuralNetworksCompilation_create} and
7139  * {@link ANeuralNetworksCompilation_createForDevices}.
7140  *
7141  * An application must ensure that no other thread uses the model at the same
7142  * time.
7143  *
7144  * This function must only be called once for a given model.
7145  *
7146  * See {@link ANeuralNetworksModel} for information on multithreaded usage.
7147  *
7148  * Available since API level 27.
7149  *
7150  * @param model The model to be finished.
7151  *
7152  * @return ANEURALNETWORKS_NO_ERROR if successful.
7153  */
7154 int ANeuralNetworksModel_finish(ANeuralNetworksModel* model) __INTRODUCED_IN(27);
7155 
7156 /**
7157  * Add an operand to a model.
7158  *
7159  * The order in which the operands are added is important. The first one added
7160  * to a model will have the index value 0, the second 1, etc. These indexes are
7161  * used as operand identifiers in
7162  * {@link ANeuralNetworksModel_addOperation},
7163  * {@link ANeuralNetworksModel_identifyInputsAndOutputs},
7164  * {@link ANeuralNetworksModel_setOperandValue},
7165  * {@link ANeuralNetworksModel_setOperandValueFromMemory},
7166  * {@link ANeuralNetworksExecution_setInput},
7167  * {@link ANeuralNetworksExecution_setInputFromMemory},
7168  * {@link ANeuralNetworksExecution_setOutput},
7169  * {@link ANeuralNetworksExecution_setOutputFromMemory} and
7170  * {@link ANeuralNetworksExecution_setOperandValue}.
7171  *
7172  * <p>Every operand must be referenced in exactly one of the following
7173  * ways:<ul>
7174  *    <li>It is identified as a model input with
7175  *        {@link ANeuralNetworksModel_identifyInputsAndOutputs}.</li>
7176  *    <li>It is identified as a constant with
7177  *        {@link ANeuralNetworksModel_setOperandValue} or
7178  *        {@link ANeuralNetworksModel_setOperandValueFromMemory}.</li>
7179  *    <li>It is identified as an output of exactly one operation with
7180  *        {@link ANeuralNetworksModel_addOperation}.</li></p>
7181  * <p>An operand that is identified as a model input or as a constant
7182  * must not also be identified as a model output with
7183  * {@link ANeuralNetworksModel_identifyInputsAndOutputs}.</p>
7184  *
7185  * To build a model that can accommodate inputs of various sizes, as
7186  * you may want to do for a CNN, leave unspecified the dimensions that
7187  * will vary at run time.  If you do so, fully specify dimensions
7188  * when calling {@link ANeuralNetworksExecution_setInput} or
7189  * {@link ANeuralNetworksExecution_setInputFromMemory}.
7190  *
7191  * Attempting to modify a model once {@link ANeuralNetworksModel_finish} has been
7192  * called will return an error.
7193  *
7194  * See {@link ANeuralNetworksModel} for information on multithreaded usage.
7195  *
7196  * Available since API level 27.
7197  *
7198  * @param model The model to be modified.
7199  * @param type The {@link ANeuralNetworksOperandType} that describes the shape
7200  *             of the operand.  Neither the {@link ANeuralNetworksOperandType}
7201  *             nor the dimensions it points to need to outlive the call to
7202  *             {@link ANeuralNetworksModel_addOperand}.
7203  *
7204  * @return ANEURALNETWORKS_NO_ERROR if successful.
7205  */
7206 int ANeuralNetworksModel_addOperand(ANeuralNetworksModel* model,
7207                                     const ANeuralNetworksOperandType* type) __INTRODUCED_IN(27);
7208 
7209 /**
7210  * Sets an operand to a constant value.
7211  *
7212  * Values of length smaller or equal to
7213  * {@link ANEURALNETWORKS_MAX_SIZE_OF_IMMEDIATELY_COPIED_VALUES}
7214  * are immediately copied into the model.
7215  *
7216  * For values of length greater than
7217  * {@link ANEURALNETWORKS_MAX_SIZE_OF_IMMEDIATELY_COPIED_VALUES}, a pointer to
7218  * the buffer is stored within the model. The application must not change the
7219  * content of this region until all executions using this model have
7220  * completed. As the data may be copied during processing, modifying the data
7221  * after this call yields undefined results. The provided buffer must outlive
7222  * this model.
7223  *
7224  * For large tensors, using {@link ANeuralNetworksModel_setOperandValueFromMemory}
7225  * is likely to be more efficient.
7226  *
7227  * To indicate that an optional operand should be considered missing,
7228  * pass nullptr for buffer and 0 for length.
7229  *
7230  * Attempting to modify a model once {@link ANeuralNetworksModel_finish} has been
7231  * called will return an error.
7232  *
7233  * See {@link ANeuralNetworksModel} for information on multithreaded usage.
7234  *
7235  * Available since API level 27.
7236  *
7237  * @param model The model to be modified.
7238  * @param index The index of the model operand we're setting.
7239  * @param buffer A pointer to the data to use.
7240  * @param length The size in bytes of the data value.
7241  *
7242  * @return ANEURALNETWORKS_NO_ERROR if successful.
7243  */
7244 int ANeuralNetworksModel_setOperandValue(ANeuralNetworksModel* model, int32_t index,
7245                                          const void* buffer, size_t length) __INTRODUCED_IN(27);
7246 
7247 #if __ANDROID_API__ >= 29
7248 
7249 /**
7250  * Sets an operand's per channel quantization parameters.
7251  *
7252  * Sets parameters required by a tensor of type
7253  * {@link ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL}.
7254  * This function must be called for every tensor of type
7255  * {@link ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL} before
7256  * calling {@link ANeuralNetworksModel_finish}.
7257  *
7258  * Available since API level 29.
7259  *
7260  * @param model The model to be modified.
7261  * @param index The index of the model operand we're setting.
7262  * @param channelQuant The per channel quantization parameters for the operand.
7263  *                    No memory in this struct needs to outlive the call to
7264  *                    this function.
7265  *
7266  * @return ANEURALNETWORKS_NO_ERROR if successful.
7267  */
7268 int ANeuralNetworksModel_setOperandSymmPerChannelQuantParams(
7269         ANeuralNetworksModel* model, int32_t index,
7270         const ANeuralNetworksSymmPerChannelQuantParams* channelQuant) __INTRODUCED_IN(29);
7271 
7272 #endif  // __ANDROID_API__ >= 29
7273 
7274 /**
7275  * Sets an operand to a value stored in a memory object.
7276  *
7277  * The content of the memory is not copied. A reference to that memory is stored
7278  * inside the model. The application must not change the content of the memory
7279  * region until all executions using this model have completed.  As the data may
7280  * be copied during processing, modifying the data after this call yields
7281  * undefined results.
7282  *
7283  * <p>The provided memory must outlive this model.</p>
7284  *
7285  * To indicate that an optional operand should be considered missing,
7286  * use {@link ANeuralNetworksModel_setOperandValue} instead, passing nullptr for buffer.
7287  *
7288  * It is disallowed to set an operand value with shared memory backed by an AHardwareBuffer
7289  * of a format other than AHARDWAREBUFFER_FORMAT_BLOB.
7290  *
7291  * It is disallowed to set an operand value with memory created from
7292  * {@link ANeuralNetworksMemory_createFromDesc}.
7293  *
7294  * Attempting to modify a model once {@link ANeuralNetworksModel_finish} has been
7295  * called will return an error.
7296  *
7297  * See {@link ANeuralNetworksModel} for information on multithreaded usage.
7298  * See {@link ANeuralNetworksMemory_createFromAHardwareBuffer} for information on
7299  * AHardwareBuffer usage.
7300  *
7301  * Available since API level 27.
7302  *
7303  * @param model The model to be modified.
7304  * @param index The index of the model operand we're setting.
7305  * @param buffer A pointer to the data to use.
7306  * @param memory The memory containing the data.
7307  * @param offset This specifies the location of the data within the memory.
7308  *               The offset is in bytes from the start of memory.
7309  * @param length The size in bytes of the data value.
7310  *
7311  * @return ANEURALNETWORKS_NO_ERROR if successful.
7312  */
7313 int ANeuralNetworksModel_setOperandValueFromMemory(ANeuralNetworksModel* model, int32_t index,
7314                                                    const ANeuralNetworksMemory* memory,
7315                                                    size_t offset, size_t length)
7316         __INTRODUCED_IN(27);
7317 
7318 #if __ANDROID_API__ >= 30
7319 
7320 /**
7321  * Sets an operand to a value that is a reference to another NNAPI model.
7322  *
7323  * The referenced model must already have been finished by a call to
7324  * {@link ANeuralNetworksModel_finish}.
7325  *
7326  * The {@link ANeuralNetworksModel_relaxComputationFloat32toFloat16} setting of
7327  * referenced models is overridden by that setting of the main model of a
7328  * compilation.
7329  *
7330  * The referenced model must outlive the model referring to it.
7331  *
7332  * Attempting to modify a model once {@link ANeuralNetworksModel_finish} has
7333  * been called will return an error.
7334  *
7335  * See {@link ANeuralNetworksModel} for information on multithreaded usage.
7336  *
7337  * Available since API level 30.
7338  *
7339  * @param model The model to be modified.
7340  * @param index The index of the model operand we're setting.
7341  * @param value The model to be referenced.
7342  *
7343  * @return ANEURALNETWORKS_NO_ERROR if successful.
7344  */
7345 int ANeuralNetworksModel_setOperandValueFromModel(ANeuralNetworksModel* model, int32_t index,
7346                                                   const ANeuralNetworksModel* value)
7347         __INTRODUCED_IN(30);
7348 
7349 #endif  // __ANDROID_API__ >= 30
7350 
7351 /**
7352  * Add an operation to a model.
7353  *
7354  * @param model The model to be modified.
7355  * @param type The {@link ANeuralNetworksOperationType} of the operation.
7356  * @param inputCount The number of entries in the inputs array.
7357  * @param inputs An array of indexes identifying each operand.
7358  * @param outputCount The number of entries in the outputs array.
7359  * @param outputs An array of indexes identifying each operand.
7360  *
7361  * The operands specified by inputs and outputs must have been
7362  * previously added by calls to {@link ANeuralNetworksModel_addOperand}.
7363  *
7364  * Attempting to modify a model once {@link ANeuralNetworksModel_finish} has been
7365  * called will return an error.
7366  *
7367  * See {@link ANeuralNetworksModel} for information on multithreaded usage.
7368  *
7369  * Available since API level 27.
7370  *
7371  * @return ANEURALNETWORKS_NO_ERROR if successful.
7372  */
7373 int ANeuralNetworksModel_addOperation(ANeuralNetworksModel* model,
7374                                       ANeuralNetworksOperationType type, uint32_t inputCount,
7375                                       const uint32_t* inputs, uint32_t outputCount,
7376                                       const uint32_t* outputs) __INTRODUCED_IN(27);
7377 
7378 /**
7379  * Specifies which operands will be the model's inputs and
7380  * outputs. Every model must have at least one input and one output.
7381  *
7382  * An operand cannot be used for both input and output. Doing so will
7383  * return an error.
7384  *
7385  * @param model The model to be modified.
7386  * @param inputCount The number of entries in the inputs array.
7387  * @param inputs An array of indexes identifying the input operands.
7388  * @param outputCount The number of entries in the outputs array.
7389  * @param outputs An array of indexes identifying the output operands.
7390  *
7391  * The operands specified by inputs and outputs must have been
7392  * previously added by calls to {@link ANeuralNetworksModel_addOperand}.
7393  *
7394  * Attempting to modify a model once {@link ANeuralNetworksModel_finish} has been
7395  * called will return an error.
7396  *
7397  * See {@link ANeuralNetworksModel} for information on multithreaded usage.
7398  *
7399  * Available since API level 27.
7400  *
7401  */
7402 int ANeuralNetworksModel_identifyInputsAndOutputs(ANeuralNetworksModel* model, uint32_t inputCount,
7403                                                   const uint32_t* inputs, uint32_t outputCount,
7404                                                   const uint32_t* outputs) __INTRODUCED_IN(27);
7405 
7406 #if __ANDROID_API__ >= 28
7407 
7408 /**
7409  * Specifies whether {@link ANEURALNETWORKS_TENSOR_FLOAT32} is allowed to be
7410  * calculated with range and/or precision as low as that of the IEEE 754 16-bit
7411  * floating-point format. By default, {@link ANEURALNETWORKS_TENSOR_FLOAT32}
7412  * must be calculated using at least the range and precision of the IEEE 754
7413  * 32-bit floating-point format.
7414  *
7415  * The relaxComputationFloat32toFloat16 setting of the main model of
7416  * a compilation overrides the values of the referenced models.
7417  *
7418  * @param model The model to be modified.
7419  * @param allow 'true' indicates {@link ANEURALNETWORKS_TENSOR_FLOAT32} may be
7420  *              calculated with range and/or precision as low as that of the
7421  *              IEEE 754 16-bit floating point format. 'false' indicates
7422  *              {@link ANEURALNETWORKS_TENSOR_FLOAT32} must be calculated using
7423  *              at least the range and precision of the IEEE 754 32-bit floating
7424  *              point format.
7425  *
7426  * Attempting to modify a model once {@link ANeuralNetworksModel_finish} has been
7427  * called will return an error.
7428  *
7429  * Available since API level 28.
7430  *
7431  * See {@link ANeuralNetworksModel} for information on multithreaded usage.
7432  */
7433 int ANeuralNetworksModel_relaxComputationFloat32toFloat16(ANeuralNetworksModel* model, bool allow)
7434         __INTRODUCED_IN(28);
7435 
7436 #endif  // __ANDROID_API__ >= 28
7437 
7438 /**
7439  * Create a {@link ANeuralNetworksCompilation} to compile the given model.
7440  *
7441  * The model passed to this function is termed the "main model" of the
7442  * compilation, to distinguish it from other models referred to by an Operand
7443  * of type {@link ANEURALNETWORKS_MODEL} within this compilation.
7444  *
7445  * <p>This function only creates the object. Compilation is only performed once
7446  * {@link ANeuralNetworksCompilation_finish} is invoked.</p>
7447  *
7448  * <p>{@link ANeuralNetworksCompilation_finish} should be called once
7449  * all desired properties have been set on the compilation.</p>
7450  *
7451  * <p>{@link ANeuralNetworksModel_free} should be called once the compilation
7452  * is no longer needed.</p>
7453  *
7454  * <p>The provided model must outlive the compilation.</p>
7455  *
7456  * The model must already have been finished by a call to
7457  * {@link ANeuralNetworksModel_finish}.
7458  *
7459  * See {@link ANeuralNetworksCompilation} for information on multithreaded usage.
7460  *
7461  * Available since API level 27.
7462  *
7463  * @param model The {@link ANeuralNetworksModel} to be compiled.
7464  * @param compilation The newly created object or NULL if unsuccessful.
7465  *
7466  * @return ANEURALNETWORKS_NO_ERROR if successful, ANEURALNETWORKS_BAD_DATA
7467  *         if the model is invalid.
7468  */
7469 int ANeuralNetworksCompilation_create(ANeuralNetworksModel* model,
7470                                       ANeuralNetworksCompilation** compilation) __INTRODUCED_IN(27);
7471 
7472 /**
7473  * Destroy a compilation.
7474  *
7475  * The compilation need not have been finished by a call to
7476  * {@link ANeuralNetworksCompilation_finish}.
7477  *
7478  * See {@link ANeuralNetworksCompilation} for information on multithreaded usage.
7479  *
7480  * Available since API level 27.
7481  *
7482  * @param compilation The compilation to be destroyed. Passing NULL is acceptable and
7483  *                    results in no operation.
7484  */
7485 void ANeuralNetworksCompilation_free(ANeuralNetworksCompilation* compilation) __INTRODUCED_IN(27);
7486 
7487 /**
7488  * Sets the execution preference.
7489  *
7490  * <p>Provides guidance to the runtime when trade-offs are possible. By default the runtime
7491  * uses PREFER_SINGLE_FAST_ANSWER</p>
7492  *
7493  * See {@link ANeuralNetworksCompilation} for information on multithreaded usage.
7494  *
7495  * Available since API level 27.
7496  *
7497  * @param compilation The compilation to be modified.
7498  * @param preference Either {@link PREFER_LOW_POWER},
7499  *                  {@link PREFER_SINGLE_FAST_ANSWER}, or
7500  *                  {@link PREFER_SUSTAINED_SPEED}.
7501  *
7502  * @return ANEURALNETWORKS_NO_ERROR if successful.
7503  */
7504 int ANeuralNetworksCompilation_setPreference(ANeuralNetworksCompilation* compilation,
7505                                              int32_t preference) __INTRODUCED_IN(27);
7506 
7507 /**
7508  * Indicate that we have finished modifying a compilation. Required before
7509  * calling {@link ANeuralNetworksBurst_create} or
7510  * {@link ANeuralNetworksExecution_create}.
7511  *
7512  * An application must ensure that no other thread uses the compilation at the
7513  * same time.
7514  *
7515  * This function must only be called once for a given compilation.
7516  *
7517  * If {@link ANeuralNetworksCompilation_setTimeout} was called on this
7518  * compilation, and the compilation is not able to be finished before the
7519  * timeout duration is exceeded, then compilation may be aborted, in which case
7520  * {@link ANEURALNETWORKS_MISSED_DEADLINE_*} will be returned.
7521  *
7522  * See {@link ANeuralNetworksCompilation} for information on multithreaded usage.
7523  *
7524  * Available since API level 27.
7525  *
7526  * @param compilation The compilation to be finished.
7527  *
7528  * @return ANEURALNETWORKS_NO_ERROR if successful.
7529  */
7530 int ANeuralNetworksCompilation_finish(ANeuralNetworksCompilation* compilation) __INTRODUCED_IN(27);
7531 
7532 #if __ANDROID_API__ >= 30
7533 
7534 /**
7535  * Set the execution priority.
7536  *
7537  * Execution priorities are relative to other executions created by the same
7538  * application (specifically same uid) for the same device. Specifically,
7539  * priorities of executions from one application will not affect executions from
7540  * another application. Similarly, priorities of executions on one device will
7541  * not affect executions on another device.
7542  *
7543  * Higher priority executions may use more compute resources than lower priority
7544  * executions, and may preempt or starve lower priority executions.
7545  *
7546  * See {@link ANeuralNetworksCompilation} for information on multithreaded usage.
7547  *
7548  * Available since API level 30.
7549  *
7550  * @param compilation The compilation to be modified.
7551  * @param priority The relative priority of the execution compared to other
7552  *     executions created by the application. Must be one of
7553  *     ANEURALNETWORKS_PRIORITY_*.
7554  *
7555  * @return ANEURALNETWORKS_NO_ERROR if successful.
7556  */
7557 int ANeuralNetworksCompilation_setPriority(ANeuralNetworksCompilation* compilation, int priority)
7558         __INTRODUCED_IN(30);
7559 
7560 /**
7561  * Set the maximum expected duration for compiling the model.
7562  *
7563  * If the device is not able to complete the compilation within the specified
7564  * duration, the compilation may be aborted. The timeout duration begins at the
7565  * call to {@link ANeuralNetworksCompilation_finish}.
7566  *
7567  * This timeout duration acts as a hint to drivers, and can be used to both free
7568  * up compute resources within the driver and return control back to the
7569  * application quicker than is possible without the hint. It enables drivers
7570  * that are able to estimate how long a compilation will take to abort the
7571  * compilation before it has even started if the driver believes the compilation
7572  * cannot be completed within the timeout duration. Similarly, it enables
7573  * drivers to abort an ongoing compilation if it is taking too long. However,
7574  * this call does not guarantee that the compilation will complete or abort
7575  * within the timeout duration.
7576  *
7577  * By default (i.e., unless ANeuralNetworksCompilation_setTimeout is called),
7578  * the timeout duration for compiling the model is considered infinite.
7579  *
7580  * The {@link ANeuralNetworksCompilation} must have been created with
7581  * {@link ANeuralNetworksCompilation_createForDevices} with numDevices = 1,
7582  * otherwise this function will fail with ANEURALNETWORKS_BAD_DATA. If the
7583  * device has a feature level reported by
7584  * {@link ANeuralNetworksDevice_getFeatureLevel} that is lower than 30, then the
7585  * timeout duration hint will be ignored.
7586  *
7587  * See {@link ANeuralNetworksCompilation} for information on multithreaded usage.
7588  *
7589  * @param compilation The compilation to be modified.
7590  * @param duration The maximum amount of time in nanoseconds that is expected to
7591  *     be spent finishing a compilation. If this duration is exceeded, the
7592  *     compilation may be aborted. If set to 0, the timeout duration is
7593  *     considered infinite.
7594  *
7595  * @return ANEURALNETWORKS_NO_ERROR if successful.
7596  *
7597  * Available since API level 30.
7598  */
7599 int ANeuralNetworksCompilation_setTimeout(ANeuralNetworksCompilation* compilation,
7600                                           uint64_t duration) __INTRODUCED_IN(30);
7601 
7602 #endif  // __ANDROID_API__ >= 30
7603 
7604 /**
7605  * Create a {@link ANeuralNetworksExecution} to apply the given compilation.
7606  * This only creates the object. Computation is only performed once
7607  * {@link ANeuralNetworksExecution_burstCompute},
7608  * {@link ANeuralNetworksExecution_compute},
7609  * {@link ANeuralNetworksExecution_startCompute} or
7610  * {@link ANeuralNetworksExecution_startComputeWithDependencies} is invoked.
7611  *
7612  * <p>The provided compilation must outlive the execution.</p>
7613  *
7614  * See {@link ANeuralNetworksExecution} for information on multithreaded usage.
7615  *
7616  * Available since API level 27.
7617  *
7618  * @param compilation The {@link ANeuralNetworksCompilation} to be evaluated.
7619  * @param execution The newly created object or NULL if unsuccessful.
7620  *
7621  * @return ANEURALNETWORKS_NO_ERROR if successful, ANEURALNETWORKS_BAD_DATA
7622  *         if the compilation is invalid.
7623  */
7624 int ANeuralNetworksExecution_create(ANeuralNetworksCompilation* compilation,
7625                                     ANeuralNetworksExecution** execution) __INTRODUCED_IN(27);
7626 
7627 /**
7628  * Destroy an execution.
7629  *
7630  * <p>The execution need not have been scheduled by a call to
7631  * {@link ANeuralNetworksExecution_burstCompute},
7632  * {@link ANeuralNetworksExecution_compute},
7633  * {@link ANeuralNetworksExecution_startCompute} or
7634  * {@link ANeuralNetworksExecution_startComputeWithDependencies}; but if it has been scheduled,
7635  * then the application must not call {@link ANeuralNetworksExecution_free}
7636  * until the execution has completed (i.e.,
7637  * {@link ANeuralNetworksExecution_burstCompute},
7638  * {@link ANeuralNetworksExecution_compute}, or
7639  * {@link ANeuralNetworksEvent_wait} has returned).
7640  *
7641  * See {@link ANeuralNetworksExecution} for information on multithreaded usage.
7642  *
7643  * Available since API level 27.
7644  *
7645  * @param execution The execution to be destroyed. Passing NULL is acceptable and
7646  *                  results in no operation.
7647  */
7648 void ANeuralNetworksExecution_free(ANeuralNetworksExecution* execution) __INTRODUCED_IN(27);
7649 
7650 /**
7651  * Associate a user buffer with an input of the model of the
7652  * {@link ANeuralNetworksExecution}. Evaluation of the execution must not have
7653  * been scheduled. Once evaluation of the execution has been scheduled, the
7654  * application must not change the content of the buffer until the execution has
7655  * completed. Evaluation of the execution will not change the content of the
7656  * buffer.
7657  *
7658  * <p>The provided buffer must outlive the execution.</p>
7659  *
7660  * If the input is optional, you can indicate that it is omitted by
7661  * passing nullptr for buffer and 0 for length.
7662  *
7663  * See {@link ANeuralNetworksExecution} for information on multithreaded usage.
7664  *
7665  * Available since API level 27.
7666  *
7667  * @param execution The execution to be modified.
7668  * @param index The index of the input argument we are setting. It is
7669  *              an index into the lists passed to
7670  *              {@link ANeuralNetworksModel_identifyInputsAndOutputs}. It is not
7671  *              the index associated with
7672  *              {@link ANeuralNetworksModel_addOperand}.
7673  * @param type The {@link ANeuralNetworksOperandType} of the
7674  *             operand. Unless the input is omitted, this should be
7675  *             used to specify the dimensions that were left
7676  *             unspecified when the operand was added to the
7677  *             model. All other properties of the type must be the
7678  *             same as specified in the model. If the type is the same
7679  *             as specified when the model was built, NULL can be
7680  *             passed. Neither the {@link ANeuralNetworksOperandType}
7681  *             nor the dimensions it points to need to outlive the call
7682  *             to {@link ANeuralNetworksExecution_setInput}.
7683  * @param buffer The buffer containing the data.
7684  * @param length The length in bytes of the buffer.
7685  *
7686  * @return ANEURALNETWORKS_NO_ERROR if successful, ANEURALNETWORKS_BAD_DATA if the
7687  *         name is not recognized or the buffer is too small for the input.
7688  */
7689 int ANeuralNetworksExecution_setInput(ANeuralNetworksExecution* execution, int32_t index,
7690                                       const ANeuralNetworksOperandType* type, const void* buffer,
7691                                       size_t length) __INTRODUCED_IN(27);
7692 
7693 /**
7694  * Associate a region of a memory object with an input of the model of the
7695  * {@link ANeuralNetworksExecution}. Evaluation of the execution must not have
7696  * been scheduled. Once evaluation of the execution has been scheduled, the
7697  * application must not change the content of the region until the execution has
7698  * completed. Evaluation of the execution will not change the content of the
7699  * region.
7700  *
7701  * <p>The provided memory must outlive the execution.</p>
7702  *
7703  * If the input is optional, you can indicate that it is omitted by
7704  * using {@link ANeuralNetworksExecution_setInput} instead, passing nullptr for
7705  * buffer and 0 for length.
7706  *
7707  * See {@link ANeuralNetworksExecution} for information on multithreaded usage.
7708  * See {@link ANeuralNetworksMemory_createFromAHardwareBuffer} for information on
7709  * AHardwareBuffer usage.
7710  * See {@link ANeuralNetworksMemory_createFromDesc} for information on usage of memory objects
7711  * created from memory descriptors.
7712  *
7713  * Available since API level 27.
7714  *
7715  * @param execution The execution to be modified.
7716  * @param index The index of the input argument we are setting. It is
7717  *              an index into the lists passed to
7718  *              {@link ANeuralNetworksModel_identifyInputsAndOutputs}. It is not
7719  *              the index associated with {@link ANeuralNetworksModel_addOperand}.
7720  * @param type The {@link ANeuralNetworksOperandType} of the
7721  *             operand. This should be used to specify the dimensions
7722  *             that were left unspecified when the operand was added
7723  *             to the model. All other properties of the type must be
7724  *             the same as specified in the model. If the type is the
7725  *             same as specified when the model was built, NULL can be
7726  *             passed. Neither the {@link ANeuralNetworksOperandType}
7727  *             nor the dimensions it points to need to outlive the call
7728  *             to {@link ANeuralNetworksExecution_setInputFromMemory}.
7729  * @param memory The memory containing the data.
7730  * @param offset This specifies the location of the data within the memory.
7731  *               The offset is in bytes from the start of memory.
7732  * @param length The size in bytes of the data value.
7733  *
7734  * @return ANEURALNETWORKS_NO_ERROR if successful, ANEURALNETWORKS_BAD_DATA if the
7735  *         name is not recognized or the buffer is too small for the input.
7736  */
7737 int ANeuralNetworksExecution_setInputFromMemory(ANeuralNetworksExecution* execution, int32_t index,
7738                                                 const ANeuralNetworksOperandType* type,
7739                                                 const ANeuralNetworksMemory* memory, size_t offset,
7740                                                 size_t length) __INTRODUCED_IN(27);
7741 
7742 /**
7743  * Associate a user buffer with an output of the model of the
7744  * {@link ANeuralNetworksExecution}. Evaluation of the execution must not have
7745  * been scheduled. Once evaluation of the execution has been scheduled, the
7746  * application must not change the content of the buffer until the execution has
7747  * completed.
7748  *
7749  * If the output is optional, you can indicate that it is omitted by
7750  * passing nullptr for buffer and 0 for length.
7751  *
7752  * <p>The provided buffer must outlive the execution.</p>
7753  *
7754  * See {@link ANeuralNetworksExecution} for information on multithreaded usage.
7755  *
7756  * Available since API level 27.
7757  *
7758  * @param execution The execution to be modified.
7759  * @param index The index of the output argument we are setting. It is
7760  *              an index into the lists passed to
7761  *              {@link ANeuralNetworksModel_identifyInputsAndOutputs}. It is not
7762  *              the index associated with {@link ANeuralNetworksModel_addOperand}.
7763  * @param type The {@link ANeuralNetworksOperandType} of the
7764  *             operand. Unless the output is omitted, this should be
7765  *             used to specify the dimensions that were left
7766  *             unspecified when the operand was added to the
7767  *             model. All other properties of the type must be the
7768  *             same as specified in the model. If the type is the same
7769  *             as specified when the model was built, NULL can be
7770  *             passed. Neither the {@link ANeuralNetworksOperandType}
7771  *             nor the dimensions it points to need to outlive the call
7772  *             to {@link ANeuralNetworksExecution_setOutput}.
7773  *             Since API level 29, the output operand can have unspecified
7774  *             dimensions or rank to be deduced dynamically during the execution.
7775  *             However, the user must provide a large enough buffer. The user
7776  *             can retrieve the output dimensional information after the execution
7777  *             by {@link ANeuralNetworksExecution_getOutputOperandRank} and
7778  *             {@link ANeuralNetworksExecution_getOutputOperandDimensions}.
7779  * @param buffer The buffer where the data is to be written.
7780  * @param length The length in bytes of the buffer.
7781  *
7782  * @return ANEURALNETWORKS_NO_ERROR if successful, ANEURALNETWORKS_BAD_DATA if the
7783  *         name is not recognized or the buffer is too small for the output.
7784  */
7785 int ANeuralNetworksExecution_setOutput(ANeuralNetworksExecution* execution, int32_t index,
7786                                        const ANeuralNetworksOperandType* type, void* buffer,
7787                                        size_t length) __INTRODUCED_IN(27);
7788 
7789 /**
7790  * Associate a region of a memory object with an output of the model of the
7791  * {@link ANeuralNetworksExecution}. Evaluation of the execution must not have
7792  * been scheduled. Once evaluation of the execution has been scheduled, the
7793  * application must not change the content of the region until the execution has
7794  * completed.
7795  *
7796  * If the output is optional, you can indicate that it is omitted by
7797  * using {@link ANeuralNetworksExecution_setOutput} instead, passing nullptr for
7798  * buffer and 0 for length.
7799  *
7800  * <p>The provided memory must outlive the execution.</p>
7801  *
7802  * See {@link ANeuralNetworksExecution} for information on multithreaded usage.
7803  * See {@link ANeuralNetworksMemory_createFromAHardwareBuffer} for information on
7804  * AHardwareBuffer usage.
7805  * See {@link ANeuralNetworksMemory_createFromDesc} for information on usage of memory objects
7806  * created from memory descriptors.
7807  *
7808  * Available since API level 27.
7809  *
7810  * @param execution The execution to be modified.
7811  * @param index The index of the output argument we are setting. It is
7812  *              an index into the lists passed to
7813  *              {@link ANeuralNetworksModel_identifyInputsAndOutputs}. It is not
7814  *              the index associated with {@link ANeuralNetworksModel_addOperand}.
7815  * @param type The {@link ANeuralNetworksOperandType} of the operand. This should be
7816  *             used to specify the dimensions that were left
7817  *             unspecified when the operand was added to the
7818  *             model. All other properties of the type must be the
7819  *             same as specified in the model. If the type is the same
7820  *             as specified when the model was built, NULL can be
7821  *             passed. Neither the {@link ANeuralNetworksOperandType}
7822  *             nor the dimensions it points to need to outlive the call
7823  *             to {@link ANeuralNetworksExecution_setOutputFromMemory}.
7824  *             Since API level 29, the output operand can have unspecified
7825  *             dimensions or rank to be deduced dynamically during the execution.
7826  *             However, the user must provide a large enough memory. The user
7827  *             can retrieve the output dimensional information after the execution
7828  *             by {@link ANeuralNetworksExecution_getOutputOperandRank} and
7829  *             {@link ANeuralNetworksExecution_getOutputOperandDimensions}.
7830  * @param memory The memory where the data is to be stored.
7831  * @param offset This specifies the location of the data within the memory.
7832  *               The offset is in bytes from the start of memory.
7833  * @param length The length in bytes of the data value.
7834  *
7835  * @return ANEURALNETWORKS_NO_ERROR if successful, ANEURALNETWORKS_BAD_DATA if the
7836  *         name is not recognized or the buffer is too small for the output.
7837  */
7838 int ANeuralNetworksExecution_setOutputFromMemory(ANeuralNetworksExecution* execution, int32_t index,
7839                                                  const ANeuralNetworksOperandType* type,
7840                                                  const ANeuralNetworksMemory* memory, size_t offset,
7841                                                  size_t length) __INTRODUCED_IN(27);
7842 
7843 /**
7844  * Schedule asynchronous evaluation of the execution.
7845  *
7846  * <p>Schedules asynchronous evaluation of the execution. Once the execution
7847  * has completed and the outputs are ready to be consumed, the returned event
7848  * will be signaled. Use {@link ANeuralNetworksEvent_wait} to wait for that
7849  * event.
7850  * </p>
7851  *
7852  * ANeuralNetworksEvent_wait must be called to recuperate the resources used
7853  * by the execution.
7854  *
7855  * If {@link ANeuralNetworksExecution_setTimeout} was called on this execution,
7856  * and the execution is not able to complete before the timeout duration is
7857  * exceeded, then execution may be aborted, in which case
7858  * {@link ANEURALNETWORKS_MISSED_DEADLINE_*} will be returned through
7859  * {@link ANeuralNetworksExecution_startCompute} or
7860  * {@link ANeuralNetworksEvent_wait} on the event object. If the device has a
7861  * feature level reported by {@link ANeuralNetworksDevice_getFeatureLevel} that
7862  * is lower than 30, then the timeout duration hint will be ignored.
7863  *
7864  * If this execution contains a {@link ANEURALNETWORKS_WHILE} operation, and
7865  * the condition model does not output false within the loop timeout duration,
7866  * then execution will be aborted and {@link ANEURALNETWORKS_MISSED_DEADLINE_*}
7867  * will be returned through {@link ANeuralNetworksEvent_wait} on the event
7868  * object.
7869  *
7870  * If the device can detect before the execution has started that the execution
7871  * will not complete within the timeout duration, the device may choose to skip
7872  * the execution and instead return {@link ANEURALNETWORKS_MISSED_DEADLINE_*}.
7873  *
7874  * See {@link ANeuralNetworksExecution} for information on multithreaded usage.
7875  *
7876  * See {@link ANeuralNetworksExecution_compute} for synchronous execution.
7877  * See {@link ANeuralNetworksExecution_burstCompute} for burst synchronous execution.
7878  * See {@link ANeuralNetworksExecution_startComputeWithDependencies} for
7879  * asynchronous execution with dependencies.
7880  *
7881  * Available since API level 27.
7882  *
7883  * @param execution The execution to be scheduled and executed.
7884  * @param event The event that will be signaled on completion. event is set to
7885  *              NULL if there's an error.
7886  *
7887  * @return ANEURALNETWORKS_NO_ERROR if the evaluation is successfully scheduled.
7888  */
7889 int ANeuralNetworksExecution_startCompute(ANeuralNetworksExecution* execution,
7890                                           ANeuralNetworksEvent** event) __INTRODUCED_IN(27);
7891 
7892 #if __ANDROID_API__ >= 30
7893 
7894 /**
7895  * Set the maximum expected duration of the specified execution.
7896  *
7897  * If the device is not able to complete the execution within the specified
7898  * duration, the execution may be aborted. The timeout duration begins at a
7899  * call to one of:
7900  * - {@link ANeuralNetworksExecution_burstCompute}
7901  * - {@link ANeuralNetworksExecution_compute}
7902  * - {@link ANeuralNetworksExecution_startCompute}
7903  * - {@link ANeuralNetworksExecution_startComputeWithDependencies}
7904  *
7905  * This timeout duration acts as a hint to drivers, and can be used to both free
7906  * up compute resources within the driver and return control back to the
7907  * application quicker than is possible without the hint. It enables drivers
7908  * that are able to estimate how long an execution will take to abort the
7909  * execution before it has even started if the driver believes the execution
7910  * cannot be completed within the timeout duration. Similarly, it enables
7911  * drivers to abort an ongoing execution if it is taking too long. However, this
7912  * call does not guarantee that the execution will complete or abort within the
7913  * timeout duration.
7914  *
7915  * By default (i.e., unless ANeuralNetworksExecution_setTimeout is called),
7916  * the timeout duration for execution is considered infinite.
7917  *
7918  * The {@link ANeuralNetworksExecution} must have been created from an
7919  * {@link ANeuralNetworksCompilation} which in turn was created from
7920  * {@link ANeuralNetworksCompilation_createForDevices} with numDevices = 1,
7921  * otherwise this function will fail with ANEURALNETWORKS_BAD_DATA. If the
7922  * device has a feature level reported by
7923  * {@link ANeuralNetworksDevice_getFeatureLevel} that is lower than 30, then the
7924  * timeout duration hint will be ignored.
7925  *
7926  * See {@link ANeuralNetworksExecution} for information on multithreaded usage.
7927  *
7928  * @param execution The execution to be modified.
7929  * @param duration The maximum amount of time in nanoseconds that is expected to
7930  *     be spent executing a model. If this duration is exceeded, the execution
7931  *     may be aborted. If set to 0, the timeout duration is considered infinite.
7932  *
7933  * @return ANEURALNETWORKS_NO_ERROR if successful.
7934  *
7935  * Available since API level 30.
7936  */
7937 int ANeuralNetworksExecution_setTimeout(ANeuralNetworksExecution* execution, uint64_t duration)
7938         __INTRODUCED_IN(30);
7939 
7940 /**
7941  * Set the maximum duration of WHILE loops in the specified execution.
7942  *
7943  * This is a fuzzy per-loop timeout intended to prevent infinite loops.
7944  *
7945  * If a WHILE loop condition model does not output false within the specified
7946  * duration, the execution will be aborted.
7947  *
7948  * See {@link ANeuralNetworks_getDefaultLoopTimeout} and
7949  * {@link ANeuralNetworks_getMaximumLoopTimeout} for the default
7950  * and maximum timeout values.
7951  *
7952  * See {@link ANeuralNetworksExecution} for information on multithreaded usage.
7953  *
7954  * @param execution The execution to be modified.
7955  * @param duration The maximum amount of time in nanoseconds that can be spent
7956  *     executing a WHILE loop. If the specified duration value exceeds the value
7957  *     produced by {@link ANeuralNetworks_getMaximumLoopTimeout}, it will be
7958  *     overridden by that value.
7959  *
7960  * @return ANEURALNETWORKS_NO_ERROR if successful.
7961  *         ANEURALNETWORKS_BAD_STATE if execution has started.
7962  *         ANEURALNETWORKS_UNEXPECTED_NULL if execution is NULL.
7963  *
7964  * Available since API level 30.
7965  */
7966 int ANeuralNetworksExecution_setLoopTimeout(ANeuralNetworksExecution* execution, uint64_t duration)
7967         __INTRODUCED_IN(30);
7968 
7969 /**
7970  * Get the default timeout value for WHILE loops.
7971  *
7972  * @return The default timeout value in nanoseconds.
7973  *
7974  * Available since API level 30.
7975  */
7976 uint64_t ANeuralNetworks_getDefaultLoopTimeout() __INTRODUCED_IN(30);
7977 
7978 /**
7979  * Get the maximum timeout value for WHILE loops.
7980  *
7981  * @return The maximum timeout value in nanoseconds.
7982  *
7983  * Available since API level 30.
7984  */
7985 uint64_t ANeuralNetworks_getMaximumLoopTimeout() __INTRODUCED_IN(30);
7986 
7987 #endif  // __ANDROID_API__ >= 30
7988 
7989 /**
7990  * Waits until the execution completes.
7991  *
7992  * More than one thread can wait on an event. When the execution completes,
7993  * all threads will be released.
7994  *
7995  * If {@link ANeuralNetworksExecution_setTimeout} was called on the execution
7996  * corresponding to this event, and the execution is not able to complete
7997  * before the duration is exceeded, the execution may be aborted, in which case
7998  * {@link ANEURALNETWORKS_MISSED_DEADLINE_*} will be returned here.
7999  *
8000  * If the execution contains a {@link ANEURALNETWORKS_WHILE} operation, and
8001  * the condition model does not output false within the loop timeout duration,
8002  * the execution will be aborted, and {@link ANEURALNETWORKS_MISSED_DEADLINE_*}
8003  * will be returned here.
8004  *
8005  * See {@link ANeuralNetworksExecution} for information on multithreaded usage.
8006  *
8007  * Available since API level 27.
8008  *
8009  * @param event The event that will be signaled on completion.
8010  * @return ANEURALNETWORKS_NO_ERROR if the execution completed normally.
8011  *         ANEURALNETWORKS_UNMAPPABLE if the execution input or output memory cannot
8012  *         be properly mapped.
8013  */
8014 int ANeuralNetworksEvent_wait(ANeuralNetworksEvent* event) __INTRODUCED_IN(27);
8015 
8016 /**
8017  * Destroys the event.
8018  *
8019  * See {@link ANeuralNetworksExecution} for information on multithreaded usage.
8020  *
8021  * Available since API level 27.
8022  *
8023  * @param event The event object to be destroyed. Passing NULL is acceptable and
8024  *              results in no operation.
8025  */
8026 void ANeuralNetworksEvent_free(ANeuralNetworksEvent* event) __INTRODUCED_IN(27);
8027 
8028 #endif  // __ANDROID_API__ >= 27
8029 
8030 #if __ANDROID_API__ >= 30
8031 /**
8032  * Create a {@link ANeuralNetworksEvent} from a sync_fence file descriptor.
8033  *
8034  * The newly created ANeuralNetworksEvent does not take ownership of the provided sync_fence_fd,
8035  * it will instead dup the provided sync_fence_fd and own the duplicate.
8036  *
8037  * @param sync_fence_fd The sync_fence file descriptor.
8038  * @param event The newly created object or NULL if unsuccessful.
8039  *
8040  * @return ANEURALNETWORKS_NO_ERROR if successful.
8041  *
8042  * Available since API level 30.
8043  */
8044 int ANeuralNetworksEvent_createFromSyncFenceFd(int sync_fence_fd, ANeuralNetworksEvent** event)
8045         __INTRODUCED_IN(30);
8046 
8047 /**
8048  * Get sync_fence file descriptor from the event.
8049  *
8050  * If the ANeuralNetworksEvent is not backed by a sync fence, the sync_fence_fd
8051  * will be set to -1, and ANEURALNETWORKS_BAD_DATA will be returned.
8052  *
8053  * See {@link ANeuralNetworksEvent_createFromSyncFenceFd} and
8054  * {@link ANeuralNetworksExecution_startComputeWithDependencies} to see how to create
8055  * an event backed by a sync fence.
8056  *
8057  * The user takes ownership of the returned fd, and must close the returned file descriptor when
8058  * it is no longer needed.
8059  *
8060  * @param event An event that is backed by a sync fence.
8061  * @param sync_fence_fd The sync_fence file descriptor. The file descriptor will
8062  *                      be set to -1 if there is an error.
8063  *
8064  * @return ANEURALNETWORKS_NO_ERROR if successful.
8065  *
8066  * Available since API level 30.
8067  */
8068 int ANeuralNetworksEvent_getSyncFenceFd(const ANeuralNetworksEvent* event, int* sync_fence_fd)
8069         __INTRODUCED_IN(30);
8070 
8071 /**
8072  * Schedule asynchronous evaluation of the execution with dependencies.
8073  *
8074  * The execution will wait for all the depending events to be signaled before
8075  * starting the evaluation. Once the execution has completed and the outputs
8076  * are ready to be consumed, the returned event will be signaled. Depending on which
8077  * devices are handling the execution, the event could be backed by a sync fence.
8078  * Use {@link ANeuralNetworksEvent_wait} to wait for that event.
8079  *
8080  * ANeuralNetworksEvent_wait must be called to recurperate the resources used
8081  * by the execution.
8082  *
8083  * If parts of the execution are scheduled on devices that do not support fenced execution,
8084  * the function call may wait for such parts to finish before returning.
8085  *
8086  * The function will return an error if any of the events in dependencies is already in a bad
8087  * state. After the execution is scheduled, if any of the events in dependencies does not complete
8088  * normally, the execution will fail, and {@link ANeuralNetworksEvent_wait} on the returned
8089  * event will return an error.
8090  *
8091  * The function will return an error if any of the execution outputs has a tensor operand type
8092  * that is not fully specified.
8093  *
8094  * The function can be passed a timeout duration in nanoseconds. This timeout
8095  * duration acts as a hint to drivers in the same way that the timeout durations
8096  * in {@link ANeuralNetworksCompilation_setTimeout} and {@link
8097  * ANeuralNetworksExecution_setTimeout} act as hints to drivers. The duration
8098  * begins when all waitFor sync fences have been signaled, and can be used
8099  * together with {@link ANeuralNetworksExecution_setTimeout} which specifies the
8100  * maximum timeout duration beginning at the call to
8101  * {@link ANeuralNetworksExecution_startComputeWithDependencies}.
8102  * If the duration is non-zero, the {@link ANeuralNetworksExecution} must have been created
8103  * from an {@link ANeuralNetworksCompilation} which in turn was created from
8104  * {@link ANeuralNetworksCompilation_createForDevices} with numDevices = 1,
8105  * otherwise this function will fail with ANEURALNETWORKS_BAD_DATA. If either
8106  * the timeout duration from {@link ANeuralNetworksExecution_setTimeout} or the
8107  * timeout duration passed to this call is exceeded, the execution may be
8108  * aborted, in which case {@link ANEURALNETWORKS_MISSED_DEADLINE_*} will be
8109  * returned through {@link ANeuralNetworksExecution_startComputeWithDependencies}
8110  * or {@link ANeuralNetworksEvent_wait} on the event object. If the device has a
8111  * feature level reported by {@link ANeuralNetworksDevice_getFeatureLevel} that
8112  * is lower than 30, then the timeout duration hints will be ignored.
8113  *
8114  * If this execution contains a {@link ANEURALNETWORKS_WHILE} operation, and
8115  * the condition model does not output false within the loop timeout duration,
8116  * then execution will be aborted and {@link ANEURALNETWORKS_MISSED_DEADLINE_*}
8117  * will be returned through {@link ANeuralNetworksEvent_wait} on the event
8118  * object.
8119  *
8120  * See {@link ANeuralNetworksExecution} for information on multithreaded usage.
8121  *
8122  * See {@link ANeuralNetworksExecution_compute} for synchronous execution.
8123  * See {@link ANeuralNetworksExecution_burstCompute} for burst synchronous execution.
8124  * See {@link ANeuralNetworksExecution_startCompute} for regular asynchronous execution.
8125  *
8126  * @param execution The execution to be scheduled and executed.
8127  * @param dependencies A set of depending events. The actual evaluation will not start
8128  *                     until all the events are signaled.
8129  * @param num_dependencies The number of events in the dependencies set.
8130  * @param duration The maximum amount of time in nanoseconds that is expected to
8131  *                 be spent executing the model after all dependencies are
8132  *                 signaled. If set to 0, the timeout duration is considered
8133  *                 infinite.
8134  * @param event The event that will be signaled on completion. event is set to
8135  *              NULL if there's an error.
8136  *
8137  * @return ANEURALNETWORKS_NO_ERROR if the evaluation is successfully scheduled.
8138  *
8139  * Available since API level 30.
8140  */
8141 int ANeuralNetworksExecution_startComputeWithDependencies(
8142         ANeuralNetworksExecution* execution, const ANeuralNetworksEvent* const* dependencies,
8143         uint32_t num_dependencies, uint64_t duration, ANeuralNetworksEvent** event)
8144         __INTRODUCED_IN(30);
8145 
8146 #endif  // __ANDROID_API__ >= 30
8147 
8148 __END_DECLS
8149 
8150 #endif  // ANDROID_FRAMEWORKS_ML_NN_RUNTIME_NEURAL_NETWORKS_H
8151 
8152 /** @} */
8153