1 /*
2  * Copyright (C) 2016 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "code_generator_arm_vixl.h"
18 
19 #include "arch/arm/asm_support_arm.h"
20 #include "arch/arm/instruction_set_features_arm.h"
21 #include "art_method-inl.h"
22 #include "base/bit_utils.h"
23 #include "base/bit_utils_iterator.h"
24 #include "class_table.h"
25 #include "code_generator_utils.h"
26 #include "common_arm.h"
27 #include "compiled_method.h"
28 #include "entrypoints/quick/quick_entrypoints.h"
29 #include "gc/accounting/card_table.h"
30 #include "gc/space/image_space.h"
31 #include "heap_poisoning.h"
32 #include "intrinsics.h"
33 #include "intrinsics_arm_vixl.h"
34 #include "linker/linker_patch.h"
35 #include "mirror/array-inl.h"
36 #include "mirror/class-inl.h"
37 #include "scoped_thread_state_change-inl.h"
38 #include "thread.h"
39 #include "utils/arm/assembler_arm_vixl.h"
40 #include "utils/arm/managed_register_arm.h"
41 #include "utils/assembler.h"
42 #include "utils/stack_checks.h"
43 
44 namespace art {
45 namespace arm {
46 
47 namespace vixl32 = vixl::aarch32;
48 using namespace vixl32;  // NOLINT(build/namespaces)
49 
50 using helpers::DRegisterFrom;
51 using helpers::HighRegisterFrom;
52 using helpers::InputDRegisterAt;
53 using helpers::InputOperandAt;
54 using helpers::InputRegister;
55 using helpers::InputRegisterAt;
56 using helpers::InputSRegisterAt;
57 using helpers::InputVRegister;
58 using helpers::InputVRegisterAt;
59 using helpers::Int32ConstantFrom;
60 using helpers::Int64ConstantFrom;
61 using helpers::LocationFrom;
62 using helpers::LowRegisterFrom;
63 using helpers::LowSRegisterFrom;
64 using helpers::OperandFrom;
65 using helpers::OutputRegister;
66 using helpers::OutputSRegister;
67 using helpers::OutputVRegister;
68 using helpers::RegisterFrom;
69 using helpers::SRegisterFrom;
70 using helpers::Uint64ConstantFrom;
71 
72 using vixl::EmissionCheckScope;
73 using vixl::ExactAssemblyScope;
74 using vixl::CodeBufferCheckScope;
75 
76 using RegisterList = vixl32::RegisterList;
77 
ExpectedPairLayout(Location location)78 static bool ExpectedPairLayout(Location location) {
79   // We expected this for both core and fpu register pairs.
80   return ((location.low() & 1) == 0) && (location.low() + 1 == location.high());
81 }
82 // Use a local definition to prevent copying mistakes.
83 static constexpr size_t kArmWordSize = static_cast<size_t>(kArmPointerSize);
84 static constexpr size_t kArmBitsPerWord = kArmWordSize * kBitsPerByte;
85 static constexpr uint32_t kPackedSwitchCompareJumpThreshold = 7;
86 
87 // Reference load (except object array loads) is using LDR Rt, [Rn, #offset] which can handle
88 // offset < 4KiB. For offsets >= 4KiB, the load shall be emitted as two or more instructions.
89 // For the Baker read barrier implementation using link-time generated thunks we need to split
90 // the offset explicitly.
91 constexpr uint32_t kReferenceLoadMinFarOffset = 4 * KB;
92 
93 // Using a base helps identify when we hit Marking Register check breakpoints.
94 constexpr int kMarkingRegisterCheckBreakCodeBaseCode = 0x10;
95 
96 #ifdef __
97 #error "ARM Codegen VIXL macro-assembler macro already defined."
98 #endif
99 
100 // NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy.
101 #define __ down_cast<CodeGeneratorARMVIXL*>(codegen)->GetVIXLAssembler()->  // NOLINT
102 #define QUICK_ENTRY_POINT(x) QUICK_ENTRYPOINT_OFFSET(kArmPointerSize, x).Int32Value()
103 
104 // Marker that code is yet to be, and must, be implemented.
105 #define TODO_VIXL32(level) LOG(level) << __PRETTY_FUNCTION__ << " unimplemented "
106 
CanEmitNarrowLdr(vixl32::Register rt,vixl32::Register rn,uint32_t offset)107 static inline bool CanEmitNarrowLdr(vixl32::Register rt, vixl32::Register rn, uint32_t offset) {
108   return rt.IsLow() && rn.IsLow() && offset < 32u;
109 }
110 
111 class EmitAdrCode {
112  public:
EmitAdrCode(ArmVIXLMacroAssembler * assembler,vixl32::Register rd,vixl32::Label * label)113   EmitAdrCode(ArmVIXLMacroAssembler* assembler, vixl32::Register rd, vixl32::Label* label)
114       : assembler_(assembler), rd_(rd), label_(label) {
115     DCHECK(!assembler->AllowMacroInstructions());  // In ExactAssemblyScope.
116     adr_location_ = assembler->GetCursorOffset();
117     assembler->adr(EncodingSize(Wide), rd, label);
118   }
119 
~EmitAdrCode()120   ~EmitAdrCode() {
121     DCHECK(label_->IsBound());
122     // The ADR emitted by the assembler does not set the Thumb mode bit we need.
123     // TODO: Maybe extend VIXL to allow ADR for return address?
124     uint8_t* raw_adr = assembler_->GetBuffer()->GetOffsetAddress<uint8_t*>(adr_location_);
125     // Expecting ADR encoding T3 with `(offset & 1) == 0`.
126     DCHECK_EQ(raw_adr[1] & 0xfbu, 0xf2u);           // Check bits 24-31, except 26.
127     DCHECK_EQ(raw_adr[0] & 0xffu, 0x0fu);           // Check bits 16-23.
128     DCHECK_EQ(raw_adr[3] & 0x8fu, rd_.GetCode());   // Check bits 8-11 and 15.
129     DCHECK_EQ(raw_adr[2] & 0x01u, 0x00u);           // Check bit 0, i.e. the `offset & 1`.
130     // Add the Thumb mode bit.
131     raw_adr[2] |= 0x01u;
132   }
133 
134  private:
135   ArmVIXLMacroAssembler* const assembler_;
136   vixl32::Register rd_;
137   vixl32::Label* const label_;
138   int32_t adr_location_;
139 };
140 
OneRegInReferenceOutSaveEverythingCallerSaves()141 static RegisterSet OneRegInReferenceOutSaveEverythingCallerSaves() {
142   InvokeRuntimeCallingConventionARMVIXL calling_convention;
143   RegisterSet caller_saves = RegisterSet::Empty();
144   caller_saves.Add(LocationFrom(calling_convention.GetRegisterAt(0)));
145   // TODO: Add GetReturnLocation() to the calling convention so that we can DCHECK()
146   // that the the kPrimNot result register is the same as the first argument register.
147   return caller_saves;
148 }
149 
150 // SaveLiveRegisters and RestoreLiveRegisters from SlowPathCodeARM operate on sets of S registers,
151 // for each live D registers they treat two corresponding S registers as live ones.
152 //
153 // Two following functions (SaveContiguousSRegisterList, RestoreContiguousSRegisterList) build
154 // from a list of contiguous S registers a list of contiguous D registers (processing first/last
155 // S registers corner cases) and save/restore this new list treating them as D registers.
156 // - decreasing code size
157 // - avoiding hazards on Cortex-A57, when a pair of S registers for an actual live D register is
158 //   restored and then used in regular non SlowPath code as D register.
159 //
160 // For the following example (v means the S register is live):
161 //   D names: |    D0   |    D1   |    D2   |    D4   | ...
162 //   S names: | S0 | S1 | S2 | S3 | S4 | S5 | S6 | S7 | ...
163 //   Live?    |    |  v |  v |  v |  v |  v |  v |    | ...
164 //
165 // S1 and S6 will be saved/restored independently; D registers list (D1, D2) will be processed
166 // as D registers.
167 //
168 // TODO(VIXL): All this code should be unnecessary once the VIXL AArch32 backend provides helpers
169 // for lists of floating-point registers.
SaveContiguousSRegisterList(size_t first,size_t last,CodeGenerator * codegen,size_t stack_offset)170 static size_t SaveContiguousSRegisterList(size_t first,
171                                           size_t last,
172                                           CodeGenerator* codegen,
173                                           size_t stack_offset) {
174   static_assert(kSRegSizeInBytes == kArmWordSize, "Broken assumption on reg/word sizes.");
175   static_assert(kDRegSizeInBytes == 2 * kArmWordSize, "Broken assumption on reg/word sizes.");
176   DCHECK_LE(first, last);
177   if ((first == last) && (first == 0)) {
178     __ Vstr(vixl32::SRegister(first), MemOperand(sp, stack_offset));
179     return stack_offset + kSRegSizeInBytes;
180   }
181   if (first % 2 == 1) {
182     __ Vstr(vixl32::SRegister(first++), MemOperand(sp, stack_offset));
183     stack_offset += kSRegSizeInBytes;
184   }
185 
186   bool save_last = false;
187   if (last % 2 == 0) {
188     save_last = true;
189     --last;
190   }
191 
192   if (first < last) {
193     vixl32::DRegister d_reg = vixl32::DRegister(first / 2);
194     DCHECK_EQ((last - first + 1) % 2, 0u);
195     size_t number_of_d_regs = (last - first + 1) / 2;
196 
197     if (number_of_d_regs == 1) {
198       __ Vstr(d_reg, MemOperand(sp, stack_offset));
199     } else if (number_of_d_regs > 1) {
200       UseScratchRegisterScope temps(down_cast<CodeGeneratorARMVIXL*>(codegen)->GetVIXLAssembler());
201       vixl32::Register base = sp;
202       if (stack_offset != 0) {
203         base = temps.Acquire();
204         __ Add(base, sp, Operand::From(stack_offset));
205       }
206       __ Vstm(F64, base, NO_WRITE_BACK, DRegisterList(d_reg, number_of_d_regs));
207     }
208     stack_offset += number_of_d_regs * kDRegSizeInBytes;
209   }
210 
211   if (save_last) {
212     __ Vstr(vixl32::SRegister(last + 1), MemOperand(sp, stack_offset));
213     stack_offset += kSRegSizeInBytes;
214   }
215 
216   return stack_offset;
217 }
218 
RestoreContiguousSRegisterList(size_t first,size_t last,CodeGenerator * codegen,size_t stack_offset)219 static size_t RestoreContiguousSRegisterList(size_t first,
220                                              size_t last,
221                                              CodeGenerator* codegen,
222                                              size_t stack_offset) {
223   static_assert(kSRegSizeInBytes == kArmWordSize, "Broken assumption on reg/word sizes.");
224   static_assert(kDRegSizeInBytes == 2 * kArmWordSize, "Broken assumption on reg/word sizes.");
225   DCHECK_LE(first, last);
226   if ((first == last) && (first == 0)) {
227     __ Vldr(vixl32::SRegister(first), MemOperand(sp, stack_offset));
228     return stack_offset + kSRegSizeInBytes;
229   }
230   if (first % 2 == 1) {
231     __ Vldr(vixl32::SRegister(first++), MemOperand(sp, stack_offset));
232     stack_offset += kSRegSizeInBytes;
233   }
234 
235   bool restore_last = false;
236   if (last % 2 == 0) {
237     restore_last = true;
238     --last;
239   }
240 
241   if (first < last) {
242     vixl32::DRegister d_reg = vixl32::DRegister(first / 2);
243     DCHECK_EQ((last - first + 1) % 2, 0u);
244     size_t number_of_d_regs = (last - first + 1) / 2;
245     if (number_of_d_regs == 1) {
246       __ Vldr(d_reg, MemOperand(sp, stack_offset));
247     } else if (number_of_d_regs > 1) {
248       UseScratchRegisterScope temps(down_cast<CodeGeneratorARMVIXL*>(codegen)->GetVIXLAssembler());
249       vixl32::Register base = sp;
250       if (stack_offset != 0) {
251         base = temps.Acquire();
252         __ Add(base, sp, Operand::From(stack_offset));
253       }
254       __ Vldm(F64, base, NO_WRITE_BACK, DRegisterList(d_reg, number_of_d_regs));
255     }
256     stack_offset += number_of_d_regs * kDRegSizeInBytes;
257   }
258 
259   if (restore_last) {
260     __ Vldr(vixl32::SRegister(last + 1), MemOperand(sp, stack_offset));
261     stack_offset += kSRegSizeInBytes;
262   }
263 
264   return stack_offset;
265 }
266 
GetLoadOperandType(DataType::Type type)267 static LoadOperandType GetLoadOperandType(DataType::Type type) {
268   switch (type) {
269     case DataType::Type::kReference:
270       return kLoadWord;
271     case DataType::Type::kBool:
272     case DataType::Type::kUint8:
273       return kLoadUnsignedByte;
274     case DataType::Type::kInt8:
275       return kLoadSignedByte;
276     case DataType::Type::kUint16:
277       return kLoadUnsignedHalfword;
278     case DataType::Type::kInt16:
279       return kLoadSignedHalfword;
280     case DataType::Type::kInt32:
281       return kLoadWord;
282     case DataType::Type::kInt64:
283       return kLoadWordPair;
284     case DataType::Type::kFloat32:
285       return kLoadSWord;
286     case DataType::Type::kFloat64:
287       return kLoadDWord;
288     default:
289       LOG(FATAL) << "Unreachable type " << type;
290       UNREACHABLE();
291   }
292 }
293 
GetStoreOperandType(DataType::Type type)294 static StoreOperandType GetStoreOperandType(DataType::Type type) {
295   switch (type) {
296     case DataType::Type::kReference:
297       return kStoreWord;
298     case DataType::Type::kBool:
299     case DataType::Type::kUint8:
300     case DataType::Type::kInt8:
301       return kStoreByte;
302     case DataType::Type::kUint16:
303     case DataType::Type::kInt16:
304       return kStoreHalfword;
305     case DataType::Type::kInt32:
306       return kStoreWord;
307     case DataType::Type::kInt64:
308       return kStoreWordPair;
309     case DataType::Type::kFloat32:
310       return kStoreSWord;
311     case DataType::Type::kFloat64:
312       return kStoreDWord;
313     default:
314       LOG(FATAL) << "Unreachable type " << type;
315       UNREACHABLE();
316   }
317 }
318 
SaveLiveRegisters(CodeGenerator * codegen,LocationSummary * locations)319 void SlowPathCodeARMVIXL::SaveLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) {
320   size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath();
321   size_t orig_offset = stack_offset;
322 
323   const uint32_t core_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ true);
324   for (uint32_t i : LowToHighBits(core_spills)) {
325     // If the register holds an object, update the stack mask.
326     if (locations->RegisterContainsObject(i)) {
327       locations->SetStackBit(stack_offset / kVRegSize);
328     }
329     DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
330     DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
331     saved_core_stack_offsets_[i] = stack_offset;
332     stack_offset += kArmWordSize;
333   }
334 
335   CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
336   arm_codegen->GetAssembler()->StoreRegisterList(core_spills, orig_offset);
337 
338   uint32_t fp_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ false);
339   orig_offset = stack_offset;
340   for (uint32_t i : LowToHighBits(fp_spills)) {
341     DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
342     saved_fpu_stack_offsets_[i] = stack_offset;
343     stack_offset += kArmWordSize;
344   }
345 
346   stack_offset = orig_offset;
347   while (fp_spills != 0u) {
348     uint32_t begin = CTZ(fp_spills);
349     uint32_t tmp = fp_spills + (1u << begin);
350     fp_spills &= tmp;  // Clear the contiguous range of 1s.
351     uint32_t end = (tmp == 0u) ? 32u : CTZ(tmp);  // CTZ(0) is undefined.
352     stack_offset = SaveContiguousSRegisterList(begin, end - 1, codegen, stack_offset);
353   }
354   DCHECK_LE(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
355 }
356 
RestoreLiveRegisters(CodeGenerator * codegen,LocationSummary * locations)357 void SlowPathCodeARMVIXL::RestoreLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) {
358   size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath();
359   size_t orig_offset = stack_offset;
360 
361   const uint32_t core_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ true);
362   for (uint32_t i : LowToHighBits(core_spills)) {
363     DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
364     DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
365     stack_offset += kArmWordSize;
366   }
367 
368   // TODO(VIXL): Check the coherency of stack_offset after this with a test.
369   CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
370   arm_codegen->GetAssembler()->LoadRegisterList(core_spills, orig_offset);
371 
372   uint32_t fp_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ false);
373   while (fp_spills != 0u) {
374     uint32_t begin = CTZ(fp_spills);
375     uint32_t tmp = fp_spills + (1u << begin);
376     fp_spills &= tmp;  // Clear the contiguous range of 1s.
377     uint32_t end = (tmp == 0u) ? 32u : CTZ(tmp);  // CTZ(0) is undefined.
378     stack_offset = RestoreContiguousSRegisterList(begin, end - 1, codegen, stack_offset);
379   }
380   DCHECK_LE(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
381 }
382 
383 class NullCheckSlowPathARMVIXL : public SlowPathCodeARMVIXL {
384  public:
NullCheckSlowPathARMVIXL(HNullCheck * instruction)385   explicit NullCheckSlowPathARMVIXL(HNullCheck* instruction) : SlowPathCodeARMVIXL(instruction) {}
386 
EmitNativeCode(CodeGenerator * codegen)387   void EmitNativeCode(CodeGenerator* codegen) override {
388     CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
389     __ Bind(GetEntryLabel());
390     if (instruction_->CanThrowIntoCatchBlock()) {
391       // Live registers will be restored in the catch block if caught.
392       SaveLiveRegisters(codegen, instruction_->GetLocations());
393     }
394     arm_codegen->InvokeRuntime(kQuickThrowNullPointer,
395                                instruction_,
396                                instruction_->GetDexPc(),
397                                this);
398     CheckEntrypointTypes<kQuickThrowNullPointer, void, void>();
399   }
400 
IsFatal() const401   bool IsFatal() const override { return true; }
402 
GetDescription() const403   const char* GetDescription() const override { return "NullCheckSlowPathARMVIXL"; }
404 
405  private:
406   DISALLOW_COPY_AND_ASSIGN(NullCheckSlowPathARMVIXL);
407 };
408 
409 class DivZeroCheckSlowPathARMVIXL : public SlowPathCodeARMVIXL {
410  public:
DivZeroCheckSlowPathARMVIXL(HDivZeroCheck * instruction)411   explicit DivZeroCheckSlowPathARMVIXL(HDivZeroCheck* instruction)
412       : SlowPathCodeARMVIXL(instruction) {}
413 
EmitNativeCode(CodeGenerator * codegen)414   void EmitNativeCode(CodeGenerator* codegen) override {
415     CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
416     __ Bind(GetEntryLabel());
417     arm_codegen->InvokeRuntime(kQuickThrowDivZero, instruction_, instruction_->GetDexPc(), this);
418     CheckEntrypointTypes<kQuickThrowDivZero, void, void>();
419   }
420 
IsFatal() const421   bool IsFatal() const override { return true; }
422 
GetDescription() const423   const char* GetDescription() const override { return "DivZeroCheckSlowPathARMVIXL"; }
424 
425  private:
426   DISALLOW_COPY_AND_ASSIGN(DivZeroCheckSlowPathARMVIXL);
427 };
428 
429 class SuspendCheckSlowPathARMVIXL : public SlowPathCodeARMVIXL {
430  public:
SuspendCheckSlowPathARMVIXL(HSuspendCheck * instruction,HBasicBlock * successor)431   SuspendCheckSlowPathARMVIXL(HSuspendCheck* instruction, HBasicBlock* successor)
432       : SlowPathCodeARMVIXL(instruction), successor_(successor) {}
433 
EmitNativeCode(CodeGenerator * codegen)434   void EmitNativeCode(CodeGenerator* codegen) override {
435     CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
436     __ Bind(GetEntryLabel());
437     arm_codegen->InvokeRuntime(kQuickTestSuspend, instruction_, instruction_->GetDexPc(), this);
438     CheckEntrypointTypes<kQuickTestSuspend, void, void>();
439     if (successor_ == nullptr) {
440       __ B(GetReturnLabel());
441     } else {
442       __ B(arm_codegen->GetLabelOf(successor_));
443     }
444   }
445 
GetReturnLabel()446   vixl32::Label* GetReturnLabel() {
447     DCHECK(successor_ == nullptr);
448     return &return_label_;
449   }
450 
GetSuccessor() const451   HBasicBlock* GetSuccessor() const {
452     return successor_;
453   }
454 
GetDescription() const455   const char* GetDescription() const override { return "SuspendCheckSlowPathARMVIXL"; }
456 
457  private:
458   // If not null, the block to branch to after the suspend check.
459   HBasicBlock* const successor_;
460 
461   // If `successor_` is null, the label to branch to after the suspend check.
462   vixl32::Label return_label_;
463 
464   DISALLOW_COPY_AND_ASSIGN(SuspendCheckSlowPathARMVIXL);
465 };
466 
467 class BoundsCheckSlowPathARMVIXL : public SlowPathCodeARMVIXL {
468  public:
BoundsCheckSlowPathARMVIXL(HBoundsCheck * instruction)469   explicit BoundsCheckSlowPathARMVIXL(HBoundsCheck* instruction)
470       : SlowPathCodeARMVIXL(instruction) {}
471 
EmitNativeCode(CodeGenerator * codegen)472   void EmitNativeCode(CodeGenerator* codegen) override {
473     CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
474     LocationSummary* locations = instruction_->GetLocations();
475 
476     __ Bind(GetEntryLabel());
477     if (instruction_->CanThrowIntoCatchBlock()) {
478       // Live registers will be restored in the catch block if caught.
479       SaveLiveRegisters(codegen, instruction_->GetLocations());
480     }
481     // We're moving two locations to locations that could overlap, so we need a parallel
482     // move resolver.
483     InvokeRuntimeCallingConventionARMVIXL calling_convention;
484     codegen->EmitParallelMoves(
485         locations->InAt(0),
486         LocationFrom(calling_convention.GetRegisterAt(0)),
487         DataType::Type::kInt32,
488         locations->InAt(1),
489         LocationFrom(calling_convention.GetRegisterAt(1)),
490         DataType::Type::kInt32);
491     QuickEntrypointEnum entrypoint = instruction_->AsBoundsCheck()->IsStringCharAt()
492         ? kQuickThrowStringBounds
493         : kQuickThrowArrayBounds;
494     arm_codegen->InvokeRuntime(entrypoint, instruction_, instruction_->GetDexPc(), this);
495     CheckEntrypointTypes<kQuickThrowStringBounds, void, int32_t, int32_t>();
496     CheckEntrypointTypes<kQuickThrowArrayBounds, void, int32_t, int32_t>();
497   }
498 
IsFatal() const499   bool IsFatal() const override { return true; }
500 
GetDescription() const501   const char* GetDescription() const override { return "BoundsCheckSlowPathARMVIXL"; }
502 
503  private:
504   DISALLOW_COPY_AND_ASSIGN(BoundsCheckSlowPathARMVIXL);
505 };
506 
507 class LoadClassSlowPathARMVIXL : public SlowPathCodeARMVIXL {
508  public:
LoadClassSlowPathARMVIXL(HLoadClass * cls,HInstruction * at)509   LoadClassSlowPathARMVIXL(HLoadClass* cls, HInstruction* at)
510       : SlowPathCodeARMVIXL(at), cls_(cls) {
511     DCHECK(at->IsLoadClass() || at->IsClinitCheck());
512     DCHECK_EQ(instruction_->IsLoadClass(), cls_ == instruction_);
513   }
514 
EmitNativeCode(CodeGenerator * codegen)515   void EmitNativeCode(CodeGenerator* codegen) override {
516     LocationSummary* locations = instruction_->GetLocations();
517     Location out = locations->Out();
518     const uint32_t dex_pc = instruction_->GetDexPc();
519     bool must_resolve_type = instruction_->IsLoadClass() && cls_->MustResolveTypeOnSlowPath();
520     bool must_do_clinit = instruction_->IsClinitCheck() || cls_->MustGenerateClinitCheck();
521 
522     CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
523     __ Bind(GetEntryLabel());
524     SaveLiveRegisters(codegen, locations);
525 
526     InvokeRuntimeCallingConventionARMVIXL calling_convention;
527     if (must_resolve_type) {
528       DCHECK(IsSameDexFile(cls_->GetDexFile(), arm_codegen->GetGraph()->GetDexFile()));
529       dex::TypeIndex type_index = cls_->GetTypeIndex();
530       __ Mov(calling_convention.GetRegisterAt(0), type_index.index_);
531       arm_codegen->InvokeRuntime(kQuickResolveType, instruction_, dex_pc, this);
532       CheckEntrypointTypes<kQuickResolveType, void*, uint32_t>();
533       // If we also must_do_clinit, the resolved type is now in the correct register.
534     } else {
535       DCHECK(must_do_clinit);
536       Location source = instruction_->IsLoadClass() ? out : locations->InAt(0);
537       arm_codegen->Move32(LocationFrom(calling_convention.GetRegisterAt(0)), source);
538     }
539     if (must_do_clinit) {
540       arm_codegen->InvokeRuntime(kQuickInitializeStaticStorage, instruction_, dex_pc, this);
541       CheckEntrypointTypes<kQuickInitializeStaticStorage, void*, mirror::Class*>();
542     }
543 
544     // Move the class to the desired location.
545     if (out.IsValid()) {
546       DCHECK(out.IsRegister() && !locations->GetLiveRegisters()->ContainsCoreRegister(out.reg()));
547       arm_codegen->Move32(locations->Out(), LocationFrom(r0));
548     }
549     RestoreLiveRegisters(codegen, locations);
550     __ B(GetExitLabel());
551   }
552 
GetDescription() const553   const char* GetDescription() const override { return "LoadClassSlowPathARMVIXL"; }
554 
555  private:
556   // The class this slow path will load.
557   HLoadClass* const cls_;
558 
559   DISALLOW_COPY_AND_ASSIGN(LoadClassSlowPathARMVIXL);
560 };
561 
562 class LoadStringSlowPathARMVIXL : public SlowPathCodeARMVIXL {
563  public:
LoadStringSlowPathARMVIXL(HLoadString * instruction)564   explicit LoadStringSlowPathARMVIXL(HLoadString* instruction)
565       : SlowPathCodeARMVIXL(instruction) {}
566 
EmitNativeCode(CodeGenerator * codegen)567   void EmitNativeCode(CodeGenerator* codegen) override {
568     DCHECK(instruction_->IsLoadString());
569     DCHECK_EQ(instruction_->AsLoadString()->GetLoadKind(), HLoadString::LoadKind::kBssEntry);
570     LocationSummary* locations = instruction_->GetLocations();
571     DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
572     const dex::StringIndex string_index = instruction_->AsLoadString()->GetStringIndex();
573 
574     CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
575     __ Bind(GetEntryLabel());
576     SaveLiveRegisters(codegen, locations);
577 
578     InvokeRuntimeCallingConventionARMVIXL calling_convention;
579     __ Mov(calling_convention.GetRegisterAt(0), string_index.index_);
580     arm_codegen->InvokeRuntime(kQuickResolveString, instruction_, instruction_->GetDexPc(), this);
581     CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>();
582 
583     arm_codegen->Move32(locations->Out(), LocationFrom(r0));
584     RestoreLiveRegisters(codegen, locations);
585 
586     __ B(GetExitLabel());
587   }
588 
GetDescription() const589   const char* GetDescription() const override { return "LoadStringSlowPathARMVIXL"; }
590 
591  private:
592   DISALLOW_COPY_AND_ASSIGN(LoadStringSlowPathARMVIXL);
593 };
594 
595 class TypeCheckSlowPathARMVIXL : public SlowPathCodeARMVIXL {
596  public:
TypeCheckSlowPathARMVIXL(HInstruction * instruction,bool is_fatal)597   TypeCheckSlowPathARMVIXL(HInstruction* instruction, bool is_fatal)
598       : SlowPathCodeARMVIXL(instruction), is_fatal_(is_fatal) {}
599 
EmitNativeCode(CodeGenerator * codegen)600   void EmitNativeCode(CodeGenerator* codegen) override {
601     LocationSummary* locations = instruction_->GetLocations();
602     DCHECK(instruction_->IsCheckCast()
603            || !locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
604 
605     CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
606     __ Bind(GetEntryLabel());
607 
608     if (!is_fatal_ || instruction_->CanThrowIntoCatchBlock()) {
609       SaveLiveRegisters(codegen, locations);
610     }
611 
612     // We're moving two locations to locations that could overlap, so we need a parallel
613     // move resolver.
614     InvokeRuntimeCallingConventionARMVIXL calling_convention;
615 
616     codegen->EmitParallelMoves(locations->InAt(0),
617                                LocationFrom(calling_convention.GetRegisterAt(0)),
618                                DataType::Type::kReference,
619                                locations->InAt(1),
620                                LocationFrom(calling_convention.GetRegisterAt(1)),
621                                DataType::Type::kReference);
622     if (instruction_->IsInstanceOf()) {
623       arm_codegen->InvokeRuntime(kQuickInstanceofNonTrivial,
624                                  instruction_,
625                                  instruction_->GetDexPc(),
626                                  this);
627       CheckEntrypointTypes<kQuickInstanceofNonTrivial, size_t, mirror::Object*, mirror::Class*>();
628       arm_codegen->Move32(locations->Out(), LocationFrom(r0));
629     } else {
630       DCHECK(instruction_->IsCheckCast());
631       arm_codegen->InvokeRuntime(kQuickCheckInstanceOf,
632                                  instruction_,
633                                  instruction_->GetDexPc(),
634                                  this);
635       CheckEntrypointTypes<kQuickCheckInstanceOf, void, mirror::Object*, mirror::Class*>();
636     }
637 
638     if (!is_fatal_) {
639       RestoreLiveRegisters(codegen, locations);
640       __ B(GetExitLabel());
641     }
642   }
643 
GetDescription() const644   const char* GetDescription() const override { return "TypeCheckSlowPathARMVIXL"; }
645 
IsFatal() const646   bool IsFatal() const override { return is_fatal_; }
647 
648  private:
649   const bool is_fatal_;
650 
651   DISALLOW_COPY_AND_ASSIGN(TypeCheckSlowPathARMVIXL);
652 };
653 
654 class DeoptimizationSlowPathARMVIXL : public SlowPathCodeARMVIXL {
655  public:
DeoptimizationSlowPathARMVIXL(HDeoptimize * instruction)656   explicit DeoptimizationSlowPathARMVIXL(HDeoptimize* instruction)
657       : SlowPathCodeARMVIXL(instruction) {}
658 
EmitNativeCode(CodeGenerator * codegen)659   void EmitNativeCode(CodeGenerator* codegen) override {
660     CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
661     __ Bind(GetEntryLabel());
662         LocationSummary* locations = instruction_->GetLocations();
663     SaveLiveRegisters(codegen, locations);
664     InvokeRuntimeCallingConventionARMVIXL calling_convention;
665     __ Mov(calling_convention.GetRegisterAt(0),
666            static_cast<uint32_t>(instruction_->AsDeoptimize()->GetDeoptimizationKind()));
667 
668     arm_codegen->InvokeRuntime(kQuickDeoptimize, instruction_, instruction_->GetDexPc(), this);
669     CheckEntrypointTypes<kQuickDeoptimize, void, DeoptimizationKind>();
670   }
671 
GetDescription() const672   const char* GetDescription() const override { return "DeoptimizationSlowPathARMVIXL"; }
673 
674  private:
675   DISALLOW_COPY_AND_ASSIGN(DeoptimizationSlowPathARMVIXL);
676 };
677 
678 class ArraySetSlowPathARMVIXL : public SlowPathCodeARMVIXL {
679  public:
ArraySetSlowPathARMVIXL(HInstruction * instruction)680   explicit ArraySetSlowPathARMVIXL(HInstruction* instruction) : SlowPathCodeARMVIXL(instruction) {}
681 
EmitNativeCode(CodeGenerator * codegen)682   void EmitNativeCode(CodeGenerator* codegen) override {
683     LocationSummary* locations = instruction_->GetLocations();
684     __ Bind(GetEntryLabel());
685     SaveLiveRegisters(codegen, locations);
686 
687     InvokeRuntimeCallingConventionARMVIXL calling_convention;
688     HParallelMove parallel_move(codegen->GetGraph()->GetAllocator());
689     parallel_move.AddMove(
690         locations->InAt(0),
691         LocationFrom(calling_convention.GetRegisterAt(0)),
692         DataType::Type::kReference,
693         nullptr);
694     parallel_move.AddMove(
695         locations->InAt(1),
696         LocationFrom(calling_convention.GetRegisterAt(1)),
697         DataType::Type::kInt32,
698         nullptr);
699     parallel_move.AddMove(
700         locations->InAt(2),
701         LocationFrom(calling_convention.GetRegisterAt(2)),
702         DataType::Type::kReference,
703         nullptr);
704     codegen->GetMoveResolver()->EmitNativeCode(&parallel_move);
705 
706     CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
707     arm_codegen->InvokeRuntime(kQuickAputObject, instruction_, instruction_->GetDexPc(), this);
708     CheckEntrypointTypes<kQuickAputObject, void, mirror::Array*, int32_t, mirror::Object*>();
709     RestoreLiveRegisters(codegen, locations);
710     __ B(GetExitLabel());
711   }
712 
GetDescription() const713   const char* GetDescription() const override { return "ArraySetSlowPathARMVIXL"; }
714 
715  private:
716   DISALLOW_COPY_AND_ASSIGN(ArraySetSlowPathARMVIXL);
717 };
718 
719 // Slow path generating a read barrier for a heap reference.
720 class ReadBarrierForHeapReferenceSlowPathARMVIXL : public SlowPathCodeARMVIXL {
721  public:
ReadBarrierForHeapReferenceSlowPathARMVIXL(HInstruction * instruction,Location out,Location ref,Location obj,uint32_t offset,Location index)722   ReadBarrierForHeapReferenceSlowPathARMVIXL(HInstruction* instruction,
723                                              Location out,
724                                              Location ref,
725                                              Location obj,
726                                              uint32_t offset,
727                                              Location index)
728       : SlowPathCodeARMVIXL(instruction),
729         out_(out),
730         ref_(ref),
731         obj_(obj),
732         offset_(offset),
733         index_(index) {
734     DCHECK(kEmitCompilerReadBarrier);
735     // If `obj` is equal to `out` or `ref`, it means the initial object
736     // has been overwritten by (or after) the heap object reference load
737     // to be instrumented, e.g.:
738     //
739     //   __ LoadFromOffset(kLoadWord, out, out, offset);
740     //   codegen_->GenerateReadBarrierSlow(instruction, out_loc, out_loc, out_loc, offset);
741     //
742     // In that case, we have lost the information about the original
743     // object, and the emitted read barrier cannot work properly.
744     DCHECK(!obj.Equals(out)) << "obj=" << obj << " out=" << out;
745     DCHECK(!obj.Equals(ref)) << "obj=" << obj << " ref=" << ref;
746   }
747 
EmitNativeCode(CodeGenerator * codegen)748   void EmitNativeCode(CodeGenerator* codegen) override {
749     CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
750     LocationSummary* locations = instruction_->GetLocations();
751     vixl32::Register reg_out = RegisterFrom(out_);
752     DCHECK(locations->CanCall());
753     DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out.GetCode()));
754     DCHECK(instruction_->IsInstanceFieldGet() ||
755            instruction_->IsStaticFieldGet() ||
756            instruction_->IsArrayGet() ||
757            instruction_->IsInstanceOf() ||
758            instruction_->IsCheckCast() ||
759            (instruction_->IsInvokeVirtual() && instruction_->GetLocations()->Intrinsified()))
760         << "Unexpected instruction in read barrier for heap reference slow path: "
761         << instruction_->DebugName();
762     // The read barrier instrumentation of object ArrayGet
763     // instructions does not support the HIntermediateAddress
764     // instruction.
765     DCHECK(!(instruction_->IsArrayGet() &&
766              instruction_->AsArrayGet()->GetArray()->IsIntermediateAddress()));
767 
768     __ Bind(GetEntryLabel());
769     SaveLiveRegisters(codegen, locations);
770 
771     // We may have to change the index's value, but as `index_` is a
772     // constant member (like other "inputs" of this slow path),
773     // introduce a copy of it, `index`.
774     Location index = index_;
775     if (index_.IsValid()) {
776       // Handle `index_` for HArrayGet and UnsafeGetObject/UnsafeGetObjectVolatile intrinsics.
777       if (instruction_->IsArrayGet()) {
778         // Compute the actual memory offset and store it in `index`.
779         vixl32::Register index_reg = RegisterFrom(index_);
780         DCHECK(locations->GetLiveRegisters()->ContainsCoreRegister(index_reg.GetCode()));
781         if (codegen->IsCoreCalleeSaveRegister(index_reg.GetCode())) {
782           // We are about to change the value of `index_reg` (see the
783           // calls to art::arm::ArmVIXLMacroAssembler::Lsl and
784           // art::arm::ArmVIXLMacroAssembler::Add below), but it has
785           // not been saved by the previous call to
786           // art::SlowPathCode::SaveLiveRegisters, as it is a
787           // callee-save register --
788           // art::SlowPathCode::SaveLiveRegisters does not consider
789           // callee-save registers, as it has been designed with the
790           // assumption that callee-save registers are supposed to be
791           // handled by the called function.  So, as a callee-save
792           // register, `index_reg` _would_ eventually be saved onto
793           // the stack, but it would be too late: we would have
794           // changed its value earlier.  Therefore, we manually save
795           // it here into another freely available register,
796           // `free_reg`, chosen of course among the caller-save
797           // registers (as a callee-save `free_reg` register would
798           // exhibit the same problem).
799           //
800           // Note we could have requested a temporary register from
801           // the register allocator instead; but we prefer not to, as
802           // this is a slow path, and we know we can find a
803           // caller-save register that is available.
804           vixl32::Register free_reg = FindAvailableCallerSaveRegister(codegen);
805           __ Mov(free_reg, index_reg);
806           index_reg = free_reg;
807           index = LocationFrom(index_reg);
808         } else {
809           // The initial register stored in `index_` has already been
810           // saved in the call to art::SlowPathCode::SaveLiveRegisters
811           // (as it is not a callee-save register), so we can freely
812           // use it.
813         }
814         // Shifting the index value contained in `index_reg` by the scale
815         // factor (2) cannot overflow in practice, as the runtime is
816         // unable to allocate object arrays with a size larger than
817         // 2^26 - 1 (that is, 2^28 - 4 bytes).
818         __ Lsl(index_reg, index_reg, TIMES_4);
819         static_assert(
820             sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
821             "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
822         __ Add(index_reg, index_reg, offset_);
823       } else {
824         // In the case of the UnsafeGetObject/UnsafeGetObjectVolatile
825         // intrinsics, `index_` is not shifted by a scale factor of 2
826         // (as in the case of ArrayGet), as it is actually an offset
827         // to an object field within an object.
828         DCHECK(instruction_->IsInvoke()) << instruction_->DebugName();
829         DCHECK(instruction_->GetLocations()->Intrinsified());
830         DCHECK((instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObject) ||
831                (instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile))
832             << instruction_->AsInvoke()->GetIntrinsic();
833         DCHECK_EQ(offset_, 0U);
834         DCHECK(index_.IsRegisterPair());
835         // UnsafeGet's offset location is a register pair, the low
836         // part contains the correct offset.
837         index = index_.ToLow();
838       }
839     }
840 
841     // We're moving two or three locations to locations that could
842     // overlap, so we need a parallel move resolver.
843     InvokeRuntimeCallingConventionARMVIXL calling_convention;
844     HParallelMove parallel_move(codegen->GetGraph()->GetAllocator());
845     parallel_move.AddMove(ref_,
846                           LocationFrom(calling_convention.GetRegisterAt(0)),
847                           DataType::Type::kReference,
848                           nullptr);
849     parallel_move.AddMove(obj_,
850                           LocationFrom(calling_convention.GetRegisterAt(1)),
851                           DataType::Type::kReference,
852                           nullptr);
853     if (index.IsValid()) {
854       parallel_move.AddMove(index,
855                             LocationFrom(calling_convention.GetRegisterAt(2)),
856                             DataType::Type::kInt32,
857                             nullptr);
858       codegen->GetMoveResolver()->EmitNativeCode(&parallel_move);
859     } else {
860       codegen->GetMoveResolver()->EmitNativeCode(&parallel_move);
861       __ Mov(calling_convention.GetRegisterAt(2), offset_);
862     }
863     arm_codegen->InvokeRuntime(kQuickReadBarrierSlow, instruction_, instruction_->GetDexPc(), this);
864     CheckEntrypointTypes<
865         kQuickReadBarrierSlow, mirror::Object*, mirror::Object*, mirror::Object*, uint32_t>();
866     arm_codegen->Move32(out_, LocationFrom(r0));
867 
868     RestoreLiveRegisters(codegen, locations);
869     __ B(GetExitLabel());
870   }
871 
GetDescription() const872   const char* GetDescription() const override {
873     return "ReadBarrierForHeapReferenceSlowPathARMVIXL";
874   }
875 
876  private:
FindAvailableCallerSaveRegister(CodeGenerator * codegen)877   vixl32::Register FindAvailableCallerSaveRegister(CodeGenerator* codegen) {
878     uint32_t ref = RegisterFrom(ref_).GetCode();
879     uint32_t obj = RegisterFrom(obj_).GetCode();
880     for (uint32_t i = 0, e = codegen->GetNumberOfCoreRegisters(); i < e; ++i) {
881       if (i != ref && i != obj && !codegen->IsCoreCalleeSaveRegister(i)) {
882         return vixl32::Register(i);
883       }
884     }
885     // We shall never fail to find a free caller-save register, as
886     // there are more than two core caller-save registers on ARM
887     // (meaning it is possible to find one which is different from
888     // `ref` and `obj`).
889     DCHECK_GT(codegen->GetNumberOfCoreCallerSaveRegisters(), 2u);
890     LOG(FATAL) << "Could not find a free caller-save register";
891     UNREACHABLE();
892   }
893 
894   const Location out_;
895   const Location ref_;
896   const Location obj_;
897   const uint32_t offset_;
898   // An additional location containing an index to an array.
899   // Only used for HArrayGet and the UnsafeGetObject &
900   // UnsafeGetObjectVolatile intrinsics.
901   const Location index_;
902 
903   DISALLOW_COPY_AND_ASSIGN(ReadBarrierForHeapReferenceSlowPathARMVIXL);
904 };
905 
906 // Slow path generating a read barrier for a GC root.
907 class ReadBarrierForRootSlowPathARMVIXL : public SlowPathCodeARMVIXL {
908  public:
ReadBarrierForRootSlowPathARMVIXL(HInstruction * instruction,Location out,Location root)909   ReadBarrierForRootSlowPathARMVIXL(HInstruction* instruction, Location out, Location root)
910       : SlowPathCodeARMVIXL(instruction), out_(out), root_(root) {
911     DCHECK(kEmitCompilerReadBarrier);
912   }
913 
EmitNativeCode(CodeGenerator * codegen)914   void EmitNativeCode(CodeGenerator* codegen) override {
915     LocationSummary* locations = instruction_->GetLocations();
916     vixl32::Register reg_out = RegisterFrom(out_);
917     DCHECK(locations->CanCall());
918     DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out.GetCode()));
919     DCHECK(instruction_->IsLoadClass() || instruction_->IsLoadString())
920         << "Unexpected instruction in read barrier for GC root slow path: "
921         << instruction_->DebugName();
922 
923     __ Bind(GetEntryLabel());
924     SaveLiveRegisters(codegen, locations);
925 
926     InvokeRuntimeCallingConventionARMVIXL calling_convention;
927     CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
928     arm_codegen->Move32(LocationFrom(calling_convention.GetRegisterAt(0)), root_);
929     arm_codegen->InvokeRuntime(kQuickReadBarrierForRootSlow,
930                                instruction_,
931                                instruction_->GetDexPc(),
932                                this);
933     CheckEntrypointTypes<kQuickReadBarrierForRootSlow, mirror::Object*, GcRoot<mirror::Object>*>();
934     arm_codegen->Move32(out_, LocationFrom(r0));
935 
936     RestoreLiveRegisters(codegen, locations);
937     __ B(GetExitLabel());
938   }
939 
GetDescription() const940   const char* GetDescription() const override { return "ReadBarrierForRootSlowPathARMVIXL"; }
941 
942  private:
943   const Location out_;
944   const Location root_;
945 
946   DISALLOW_COPY_AND_ASSIGN(ReadBarrierForRootSlowPathARMVIXL);
947 };
948 
ARMCondition(IfCondition cond)949 inline vixl32::Condition ARMCondition(IfCondition cond) {
950   switch (cond) {
951     case kCondEQ: return eq;
952     case kCondNE: return ne;
953     case kCondLT: return lt;
954     case kCondLE: return le;
955     case kCondGT: return gt;
956     case kCondGE: return ge;
957     case kCondB:  return lo;
958     case kCondBE: return ls;
959     case kCondA:  return hi;
960     case kCondAE: return hs;
961   }
962   LOG(FATAL) << "Unreachable";
963   UNREACHABLE();
964 }
965 
966 // Maps signed condition to unsigned condition.
ARMUnsignedCondition(IfCondition cond)967 inline vixl32::Condition ARMUnsignedCondition(IfCondition cond) {
968   switch (cond) {
969     case kCondEQ: return eq;
970     case kCondNE: return ne;
971     // Signed to unsigned.
972     case kCondLT: return lo;
973     case kCondLE: return ls;
974     case kCondGT: return hi;
975     case kCondGE: return hs;
976     // Unsigned remain unchanged.
977     case kCondB:  return lo;
978     case kCondBE: return ls;
979     case kCondA:  return hi;
980     case kCondAE: return hs;
981   }
982   LOG(FATAL) << "Unreachable";
983   UNREACHABLE();
984 }
985 
ARMFPCondition(IfCondition cond,bool gt_bias)986 inline vixl32::Condition ARMFPCondition(IfCondition cond, bool gt_bias) {
987   // The ARM condition codes can express all the necessary branches, see the
988   // "Meaning (floating-point)" column in the table A8-1 of the ARMv7 reference manual.
989   // There is no dex instruction or HIR that would need the missing conditions
990   // "equal or unordered" or "not equal".
991   switch (cond) {
992     case kCondEQ: return eq;
993     case kCondNE: return ne /* unordered */;
994     case kCondLT: return gt_bias ? cc : lt /* unordered */;
995     case kCondLE: return gt_bias ? ls : le /* unordered */;
996     case kCondGT: return gt_bias ? hi /* unordered */ : gt;
997     case kCondGE: return gt_bias ? cs /* unordered */ : ge;
998     default:
999       LOG(FATAL) << "UNREACHABLE";
1000       UNREACHABLE();
1001   }
1002 }
1003 
ShiftFromOpKind(HDataProcWithShifterOp::OpKind op_kind)1004 inline ShiftType ShiftFromOpKind(HDataProcWithShifterOp::OpKind op_kind) {
1005   switch (op_kind) {
1006     case HDataProcWithShifterOp::kASR: return ShiftType::ASR;
1007     case HDataProcWithShifterOp::kLSL: return ShiftType::LSL;
1008     case HDataProcWithShifterOp::kLSR: return ShiftType::LSR;
1009     default:
1010       LOG(FATAL) << "Unexpected op kind " << op_kind;
1011       UNREACHABLE();
1012   }
1013 }
1014 
DumpCoreRegister(std::ostream & stream,int reg) const1015 void CodeGeneratorARMVIXL::DumpCoreRegister(std::ostream& stream, int reg) const {
1016   stream << vixl32::Register(reg);
1017 }
1018 
DumpFloatingPointRegister(std::ostream & stream,int reg) const1019 void CodeGeneratorARMVIXL::DumpFloatingPointRegister(std::ostream& stream, int reg) const {
1020   stream << vixl32::SRegister(reg);
1021 }
1022 
GetInstructionSetFeatures() const1023 const ArmInstructionSetFeatures& CodeGeneratorARMVIXL::GetInstructionSetFeatures() const {
1024   return *GetCompilerOptions().GetInstructionSetFeatures()->AsArmInstructionSetFeatures();
1025 }
1026 
ComputeSRegisterListMask(const SRegisterList & regs)1027 static uint32_t ComputeSRegisterListMask(const SRegisterList& regs) {
1028   uint32_t mask = 0;
1029   for (uint32_t i = regs.GetFirstSRegister().GetCode();
1030        i <= regs.GetLastSRegister().GetCode();
1031        ++i) {
1032     mask |= (1 << i);
1033   }
1034   return mask;
1035 }
1036 
1037 // Saves the register in the stack. Returns the size taken on stack.
SaveCoreRegister(size_t stack_index ATTRIBUTE_UNUSED,uint32_t reg_id ATTRIBUTE_UNUSED)1038 size_t CodeGeneratorARMVIXL::SaveCoreRegister(size_t stack_index ATTRIBUTE_UNUSED,
1039                                               uint32_t reg_id ATTRIBUTE_UNUSED) {
1040   TODO_VIXL32(FATAL);
1041   UNREACHABLE();
1042 }
1043 
1044 // Restores the register from the stack. Returns the size taken on stack.
RestoreCoreRegister(size_t stack_index ATTRIBUTE_UNUSED,uint32_t reg_id ATTRIBUTE_UNUSED)1045 size_t CodeGeneratorARMVIXL::RestoreCoreRegister(size_t stack_index ATTRIBUTE_UNUSED,
1046                                                  uint32_t reg_id ATTRIBUTE_UNUSED) {
1047   TODO_VIXL32(FATAL);
1048   UNREACHABLE();
1049 }
1050 
SaveFloatingPointRegister(size_t stack_index ATTRIBUTE_UNUSED,uint32_t reg_id ATTRIBUTE_UNUSED)1051 size_t CodeGeneratorARMVIXL::SaveFloatingPointRegister(size_t stack_index ATTRIBUTE_UNUSED,
1052                                                        uint32_t reg_id ATTRIBUTE_UNUSED) {
1053   TODO_VIXL32(FATAL);
1054   UNREACHABLE();
1055 }
1056 
RestoreFloatingPointRegister(size_t stack_index ATTRIBUTE_UNUSED,uint32_t reg_id ATTRIBUTE_UNUSED)1057 size_t CodeGeneratorARMVIXL::RestoreFloatingPointRegister(size_t stack_index ATTRIBUTE_UNUSED,
1058                                                           uint32_t reg_id ATTRIBUTE_UNUSED) {
1059   TODO_VIXL32(FATAL);
1060   UNREACHABLE();
1061 }
1062 
GenerateDataProcInstruction(HInstruction::InstructionKind kind,vixl32::Register out,vixl32::Register first,const Operand & second,CodeGeneratorARMVIXL * codegen)1063 static void GenerateDataProcInstruction(HInstruction::InstructionKind kind,
1064                                         vixl32::Register out,
1065                                         vixl32::Register first,
1066                                         const Operand& second,
1067                                         CodeGeneratorARMVIXL* codegen) {
1068   if (second.IsImmediate() && second.GetImmediate() == 0) {
1069     const Operand in = kind == HInstruction::kAnd
1070         ? Operand(0)
1071         : Operand(first);
1072 
1073     __ Mov(out, in);
1074   } else {
1075     switch (kind) {
1076       case HInstruction::kAdd:
1077         __ Add(out, first, second);
1078         break;
1079       case HInstruction::kAnd:
1080         __ And(out, first, second);
1081         break;
1082       case HInstruction::kOr:
1083         __ Orr(out, first, second);
1084         break;
1085       case HInstruction::kSub:
1086         __ Sub(out, first, second);
1087         break;
1088       case HInstruction::kXor:
1089         __ Eor(out, first, second);
1090         break;
1091       default:
1092         LOG(FATAL) << "Unexpected instruction kind: " << kind;
1093         UNREACHABLE();
1094     }
1095   }
1096 }
1097 
GenerateDataProc(HInstruction::InstructionKind kind,const Location & out,const Location & first,const Operand & second_lo,const Operand & second_hi,CodeGeneratorARMVIXL * codegen)1098 static void GenerateDataProc(HInstruction::InstructionKind kind,
1099                              const Location& out,
1100                              const Location& first,
1101                              const Operand& second_lo,
1102                              const Operand& second_hi,
1103                              CodeGeneratorARMVIXL* codegen) {
1104   const vixl32::Register first_hi = HighRegisterFrom(first);
1105   const vixl32::Register first_lo = LowRegisterFrom(first);
1106   const vixl32::Register out_hi = HighRegisterFrom(out);
1107   const vixl32::Register out_lo = LowRegisterFrom(out);
1108 
1109   if (kind == HInstruction::kAdd) {
1110     __ Adds(out_lo, first_lo, second_lo);
1111     __ Adc(out_hi, first_hi, second_hi);
1112   } else if (kind == HInstruction::kSub) {
1113     __ Subs(out_lo, first_lo, second_lo);
1114     __ Sbc(out_hi, first_hi, second_hi);
1115   } else {
1116     GenerateDataProcInstruction(kind, out_lo, first_lo, second_lo, codegen);
1117     GenerateDataProcInstruction(kind, out_hi, first_hi, second_hi, codegen);
1118   }
1119 }
1120 
GetShifterOperand(vixl32::Register rm,ShiftType shift,uint32_t shift_imm)1121 static Operand GetShifterOperand(vixl32::Register rm, ShiftType shift, uint32_t shift_imm) {
1122   return shift_imm == 0 ? Operand(rm) : Operand(rm, shift, shift_imm);
1123 }
1124 
GenerateLongDataProc(HDataProcWithShifterOp * instruction,CodeGeneratorARMVIXL * codegen)1125 static void GenerateLongDataProc(HDataProcWithShifterOp* instruction,
1126                                  CodeGeneratorARMVIXL* codegen) {
1127   DCHECK_EQ(instruction->GetType(), DataType::Type::kInt64);
1128   DCHECK(HDataProcWithShifterOp::IsShiftOp(instruction->GetOpKind()));
1129 
1130   const LocationSummary* const locations = instruction->GetLocations();
1131   const uint32_t shift_value = instruction->GetShiftAmount();
1132   const HInstruction::InstructionKind kind = instruction->GetInstrKind();
1133   const Location first = locations->InAt(0);
1134   const Location second = locations->InAt(1);
1135   const Location out = locations->Out();
1136   const vixl32::Register first_hi = HighRegisterFrom(first);
1137   const vixl32::Register first_lo = LowRegisterFrom(first);
1138   const vixl32::Register out_hi = HighRegisterFrom(out);
1139   const vixl32::Register out_lo = LowRegisterFrom(out);
1140   const vixl32::Register second_hi = HighRegisterFrom(second);
1141   const vixl32::Register second_lo = LowRegisterFrom(second);
1142   const ShiftType shift = ShiftFromOpKind(instruction->GetOpKind());
1143 
1144   if (shift_value >= 32) {
1145     if (shift == ShiftType::LSL) {
1146       GenerateDataProcInstruction(kind,
1147                                   out_hi,
1148                                   first_hi,
1149                                   Operand(second_lo, ShiftType::LSL, shift_value - 32),
1150                                   codegen);
1151       GenerateDataProcInstruction(kind, out_lo, first_lo, 0, codegen);
1152     } else if (shift == ShiftType::ASR) {
1153       GenerateDataProc(kind,
1154                        out,
1155                        first,
1156                        GetShifterOperand(second_hi, ShiftType::ASR, shift_value - 32),
1157                        Operand(second_hi, ShiftType::ASR, 31),
1158                        codegen);
1159     } else {
1160       DCHECK_EQ(shift, ShiftType::LSR);
1161       GenerateDataProc(kind,
1162                        out,
1163                        first,
1164                        GetShifterOperand(second_hi, ShiftType::LSR, shift_value - 32),
1165                        0,
1166                        codegen);
1167     }
1168   } else {
1169     DCHECK_GT(shift_value, 1U);
1170     DCHECK_LT(shift_value, 32U);
1171 
1172     UseScratchRegisterScope temps(codegen->GetVIXLAssembler());
1173 
1174     if (shift == ShiftType::LSL) {
1175       // We are not doing this for HInstruction::kAdd because the output will require
1176       // Location::kOutputOverlap; not applicable to other cases.
1177       if (kind == HInstruction::kOr || kind == HInstruction::kXor) {
1178         GenerateDataProcInstruction(kind,
1179                                     out_hi,
1180                                     first_hi,
1181                                     Operand(second_hi, ShiftType::LSL, shift_value),
1182                                     codegen);
1183         GenerateDataProcInstruction(kind,
1184                                     out_hi,
1185                                     out_hi,
1186                                     Operand(second_lo, ShiftType::LSR, 32 - shift_value),
1187                                     codegen);
1188         GenerateDataProcInstruction(kind,
1189                                     out_lo,
1190                                     first_lo,
1191                                     Operand(second_lo, ShiftType::LSL, shift_value),
1192                                     codegen);
1193       } else {
1194         const vixl32::Register temp = temps.Acquire();
1195 
1196         __ Lsl(temp, second_hi, shift_value);
1197         __ Orr(temp, temp, Operand(second_lo, ShiftType::LSR, 32 - shift_value));
1198         GenerateDataProc(kind,
1199                          out,
1200                          first,
1201                          Operand(second_lo, ShiftType::LSL, shift_value),
1202                          temp,
1203                          codegen);
1204       }
1205     } else {
1206       DCHECK(shift == ShiftType::ASR || shift == ShiftType::LSR);
1207 
1208       // We are not doing this for HInstruction::kAdd because the output will require
1209       // Location::kOutputOverlap; not applicable to other cases.
1210       if (kind == HInstruction::kOr || kind == HInstruction::kXor) {
1211         GenerateDataProcInstruction(kind,
1212                                     out_lo,
1213                                     first_lo,
1214                                     Operand(second_lo, ShiftType::LSR, shift_value),
1215                                     codegen);
1216         GenerateDataProcInstruction(kind,
1217                                     out_lo,
1218                                     out_lo,
1219                                     Operand(second_hi, ShiftType::LSL, 32 - shift_value),
1220                                     codegen);
1221         GenerateDataProcInstruction(kind,
1222                                     out_hi,
1223                                     first_hi,
1224                                     Operand(second_hi, shift, shift_value),
1225                                     codegen);
1226       } else {
1227         const vixl32::Register temp = temps.Acquire();
1228 
1229         __ Lsr(temp, second_lo, shift_value);
1230         __ Orr(temp, temp, Operand(second_hi, ShiftType::LSL, 32 - shift_value));
1231         GenerateDataProc(kind,
1232                          out,
1233                          first,
1234                          temp,
1235                          Operand(second_hi, shift, shift_value),
1236                          codegen);
1237       }
1238     }
1239   }
1240 }
1241 
GenerateVcmp(HInstruction * instruction,CodeGeneratorARMVIXL * codegen)1242 static void GenerateVcmp(HInstruction* instruction, CodeGeneratorARMVIXL* codegen) {
1243   const Location rhs_loc = instruction->GetLocations()->InAt(1);
1244   if (rhs_loc.IsConstant()) {
1245     // 0.0 is the only immediate that can be encoded directly in
1246     // a VCMP instruction.
1247     //
1248     // Both the JLS (section 15.20.1) and the JVMS (section 6.5)
1249     // specify that in a floating-point comparison, positive zero
1250     // and negative zero are considered equal, so we can use the
1251     // literal 0.0 for both cases here.
1252     //
1253     // Note however that some methods (Float.equal, Float.compare,
1254     // Float.compareTo, Double.equal, Double.compare,
1255     // Double.compareTo, Math.max, Math.min, StrictMath.max,
1256     // StrictMath.min) consider 0.0 to be (strictly) greater than
1257     // -0.0. So if we ever translate calls to these methods into a
1258     // HCompare instruction, we must handle the -0.0 case with
1259     // care here.
1260     DCHECK(rhs_loc.GetConstant()->IsArithmeticZero());
1261 
1262     const DataType::Type type = instruction->InputAt(0)->GetType();
1263 
1264     if (type == DataType::Type::kFloat32) {
1265       __ Vcmp(F32, InputSRegisterAt(instruction, 0), 0.0);
1266     } else {
1267       DCHECK_EQ(type, DataType::Type::kFloat64);
1268       __ Vcmp(F64, InputDRegisterAt(instruction, 0), 0.0);
1269     }
1270   } else {
1271     __ Vcmp(InputVRegisterAt(instruction, 0), InputVRegisterAt(instruction, 1));
1272   }
1273 }
1274 
AdjustConstantForCondition(int64_t value,IfCondition * condition,IfCondition * opposite)1275 static int64_t AdjustConstantForCondition(int64_t value,
1276                                           IfCondition* condition,
1277                                           IfCondition* opposite) {
1278   if (value == 1) {
1279     if (*condition == kCondB) {
1280       value = 0;
1281       *condition = kCondEQ;
1282       *opposite = kCondNE;
1283     } else if (*condition == kCondAE) {
1284       value = 0;
1285       *condition = kCondNE;
1286       *opposite = kCondEQ;
1287     }
1288   } else if (value == -1) {
1289     if (*condition == kCondGT) {
1290       value = 0;
1291       *condition = kCondGE;
1292       *opposite = kCondLT;
1293     } else if (*condition == kCondLE) {
1294       value = 0;
1295       *condition = kCondLT;
1296       *opposite = kCondGE;
1297     }
1298   }
1299 
1300   return value;
1301 }
1302 
GenerateLongTestConstant(HCondition * condition,bool invert,CodeGeneratorARMVIXL * codegen)1303 static std::pair<vixl32::Condition, vixl32::Condition> GenerateLongTestConstant(
1304     HCondition* condition,
1305     bool invert,
1306     CodeGeneratorARMVIXL* codegen) {
1307   DCHECK_EQ(condition->GetLeft()->GetType(), DataType::Type::kInt64);
1308 
1309   const LocationSummary* const locations = condition->GetLocations();
1310   IfCondition cond = condition->GetCondition();
1311   IfCondition opposite = condition->GetOppositeCondition();
1312 
1313   if (invert) {
1314     std::swap(cond, opposite);
1315   }
1316 
1317   std::pair<vixl32::Condition, vixl32::Condition> ret(eq, ne);
1318   const Location left = locations->InAt(0);
1319   const Location right = locations->InAt(1);
1320 
1321   DCHECK(right.IsConstant());
1322 
1323   const vixl32::Register left_high = HighRegisterFrom(left);
1324   const vixl32::Register left_low = LowRegisterFrom(left);
1325   int64_t value = AdjustConstantForCondition(Int64ConstantFrom(right), &cond, &opposite);
1326   UseScratchRegisterScope temps(codegen->GetVIXLAssembler());
1327 
1328   // Comparisons against 0 are common enough to deserve special attention.
1329   if (value == 0) {
1330     switch (cond) {
1331       case kCondNE:
1332       // x > 0 iff x != 0 when the comparison is unsigned.
1333       case kCondA:
1334         ret = std::make_pair(ne, eq);
1335         FALLTHROUGH_INTENDED;
1336       case kCondEQ:
1337       // x <= 0 iff x == 0 when the comparison is unsigned.
1338       case kCondBE:
1339         __ Orrs(temps.Acquire(), left_low, left_high);
1340         return ret;
1341       case kCondLT:
1342       case kCondGE:
1343         __ Cmp(left_high, 0);
1344         return std::make_pair(ARMCondition(cond), ARMCondition(opposite));
1345       // Trivially true or false.
1346       case kCondB:
1347         ret = std::make_pair(ne, eq);
1348         FALLTHROUGH_INTENDED;
1349       case kCondAE:
1350         __ Cmp(left_low, left_low);
1351         return ret;
1352       default:
1353         break;
1354     }
1355   }
1356 
1357   switch (cond) {
1358     case kCondEQ:
1359     case kCondNE:
1360     case kCondB:
1361     case kCondBE:
1362     case kCondA:
1363     case kCondAE: {
1364       const uint32_t value_low = Low32Bits(value);
1365       Operand operand_low(value_low);
1366 
1367       __ Cmp(left_high, High32Bits(value));
1368 
1369       // Since IT blocks longer than a 16-bit instruction are deprecated by ARMv8,
1370       // we must ensure that the operands corresponding to the least significant
1371       // halves of the inputs fit into a 16-bit CMP encoding.
1372       if (!left_low.IsLow() || !IsUint<8>(value_low)) {
1373         operand_low = Operand(temps.Acquire());
1374         __ Mov(LeaveFlags, operand_low.GetBaseRegister(), value_low);
1375       }
1376 
1377       // We use the scope because of the IT block that follows.
1378       ExactAssemblyScope guard(codegen->GetVIXLAssembler(),
1379                                2 * vixl32::k16BitT32InstructionSizeInBytes,
1380                                CodeBufferCheckScope::kExactSize);
1381 
1382       __ it(eq);
1383       __ cmp(eq, left_low, operand_low);
1384       ret = std::make_pair(ARMUnsignedCondition(cond), ARMUnsignedCondition(opposite));
1385       break;
1386     }
1387     case kCondLE:
1388     case kCondGT:
1389       // Trivially true or false.
1390       if (value == std::numeric_limits<int64_t>::max()) {
1391         __ Cmp(left_low, left_low);
1392         ret = cond == kCondLE ? std::make_pair(eq, ne) : std::make_pair(ne, eq);
1393         break;
1394       }
1395 
1396       if (cond == kCondLE) {
1397         DCHECK_EQ(opposite, kCondGT);
1398         cond = kCondLT;
1399         opposite = kCondGE;
1400       } else {
1401         DCHECK_EQ(cond, kCondGT);
1402         DCHECK_EQ(opposite, kCondLE);
1403         cond = kCondGE;
1404         opposite = kCondLT;
1405       }
1406 
1407       value++;
1408       FALLTHROUGH_INTENDED;
1409     case kCondGE:
1410     case kCondLT: {
1411       __ Cmp(left_low, Low32Bits(value));
1412       __ Sbcs(temps.Acquire(), left_high, High32Bits(value));
1413       ret = std::make_pair(ARMCondition(cond), ARMCondition(opposite));
1414       break;
1415     }
1416     default:
1417       LOG(FATAL) << "Unreachable";
1418       UNREACHABLE();
1419   }
1420 
1421   return ret;
1422 }
1423 
GenerateLongTest(HCondition * condition,bool invert,CodeGeneratorARMVIXL * codegen)1424 static std::pair<vixl32::Condition, vixl32::Condition> GenerateLongTest(
1425     HCondition* condition,
1426     bool invert,
1427     CodeGeneratorARMVIXL* codegen) {
1428   DCHECK_EQ(condition->GetLeft()->GetType(), DataType::Type::kInt64);
1429 
1430   const LocationSummary* const locations = condition->GetLocations();
1431   IfCondition cond = condition->GetCondition();
1432   IfCondition opposite = condition->GetOppositeCondition();
1433 
1434   if (invert) {
1435     std::swap(cond, opposite);
1436   }
1437 
1438   std::pair<vixl32::Condition, vixl32::Condition> ret(eq, ne);
1439   Location left = locations->InAt(0);
1440   Location right = locations->InAt(1);
1441 
1442   DCHECK(right.IsRegisterPair());
1443 
1444   switch (cond) {
1445     case kCondEQ:
1446     case kCondNE:
1447     case kCondB:
1448     case kCondBE:
1449     case kCondA:
1450     case kCondAE: {
1451       __ Cmp(HighRegisterFrom(left), HighRegisterFrom(right));
1452 
1453       // We use the scope because of the IT block that follows.
1454       ExactAssemblyScope guard(codegen->GetVIXLAssembler(),
1455                                2 * vixl32::k16BitT32InstructionSizeInBytes,
1456                                CodeBufferCheckScope::kExactSize);
1457 
1458       __ it(eq);
1459       __ cmp(eq, LowRegisterFrom(left), LowRegisterFrom(right));
1460       ret = std::make_pair(ARMUnsignedCondition(cond), ARMUnsignedCondition(opposite));
1461       break;
1462     }
1463     case kCondLE:
1464     case kCondGT:
1465       if (cond == kCondLE) {
1466         DCHECK_EQ(opposite, kCondGT);
1467         cond = kCondGE;
1468         opposite = kCondLT;
1469       } else {
1470         DCHECK_EQ(cond, kCondGT);
1471         DCHECK_EQ(opposite, kCondLE);
1472         cond = kCondLT;
1473         opposite = kCondGE;
1474       }
1475 
1476       std::swap(left, right);
1477       FALLTHROUGH_INTENDED;
1478     case kCondGE:
1479     case kCondLT: {
1480       UseScratchRegisterScope temps(codegen->GetVIXLAssembler());
1481 
1482       __ Cmp(LowRegisterFrom(left), LowRegisterFrom(right));
1483       __ Sbcs(temps.Acquire(), HighRegisterFrom(left), HighRegisterFrom(right));
1484       ret = std::make_pair(ARMCondition(cond), ARMCondition(opposite));
1485       break;
1486     }
1487     default:
1488       LOG(FATAL) << "Unreachable";
1489       UNREACHABLE();
1490   }
1491 
1492   return ret;
1493 }
1494 
GenerateTest(HCondition * condition,bool invert,CodeGeneratorARMVIXL * codegen)1495 static std::pair<vixl32::Condition, vixl32::Condition> GenerateTest(HCondition* condition,
1496                                                                     bool invert,
1497                                                                     CodeGeneratorARMVIXL* codegen) {
1498   const DataType::Type type = condition->GetLeft()->GetType();
1499   IfCondition cond = condition->GetCondition();
1500   IfCondition opposite = condition->GetOppositeCondition();
1501   std::pair<vixl32::Condition, vixl32::Condition> ret(eq, ne);
1502 
1503   if (invert) {
1504     std::swap(cond, opposite);
1505   }
1506 
1507   if (type == DataType::Type::kInt64) {
1508     ret = condition->GetLocations()->InAt(1).IsConstant()
1509         ? GenerateLongTestConstant(condition, invert, codegen)
1510         : GenerateLongTest(condition, invert, codegen);
1511   } else if (DataType::IsFloatingPointType(type)) {
1512     GenerateVcmp(condition, codegen);
1513     __ Vmrs(RegisterOrAPSR_nzcv(kPcCode), FPSCR);
1514     ret = std::make_pair(ARMFPCondition(cond, condition->IsGtBias()),
1515                          ARMFPCondition(opposite, condition->IsGtBias()));
1516   } else {
1517     DCHECK(DataType::IsIntegralType(type) || type == DataType::Type::kReference) << type;
1518     __ Cmp(InputRegisterAt(condition, 0), InputOperandAt(condition, 1));
1519     ret = std::make_pair(ARMCondition(cond), ARMCondition(opposite));
1520   }
1521 
1522   return ret;
1523 }
1524 
GenerateConditionGeneric(HCondition * cond,CodeGeneratorARMVIXL * codegen)1525 static void GenerateConditionGeneric(HCondition* cond, CodeGeneratorARMVIXL* codegen) {
1526   const vixl32::Register out = OutputRegister(cond);
1527   const auto condition = GenerateTest(cond, false, codegen);
1528 
1529   __ Mov(LeaveFlags, out, 0);
1530 
1531   if (out.IsLow()) {
1532     // We use the scope because of the IT block that follows.
1533     ExactAssemblyScope guard(codegen->GetVIXLAssembler(),
1534                              2 * vixl32::k16BitT32InstructionSizeInBytes,
1535                              CodeBufferCheckScope::kExactSize);
1536 
1537     __ it(condition.first);
1538     __ mov(condition.first, out, 1);
1539   } else {
1540     vixl32::Label done_label;
1541     vixl32::Label* const final_label = codegen->GetFinalLabel(cond, &done_label);
1542 
1543     __ B(condition.second, final_label, /* is_far_target= */ false);
1544     __ Mov(out, 1);
1545 
1546     if (done_label.IsReferenced()) {
1547       __ Bind(&done_label);
1548     }
1549   }
1550 }
1551 
GenerateEqualLong(HCondition * cond,CodeGeneratorARMVIXL * codegen)1552 static void GenerateEqualLong(HCondition* cond, CodeGeneratorARMVIXL* codegen) {
1553   DCHECK_EQ(cond->GetLeft()->GetType(), DataType::Type::kInt64);
1554 
1555   const LocationSummary* const locations = cond->GetLocations();
1556   IfCondition condition = cond->GetCondition();
1557   const vixl32::Register out = OutputRegister(cond);
1558   const Location left = locations->InAt(0);
1559   const Location right = locations->InAt(1);
1560   vixl32::Register left_high = HighRegisterFrom(left);
1561   vixl32::Register left_low = LowRegisterFrom(left);
1562   vixl32::Register temp;
1563   UseScratchRegisterScope temps(codegen->GetVIXLAssembler());
1564 
1565   if (right.IsConstant()) {
1566     IfCondition opposite = cond->GetOppositeCondition();
1567     const int64_t value = AdjustConstantForCondition(Int64ConstantFrom(right),
1568                                                      &condition,
1569                                                      &opposite);
1570     Operand right_high = High32Bits(value);
1571     Operand right_low = Low32Bits(value);
1572 
1573     // The output uses Location::kNoOutputOverlap.
1574     if (out.Is(left_high)) {
1575       std::swap(left_low, left_high);
1576       std::swap(right_low, right_high);
1577     }
1578 
1579     __ Sub(out, left_low, right_low);
1580     temp = temps.Acquire();
1581     __ Sub(temp, left_high, right_high);
1582   } else {
1583     DCHECK(right.IsRegisterPair());
1584     temp = temps.Acquire();
1585     __ Sub(temp, left_high, HighRegisterFrom(right));
1586     __ Sub(out, left_low, LowRegisterFrom(right));
1587   }
1588 
1589   // Need to check after calling AdjustConstantForCondition().
1590   DCHECK(condition == kCondEQ || condition == kCondNE) << condition;
1591 
1592   if (condition == kCondNE && out.IsLow()) {
1593     __ Orrs(out, out, temp);
1594 
1595     // We use the scope because of the IT block that follows.
1596     ExactAssemblyScope guard(codegen->GetVIXLAssembler(),
1597                              2 * vixl32::k16BitT32InstructionSizeInBytes,
1598                              CodeBufferCheckScope::kExactSize);
1599 
1600     __ it(ne);
1601     __ mov(ne, out, 1);
1602   } else {
1603     __ Orr(out, out, temp);
1604     codegen->GenerateConditionWithZero(condition, out, out, temp);
1605   }
1606 }
1607 
GenerateConditionLong(HCondition * cond,CodeGeneratorARMVIXL * codegen)1608 static void GenerateConditionLong(HCondition* cond, CodeGeneratorARMVIXL* codegen) {
1609   DCHECK_EQ(cond->GetLeft()->GetType(), DataType::Type::kInt64);
1610 
1611   const LocationSummary* const locations = cond->GetLocations();
1612   IfCondition condition = cond->GetCondition();
1613   const vixl32::Register out = OutputRegister(cond);
1614   const Location left = locations->InAt(0);
1615   const Location right = locations->InAt(1);
1616 
1617   if (right.IsConstant()) {
1618     IfCondition opposite = cond->GetOppositeCondition();
1619 
1620     // Comparisons against 0 are common enough to deserve special attention.
1621     if (AdjustConstantForCondition(Int64ConstantFrom(right), &condition, &opposite) == 0) {
1622       switch (condition) {
1623         case kCondNE:
1624         case kCondA:
1625           if (out.IsLow()) {
1626             // We only care if both input registers are 0 or not.
1627             __ Orrs(out, LowRegisterFrom(left), HighRegisterFrom(left));
1628 
1629             // We use the scope because of the IT block that follows.
1630             ExactAssemblyScope guard(codegen->GetVIXLAssembler(),
1631                                      2 * vixl32::k16BitT32InstructionSizeInBytes,
1632                                      CodeBufferCheckScope::kExactSize);
1633 
1634             __ it(ne);
1635             __ mov(ne, out, 1);
1636             return;
1637           }
1638 
1639           FALLTHROUGH_INTENDED;
1640         case kCondEQ:
1641         case kCondBE:
1642           // We only care if both input registers are 0 or not.
1643           __ Orr(out, LowRegisterFrom(left), HighRegisterFrom(left));
1644           codegen->GenerateConditionWithZero(condition, out, out);
1645           return;
1646         case kCondLT:
1647         case kCondGE:
1648           // We only care about the sign bit.
1649           FALLTHROUGH_INTENDED;
1650         case kCondAE:
1651         case kCondB:
1652           codegen->GenerateConditionWithZero(condition, out, HighRegisterFrom(left));
1653           return;
1654         case kCondLE:
1655         case kCondGT:
1656         default:
1657           break;
1658       }
1659     }
1660   }
1661 
1662   // If `out` is a low register, then the GenerateConditionGeneric()
1663   // function generates a shorter code sequence that is still branchless.
1664   if ((condition == kCondEQ || condition == kCondNE) && !out.IsLow()) {
1665     GenerateEqualLong(cond, codegen);
1666     return;
1667   }
1668 
1669   GenerateConditionGeneric(cond, codegen);
1670 }
1671 
GenerateConditionIntegralOrNonPrimitive(HCondition * cond,CodeGeneratorARMVIXL * codegen)1672 static void GenerateConditionIntegralOrNonPrimitive(HCondition* cond,
1673                                                     CodeGeneratorARMVIXL* codegen) {
1674   const DataType::Type type = cond->GetLeft()->GetType();
1675 
1676   DCHECK(DataType::IsIntegralType(type) || type == DataType::Type::kReference) << type;
1677 
1678   if (type == DataType::Type::kInt64) {
1679     GenerateConditionLong(cond, codegen);
1680     return;
1681   }
1682 
1683   IfCondition condition = cond->GetCondition();
1684   vixl32::Register in = InputRegisterAt(cond, 0);
1685   const vixl32::Register out = OutputRegister(cond);
1686   const Location right = cond->GetLocations()->InAt(1);
1687   int64_t value;
1688 
1689   if (right.IsConstant()) {
1690     IfCondition opposite = cond->GetOppositeCondition();
1691 
1692     value = AdjustConstantForCondition(Int64ConstantFrom(right), &condition, &opposite);
1693 
1694     // Comparisons against 0 are common enough to deserve special attention.
1695     if (value == 0) {
1696       switch (condition) {
1697         case kCondNE:
1698         case kCondA:
1699           if (out.IsLow() && out.Is(in)) {
1700             __ Cmp(out, 0);
1701 
1702             // We use the scope because of the IT block that follows.
1703             ExactAssemblyScope guard(codegen->GetVIXLAssembler(),
1704                                      2 * vixl32::k16BitT32InstructionSizeInBytes,
1705                                      CodeBufferCheckScope::kExactSize);
1706 
1707             __ it(ne);
1708             __ mov(ne, out, 1);
1709             return;
1710           }
1711 
1712           FALLTHROUGH_INTENDED;
1713         case kCondEQ:
1714         case kCondBE:
1715         case kCondLT:
1716         case kCondGE:
1717         case kCondAE:
1718         case kCondB:
1719           codegen->GenerateConditionWithZero(condition, out, in);
1720           return;
1721         case kCondLE:
1722         case kCondGT:
1723         default:
1724           break;
1725       }
1726     }
1727   }
1728 
1729   if (condition == kCondEQ || condition == kCondNE) {
1730     Operand operand(0);
1731 
1732     if (right.IsConstant()) {
1733       operand = Operand::From(value);
1734     } else if (out.Is(RegisterFrom(right))) {
1735       // Avoid 32-bit instructions if possible.
1736       operand = InputOperandAt(cond, 0);
1737       in = RegisterFrom(right);
1738     } else {
1739       operand = InputOperandAt(cond, 1);
1740     }
1741 
1742     if (condition == kCondNE && out.IsLow()) {
1743       __ Subs(out, in, operand);
1744 
1745       // We use the scope because of the IT block that follows.
1746       ExactAssemblyScope guard(codegen->GetVIXLAssembler(),
1747                                2 * vixl32::k16BitT32InstructionSizeInBytes,
1748                                CodeBufferCheckScope::kExactSize);
1749 
1750       __ it(ne);
1751       __ mov(ne, out, 1);
1752     } else {
1753       __ Sub(out, in, operand);
1754       codegen->GenerateConditionWithZero(condition, out, out);
1755     }
1756 
1757     return;
1758   }
1759 
1760   GenerateConditionGeneric(cond, codegen);
1761 }
1762 
CanEncodeConstantAs8BitImmediate(HConstant * constant)1763 static bool CanEncodeConstantAs8BitImmediate(HConstant* constant) {
1764   const DataType::Type type = constant->GetType();
1765   bool ret = false;
1766 
1767   DCHECK(DataType::IsIntegralType(type) || type == DataType::Type::kReference) << type;
1768 
1769   if (type == DataType::Type::kInt64) {
1770     const uint64_t value = Uint64ConstantFrom(constant);
1771 
1772     ret = IsUint<8>(Low32Bits(value)) && IsUint<8>(High32Bits(value));
1773   } else {
1774     ret = IsUint<8>(Int32ConstantFrom(constant));
1775   }
1776 
1777   return ret;
1778 }
1779 
Arm8BitEncodableConstantOrRegister(HInstruction * constant)1780 static Location Arm8BitEncodableConstantOrRegister(HInstruction* constant) {
1781   DCHECK(!DataType::IsFloatingPointType(constant->GetType()));
1782 
1783   if (constant->IsConstant() && CanEncodeConstantAs8BitImmediate(constant->AsConstant())) {
1784     return Location::ConstantLocation(constant->AsConstant());
1785   }
1786 
1787   return Location::RequiresRegister();
1788 }
1789 
CanGenerateConditionalMove(const Location & out,const Location & src)1790 static bool CanGenerateConditionalMove(const Location& out, const Location& src) {
1791   // Since IT blocks longer than a 16-bit instruction are deprecated by ARMv8,
1792   // we check that we are not dealing with floating-point output (there is no
1793   // 16-bit VMOV encoding).
1794   if (!out.IsRegister() && !out.IsRegisterPair()) {
1795     return false;
1796   }
1797 
1798   // For constants, we also check that the output is in one or two low registers,
1799   // and that the constants fit in an 8-bit unsigned integer, so that a 16-bit
1800   // MOV encoding can be used.
1801   if (src.IsConstant()) {
1802     if (!CanEncodeConstantAs8BitImmediate(src.GetConstant())) {
1803       return false;
1804     }
1805 
1806     if (out.IsRegister()) {
1807       if (!RegisterFrom(out).IsLow()) {
1808         return false;
1809       }
1810     } else {
1811       DCHECK(out.IsRegisterPair());
1812 
1813       if (!HighRegisterFrom(out).IsLow()) {
1814         return false;
1815       }
1816     }
1817   }
1818 
1819   return true;
1820 }
1821 
1822 #undef __
1823 
GetFinalLabel(HInstruction * instruction,vixl32::Label * final_label)1824 vixl32::Label* CodeGeneratorARMVIXL::GetFinalLabel(HInstruction* instruction,
1825                                                    vixl32::Label* final_label) {
1826   DCHECK(!instruction->IsControlFlow() && !instruction->IsSuspendCheck());
1827   DCHECK(!instruction->IsInvoke() || !instruction->GetLocations()->CanCall());
1828 
1829   const HBasicBlock* const block = instruction->GetBlock();
1830   const HLoopInformation* const info = block->GetLoopInformation();
1831   HInstruction* const next = instruction->GetNext();
1832 
1833   // Avoid a branch to a branch.
1834   if (next->IsGoto() && (info == nullptr ||
1835                          !info->IsBackEdge(*block) ||
1836                          !info->HasSuspendCheck())) {
1837     final_label = GetLabelOf(next->AsGoto()->GetSuccessor());
1838   }
1839 
1840   return final_label;
1841 }
1842 
CodeGeneratorARMVIXL(HGraph * graph,const CompilerOptions & compiler_options,OptimizingCompilerStats * stats)1843 CodeGeneratorARMVIXL::CodeGeneratorARMVIXL(HGraph* graph,
1844                                            const CompilerOptions& compiler_options,
1845                                            OptimizingCompilerStats* stats)
1846     : CodeGenerator(graph,
1847                     kNumberOfCoreRegisters,
1848                     kNumberOfSRegisters,
1849                     kNumberOfRegisterPairs,
1850                     kCoreCalleeSaves.GetList(),
1851                     ComputeSRegisterListMask(kFpuCalleeSaves),
1852                     compiler_options,
1853                     stats),
1854       block_labels_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1855       jump_tables_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1856       location_builder_(graph, this),
1857       instruction_visitor_(graph, this),
1858       move_resolver_(graph->GetAllocator(), this),
1859       assembler_(graph->GetAllocator()),
1860       boot_image_method_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1861       method_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1862       boot_image_type_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1863       type_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1864       boot_image_string_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1865       string_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1866       boot_image_other_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1867       call_entrypoint_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1868       baker_read_barrier_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1869       uint32_literals_(std::less<uint32_t>(),
1870                        graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1871       jit_string_patches_(StringReferenceValueComparator(),
1872                           graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1873       jit_class_patches_(TypeReferenceValueComparator(),
1874                          graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1875       jit_baker_read_barrier_slow_paths_(std::less<uint32_t>(),
1876                                          graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)) {
1877   // Always save the LR register to mimic Quick.
1878   AddAllocatedRegister(Location::RegisterLocation(LR));
1879   // Give D30 and D31 as scratch register to VIXL. The register allocator only works on
1880   // S0-S31, which alias to D0-D15.
1881   GetVIXLAssembler()->GetScratchVRegisterList()->Combine(d31);
1882   GetVIXLAssembler()->GetScratchVRegisterList()->Combine(d30);
1883 }
1884 
EmitTable(CodeGeneratorARMVIXL * codegen)1885 void JumpTableARMVIXL::EmitTable(CodeGeneratorARMVIXL* codegen) {
1886   uint32_t num_entries = switch_instr_->GetNumEntries();
1887   DCHECK_GE(num_entries, kPackedSwitchCompareJumpThreshold);
1888 
1889   // We are about to use the assembler to place literals directly. Make sure we have enough
1890   // underlying code buffer and we have generated a jump table of the right size, using
1891   // codegen->GetVIXLAssembler()->GetBuffer().Align();
1892   ExactAssemblyScope aas(codegen->GetVIXLAssembler(),
1893                          num_entries * sizeof(int32_t),
1894                          CodeBufferCheckScope::kMaximumSize);
1895   // TODO(VIXL): Check that using lower case bind is fine here.
1896   codegen->GetVIXLAssembler()->bind(&table_start_);
1897   for (uint32_t i = 0; i < num_entries; i++) {
1898     codegen->GetVIXLAssembler()->place(bb_addresses_[i].get());
1899   }
1900 }
1901 
FixTable(CodeGeneratorARMVIXL * codegen)1902 void JumpTableARMVIXL::FixTable(CodeGeneratorARMVIXL* codegen) {
1903   uint32_t num_entries = switch_instr_->GetNumEntries();
1904   DCHECK_GE(num_entries, kPackedSwitchCompareJumpThreshold);
1905 
1906   const ArenaVector<HBasicBlock*>& successors = switch_instr_->GetBlock()->GetSuccessors();
1907   for (uint32_t i = 0; i < num_entries; i++) {
1908     vixl32::Label* target_label = codegen->GetLabelOf(successors[i]);
1909     DCHECK(target_label->IsBound());
1910     int32_t jump_offset = target_label->GetLocation() - table_start_.GetLocation();
1911     // When doing BX to address we need to have lower bit set to 1 in T32.
1912     if (codegen->GetVIXLAssembler()->IsUsingT32()) {
1913       jump_offset++;
1914     }
1915     DCHECK_GT(jump_offset, std::numeric_limits<int32_t>::min());
1916     DCHECK_LE(jump_offset, std::numeric_limits<int32_t>::max());
1917 
1918     bb_addresses_[i].get()->UpdateValue(jump_offset, codegen->GetVIXLAssembler()->GetBuffer());
1919   }
1920 }
1921 
FixJumpTables()1922 void CodeGeneratorARMVIXL::FixJumpTables() {
1923   for (auto&& jump_table : jump_tables_) {
1924     jump_table->FixTable(this);
1925   }
1926 }
1927 
1928 #define __ reinterpret_cast<ArmVIXLAssembler*>(GetAssembler())->GetVIXLAssembler()->  // NOLINT
1929 
Finalize(CodeAllocator * allocator)1930 void CodeGeneratorARMVIXL::Finalize(CodeAllocator* allocator) {
1931   FixJumpTables();
1932 
1933   // Emit JIT baker read barrier slow paths.
1934   DCHECK(Runtime::Current()->UseJitCompilation() || jit_baker_read_barrier_slow_paths_.empty());
1935   for (auto& entry : jit_baker_read_barrier_slow_paths_) {
1936     uint32_t encoded_data = entry.first;
1937     vixl::aarch32::Label* slow_path_entry = &entry.second.label;
1938     __ Bind(slow_path_entry);
1939     CompileBakerReadBarrierThunk(*GetAssembler(), encoded_data, /* debug_name= */ nullptr);
1940   }
1941 
1942   GetAssembler()->FinalizeCode();
1943   CodeGenerator::Finalize(allocator);
1944 
1945   // Verify Baker read barrier linker patches.
1946   if (kIsDebugBuild) {
1947     ArrayRef<const uint8_t> code = allocator->GetMemory();
1948     for (const BakerReadBarrierPatchInfo& info : baker_read_barrier_patches_) {
1949       DCHECK(info.label.IsBound());
1950       uint32_t literal_offset = info.label.GetLocation();
1951       DCHECK_ALIGNED(literal_offset, 2u);
1952 
1953       auto GetInsn16 = [&code](uint32_t offset) {
1954         DCHECK_ALIGNED(offset, 2u);
1955         return (static_cast<uint32_t>(code[offset + 0]) << 0) +
1956                (static_cast<uint32_t>(code[offset + 1]) << 8);
1957       };
1958       auto GetInsn32 = [=](uint32_t offset) {
1959         return (GetInsn16(offset) << 16) + (GetInsn16(offset + 2u) << 0);
1960       };
1961 
1962       uint32_t encoded_data = info.custom_data;
1963       BakerReadBarrierKind kind = BakerReadBarrierKindField::Decode(encoded_data);
1964       // Check that the next instruction matches the expected LDR.
1965       switch (kind) {
1966         case BakerReadBarrierKind::kField: {
1967           BakerReadBarrierWidth width = BakerReadBarrierWidthField::Decode(encoded_data);
1968           if (width == BakerReadBarrierWidth::kWide) {
1969             DCHECK_GE(code.size() - literal_offset, 8u);
1970             uint32_t next_insn = GetInsn32(literal_offset + 4u);
1971             // LDR (immediate), encoding T3, with correct base_reg.
1972             CheckValidReg((next_insn >> 12) & 0xfu);  // Check destination register.
1973             const uint32_t base_reg = BakerReadBarrierFirstRegField::Decode(encoded_data);
1974             CHECK_EQ(next_insn & 0xffff0000u, 0xf8d00000u | (base_reg << 16));
1975           } else {
1976             DCHECK_GE(code.size() - literal_offset, 6u);
1977             uint32_t next_insn = GetInsn16(literal_offset + 4u);
1978             // LDR (immediate), encoding T1, with correct base_reg.
1979             CheckValidReg(next_insn & 0x7u);  // Check destination register.
1980             const uint32_t base_reg = BakerReadBarrierFirstRegField::Decode(encoded_data);
1981             CHECK_EQ(next_insn & 0xf838u, 0x6800u | (base_reg << 3));
1982           }
1983           break;
1984         }
1985         case BakerReadBarrierKind::kArray: {
1986           DCHECK_GE(code.size() - literal_offset, 8u);
1987           uint32_t next_insn = GetInsn32(literal_offset + 4u);
1988           // LDR (register) with correct base_reg, S=1 and option=011 (LDR Wt, [Xn, Xm, LSL #2]).
1989           CheckValidReg((next_insn >> 12) & 0xfu);  // Check destination register.
1990           const uint32_t base_reg = BakerReadBarrierFirstRegField::Decode(encoded_data);
1991           CHECK_EQ(next_insn & 0xffff0ff0u, 0xf8500020u | (base_reg << 16));
1992           CheckValidReg(next_insn & 0xf);  // Check index register
1993           break;
1994         }
1995         case BakerReadBarrierKind::kGcRoot: {
1996           BakerReadBarrierWidth width = BakerReadBarrierWidthField::Decode(encoded_data);
1997           if (width == BakerReadBarrierWidth::kWide) {
1998             DCHECK_GE(literal_offset, 4u);
1999             uint32_t prev_insn = GetInsn32(literal_offset - 4u);
2000             // LDR (immediate), encoding T3, with correct root_reg.
2001             const uint32_t root_reg = BakerReadBarrierFirstRegField::Decode(encoded_data);
2002             CHECK_EQ(prev_insn & 0xfff0f000u, 0xf8d00000u | (root_reg << 12));
2003           } else {
2004             DCHECK_GE(literal_offset, 2u);
2005             uint32_t prev_insn = GetInsn16(literal_offset - 2u);
2006             // LDR (immediate), encoding T1, with correct root_reg.
2007             const uint32_t root_reg = BakerReadBarrierFirstRegField::Decode(encoded_data);
2008             CHECK_EQ(prev_insn & 0xf807u, 0x6800u | root_reg);
2009           }
2010           break;
2011         }
2012         case BakerReadBarrierKind::kUnsafeCas: {
2013           DCHECK_GE(literal_offset, 4u);
2014           uint32_t prev_insn = GetInsn32(literal_offset - 4u);
2015           // ADD (register), encoding T3, with correct root_reg.
2016           const uint32_t root_reg = BakerReadBarrierFirstRegField::Decode(encoded_data);
2017           CHECK_EQ(prev_insn & 0xfff0fff0u, 0xeb000000u | (root_reg << 8));
2018           break;
2019         }
2020         default:
2021           LOG(FATAL) << "Unexpected kind: " << static_cast<uint32_t>(kind);
2022           UNREACHABLE();
2023       }
2024     }
2025   }
2026 }
2027 
SetupBlockedRegisters() const2028 void CodeGeneratorARMVIXL::SetupBlockedRegisters() const {
2029   // Stack register, LR and PC are always reserved.
2030   blocked_core_registers_[SP] = true;
2031   blocked_core_registers_[LR] = true;
2032   blocked_core_registers_[PC] = true;
2033 
2034   if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
2035     // Reserve marking register.
2036     blocked_core_registers_[MR] = true;
2037   }
2038 
2039   // Reserve thread register.
2040   blocked_core_registers_[TR] = true;
2041 
2042   // Reserve temp register.
2043   blocked_core_registers_[IP] = true;
2044 
2045   if (GetGraph()->IsDebuggable()) {
2046     // Stubs do not save callee-save floating point registers. If the graph
2047     // is debuggable, we need to deal with these registers differently. For
2048     // now, just block them.
2049     for (uint32_t i = kFpuCalleeSaves.GetFirstSRegister().GetCode();
2050          i <= kFpuCalleeSaves.GetLastSRegister().GetCode();
2051          ++i) {
2052       blocked_fpu_registers_[i] = true;
2053     }
2054   }
2055 }
2056 
InstructionCodeGeneratorARMVIXL(HGraph * graph,CodeGeneratorARMVIXL * codegen)2057 InstructionCodeGeneratorARMVIXL::InstructionCodeGeneratorARMVIXL(HGraph* graph,
2058                                                                  CodeGeneratorARMVIXL* codegen)
2059       : InstructionCodeGenerator(graph, codegen),
2060         assembler_(codegen->GetAssembler()),
2061         codegen_(codegen) {}
2062 
ComputeSpillMask()2063 void CodeGeneratorARMVIXL::ComputeSpillMask() {
2064   core_spill_mask_ = allocated_registers_.GetCoreRegisters() & core_callee_save_mask_;
2065   DCHECK_NE(core_spill_mask_ & (1u << kLrCode), 0u)
2066       << "At least the return address register must be saved";
2067   // 16-bit PUSH/POP (T1) can save/restore just the LR/PC.
2068   DCHECK(GetVIXLAssembler()->IsUsingT32());
2069   fpu_spill_mask_ = allocated_registers_.GetFloatingPointRegisters() & fpu_callee_save_mask_;
2070   // We use vpush and vpop for saving and restoring floating point registers, which take
2071   // a SRegister and the number of registers to save/restore after that SRegister. We
2072   // therefore update the `fpu_spill_mask_` to also contain those registers not allocated,
2073   // but in the range.
2074   if (fpu_spill_mask_ != 0) {
2075     uint32_t least_significant_bit = LeastSignificantBit(fpu_spill_mask_);
2076     uint32_t most_significant_bit = MostSignificantBit(fpu_spill_mask_);
2077     for (uint32_t i = least_significant_bit + 1 ; i < most_significant_bit; ++i) {
2078       fpu_spill_mask_ |= (1 << i);
2079     }
2080   }
2081 }
2082 
MaybeIncrementHotness(bool is_frame_entry)2083 void CodeGeneratorARMVIXL::MaybeIncrementHotness(bool is_frame_entry) {
2084   if (GetCompilerOptions().CountHotnessInCompiledCode()) {
2085     UseScratchRegisterScope temps(GetVIXLAssembler());
2086     vixl32::Register temp = temps.Acquire();
2087     static_assert(ArtMethod::MaxCounter() == 0xFFFF, "asm is probably wrong");
2088     if (!is_frame_entry) {
2089       __ Push(vixl32::Register(kMethodRegister));
2090       GetAssembler()->LoadFromOffset(kLoadWord, kMethodRegister, sp, kArmWordSize);
2091     }
2092     // Load with zero extend to clear the high bits for integer overflow check.
2093     __ Ldrh(temp, MemOperand(kMethodRegister, ArtMethod::HotnessCountOffset().Int32Value()));
2094     __ Add(temp, temp, 1);
2095     // Subtract one if the counter would overflow.
2096     __ Sub(temp, temp, Operand(temp, ShiftType::LSR, 16));
2097     __ Strh(temp, MemOperand(kMethodRegister, ArtMethod::HotnessCountOffset().Int32Value()));
2098     if (!is_frame_entry) {
2099       __ Pop(vixl32::Register(kMethodRegister));
2100     }
2101   }
2102 
2103   if (GetGraph()->IsCompilingBaseline() && !Runtime::Current()->IsAotCompiler()) {
2104     ScopedObjectAccess soa(Thread::Current());
2105     ProfilingInfo* info = GetGraph()->GetArtMethod()->GetProfilingInfo(kRuntimePointerSize);
2106     if (info != nullptr) {
2107       uint32_t address = reinterpret_cast32<uint32_t>(info);
2108       vixl::aarch32::Label done;
2109       UseScratchRegisterScope temps(GetVIXLAssembler());
2110       temps.Exclude(ip);
2111       if (!is_frame_entry) {
2112         __ Push(r4);  // Will be used as temporary. For frame entry, r4 is always available.
2113       }
2114       __ Mov(r4, address);
2115       __ Ldrh(ip, MemOperand(r4, ProfilingInfo::BaselineHotnessCountOffset().Int32Value()));
2116       __ Add(ip, ip, 1);
2117       __ Strh(ip, MemOperand(r4, ProfilingInfo::BaselineHotnessCountOffset().Int32Value()));
2118       if (!is_frame_entry) {
2119         __ Pop(r4);
2120       }
2121       __ Lsls(ip, ip, 16);
2122       __ B(ne, &done);
2123       uint32_t entry_point_offset =
2124           GetThreadOffset<kArmPointerSize>(kQuickCompileOptimized).Int32Value();
2125       if (HasEmptyFrame()) {
2126         CHECK(is_frame_entry);
2127         // For leaf methods, we need to spill lr and r0. Also spill r1 and r2 for
2128         // alignment.
2129         uint32_t core_spill_mask =
2130             (1 << lr.GetCode()) | (1 << r0.GetCode()) | (1 << r1.GetCode()) | (1 << r2.GetCode());
2131         __ Push(RegisterList(core_spill_mask));
2132         __ Ldr(lr, MemOperand(tr, entry_point_offset));
2133         __ Blx(lr);
2134         __ Pop(RegisterList(core_spill_mask));
2135       } else {
2136         if (!RequiresCurrentMethod()) {
2137           CHECK(is_frame_entry);
2138           GetAssembler()->StoreToOffset(kStoreWord, kMethodRegister, sp, 0);
2139         }
2140       __ Ldr(lr, MemOperand(tr, entry_point_offset));
2141       __ Blx(lr);
2142       }
2143       __ Bind(&done);
2144     }
2145   }
2146 }
2147 
GenerateFrameEntry()2148 void CodeGeneratorARMVIXL::GenerateFrameEntry() {
2149   bool skip_overflow_check =
2150       IsLeafMethod() && !FrameNeedsStackCheck(GetFrameSize(), InstructionSet::kArm);
2151   DCHECK(GetCompilerOptions().GetImplicitStackOverflowChecks());
2152   __ Bind(&frame_entry_label_);
2153 
2154   if (HasEmptyFrame()) {
2155     // Ensure that the CFI opcode list is not empty.
2156     GetAssembler()->cfi().Nop();
2157     MaybeIncrementHotness(/* is_frame_entry= */ true);
2158     return;
2159   }
2160 
2161   if (!skip_overflow_check) {
2162     // Using r4 instead of IP saves 2 bytes.
2163     UseScratchRegisterScope temps(GetVIXLAssembler());
2164     vixl32::Register temp;
2165     // TODO: Remove this check when R4 is made a callee-save register
2166     // in ART compiled code (b/72801708). Currently we need to make
2167     // sure r4 is not blocked, e.g. in special purpose
2168     // TestCodeGeneratorARMVIXL; also asserting that r4 is available
2169     // here.
2170     if (!blocked_core_registers_[R4]) {
2171       for (vixl32::Register reg : kParameterCoreRegistersVIXL) {
2172         DCHECK(!reg.Is(r4));
2173       }
2174       DCHECK(!kCoreCalleeSaves.Includes(r4));
2175       temp = r4;
2176     } else {
2177       temp = temps.Acquire();
2178     }
2179     __ Sub(temp, sp, Operand::From(GetStackOverflowReservedBytes(InstructionSet::kArm)));
2180     // The load must immediately precede RecordPcInfo.
2181     ExactAssemblyScope aas(GetVIXLAssembler(),
2182                            vixl32::kMaxInstructionSizeInBytes,
2183                            CodeBufferCheckScope::kMaximumSize);
2184     __ ldr(temp, MemOperand(temp));
2185     RecordPcInfo(nullptr, 0);
2186   }
2187 
2188   uint32_t frame_size = GetFrameSize();
2189   uint32_t core_spills_offset = frame_size - GetCoreSpillSize();
2190   uint32_t fp_spills_offset = frame_size - FrameEntrySpillSize();
2191   if ((fpu_spill_mask_ == 0u || IsPowerOfTwo(fpu_spill_mask_)) &&
2192       core_spills_offset <= 3u * kArmWordSize) {
2193     // Do a single PUSH for core registers including the method and up to two
2194     // filler registers. Then store the single FP spill if any.
2195     // (The worst case is when the method is not required and we actually
2196     // store 3 extra registers but they are stored in the same properly
2197     // aligned 16-byte chunk where we're already writing anyway.)
2198     DCHECK_EQ(kMethodRegister.GetCode(), 0u);
2199     uint32_t extra_regs = MaxInt<uint32_t>(core_spills_offset / kArmWordSize);
2200     DCHECK_LT(MostSignificantBit(extra_regs), LeastSignificantBit(core_spill_mask_));
2201     __ Push(RegisterList(core_spill_mask_ | extra_regs));
2202     GetAssembler()->cfi().AdjustCFAOffset(frame_size);
2203     GetAssembler()->cfi().RelOffsetForMany(DWARFReg(kMethodRegister),
2204                                            core_spills_offset,
2205                                            core_spill_mask_,
2206                                            kArmWordSize);
2207     if (fpu_spill_mask_ != 0u) {
2208       DCHECK(IsPowerOfTwo(fpu_spill_mask_));
2209       vixl::aarch32::SRegister sreg(LeastSignificantBit(fpu_spill_mask_));
2210       GetAssembler()->StoreSToOffset(sreg, sp, fp_spills_offset);
2211       GetAssembler()->cfi().RelOffset(DWARFReg(sreg), /*offset=*/ fp_spills_offset);
2212     }
2213   } else {
2214     __ Push(RegisterList(core_spill_mask_));
2215     GetAssembler()->cfi().AdjustCFAOffset(kArmWordSize * POPCOUNT(core_spill_mask_));
2216     GetAssembler()->cfi().RelOffsetForMany(DWARFReg(kMethodRegister),
2217                                            /*offset=*/ 0,
2218                                            core_spill_mask_,
2219                                            kArmWordSize);
2220     if (fpu_spill_mask_ != 0) {
2221       uint32_t first = LeastSignificantBit(fpu_spill_mask_);
2222 
2223       // Check that list is contiguous.
2224       DCHECK_EQ(fpu_spill_mask_ >> CTZ(fpu_spill_mask_), ~0u >> (32 - POPCOUNT(fpu_spill_mask_)));
2225 
2226       __ Vpush(SRegisterList(vixl32::SRegister(first), POPCOUNT(fpu_spill_mask_)));
2227       GetAssembler()->cfi().AdjustCFAOffset(kArmWordSize * POPCOUNT(fpu_spill_mask_));
2228       GetAssembler()->cfi().RelOffsetForMany(DWARFReg(s0),
2229                                              /*offset=*/ 0,
2230                                              fpu_spill_mask_,
2231                                              kArmWordSize);
2232     }
2233 
2234     // Adjust SP and save the current method if we need it. Note that we do
2235     // not save the method in HCurrentMethod, as the instruction might have
2236     // been removed in the SSA graph.
2237     if (RequiresCurrentMethod() && fp_spills_offset <= 3 * kArmWordSize) {
2238       DCHECK_EQ(kMethodRegister.GetCode(), 0u);
2239       __ Push(RegisterList(MaxInt<uint32_t>(fp_spills_offset / kArmWordSize)));
2240       GetAssembler()->cfi().AdjustCFAOffset(fp_spills_offset);
2241     } else {
2242       __ Sub(sp, sp, dchecked_integral_cast<int32_t>(fp_spills_offset));
2243       GetAssembler()->cfi().AdjustCFAOffset(fp_spills_offset);
2244       if (RequiresCurrentMethod()) {
2245         GetAssembler()->StoreToOffset(kStoreWord, kMethodRegister, sp, 0);
2246       }
2247     }
2248   }
2249 
2250   if (GetGraph()->HasShouldDeoptimizeFlag()) {
2251     UseScratchRegisterScope temps(GetVIXLAssembler());
2252     vixl32::Register temp = temps.Acquire();
2253     // Initialize should_deoptimize flag to 0.
2254     __ Mov(temp, 0);
2255     GetAssembler()->StoreToOffset(kStoreWord, temp, sp, GetStackOffsetOfShouldDeoptimizeFlag());
2256   }
2257 
2258   MaybeIncrementHotness(/* is_frame_entry= */ true);
2259   MaybeGenerateMarkingRegisterCheck(/* code= */ 1);
2260 }
2261 
GenerateFrameExit()2262 void CodeGeneratorARMVIXL::GenerateFrameExit() {
2263   if (HasEmptyFrame()) {
2264     __ Bx(lr);
2265     return;
2266   }
2267 
2268   // Pop LR into PC to return.
2269   DCHECK_NE(core_spill_mask_ & (1 << kLrCode), 0U);
2270   uint32_t pop_mask = (core_spill_mask_ & (~(1 << kLrCode))) | 1 << kPcCode;
2271 
2272   uint32_t frame_size = GetFrameSize();
2273   uint32_t core_spills_offset = frame_size - GetCoreSpillSize();
2274   uint32_t fp_spills_offset = frame_size - FrameEntrySpillSize();
2275   if ((fpu_spill_mask_ == 0u || IsPowerOfTwo(fpu_spill_mask_)) &&
2276       // r4 is blocked by TestCodeGeneratorARMVIXL used by some tests.
2277       core_spills_offset <= (blocked_core_registers_[r4.GetCode()] ? 2u : 3u) * kArmWordSize) {
2278     // Load the FP spill if any and then do a single POP including the method
2279     // and up to two filler registers. If we have no FP spills, this also has
2280     // the advantage that we do not need to emit CFI directives.
2281     if (fpu_spill_mask_ != 0u) {
2282       DCHECK(IsPowerOfTwo(fpu_spill_mask_));
2283       vixl::aarch32::SRegister sreg(LeastSignificantBit(fpu_spill_mask_));
2284       GetAssembler()->cfi().RememberState();
2285       GetAssembler()->LoadSFromOffset(sreg, sp, fp_spills_offset);
2286       GetAssembler()->cfi().Restore(DWARFReg(sreg));
2287     }
2288     // Clobber registers r2-r4 as they are caller-save in ART managed ABI and
2289     // never hold the return value.
2290     uint32_t extra_regs = MaxInt<uint32_t>(core_spills_offset / kArmWordSize) << r2.GetCode();
2291     DCHECK_EQ(extra_regs & kCoreCalleeSaves.GetList(), 0u);
2292     DCHECK_LT(MostSignificantBit(extra_regs), LeastSignificantBit(pop_mask));
2293     __ Pop(RegisterList(pop_mask | extra_regs));
2294     if (fpu_spill_mask_ != 0u) {
2295       GetAssembler()->cfi().RestoreState();
2296     }
2297   } else {
2298     GetAssembler()->cfi().RememberState();
2299     __ Add(sp, sp, fp_spills_offset);
2300     GetAssembler()->cfi().AdjustCFAOffset(-dchecked_integral_cast<int32_t>(fp_spills_offset));
2301     if (fpu_spill_mask_ != 0) {
2302       uint32_t first = LeastSignificantBit(fpu_spill_mask_);
2303 
2304       // Check that list is contiguous.
2305       DCHECK_EQ(fpu_spill_mask_ >> CTZ(fpu_spill_mask_), ~0u >> (32 - POPCOUNT(fpu_spill_mask_)));
2306 
2307       __ Vpop(SRegisterList(vixl32::SRegister(first), POPCOUNT(fpu_spill_mask_)));
2308       GetAssembler()->cfi().AdjustCFAOffset(
2309           -static_cast<int>(kArmWordSize) * POPCOUNT(fpu_spill_mask_));
2310       GetAssembler()->cfi().RestoreMany(DWARFReg(vixl32::SRegister(0)), fpu_spill_mask_);
2311     }
2312     __ Pop(RegisterList(pop_mask));
2313     GetAssembler()->cfi().RestoreState();
2314     GetAssembler()->cfi().DefCFAOffset(GetFrameSize());
2315   }
2316 }
2317 
Bind(HBasicBlock * block)2318 void CodeGeneratorARMVIXL::Bind(HBasicBlock* block) {
2319   __ Bind(GetLabelOf(block));
2320 }
2321 
GetNextLocation(DataType::Type type)2322 Location InvokeDexCallingConventionVisitorARMVIXL::GetNextLocation(DataType::Type type) {
2323   switch (type) {
2324     case DataType::Type::kReference:
2325     case DataType::Type::kBool:
2326     case DataType::Type::kUint8:
2327     case DataType::Type::kInt8:
2328     case DataType::Type::kUint16:
2329     case DataType::Type::kInt16:
2330     case DataType::Type::kInt32: {
2331       uint32_t index = gp_index_++;
2332       uint32_t stack_index = stack_index_++;
2333       if (index < calling_convention.GetNumberOfRegisters()) {
2334         return LocationFrom(calling_convention.GetRegisterAt(index));
2335       } else {
2336         return Location::StackSlot(calling_convention.GetStackOffsetOf(stack_index));
2337       }
2338     }
2339 
2340     case DataType::Type::kInt64: {
2341       uint32_t index = gp_index_;
2342       uint32_t stack_index = stack_index_;
2343       gp_index_ += 2;
2344       stack_index_ += 2;
2345       if (index + 1 < calling_convention.GetNumberOfRegisters()) {
2346         if (calling_convention.GetRegisterAt(index).Is(r1)) {
2347           // Skip R1, and use R2_R3 instead.
2348           gp_index_++;
2349           index++;
2350         }
2351       }
2352       if (index + 1 < calling_convention.GetNumberOfRegisters()) {
2353         DCHECK_EQ(calling_convention.GetRegisterAt(index).GetCode() + 1,
2354                   calling_convention.GetRegisterAt(index + 1).GetCode());
2355 
2356         return LocationFrom(calling_convention.GetRegisterAt(index),
2357                             calling_convention.GetRegisterAt(index + 1));
2358       } else {
2359         return Location::DoubleStackSlot(calling_convention.GetStackOffsetOf(stack_index));
2360       }
2361     }
2362 
2363     case DataType::Type::kFloat32: {
2364       uint32_t stack_index = stack_index_++;
2365       if (float_index_ % 2 == 0) {
2366         float_index_ = std::max(double_index_, float_index_);
2367       }
2368       if (float_index_ < calling_convention.GetNumberOfFpuRegisters()) {
2369         return LocationFrom(calling_convention.GetFpuRegisterAt(float_index_++));
2370       } else {
2371         return Location::StackSlot(calling_convention.GetStackOffsetOf(stack_index));
2372       }
2373     }
2374 
2375     case DataType::Type::kFloat64: {
2376       double_index_ = std::max(double_index_, RoundUp(float_index_, 2));
2377       uint32_t stack_index = stack_index_;
2378       stack_index_ += 2;
2379       if (double_index_ + 1 < calling_convention.GetNumberOfFpuRegisters()) {
2380         uint32_t index = double_index_;
2381         double_index_ += 2;
2382         Location result = LocationFrom(
2383           calling_convention.GetFpuRegisterAt(index),
2384           calling_convention.GetFpuRegisterAt(index + 1));
2385         DCHECK(ExpectedPairLayout(result));
2386         return result;
2387       } else {
2388         return Location::DoubleStackSlot(calling_convention.GetStackOffsetOf(stack_index));
2389       }
2390     }
2391 
2392     case DataType::Type::kUint32:
2393     case DataType::Type::kUint64:
2394     case DataType::Type::kVoid:
2395       LOG(FATAL) << "Unexpected parameter type " << type;
2396       UNREACHABLE();
2397   }
2398   return Location::NoLocation();
2399 }
2400 
GetReturnLocation(DataType::Type type) const2401 Location InvokeDexCallingConventionVisitorARMVIXL::GetReturnLocation(DataType::Type type) const {
2402   switch (type) {
2403     case DataType::Type::kReference:
2404     case DataType::Type::kBool:
2405     case DataType::Type::kUint8:
2406     case DataType::Type::kInt8:
2407     case DataType::Type::kUint16:
2408     case DataType::Type::kInt16:
2409     case DataType::Type::kUint32:
2410     case DataType::Type::kInt32: {
2411       return LocationFrom(r0);
2412     }
2413 
2414     case DataType::Type::kFloat32: {
2415       return LocationFrom(s0);
2416     }
2417 
2418     case DataType::Type::kUint64:
2419     case DataType::Type::kInt64: {
2420       return LocationFrom(r0, r1);
2421     }
2422 
2423     case DataType::Type::kFloat64: {
2424       return LocationFrom(s0, s1);
2425     }
2426 
2427     case DataType::Type::kVoid:
2428       return Location::NoLocation();
2429   }
2430 
2431   UNREACHABLE();
2432 }
2433 
GetMethodLocation() const2434 Location InvokeDexCallingConventionVisitorARMVIXL::GetMethodLocation() const {
2435   return LocationFrom(kMethodRegister);
2436 }
2437 
Move32(Location destination,Location source)2438 void CodeGeneratorARMVIXL::Move32(Location destination, Location source) {
2439   if (source.Equals(destination)) {
2440     return;
2441   }
2442   if (destination.IsRegister()) {
2443     if (source.IsRegister()) {
2444       __ Mov(RegisterFrom(destination), RegisterFrom(source));
2445     } else if (source.IsFpuRegister()) {
2446       __ Vmov(RegisterFrom(destination), SRegisterFrom(source));
2447     } else {
2448       GetAssembler()->LoadFromOffset(kLoadWord,
2449                                      RegisterFrom(destination),
2450                                      sp,
2451                                      source.GetStackIndex());
2452     }
2453   } else if (destination.IsFpuRegister()) {
2454     if (source.IsRegister()) {
2455       __ Vmov(SRegisterFrom(destination), RegisterFrom(source));
2456     } else if (source.IsFpuRegister()) {
2457       __ Vmov(SRegisterFrom(destination), SRegisterFrom(source));
2458     } else {
2459       GetAssembler()->LoadSFromOffset(SRegisterFrom(destination), sp, source.GetStackIndex());
2460     }
2461   } else {
2462     DCHECK(destination.IsStackSlot()) << destination;
2463     if (source.IsRegister()) {
2464       GetAssembler()->StoreToOffset(kStoreWord,
2465                                     RegisterFrom(source),
2466                                     sp,
2467                                     destination.GetStackIndex());
2468     } else if (source.IsFpuRegister()) {
2469       GetAssembler()->StoreSToOffset(SRegisterFrom(source), sp, destination.GetStackIndex());
2470     } else {
2471       DCHECK(source.IsStackSlot()) << source;
2472       UseScratchRegisterScope temps(GetVIXLAssembler());
2473       vixl32::Register temp = temps.Acquire();
2474       GetAssembler()->LoadFromOffset(kLoadWord, temp, sp, source.GetStackIndex());
2475       GetAssembler()->StoreToOffset(kStoreWord, temp, sp, destination.GetStackIndex());
2476     }
2477   }
2478 }
2479 
MoveConstant(Location location,int32_t value)2480 void CodeGeneratorARMVIXL::MoveConstant(Location location, int32_t value) {
2481   DCHECK(location.IsRegister());
2482   __ Mov(RegisterFrom(location), value);
2483 }
2484 
MoveLocation(Location dst,Location src,DataType::Type dst_type)2485 void CodeGeneratorARMVIXL::MoveLocation(Location dst, Location src, DataType::Type dst_type) {
2486   // TODO(VIXL): Maybe refactor to have the 'move' implementation here and use it in
2487   // `ParallelMoveResolverARMVIXL::EmitMove`, as is done in the `arm64` backend.
2488   HParallelMove move(GetGraph()->GetAllocator());
2489   move.AddMove(src, dst, dst_type, nullptr);
2490   GetMoveResolver()->EmitNativeCode(&move);
2491 }
2492 
AddLocationAsTemp(Location location,LocationSummary * locations)2493 void CodeGeneratorARMVIXL::AddLocationAsTemp(Location location, LocationSummary* locations) {
2494   if (location.IsRegister()) {
2495     locations->AddTemp(location);
2496   } else if (location.IsRegisterPair()) {
2497     locations->AddTemp(LocationFrom(LowRegisterFrom(location)));
2498     locations->AddTemp(LocationFrom(HighRegisterFrom(location)));
2499   } else {
2500     UNIMPLEMENTED(FATAL) << "AddLocationAsTemp not implemented for location " << location;
2501   }
2502 }
2503 
InvokeRuntime(QuickEntrypointEnum entrypoint,HInstruction * instruction,uint32_t dex_pc,SlowPathCode * slow_path)2504 void CodeGeneratorARMVIXL::InvokeRuntime(QuickEntrypointEnum entrypoint,
2505                                          HInstruction* instruction,
2506                                          uint32_t dex_pc,
2507                                          SlowPathCode* slow_path) {
2508   ValidateInvokeRuntime(entrypoint, instruction, slow_path);
2509 
2510   ThreadOffset32 entrypoint_offset = GetThreadOffset<kArmPointerSize>(entrypoint);
2511   // Reduce code size for AOT by using shared trampolines for slow path runtime calls across the
2512   // entire oat file. This adds an extra branch and we do not want to slow down the main path.
2513   // For JIT, thunk sharing is per-method, so the gains would be smaller or even negative.
2514   if (slow_path == nullptr || Runtime::Current()->UseJitCompilation()) {
2515     __ Ldr(lr, MemOperand(tr, entrypoint_offset.Int32Value()));
2516     // Ensure the pc position is recorded immediately after the `blx` instruction.
2517     // blx in T32 has only 16bit encoding that's why a stricter check for the scope is used.
2518     ExactAssemblyScope aas(GetVIXLAssembler(),
2519                            vixl32::k16BitT32InstructionSizeInBytes,
2520                            CodeBufferCheckScope::kExactSize);
2521     __ blx(lr);
2522     if (EntrypointRequiresStackMap(entrypoint)) {
2523       RecordPcInfo(instruction, dex_pc, slow_path);
2524     }
2525   } else {
2526     // Ensure the pc position is recorded immediately after the `bl` instruction.
2527     ExactAssemblyScope aas(GetVIXLAssembler(),
2528                            vixl32::k32BitT32InstructionSizeInBytes,
2529                            CodeBufferCheckScope::kExactSize);
2530     EmitEntrypointThunkCall(entrypoint_offset);
2531     if (EntrypointRequiresStackMap(entrypoint)) {
2532       RecordPcInfo(instruction, dex_pc, slow_path);
2533     }
2534   }
2535 }
2536 
InvokeRuntimeWithoutRecordingPcInfo(int32_t entry_point_offset,HInstruction * instruction,SlowPathCode * slow_path)2537 void CodeGeneratorARMVIXL::InvokeRuntimeWithoutRecordingPcInfo(int32_t entry_point_offset,
2538                                                                HInstruction* instruction,
2539                                                                SlowPathCode* slow_path) {
2540   ValidateInvokeRuntimeWithoutRecordingPcInfo(instruction, slow_path);
2541   __ Ldr(lr, MemOperand(tr, entry_point_offset));
2542   __ Blx(lr);
2543 }
2544 
HandleGoto(HInstruction * got,HBasicBlock * successor)2545 void InstructionCodeGeneratorARMVIXL::HandleGoto(HInstruction* got, HBasicBlock* successor) {
2546   if (successor->IsExitBlock()) {
2547     DCHECK(got->GetPrevious()->AlwaysThrows());
2548     return;  // no code needed
2549   }
2550 
2551   HBasicBlock* block = got->GetBlock();
2552   HInstruction* previous = got->GetPrevious();
2553   HLoopInformation* info = block->GetLoopInformation();
2554 
2555   if (info != nullptr && info->IsBackEdge(*block) && info->HasSuspendCheck()) {
2556     codegen_->MaybeIncrementHotness(/* is_frame_entry= */ false);
2557     GenerateSuspendCheck(info->GetSuspendCheck(), successor);
2558     return;
2559   }
2560   if (block->IsEntryBlock() && (previous != nullptr) && previous->IsSuspendCheck()) {
2561     GenerateSuspendCheck(previous->AsSuspendCheck(), nullptr);
2562     codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 2);
2563   }
2564   if (!codegen_->GoesToNextBlock(block, successor)) {
2565     __ B(codegen_->GetLabelOf(successor));
2566   }
2567 }
2568 
VisitGoto(HGoto * got)2569 void LocationsBuilderARMVIXL::VisitGoto(HGoto* got) {
2570   got->SetLocations(nullptr);
2571 }
2572 
VisitGoto(HGoto * got)2573 void InstructionCodeGeneratorARMVIXL::VisitGoto(HGoto* got) {
2574   HandleGoto(got, got->GetSuccessor());
2575 }
2576 
VisitTryBoundary(HTryBoundary * try_boundary)2577 void LocationsBuilderARMVIXL::VisitTryBoundary(HTryBoundary* try_boundary) {
2578   try_boundary->SetLocations(nullptr);
2579 }
2580 
VisitTryBoundary(HTryBoundary * try_boundary)2581 void InstructionCodeGeneratorARMVIXL::VisitTryBoundary(HTryBoundary* try_boundary) {
2582   HBasicBlock* successor = try_boundary->GetNormalFlowSuccessor();
2583   if (!successor->IsExitBlock()) {
2584     HandleGoto(try_boundary, successor);
2585   }
2586 }
2587 
VisitExit(HExit * exit)2588 void LocationsBuilderARMVIXL::VisitExit(HExit* exit) {
2589   exit->SetLocations(nullptr);
2590 }
2591 
VisitExit(HExit * exit ATTRIBUTE_UNUSED)2592 void InstructionCodeGeneratorARMVIXL::VisitExit(HExit* exit ATTRIBUTE_UNUSED) {
2593 }
2594 
GenerateCompareTestAndBranch(HCondition * condition,vixl32::Label * true_target,vixl32::Label * false_target,bool is_far_target)2595 void InstructionCodeGeneratorARMVIXL::GenerateCompareTestAndBranch(HCondition* condition,
2596                                                                    vixl32::Label* true_target,
2597                                                                    vixl32::Label* false_target,
2598                                                                    bool is_far_target) {
2599   if (true_target == false_target) {
2600     DCHECK(true_target != nullptr);
2601     __ B(true_target);
2602     return;
2603   }
2604 
2605   vixl32::Label* non_fallthrough_target;
2606   bool invert;
2607   bool emit_both_branches;
2608 
2609   if (true_target == nullptr) {
2610     // The true target is fallthrough.
2611     DCHECK(false_target != nullptr);
2612     non_fallthrough_target = false_target;
2613     invert = true;
2614     emit_both_branches = false;
2615   } else {
2616     non_fallthrough_target = true_target;
2617     invert = false;
2618     // Either the false target is fallthrough, or there is no fallthrough
2619     // and both branches must be emitted.
2620     emit_both_branches = (false_target != nullptr);
2621   }
2622 
2623   const auto cond = GenerateTest(condition, invert, codegen_);
2624 
2625   __ B(cond.first, non_fallthrough_target, is_far_target);
2626 
2627   if (emit_both_branches) {
2628     // No target falls through, we need to branch.
2629     __ B(false_target);
2630   }
2631 }
2632 
GenerateTestAndBranch(HInstruction * instruction,size_t condition_input_index,vixl32::Label * true_target,vixl32::Label * false_target,bool far_target)2633 void InstructionCodeGeneratorARMVIXL::GenerateTestAndBranch(HInstruction* instruction,
2634                                                             size_t condition_input_index,
2635                                                             vixl32::Label* true_target,
2636                                                             vixl32::Label* false_target,
2637                                                             bool far_target) {
2638   HInstruction* cond = instruction->InputAt(condition_input_index);
2639 
2640   if (true_target == nullptr && false_target == nullptr) {
2641     // Nothing to do. The code always falls through.
2642     return;
2643   } else if (cond->IsIntConstant()) {
2644     // Constant condition, statically compared against "true" (integer value 1).
2645     if (cond->AsIntConstant()->IsTrue()) {
2646       if (true_target != nullptr) {
2647         __ B(true_target);
2648       }
2649     } else {
2650       DCHECK(cond->AsIntConstant()->IsFalse()) << Int32ConstantFrom(cond);
2651       if (false_target != nullptr) {
2652         __ B(false_target);
2653       }
2654     }
2655     return;
2656   }
2657 
2658   // The following code generates these patterns:
2659   //  (1) true_target == nullptr && false_target != nullptr
2660   //        - opposite condition true => branch to false_target
2661   //  (2) true_target != nullptr && false_target == nullptr
2662   //        - condition true => branch to true_target
2663   //  (3) true_target != nullptr && false_target != nullptr
2664   //        - condition true => branch to true_target
2665   //        - branch to false_target
2666   if (IsBooleanValueOrMaterializedCondition(cond)) {
2667     // Condition has been materialized, compare the output to 0.
2668     if (kIsDebugBuild) {
2669       Location cond_val = instruction->GetLocations()->InAt(condition_input_index);
2670       DCHECK(cond_val.IsRegister());
2671     }
2672     if (true_target == nullptr) {
2673       __ CompareAndBranchIfZero(InputRegisterAt(instruction, condition_input_index),
2674                                 false_target,
2675                                 far_target);
2676     } else {
2677       __ CompareAndBranchIfNonZero(InputRegisterAt(instruction, condition_input_index),
2678                                    true_target,
2679                                    far_target);
2680     }
2681   } else {
2682     // Condition has not been materialized. Use its inputs as the comparison and
2683     // its condition as the branch condition.
2684     HCondition* condition = cond->AsCondition();
2685 
2686     // If this is a long or FP comparison that has been folded into
2687     // the HCondition, generate the comparison directly.
2688     DataType::Type type = condition->InputAt(0)->GetType();
2689     if (type == DataType::Type::kInt64 || DataType::IsFloatingPointType(type)) {
2690       GenerateCompareTestAndBranch(condition, true_target, false_target, far_target);
2691       return;
2692     }
2693 
2694     vixl32::Label* non_fallthrough_target;
2695     vixl32::Condition arm_cond = vixl32::Condition::None();
2696     const vixl32::Register left = InputRegisterAt(cond, 0);
2697     const Operand right = InputOperandAt(cond, 1);
2698 
2699     if (true_target == nullptr) {
2700       arm_cond = ARMCondition(condition->GetOppositeCondition());
2701       non_fallthrough_target = false_target;
2702     } else {
2703       arm_cond = ARMCondition(condition->GetCondition());
2704       non_fallthrough_target = true_target;
2705     }
2706 
2707     if (right.IsImmediate() && right.GetImmediate() == 0 && (arm_cond.Is(ne) || arm_cond.Is(eq))) {
2708       if (arm_cond.Is(eq)) {
2709         __ CompareAndBranchIfZero(left, non_fallthrough_target, far_target);
2710       } else {
2711         DCHECK(arm_cond.Is(ne));
2712         __ CompareAndBranchIfNonZero(left, non_fallthrough_target, far_target);
2713       }
2714     } else {
2715       __ Cmp(left, right);
2716       __ B(arm_cond, non_fallthrough_target, far_target);
2717     }
2718   }
2719 
2720   // If neither branch falls through (case 3), the conditional branch to `true_target`
2721   // was already emitted (case 2) and we need to emit a jump to `false_target`.
2722   if (true_target != nullptr && false_target != nullptr) {
2723     __ B(false_target);
2724   }
2725 }
2726 
VisitIf(HIf * if_instr)2727 void LocationsBuilderARMVIXL::VisitIf(HIf* if_instr) {
2728   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(if_instr);
2729   if (IsBooleanValueOrMaterializedCondition(if_instr->InputAt(0))) {
2730     locations->SetInAt(0, Location::RequiresRegister());
2731   }
2732 }
2733 
VisitIf(HIf * if_instr)2734 void InstructionCodeGeneratorARMVIXL::VisitIf(HIf* if_instr) {
2735   HBasicBlock* true_successor = if_instr->IfTrueSuccessor();
2736   HBasicBlock* false_successor = if_instr->IfFalseSuccessor();
2737   vixl32::Label* true_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), true_successor) ?
2738       nullptr : codegen_->GetLabelOf(true_successor);
2739   vixl32::Label* false_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), false_successor) ?
2740       nullptr : codegen_->GetLabelOf(false_successor);
2741   GenerateTestAndBranch(if_instr, /* condition_input_index= */ 0, true_target, false_target);
2742 }
2743 
VisitDeoptimize(HDeoptimize * deoptimize)2744 void LocationsBuilderARMVIXL::VisitDeoptimize(HDeoptimize* deoptimize) {
2745   LocationSummary* locations = new (GetGraph()->GetAllocator())
2746       LocationSummary(deoptimize, LocationSummary::kCallOnSlowPath);
2747   InvokeRuntimeCallingConventionARMVIXL calling_convention;
2748   RegisterSet caller_saves = RegisterSet::Empty();
2749   caller_saves.Add(LocationFrom(calling_convention.GetRegisterAt(0)));
2750   locations->SetCustomSlowPathCallerSaves(caller_saves);
2751   if (IsBooleanValueOrMaterializedCondition(deoptimize->InputAt(0))) {
2752     locations->SetInAt(0, Location::RequiresRegister());
2753   }
2754 }
2755 
VisitDeoptimize(HDeoptimize * deoptimize)2756 void InstructionCodeGeneratorARMVIXL::VisitDeoptimize(HDeoptimize* deoptimize) {
2757   SlowPathCodeARMVIXL* slow_path =
2758       deopt_slow_paths_.NewSlowPath<DeoptimizationSlowPathARMVIXL>(deoptimize);
2759   GenerateTestAndBranch(deoptimize,
2760                         /* condition_input_index= */ 0,
2761                         slow_path->GetEntryLabel(),
2762                         /* false_target= */ nullptr);
2763 }
2764 
VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag * flag)2765 void LocationsBuilderARMVIXL::VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag* flag) {
2766   LocationSummary* locations = new (GetGraph()->GetAllocator())
2767       LocationSummary(flag, LocationSummary::kNoCall);
2768   locations->SetOut(Location::RequiresRegister());
2769 }
2770 
VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag * flag)2771 void InstructionCodeGeneratorARMVIXL::VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag* flag) {
2772   GetAssembler()->LoadFromOffset(kLoadWord,
2773                                  OutputRegister(flag),
2774                                  sp,
2775                                  codegen_->GetStackOffsetOfShouldDeoptimizeFlag());
2776 }
2777 
VisitSelect(HSelect * select)2778 void LocationsBuilderARMVIXL::VisitSelect(HSelect* select) {
2779   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(select);
2780   const bool is_floating_point = DataType::IsFloatingPointType(select->GetType());
2781 
2782   if (is_floating_point) {
2783     locations->SetInAt(0, Location::RequiresFpuRegister());
2784     locations->SetInAt(1, Location::FpuRegisterOrConstant(select->GetTrueValue()));
2785   } else {
2786     locations->SetInAt(0, Location::RequiresRegister());
2787     locations->SetInAt(1, Arm8BitEncodableConstantOrRegister(select->GetTrueValue()));
2788   }
2789 
2790   if (IsBooleanValueOrMaterializedCondition(select->GetCondition())) {
2791     locations->SetInAt(2, Location::RegisterOrConstant(select->GetCondition()));
2792     // The code generator handles overlap with the values, but not with the condition.
2793     locations->SetOut(Location::SameAsFirstInput());
2794   } else if (is_floating_point) {
2795     locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
2796   } else {
2797     if (!locations->InAt(1).IsConstant()) {
2798       locations->SetInAt(0, Arm8BitEncodableConstantOrRegister(select->GetFalseValue()));
2799     }
2800 
2801     locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2802   }
2803 }
2804 
VisitSelect(HSelect * select)2805 void InstructionCodeGeneratorARMVIXL::VisitSelect(HSelect* select) {
2806   HInstruction* const condition = select->GetCondition();
2807   const LocationSummary* const locations = select->GetLocations();
2808   const DataType::Type type = select->GetType();
2809   const Location first = locations->InAt(0);
2810   const Location out = locations->Out();
2811   const Location second = locations->InAt(1);
2812 
2813   // In the unlucky case the output of this instruction overlaps
2814   // with an input of an "emitted-at-use-site" condition, and
2815   // the output of this instruction is not one of its inputs, we'll
2816   // need to fallback to branches instead of conditional ARM instructions.
2817   bool output_overlaps_with_condition_inputs =
2818       !IsBooleanValueOrMaterializedCondition(condition) &&
2819       !out.Equals(first) &&
2820       !out.Equals(second) &&
2821       (condition->GetLocations()->InAt(0).Equals(out) ||
2822        condition->GetLocations()->InAt(1).Equals(out));
2823   DCHECK(!output_overlaps_with_condition_inputs || condition->IsCondition());
2824   Location src;
2825 
2826   if (condition->IsIntConstant()) {
2827     if (condition->AsIntConstant()->IsFalse()) {
2828       src = first;
2829     } else {
2830       src = second;
2831     }
2832 
2833     codegen_->MoveLocation(out, src, type);
2834     return;
2835   }
2836 
2837   if (!DataType::IsFloatingPointType(type) && !output_overlaps_with_condition_inputs) {
2838     bool invert = false;
2839 
2840     if (out.Equals(second)) {
2841       src = first;
2842       invert = true;
2843     } else if (out.Equals(first)) {
2844       src = second;
2845     } else if (second.IsConstant()) {
2846       DCHECK(CanEncodeConstantAs8BitImmediate(second.GetConstant()));
2847       src = second;
2848     } else if (first.IsConstant()) {
2849       DCHECK(CanEncodeConstantAs8BitImmediate(first.GetConstant()));
2850       src = first;
2851       invert = true;
2852     } else {
2853       src = second;
2854     }
2855 
2856     if (CanGenerateConditionalMove(out, src)) {
2857       if (!out.Equals(first) && !out.Equals(second)) {
2858         codegen_->MoveLocation(out, src.Equals(first) ? second : first, type);
2859       }
2860 
2861       std::pair<vixl32::Condition, vixl32::Condition> cond(eq, ne);
2862 
2863       if (IsBooleanValueOrMaterializedCondition(condition)) {
2864         __ Cmp(InputRegisterAt(select, 2), 0);
2865         cond = invert ? std::make_pair(eq, ne) : std::make_pair(ne, eq);
2866       } else {
2867         cond = GenerateTest(condition->AsCondition(), invert, codegen_);
2868       }
2869 
2870       const size_t instr_count = out.IsRegisterPair() ? 4 : 2;
2871       // We use the scope because of the IT block that follows.
2872       ExactAssemblyScope guard(GetVIXLAssembler(),
2873                                instr_count * vixl32::k16BitT32InstructionSizeInBytes,
2874                                CodeBufferCheckScope::kExactSize);
2875 
2876       if (out.IsRegister()) {
2877         __ it(cond.first);
2878         __ mov(cond.first, RegisterFrom(out), OperandFrom(src, type));
2879       } else {
2880         DCHECK(out.IsRegisterPair());
2881 
2882         Operand operand_high(0);
2883         Operand operand_low(0);
2884 
2885         if (src.IsConstant()) {
2886           const int64_t value = Int64ConstantFrom(src);
2887 
2888           operand_high = High32Bits(value);
2889           operand_low = Low32Bits(value);
2890         } else {
2891           DCHECK(src.IsRegisterPair());
2892           operand_high = HighRegisterFrom(src);
2893           operand_low = LowRegisterFrom(src);
2894         }
2895 
2896         __ it(cond.first);
2897         __ mov(cond.first, LowRegisterFrom(out), operand_low);
2898         __ it(cond.first);
2899         __ mov(cond.first, HighRegisterFrom(out), operand_high);
2900       }
2901 
2902       return;
2903     }
2904   }
2905 
2906   vixl32::Label* false_target = nullptr;
2907   vixl32::Label* true_target = nullptr;
2908   vixl32::Label select_end;
2909   vixl32::Label other_case;
2910   vixl32::Label* const target = codegen_->GetFinalLabel(select, &select_end);
2911 
2912   if (out.Equals(second)) {
2913     true_target = target;
2914     src = first;
2915   } else {
2916     false_target = target;
2917     src = second;
2918 
2919     if (!out.Equals(first)) {
2920       if (output_overlaps_with_condition_inputs) {
2921         false_target = &other_case;
2922       } else {
2923         codegen_->MoveLocation(out, first, type);
2924       }
2925     }
2926   }
2927 
2928   GenerateTestAndBranch(select, 2, true_target, false_target, /* far_target= */ false);
2929   codegen_->MoveLocation(out, src, type);
2930   if (output_overlaps_with_condition_inputs) {
2931     __ B(target);
2932     __ Bind(&other_case);
2933     codegen_->MoveLocation(out, first, type);
2934   }
2935 
2936   if (select_end.IsReferenced()) {
2937     __ Bind(&select_end);
2938   }
2939 }
2940 
VisitNativeDebugInfo(HNativeDebugInfo * info)2941 void LocationsBuilderARMVIXL::VisitNativeDebugInfo(HNativeDebugInfo* info) {
2942   new (GetGraph()->GetAllocator()) LocationSummary(info);
2943 }
2944 
VisitNativeDebugInfo(HNativeDebugInfo *)2945 void InstructionCodeGeneratorARMVIXL::VisitNativeDebugInfo(HNativeDebugInfo*) {
2946   // MaybeRecordNativeDebugInfo is already called implicitly in CodeGenerator::Compile.
2947 }
2948 
GenerateNop()2949 void CodeGeneratorARMVIXL::GenerateNop() {
2950   __ Nop();
2951 }
2952 
2953 // `temp` is an extra temporary register that is used for some conditions;
2954 // callers may not specify it, in which case the method will use a scratch
2955 // register instead.
GenerateConditionWithZero(IfCondition condition,vixl32::Register out,vixl32::Register in,vixl32::Register temp)2956 void CodeGeneratorARMVIXL::GenerateConditionWithZero(IfCondition condition,
2957                                                      vixl32::Register out,
2958                                                      vixl32::Register in,
2959                                                      vixl32::Register temp) {
2960   switch (condition) {
2961     case kCondEQ:
2962     // x <= 0 iff x == 0 when the comparison is unsigned.
2963     case kCondBE:
2964       if (!temp.IsValid() || (out.IsLow() && !out.Is(in))) {
2965         temp = out;
2966       }
2967 
2968       // Avoid 32-bit instructions if possible; note that `in` and `temp` must be
2969       // different as well.
2970       if (in.IsLow() && temp.IsLow() && !in.Is(temp)) {
2971         // temp = - in; only 0 sets the carry flag.
2972         __ Rsbs(temp, in, 0);
2973 
2974         if (out.Is(in)) {
2975           std::swap(in, temp);
2976         }
2977 
2978         // out = - in + in + carry = carry
2979         __ Adc(out, temp, in);
2980       } else {
2981         // If `in` is 0, then it has 32 leading zeros, and less than that otherwise.
2982         __ Clz(out, in);
2983         // Any number less than 32 logically shifted right by 5 bits results in 0;
2984         // the same operation on 32 yields 1.
2985         __ Lsr(out, out, 5);
2986       }
2987 
2988       break;
2989     case kCondNE:
2990     // x > 0 iff x != 0 when the comparison is unsigned.
2991     case kCondA: {
2992       UseScratchRegisterScope temps(GetVIXLAssembler());
2993 
2994       if (out.Is(in)) {
2995         if (!temp.IsValid() || in.Is(temp)) {
2996           temp = temps.Acquire();
2997         }
2998       } else if (!temp.IsValid() || !temp.IsLow()) {
2999         temp = out;
3000       }
3001 
3002       // temp = in - 1; only 0 does not set the carry flag.
3003       __ Subs(temp, in, 1);
3004       // out = in + ~temp + carry = in + (-(in - 1) - 1) + carry = in - in + 1 - 1 + carry = carry
3005       __ Sbc(out, in, temp);
3006       break;
3007     }
3008     case kCondGE:
3009       __ Mvn(out, in);
3010       in = out;
3011       FALLTHROUGH_INTENDED;
3012     case kCondLT:
3013       // We only care about the sign bit.
3014       __ Lsr(out, in, 31);
3015       break;
3016     case kCondAE:
3017       // Trivially true.
3018       __ Mov(out, 1);
3019       break;
3020     case kCondB:
3021       // Trivially false.
3022       __ Mov(out, 0);
3023       break;
3024     default:
3025       LOG(FATAL) << "Unexpected condition " << condition;
3026       UNREACHABLE();
3027   }
3028 }
3029 
HandleCondition(HCondition * cond)3030 void LocationsBuilderARMVIXL::HandleCondition(HCondition* cond) {
3031   LocationSummary* locations =
3032       new (GetGraph()->GetAllocator()) LocationSummary(cond, LocationSummary::kNoCall);
3033   const DataType::Type type = cond->InputAt(0)->GetType();
3034   if (DataType::IsFloatingPointType(type)) {
3035     locations->SetInAt(0, Location::RequiresFpuRegister());
3036     locations->SetInAt(1, ArithmeticZeroOrFpuRegister(cond->InputAt(1)));
3037   } else {
3038     locations->SetInAt(0, Location::RequiresRegister());
3039     locations->SetInAt(1, Location::RegisterOrConstant(cond->InputAt(1)));
3040   }
3041   if (!cond->IsEmittedAtUseSite()) {
3042     locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3043   }
3044 }
3045 
HandleCondition(HCondition * cond)3046 void InstructionCodeGeneratorARMVIXL::HandleCondition(HCondition* cond) {
3047   if (cond->IsEmittedAtUseSite()) {
3048     return;
3049   }
3050 
3051   const DataType::Type type = cond->GetLeft()->GetType();
3052 
3053   if (DataType::IsFloatingPointType(type)) {
3054     GenerateConditionGeneric(cond, codegen_);
3055     return;
3056   }
3057 
3058   DCHECK(DataType::IsIntegralType(type) || type == DataType::Type::kReference) << type;
3059 
3060   const IfCondition condition = cond->GetCondition();
3061 
3062   // A condition with only one boolean input, or two boolean inputs without being equality or
3063   // inequality results from transformations done by the instruction simplifier, and is handled
3064   // as a regular condition with integral inputs.
3065   if (type == DataType::Type::kBool &&
3066       cond->GetRight()->GetType() == DataType::Type::kBool &&
3067       (condition == kCondEQ || condition == kCondNE)) {
3068     vixl32::Register left = InputRegisterAt(cond, 0);
3069     const vixl32::Register out = OutputRegister(cond);
3070     const Location right_loc = cond->GetLocations()->InAt(1);
3071 
3072     // The constant case is handled by the instruction simplifier.
3073     DCHECK(!right_loc.IsConstant());
3074 
3075     vixl32::Register right = RegisterFrom(right_loc);
3076 
3077     // Avoid 32-bit instructions if possible.
3078     if (out.Is(right)) {
3079       std::swap(left, right);
3080     }
3081 
3082     __ Eor(out, left, right);
3083 
3084     if (condition == kCondEQ) {
3085       __ Eor(out, out, 1);
3086     }
3087 
3088     return;
3089   }
3090 
3091   GenerateConditionIntegralOrNonPrimitive(cond, codegen_);
3092 }
3093 
VisitEqual(HEqual * comp)3094 void LocationsBuilderARMVIXL::VisitEqual(HEqual* comp) {
3095   HandleCondition(comp);
3096 }
3097 
VisitEqual(HEqual * comp)3098 void InstructionCodeGeneratorARMVIXL::VisitEqual(HEqual* comp) {
3099   HandleCondition(comp);
3100 }
3101 
VisitNotEqual(HNotEqual * comp)3102 void LocationsBuilderARMVIXL::VisitNotEqual(HNotEqual* comp) {
3103   HandleCondition(comp);
3104 }
3105 
VisitNotEqual(HNotEqual * comp)3106 void InstructionCodeGeneratorARMVIXL::VisitNotEqual(HNotEqual* comp) {
3107   HandleCondition(comp);
3108 }
3109 
VisitLessThan(HLessThan * comp)3110 void LocationsBuilderARMVIXL::VisitLessThan(HLessThan* comp) {
3111   HandleCondition(comp);
3112 }
3113 
VisitLessThan(HLessThan * comp)3114 void InstructionCodeGeneratorARMVIXL::VisitLessThan(HLessThan* comp) {
3115   HandleCondition(comp);
3116 }
3117 
VisitLessThanOrEqual(HLessThanOrEqual * comp)3118 void LocationsBuilderARMVIXL::VisitLessThanOrEqual(HLessThanOrEqual* comp) {
3119   HandleCondition(comp);
3120 }
3121 
VisitLessThanOrEqual(HLessThanOrEqual * comp)3122 void InstructionCodeGeneratorARMVIXL::VisitLessThanOrEqual(HLessThanOrEqual* comp) {
3123   HandleCondition(comp);
3124 }
3125 
VisitGreaterThan(HGreaterThan * comp)3126 void LocationsBuilderARMVIXL::VisitGreaterThan(HGreaterThan* comp) {
3127   HandleCondition(comp);
3128 }
3129 
VisitGreaterThan(HGreaterThan * comp)3130 void InstructionCodeGeneratorARMVIXL::VisitGreaterThan(HGreaterThan* comp) {
3131   HandleCondition(comp);
3132 }
3133 
VisitGreaterThanOrEqual(HGreaterThanOrEqual * comp)3134 void LocationsBuilderARMVIXL::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) {
3135   HandleCondition(comp);
3136 }
3137 
VisitGreaterThanOrEqual(HGreaterThanOrEqual * comp)3138 void InstructionCodeGeneratorARMVIXL::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) {
3139   HandleCondition(comp);
3140 }
3141 
VisitBelow(HBelow * comp)3142 void LocationsBuilderARMVIXL::VisitBelow(HBelow* comp) {
3143   HandleCondition(comp);
3144 }
3145 
VisitBelow(HBelow * comp)3146 void InstructionCodeGeneratorARMVIXL::VisitBelow(HBelow* comp) {
3147   HandleCondition(comp);
3148 }
3149 
VisitBelowOrEqual(HBelowOrEqual * comp)3150 void LocationsBuilderARMVIXL::VisitBelowOrEqual(HBelowOrEqual* comp) {
3151   HandleCondition(comp);
3152 }
3153 
VisitBelowOrEqual(HBelowOrEqual * comp)3154 void InstructionCodeGeneratorARMVIXL::VisitBelowOrEqual(HBelowOrEqual* comp) {
3155   HandleCondition(comp);
3156 }
3157 
VisitAbove(HAbove * comp)3158 void LocationsBuilderARMVIXL::VisitAbove(HAbove* comp) {
3159   HandleCondition(comp);
3160 }
3161 
VisitAbove(HAbove * comp)3162 void InstructionCodeGeneratorARMVIXL::VisitAbove(HAbove* comp) {
3163   HandleCondition(comp);
3164 }
3165 
VisitAboveOrEqual(HAboveOrEqual * comp)3166 void LocationsBuilderARMVIXL::VisitAboveOrEqual(HAboveOrEqual* comp) {
3167   HandleCondition(comp);
3168 }
3169 
VisitAboveOrEqual(HAboveOrEqual * comp)3170 void InstructionCodeGeneratorARMVIXL::VisitAboveOrEqual(HAboveOrEqual* comp) {
3171   HandleCondition(comp);
3172 }
3173 
VisitIntConstant(HIntConstant * constant)3174 void LocationsBuilderARMVIXL::VisitIntConstant(HIntConstant* constant) {
3175   LocationSummary* locations =
3176       new (GetGraph()->GetAllocator()) LocationSummary(constant, LocationSummary::kNoCall);
3177   locations->SetOut(Location::ConstantLocation(constant));
3178 }
3179 
VisitIntConstant(HIntConstant * constant ATTRIBUTE_UNUSED)3180 void InstructionCodeGeneratorARMVIXL::VisitIntConstant(HIntConstant* constant ATTRIBUTE_UNUSED) {
3181   // Will be generated at use site.
3182 }
3183 
VisitNullConstant(HNullConstant * constant)3184 void LocationsBuilderARMVIXL::VisitNullConstant(HNullConstant* constant) {
3185   LocationSummary* locations =
3186       new (GetGraph()->GetAllocator()) LocationSummary(constant, LocationSummary::kNoCall);
3187   locations->SetOut(Location::ConstantLocation(constant));
3188 }
3189 
VisitNullConstant(HNullConstant * constant ATTRIBUTE_UNUSED)3190 void InstructionCodeGeneratorARMVIXL::VisitNullConstant(HNullConstant* constant ATTRIBUTE_UNUSED) {
3191   // Will be generated at use site.
3192 }
3193 
VisitLongConstant(HLongConstant * constant)3194 void LocationsBuilderARMVIXL::VisitLongConstant(HLongConstant* constant) {
3195   LocationSummary* locations =
3196       new (GetGraph()->GetAllocator()) LocationSummary(constant, LocationSummary::kNoCall);
3197   locations->SetOut(Location::ConstantLocation(constant));
3198 }
3199 
VisitLongConstant(HLongConstant * constant ATTRIBUTE_UNUSED)3200 void InstructionCodeGeneratorARMVIXL::VisitLongConstant(HLongConstant* constant ATTRIBUTE_UNUSED) {
3201   // Will be generated at use site.
3202 }
3203 
VisitFloatConstant(HFloatConstant * constant)3204 void LocationsBuilderARMVIXL::VisitFloatConstant(HFloatConstant* constant) {
3205   LocationSummary* locations =
3206       new (GetGraph()->GetAllocator()) LocationSummary(constant, LocationSummary::kNoCall);
3207   locations->SetOut(Location::ConstantLocation(constant));
3208 }
3209 
VisitFloatConstant(HFloatConstant * constant ATTRIBUTE_UNUSED)3210 void InstructionCodeGeneratorARMVIXL::VisitFloatConstant(
3211     HFloatConstant* constant ATTRIBUTE_UNUSED) {
3212   // Will be generated at use site.
3213 }
3214 
VisitDoubleConstant(HDoubleConstant * constant)3215 void LocationsBuilderARMVIXL::VisitDoubleConstant(HDoubleConstant* constant) {
3216   LocationSummary* locations =
3217       new (GetGraph()->GetAllocator()) LocationSummary(constant, LocationSummary::kNoCall);
3218   locations->SetOut(Location::ConstantLocation(constant));
3219 }
3220 
VisitDoubleConstant(HDoubleConstant * constant ATTRIBUTE_UNUSED)3221 void InstructionCodeGeneratorARMVIXL::VisitDoubleConstant(
3222     HDoubleConstant* constant ATTRIBUTE_UNUSED) {
3223   // Will be generated at use site.
3224 }
3225 
VisitConstructorFence(HConstructorFence * constructor_fence)3226 void LocationsBuilderARMVIXL::VisitConstructorFence(HConstructorFence* constructor_fence) {
3227   constructor_fence->SetLocations(nullptr);
3228 }
3229 
VisitConstructorFence(HConstructorFence * constructor_fence ATTRIBUTE_UNUSED)3230 void InstructionCodeGeneratorARMVIXL::VisitConstructorFence(
3231     HConstructorFence* constructor_fence ATTRIBUTE_UNUSED) {
3232   codegen_->GenerateMemoryBarrier(MemBarrierKind::kStoreStore);
3233 }
3234 
VisitMemoryBarrier(HMemoryBarrier * memory_barrier)3235 void LocationsBuilderARMVIXL::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) {
3236   memory_barrier->SetLocations(nullptr);
3237 }
3238 
VisitMemoryBarrier(HMemoryBarrier * memory_barrier)3239 void InstructionCodeGeneratorARMVIXL::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) {
3240   codegen_->GenerateMemoryBarrier(memory_barrier->GetBarrierKind());
3241 }
3242 
VisitReturnVoid(HReturnVoid * ret)3243 void LocationsBuilderARMVIXL::VisitReturnVoid(HReturnVoid* ret) {
3244   ret->SetLocations(nullptr);
3245 }
3246 
VisitReturnVoid(HReturnVoid * ret ATTRIBUTE_UNUSED)3247 void InstructionCodeGeneratorARMVIXL::VisitReturnVoid(HReturnVoid* ret ATTRIBUTE_UNUSED) {
3248   codegen_->GenerateFrameExit();
3249 }
3250 
VisitReturn(HReturn * ret)3251 void LocationsBuilderARMVIXL::VisitReturn(HReturn* ret) {
3252   LocationSummary* locations =
3253       new (GetGraph()->GetAllocator()) LocationSummary(ret, LocationSummary::kNoCall);
3254   locations->SetInAt(0, parameter_visitor_.GetReturnLocation(ret->InputAt(0)->GetType()));
3255 }
3256 
VisitReturn(HReturn * ret)3257 void InstructionCodeGeneratorARMVIXL::VisitReturn(HReturn* ret) {
3258   if (GetGraph()->IsCompilingOsr()) {
3259     // To simplify callers of an OSR method, we put the return value in both
3260     // floating point and core registers.
3261     switch (ret->InputAt(0)->GetType()) {
3262       case DataType::Type::kFloat32:
3263         __ Vmov(r0, s0);
3264         break;
3265       case DataType::Type::kFloat64:
3266         __ Vmov(r0, r1, d0);
3267         break;
3268       default:
3269         break;
3270     }
3271   }
3272   codegen_->GenerateFrameExit();
3273 }
3274 
VisitInvokeUnresolved(HInvokeUnresolved * invoke)3275 void LocationsBuilderARMVIXL::VisitInvokeUnresolved(HInvokeUnresolved* invoke) {
3276   // The trampoline uses the same calling convention as dex calling conventions,
3277   // except instead of loading arg0/r0 with the target Method*, arg0/r0 will contain
3278   // the method_idx.
3279   HandleInvoke(invoke);
3280 }
3281 
VisitInvokeUnresolved(HInvokeUnresolved * invoke)3282 void InstructionCodeGeneratorARMVIXL::VisitInvokeUnresolved(HInvokeUnresolved* invoke) {
3283   codegen_->GenerateInvokeUnresolvedRuntimeCall(invoke);
3284   codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 3);
3285 }
3286 
VisitInvokeStaticOrDirect(HInvokeStaticOrDirect * invoke)3287 void LocationsBuilderARMVIXL::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
3288   // Explicit clinit checks triggered by static invokes must have been pruned by
3289   // art::PrepareForRegisterAllocation.
3290   DCHECK(!invoke->IsStaticWithExplicitClinitCheck());
3291 
3292   IntrinsicLocationsBuilderARMVIXL intrinsic(codegen_);
3293   if (intrinsic.TryDispatch(invoke)) {
3294     return;
3295   }
3296 
3297   HandleInvoke(invoke);
3298 }
3299 
TryGenerateIntrinsicCode(HInvoke * invoke,CodeGeneratorARMVIXL * codegen)3300 static bool TryGenerateIntrinsicCode(HInvoke* invoke, CodeGeneratorARMVIXL* codegen) {
3301   if (invoke->GetLocations()->Intrinsified()) {
3302     IntrinsicCodeGeneratorARMVIXL intrinsic(codegen);
3303     intrinsic.Dispatch(invoke);
3304     return true;
3305   }
3306   return false;
3307 }
3308 
VisitInvokeStaticOrDirect(HInvokeStaticOrDirect * invoke)3309 void InstructionCodeGeneratorARMVIXL::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
3310   // Explicit clinit checks triggered by static invokes must have been pruned by
3311   // art::PrepareForRegisterAllocation.
3312   DCHECK(!invoke->IsStaticWithExplicitClinitCheck());
3313 
3314   if (TryGenerateIntrinsicCode(invoke, codegen_)) {
3315     codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 4);
3316     return;
3317   }
3318 
3319   LocationSummary* locations = invoke->GetLocations();
3320   codegen_->GenerateStaticOrDirectCall(
3321       invoke, locations->HasTemps() ? locations->GetTemp(0) : Location::NoLocation());
3322 
3323   codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 5);
3324 }
3325 
HandleInvoke(HInvoke * invoke)3326 void LocationsBuilderARMVIXL::HandleInvoke(HInvoke* invoke) {
3327   InvokeDexCallingConventionVisitorARMVIXL calling_convention_visitor;
3328   CodeGenerator::CreateCommonInvokeLocationSummary(invoke, &calling_convention_visitor);
3329 }
3330 
VisitInvokeVirtual(HInvokeVirtual * invoke)3331 void LocationsBuilderARMVIXL::VisitInvokeVirtual(HInvokeVirtual* invoke) {
3332   IntrinsicLocationsBuilderARMVIXL intrinsic(codegen_);
3333   if (intrinsic.TryDispatch(invoke)) {
3334     return;
3335   }
3336 
3337   HandleInvoke(invoke);
3338 }
3339 
VisitInvokeVirtual(HInvokeVirtual * invoke)3340 void InstructionCodeGeneratorARMVIXL::VisitInvokeVirtual(HInvokeVirtual* invoke) {
3341   if (TryGenerateIntrinsicCode(invoke, codegen_)) {
3342     codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 6);
3343     return;
3344   }
3345 
3346   codegen_->GenerateVirtualCall(invoke, invoke->GetLocations()->GetTemp(0));
3347   DCHECK(!codegen_->IsLeafMethod());
3348 
3349   codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 7);
3350 }
3351 
VisitInvokeInterface(HInvokeInterface * invoke)3352 void LocationsBuilderARMVIXL::VisitInvokeInterface(HInvokeInterface* invoke) {
3353   HandleInvoke(invoke);
3354   // Add the hidden argument.
3355   invoke->GetLocations()->AddTemp(LocationFrom(r12));
3356 }
3357 
MaybeGenerateInlineCacheCheck(HInstruction * instruction,vixl32::Register klass)3358 void CodeGeneratorARMVIXL::MaybeGenerateInlineCacheCheck(HInstruction* instruction,
3359                                                          vixl32::Register klass) {
3360   DCHECK_EQ(r0.GetCode(), klass.GetCode());
3361   // We know the destination of an intrinsic, so no need to record inline
3362   // caches.
3363   if (!instruction->GetLocations()->Intrinsified() &&
3364       GetGraph()->IsCompilingBaseline() &&
3365       !Runtime::Current()->IsAotCompiler()) {
3366     DCHECK(!instruction->GetEnvironment()->IsFromInlinedInvoke());
3367     ScopedObjectAccess soa(Thread::Current());
3368     ProfilingInfo* info = GetGraph()->GetArtMethod()->GetProfilingInfo(kRuntimePointerSize);
3369     if (info != nullptr) {
3370       InlineCache* cache = info->GetInlineCache(instruction->GetDexPc());
3371       uint32_t address = reinterpret_cast32<uint32_t>(cache);
3372       vixl32::Label done;
3373       UseScratchRegisterScope temps(GetVIXLAssembler());
3374       temps.Exclude(ip);
3375       __ Mov(r4, address);
3376       __ Ldr(ip, MemOperand(r4, InlineCache::ClassesOffset().Int32Value()));
3377       // Fast path for a monomorphic cache.
3378       __ Cmp(klass, ip);
3379       __ B(eq, &done, /* is_far_target= */ false);
3380       InvokeRuntime(kQuickUpdateInlineCache, instruction, instruction->GetDexPc());
3381       __ Bind(&done);
3382     }
3383   }
3384 }
3385 
VisitInvokeInterface(HInvokeInterface * invoke)3386 void InstructionCodeGeneratorARMVIXL::VisitInvokeInterface(HInvokeInterface* invoke) {
3387   // TODO: b/18116999, our IMTs can miss an IncompatibleClassChangeError.
3388   LocationSummary* locations = invoke->GetLocations();
3389   vixl32::Register temp = RegisterFrom(locations->GetTemp(0));
3390   vixl32::Register hidden_reg = RegisterFrom(locations->GetTemp(1));
3391   Location receiver = locations->InAt(0);
3392   uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
3393 
3394   DCHECK(!receiver.IsStackSlot());
3395 
3396   // Ensure the pc position is recorded immediately after the `ldr` instruction.
3397   {
3398     ExactAssemblyScope aas(GetVIXLAssembler(),
3399                            vixl32::kMaxInstructionSizeInBytes,
3400                            CodeBufferCheckScope::kMaximumSize);
3401     // /* HeapReference<Class> */ temp = receiver->klass_
3402     __ ldr(temp, MemOperand(RegisterFrom(receiver), class_offset));
3403     codegen_->MaybeRecordImplicitNullCheck(invoke);
3404   }
3405   // Instead of simply (possibly) unpoisoning `temp` here, we should
3406   // emit a read barrier for the previous class reference load.
3407   // However this is not required in practice, as this is an
3408   // intermediate/temporary reference and because the current
3409   // concurrent copying collector keeps the from-space memory
3410   // intact/accessible until the end of the marking phase (the
3411   // concurrent copying collector may not in the future).
3412   GetAssembler()->MaybeUnpoisonHeapReference(temp);
3413 
3414   // If we're compiling baseline, update the inline cache.
3415   codegen_->MaybeGenerateInlineCacheCheck(invoke, temp);
3416 
3417   GetAssembler()->LoadFromOffset(kLoadWord,
3418                                  temp,
3419                                  temp,
3420                                  mirror::Class::ImtPtrOffset(kArmPointerSize).Uint32Value());
3421 
3422   uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement(
3423       invoke->GetImtIndex(), kArmPointerSize));
3424   // temp = temp->GetImtEntryAt(method_offset);
3425   GetAssembler()->LoadFromOffset(kLoadWord, temp, temp, method_offset);
3426   uint32_t entry_point =
3427       ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArmPointerSize).Int32Value();
3428   // LR = temp->GetEntryPoint();
3429   GetAssembler()->LoadFromOffset(kLoadWord, lr, temp, entry_point);
3430 
3431   // Set the hidden (in r12) argument. It is done here, right before a BLX to prevent other
3432   // instruction from clobbering it as they might use r12 as a scratch register.
3433   DCHECK(hidden_reg.Is(r12));
3434 
3435   {
3436     // The VIXL macro assembler may clobber any of the scratch registers that are available to it,
3437     // so it checks if the application is using them (by passing them to the macro assembler
3438     // methods). The following application of UseScratchRegisterScope corrects VIXL's notion of
3439     // what is available, and is the opposite of the standard usage: Instead of requesting a
3440     // temporary location, it imposes an external constraint (i.e. a specific register is reserved
3441     // for the hidden argument). Note that this works even if VIXL needs a scratch register itself
3442     // (to materialize the constant), since the destination register becomes available for such use
3443     // internally for the duration of the macro instruction.
3444     UseScratchRegisterScope temps(GetVIXLAssembler());
3445     temps.Exclude(hidden_reg);
3446     __ Mov(hidden_reg, invoke->GetDexMethodIndex());
3447   }
3448   {
3449     // Ensure the pc position is recorded immediately after the `blx` instruction.
3450     // blx in T32 has only 16bit encoding that's why a stricter check for the scope is used.
3451     ExactAssemblyScope aas(GetVIXLAssembler(),
3452                            vixl32::k16BitT32InstructionSizeInBytes,
3453                            CodeBufferCheckScope::kExactSize);
3454     // LR();
3455     __ blx(lr);
3456     codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
3457     DCHECK(!codegen_->IsLeafMethod());
3458   }
3459 
3460   codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 8);
3461 }
3462 
VisitInvokePolymorphic(HInvokePolymorphic * invoke)3463 void LocationsBuilderARMVIXL::VisitInvokePolymorphic(HInvokePolymorphic* invoke) {
3464   HandleInvoke(invoke);
3465 }
3466 
VisitInvokePolymorphic(HInvokePolymorphic * invoke)3467 void InstructionCodeGeneratorARMVIXL::VisitInvokePolymorphic(HInvokePolymorphic* invoke) {
3468   codegen_->GenerateInvokePolymorphicCall(invoke);
3469   codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 9);
3470 }
3471 
VisitInvokeCustom(HInvokeCustom * invoke)3472 void LocationsBuilderARMVIXL::VisitInvokeCustom(HInvokeCustom* invoke) {
3473   HandleInvoke(invoke);
3474 }
3475 
VisitInvokeCustom(HInvokeCustom * invoke)3476 void InstructionCodeGeneratorARMVIXL::VisitInvokeCustom(HInvokeCustom* invoke) {
3477   codegen_->GenerateInvokeCustomCall(invoke);
3478   codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 10);
3479 }
3480 
VisitNeg(HNeg * neg)3481 void LocationsBuilderARMVIXL::VisitNeg(HNeg* neg) {
3482   LocationSummary* locations =
3483       new (GetGraph()->GetAllocator()) LocationSummary(neg, LocationSummary::kNoCall);
3484   switch (neg->GetResultType()) {
3485     case DataType::Type::kInt32: {
3486       locations->SetInAt(0, Location::RequiresRegister());
3487       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3488       break;
3489     }
3490     case DataType::Type::kInt64: {
3491       locations->SetInAt(0, Location::RequiresRegister());
3492       locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
3493       break;
3494     }
3495 
3496     case DataType::Type::kFloat32:
3497     case DataType::Type::kFloat64:
3498       locations->SetInAt(0, Location::RequiresFpuRegister());
3499       locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
3500       break;
3501 
3502     default:
3503       LOG(FATAL) << "Unexpected neg type " << neg->GetResultType();
3504   }
3505 }
3506 
VisitNeg(HNeg * neg)3507 void InstructionCodeGeneratorARMVIXL::VisitNeg(HNeg* neg) {
3508   LocationSummary* locations = neg->GetLocations();
3509   Location out = locations->Out();
3510   Location in = locations->InAt(0);
3511   switch (neg->GetResultType()) {
3512     case DataType::Type::kInt32:
3513       __ Rsb(OutputRegister(neg), InputRegisterAt(neg, 0), 0);
3514       break;
3515 
3516     case DataType::Type::kInt64:
3517       // out.lo = 0 - in.lo (and update the carry/borrow (C) flag)
3518       __ Rsbs(LowRegisterFrom(out), LowRegisterFrom(in), 0);
3519       // We cannot emit an RSC (Reverse Subtract with Carry)
3520       // instruction here, as it does not exist in the Thumb-2
3521       // instruction set.  We use the following approach
3522       // using SBC and SUB instead.
3523       //
3524       // out.hi = -C
3525       __ Sbc(HighRegisterFrom(out), HighRegisterFrom(out), HighRegisterFrom(out));
3526       // out.hi = out.hi - in.hi
3527       __ Sub(HighRegisterFrom(out), HighRegisterFrom(out), HighRegisterFrom(in));
3528       break;
3529 
3530     case DataType::Type::kFloat32:
3531     case DataType::Type::kFloat64:
3532       __ Vneg(OutputVRegister(neg), InputVRegister(neg));
3533       break;
3534 
3535     default:
3536       LOG(FATAL) << "Unexpected neg type " << neg->GetResultType();
3537   }
3538 }
3539 
VisitTypeConversion(HTypeConversion * conversion)3540 void LocationsBuilderARMVIXL::VisitTypeConversion(HTypeConversion* conversion) {
3541   DataType::Type result_type = conversion->GetResultType();
3542   DataType::Type input_type = conversion->GetInputType();
3543   DCHECK(!DataType::IsTypeConversionImplicit(input_type, result_type))
3544       << input_type << " -> " << result_type;
3545 
3546   // The float-to-long, double-to-long and long-to-float type conversions
3547   // rely on a call to the runtime.
3548   LocationSummary::CallKind call_kind =
3549       (((input_type == DataType::Type::kFloat32 || input_type == DataType::Type::kFloat64)
3550         && result_type == DataType::Type::kInt64)
3551        || (input_type == DataType::Type::kInt64 && result_type == DataType::Type::kFloat32))
3552       ? LocationSummary::kCallOnMainOnly
3553       : LocationSummary::kNoCall;
3554   LocationSummary* locations =
3555       new (GetGraph()->GetAllocator()) LocationSummary(conversion, call_kind);
3556 
3557   switch (result_type) {
3558     case DataType::Type::kUint8:
3559     case DataType::Type::kInt8:
3560     case DataType::Type::kUint16:
3561     case DataType::Type::kInt16:
3562       DCHECK(DataType::IsIntegralType(input_type)) << input_type;
3563       locations->SetInAt(0, Location::RequiresRegister());
3564       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3565       break;
3566 
3567     case DataType::Type::kInt32:
3568       switch (input_type) {
3569         case DataType::Type::kInt64:
3570           locations->SetInAt(0, Location::Any());
3571           locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3572           break;
3573 
3574         case DataType::Type::kFloat32:
3575           locations->SetInAt(0, Location::RequiresFpuRegister());
3576           locations->SetOut(Location::RequiresRegister());
3577           locations->AddTemp(Location::RequiresFpuRegister());
3578           break;
3579 
3580         case DataType::Type::kFloat64:
3581           locations->SetInAt(0, Location::RequiresFpuRegister());
3582           locations->SetOut(Location::RequiresRegister());
3583           locations->AddTemp(Location::RequiresFpuRegister());
3584           break;
3585 
3586         default:
3587           LOG(FATAL) << "Unexpected type conversion from " << input_type
3588                      << " to " << result_type;
3589       }
3590       break;
3591 
3592     case DataType::Type::kInt64:
3593       switch (input_type) {
3594         case DataType::Type::kBool:
3595         case DataType::Type::kUint8:
3596         case DataType::Type::kInt8:
3597         case DataType::Type::kUint16:
3598         case DataType::Type::kInt16:
3599         case DataType::Type::kInt32:
3600           locations->SetInAt(0, Location::RequiresRegister());
3601           locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3602           break;
3603 
3604         case DataType::Type::kFloat32: {
3605           InvokeRuntimeCallingConventionARMVIXL calling_convention;
3606           locations->SetInAt(0, LocationFrom(calling_convention.GetFpuRegisterAt(0)));
3607           locations->SetOut(LocationFrom(r0, r1));
3608           break;
3609         }
3610 
3611         case DataType::Type::kFloat64: {
3612           InvokeRuntimeCallingConventionARMVIXL calling_convention;
3613           locations->SetInAt(0, LocationFrom(calling_convention.GetFpuRegisterAt(0),
3614                                              calling_convention.GetFpuRegisterAt(1)));
3615           locations->SetOut(LocationFrom(r0, r1));
3616           break;
3617         }
3618 
3619         default:
3620           LOG(FATAL) << "Unexpected type conversion from " << input_type
3621                      << " to " << result_type;
3622       }
3623       break;
3624 
3625     case DataType::Type::kFloat32:
3626       switch (input_type) {
3627         case DataType::Type::kBool:
3628         case DataType::Type::kUint8:
3629         case DataType::Type::kInt8:
3630         case DataType::Type::kUint16:
3631         case DataType::Type::kInt16:
3632         case DataType::Type::kInt32:
3633           locations->SetInAt(0, Location::RequiresRegister());
3634           locations->SetOut(Location::RequiresFpuRegister());
3635           break;
3636 
3637         case DataType::Type::kInt64: {
3638           InvokeRuntimeCallingConventionARMVIXL calling_convention;
3639           locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0),
3640                                              calling_convention.GetRegisterAt(1)));
3641           locations->SetOut(LocationFrom(calling_convention.GetFpuRegisterAt(0)));
3642           break;
3643         }
3644 
3645         case DataType::Type::kFloat64:
3646           locations->SetInAt(0, Location::RequiresFpuRegister());
3647           locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
3648           break;
3649 
3650         default:
3651           LOG(FATAL) << "Unexpected type conversion from " << input_type
3652                      << " to " << result_type;
3653       }
3654       break;
3655 
3656     case DataType::Type::kFloat64:
3657       switch (input_type) {
3658         case DataType::Type::kBool:
3659         case DataType::Type::kUint8:
3660         case DataType::Type::kInt8:
3661         case DataType::Type::kUint16:
3662         case DataType::Type::kInt16:
3663         case DataType::Type::kInt32:
3664           locations->SetInAt(0, Location::RequiresRegister());
3665           locations->SetOut(Location::RequiresFpuRegister());
3666           break;
3667 
3668         case DataType::Type::kInt64:
3669           locations->SetInAt(0, Location::RequiresRegister());
3670           locations->SetOut(Location::RequiresFpuRegister());
3671           locations->AddTemp(Location::RequiresFpuRegister());
3672           locations->AddTemp(Location::RequiresFpuRegister());
3673           break;
3674 
3675         case DataType::Type::kFloat32:
3676           locations->SetInAt(0, Location::RequiresFpuRegister());
3677           locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
3678           break;
3679 
3680         default:
3681           LOG(FATAL) << "Unexpected type conversion from " << input_type
3682                      << " to " << result_type;
3683       }
3684       break;
3685 
3686     default:
3687       LOG(FATAL) << "Unexpected type conversion from " << input_type
3688                  << " to " << result_type;
3689   }
3690 }
3691 
VisitTypeConversion(HTypeConversion * conversion)3692 void InstructionCodeGeneratorARMVIXL::VisitTypeConversion(HTypeConversion* conversion) {
3693   LocationSummary* locations = conversion->GetLocations();
3694   Location out = locations->Out();
3695   Location in = locations->InAt(0);
3696   DataType::Type result_type = conversion->GetResultType();
3697   DataType::Type input_type = conversion->GetInputType();
3698   DCHECK(!DataType::IsTypeConversionImplicit(input_type, result_type))
3699       << input_type << " -> " << result_type;
3700   switch (result_type) {
3701     case DataType::Type::kUint8:
3702       switch (input_type) {
3703         case DataType::Type::kInt8:
3704         case DataType::Type::kUint16:
3705         case DataType::Type::kInt16:
3706         case DataType::Type::kInt32:
3707           __ Ubfx(OutputRegister(conversion), InputRegisterAt(conversion, 0), 0, 8);
3708           break;
3709         case DataType::Type::kInt64:
3710           __ Ubfx(OutputRegister(conversion), LowRegisterFrom(in), 0, 8);
3711           break;
3712 
3713         default:
3714           LOG(FATAL) << "Unexpected type conversion from " << input_type
3715                      << " to " << result_type;
3716       }
3717       break;
3718 
3719     case DataType::Type::kInt8:
3720       switch (input_type) {
3721         case DataType::Type::kUint8:
3722         case DataType::Type::kUint16:
3723         case DataType::Type::kInt16:
3724         case DataType::Type::kInt32:
3725           __ Sbfx(OutputRegister(conversion), InputRegisterAt(conversion, 0), 0, 8);
3726           break;
3727         case DataType::Type::kInt64:
3728           __ Sbfx(OutputRegister(conversion), LowRegisterFrom(in), 0, 8);
3729           break;
3730 
3731         default:
3732           LOG(FATAL) << "Unexpected type conversion from " << input_type
3733                      << " to " << result_type;
3734       }
3735       break;
3736 
3737     case DataType::Type::kUint16:
3738       switch (input_type) {
3739         case DataType::Type::kInt8:
3740         case DataType::Type::kInt16:
3741         case DataType::Type::kInt32:
3742           __ Ubfx(OutputRegister(conversion), InputRegisterAt(conversion, 0), 0, 16);
3743           break;
3744         case DataType::Type::kInt64:
3745           __ Ubfx(OutputRegister(conversion), LowRegisterFrom(in), 0, 16);
3746           break;
3747 
3748         default:
3749           LOG(FATAL) << "Unexpected type conversion from " << input_type
3750                      << " to " << result_type;
3751       }
3752       break;
3753 
3754     case DataType::Type::kInt16:
3755       switch (input_type) {
3756         case DataType::Type::kUint16:
3757         case DataType::Type::kInt32:
3758           __ Sbfx(OutputRegister(conversion), InputRegisterAt(conversion, 0), 0, 16);
3759           break;
3760         case DataType::Type::kInt64:
3761           __ Sbfx(OutputRegister(conversion), LowRegisterFrom(in), 0, 16);
3762           break;
3763 
3764         default:
3765           LOG(FATAL) << "Unexpected type conversion from " << input_type
3766                      << " to " << result_type;
3767       }
3768       break;
3769 
3770     case DataType::Type::kInt32:
3771       switch (input_type) {
3772         case DataType::Type::kInt64:
3773           DCHECK(out.IsRegister());
3774           if (in.IsRegisterPair()) {
3775             __ Mov(OutputRegister(conversion), LowRegisterFrom(in));
3776           } else if (in.IsDoubleStackSlot()) {
3777             GetAssembler()->LoadFromOffset(kLoadWord,
3778                                            OutputRegister(conversion),
3779                                            sp,
3780                                            in.GetStackIndex());
3781           } else {
3782             DCHECK(in.IsConstant());
3783             DCHECK(in.GetConstant()->IsLongConstant());
3784             int64_t value = in.GetConstant()->AsLongConstant()->GetValue();
3785             __ Mov(OutputRegister(conversion), static_cast<int32_t>(value));
3786           }
3787           break;
3788 
3789         case DataType::Type::kFloat32: {
3790           vixl32::SRegister temp = LowSRegisterFrom(locations->GetTemp(0));
3791           __ Vcvt(S32, F32, temp, InputSRegisterAt(conversion, 0));
3792           __ Vmov(OutputRegister(conversion), temp);
3793           break;
3794         }
3795 
3796         case DataType::Type::kFloat64: {
3797           vixl32::SRegister temp_s = LowSRegisterFrom(locations->GetTemp(0));
3798           __ Vcvt(S32, F64, temp_s, DRegisterFrom(in));
3799           __ Vmov(OutputRegister(conversion), temp_s);
3800           break;
3801         }
3802 
3803         default:
3804           LOG(FATAL) << "Unexpected type conversion from " << input_type
3805                      << " to " << result_type;
3806       }
3807       break;
3808 
3809     case DataType::Type::kInt64:
3810       switch (input_type) {
3811         case DataType::Type::kBool:
3812         case DataType::Type::kUint8:
3813         case DataType::Type::kInt8:
3814         case DataType::Type::kUint16:
3815         case DataType::Type::kInt16:
3816         case DataType::Type::kInt32:
3817           DCHECK(out.IsRegisterPair());
3818           DCHECK(in.IsRegister());
3819           __ Mov(LowRegisterFrom(out), InputRegisterAt(conversion, 0));
3820           // Sign extension.
3821           __ Asr(HighRegisterFrom(out), LowRegisterFrom(out), 31);
3822           break;
3823 
3824         case DataType::Type::kFloat32:
3825           codegen_->InvokeRuntime(kQuickF2l, conversion, conversion->GetDexPc());
3826           CheckEntrypointTypes<kQuickF2l, int64_t, float>();
3827           break;
3828 
3829         case DataType::Type::kFloat64:
3830           codegen_->InvokeRuntime(kQuickD2l, conversion, conversion->GetDexPc());
3831           CheckEntrypointTypes<kQuickD2l, int64_t, double>();
3832           break;
3833 
3834         default:
3835           LOG(FATAL) << "Unexpected type conversion from " << input_type
3836                      << " to " << result_type;
3837       }
3838       break;
3839 
3840     case DataType::Type::kFloat32:
3841       switch (input_type) {
3842         case DataType::Type::kBool:
3843         case DataType::Type::kUint8:
3844         case DataType::Type::kInt8:
3845         case DataType::Type::kUint16:
3846         case DataType::Type::kInt16:
3847         case DataType::Type::kInt32:
3848           __ Vmov(OutputSRegister(conversion), InputRegisterAt(conversion, 0));
3849           __ Vcvt(F32, S32, OutputSRegister(conversion), OutputSRegister(conversion));
3850           break;
3851 
3852         case DataType::Type::kInt64:
3853           codegen_->InvokeRuntime(kQuickL2f, conversion, conversion->GetDexPc());
3854           CheckEntrypointTypes<kQuickL2f, float, int64_t>();
3855           break;
3856 
3857         case DataType::Type::kFloat64:
3858           __ Vcvt(F32, F64, OutputSRegister(conversion), DRegisterFrom(in));
3859           break;
3860 
3861         default:
3862           LOG(FATAL) << "Unexpected type conversion from " << input_type
3863                      << " to " << result_type;
3864       }
3865       break;
3866 
3867     case DataType::Type::kFloat64:
3868       switch (input_type) {
3869         case DataType::Type::kBool:
3870         case DataType::Type::kUint8:
3871         case DataType::Type::kInt8:
3872         case DataType::Type::kUint16:
3873         case DataType::Type::kInt16:
3874         case DataType::Type::kInt32:
3875           __ Vmov(LowSRegisterFrom(out), InputRegisterAt(conversion, 0));
3876           __ Vcvt(F64, S32, DRegisterFrom(out), LowSRegisterFrom(out));
3877           break;
3878 
3879         case DataType::Type::kInt64: {
3880           vixl32::Register low = LowRegisterFrom(in);
3881           vixl32::Register high = HighRegisterFrom(in);
3882           vixl32::SRegister out_s = LowSRegisterFrom(out);
3883           vixl32::DRegister out_d = DRegisterFrom(out);
3884           vixl32::SRegister temp_s = LowSRegisterFrom(locations->GetTemp(0));
3885           vixl32::DRegister temp_d = DRegisterFrom(locations->GetTemp(0));
3886           vixl32::DRegister constant_d = DRegisterFrom(locations->GetTemp(1));
3887 
3888           // temp_d = int-to-double(high)
3889           __ Vmov(temp_s, high);
3890           __ Vcvt(F64, S32, temp_d, temp_s);
3891           // constant_d = k2Pow32EncodingForDouble
3892           __ Vmov(constant_d, bit_cast<double, int64_t>(k2Pow32EncodingForDouble));
3893           // out_d = unsigned-to-double(low)
3894           __ Vmov(out_s, low);
3895           __ Vcvt(F64, U32, out_d, out_s);
3896           // out_d += temp_d * constant_d
3897           __ Vmla(F64, out_d, temp_d, constant_d);
3898           break;
3899         }
3900 
3901         case DataType::Type::kFloat32:
3902           __ Vcvt(F64, F32, DRegisterFrom(out), InputSRegisterAt(conversion, 0));
3903           break;
3904 
3905         default:
3906           LOG(FATAL) << "Unexpected type conversion from " << input_type
3907                      << " to " << result_type;
3908       }
3909       break;
3910 
3911     default:
3912       LOG(FATAL) << "Unexpected type conversion from " << input_type
3913                  << " to " << result_type;
3914   }
3915 }
3916 
VisitAdd(HAdd * add)3917 void LocationsBuilderARMVIXL::VisitAdd(HAdd* add) {
3918   LocationSummary* locations =
3919       new (GetGraph()->GetAllocator()) LocationSummary(add, LocationSummary::kNoCall);
3920   switch (add->GetResultType()) {
3921     case DataType::Type::kInt32: {
3922       locations->SetInAt(0, Location::RequiresRegister());
3923       locations->SetInAt(1, Location::RegisterOrConstant(add->InputAt(1)));
3924       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3925       break;
3926     }
3927 
3928     case DataType::Type::kInt64: {
3929       locations->SetInAt(0, Location::RequiresRegister());
3930       locations->SetInAt(1, ArmEncodableConstantOrRegister(add->InputAt(1), ADD));
3931       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3932       break;
3933     }
3934 
3935     case DataType::Type::kFloat32:
3936     case DataType::Type::kFloat64: {
3937       locations->SetInAt(0, Location::RequiresFpuRegister());
3938       locations->SetInAt(1, Location::RequiresFpuRegister());
3939       locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
3940       break;
3941     }
3942 
3943     default:
3944       LOG(FATAL) << "Unexpected add type " << add->GetResultType();
3945   }
3946 }
3947 
VisitAdd(HAdd * add)3948 void InstructionCodeGeneratorARMVIXL::VisitAdd(HAdd* add) {
3949   LocationSummary* locations = add->GetLocations();
3950   Location out = locations->Out();
3951   Location first = locations->InAt(0);
3952   Location second = locations->InAt(1);
3953 
3954   switch (add->GetResultType()) {
3955     case DataType::Type::kInt32: {
3956       __ Add(OutputRegister(add), InputRegisterAt(add, 0), InputOperandAt(add, 1));
3957       }
3958       break;
3959 
3960     case DataType::Type::kInt64: {
3961       if (second.IsConstant()) {
3962         uint64_t value = static_cast<uint64_t>(Int64FromConstant(second.GetConstant()));
3963         GenerateAddLongConst(out, first, value);
3964       } else {
3965         DCHECK(second.IsRegisterPair());
3966         __ Adds(LowRegisterFrom(out), LowRegisterFrom(first), LowRegisterFrom(second));
3967         __ Adc(HighRegisterFrom(out), HighRegisterFrom(first), HighRegisterFrom(second));
3968       }
3969       break;
3970     }
3971 
3972     case DataType::Type::kFloat32:
3973     case DataType::Type::kFloat64:
3974       __ Vadd(OutputVRegister(add), InputVRegisterAt(add, 0), InputVRegisterAt(add, 1));
3975       break;
3976 
3977     default:
3978       LOG(FATAL) << "Unexpected add type " << add->GetResultType();
3979   }
3980 }
3981 
VisitSub(HSub * sub)3982 void LocationsBuilderARMVIXL::VisitSub(HSub* sub) {
3983   LocationSummary* locations =
3984       new (GetGraph()->GetAllocator()) LocationSummary(sub, LocationSummary::kNoCall);
3985   switch (sub->GetResultType()) {
3986     case DataType::Type::kInt32: {
3987       locations->SetInAt(0, Location::RequiresRegister());
3988       locations->SetInAt(1, Location::RegisterOrConstant(sub->InputAt(1)));
3989       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3990       break;
3991     }
3992 
3993     case DataType::Type::kInt64: {
3994       locations->SetInAt(0, Location::RequiresRegister());
3995       locations->SetInAt(1, ArmEncodableConstantOrRegister(sub->InputAt(1), SUB));
3996       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3997       break;
3998     }
3999     case DataType::Type::kFloat32:
4000     case DataType::Type::kFloat64: {
4001       locations->SetInAt(0, Location::RequiresFpuRegister());
4002       locations->SetInAt(1, Location::RequiresFpuRegister());
4003       locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
4004       break;
4005     }
4006     default:
4007       LOG(FATAL) << "Unexpected sub type " << sub->GetResultType();
4008   }
4009 }
4010 
VisitSub(HSub * sub)4011 void InstructionCodeGeneratorARMVIXL::VisitSub(HSub* sub) {
4012   LocationSummary* locations = sub->GetLocations();
4013   Location out = locations->Out();
4014   Location first = locations->InAt(0);
4015   Location second = locations->InAt(1);
4016   switch (sub->GetResultType()) {
4017     case DataType::Type::kInt32: {
4018       __ Sub(OutputRegister(sub), InputRegisterAt(sub, 0), InputOperandAt(sub, 1));
4019       break;
4020     }
4021 
4022     case DataType::Type::kInt64: {
4023       if (second.IsConstant()) {
4024         uint64_t value = static_cast<uint64_t>(Int64FromConstant(second.GetConstant()));
4025         GenerateAddLongConst(out, first, -value);
4026       } else {
4027         DCHECK(second.IsRegisterPair());
4028         __ Subs(LowRegisterFrom(out), LowRegisterFrom(first), LowRegisterFrom(second));
4029         __ Sbc(HighRegisterFrom(out), HighRegisterFrom(first), HighRegisterFrom(second));
4030       }
4031       break;
4032     }
4033 
4034     case DataType::Type::kFloat32:
4035     case DataType::Type::kFloat64:
4036       __ Vsub(OutputVRegister(sub), InputVRegisterAt(sub, 0), InputVRegisterAt(sub, 1));
4037       break;
4038 
4039     default:
4040       LOG(FATAL) << "Unexpected sub type " << sub->GetResultType();
4041   }
4042 }
4043 
VisitMul(HMul * mul)4044 void LocationsBuilderARMVIXL::VisitMul(HMul* mul) {
4045   LocationSummary* locations =
4046       new (GetGraph()->GetAllocator()) LocationSummary(mul, LocationSummary::kNoCall);
4047   switch (mul->GetResultType()) {
4048     case DataType::Type::kInt32:
4049     case DataType::Type::kInt64:  {
4050       locations->SetInAt(0, Location::RequiresRegister());
4051       locations->SetInAt(1, Location::RequiresRegister());
4052       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
4053       break;
4054     }
4055 
4056     case DataType::Type::kFloat32:
4057     case DataType::Type::kFloat64: {
4058       locations->SetInAt(0, Location::RequiresFpuRegister());
4059       locations->SetInAt(1, Location::RequiresFpuRegister());
4060       locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
4061       break;
4062     }
4063 
4064     default:
4065       LOG(FATAL) << "Unexpected mul type " << mul->GetResultType();
4066   }
4067 }
4068 
VisitMul(HMul * mul)4069 void InstructionCodeGeneratorARMVIXL::VisitMul(HMul* mul) {
4070   LocationSummary* locations = mul->GetLocations();
4071   Location out = locations->Out();
4072   Location first = locations->InAt(0);
4073   Location second = locations->InAt(1);
4074   switch (mul->GetResultType()) {
4075     case DataType::Type::kInt32: {
4076       __ Mul(OutputRegister(mul), InputRegisterAt(mul, 0), InputRegisterAt(mul, 1));
4077       break;
4078     }
4079     case DataType::Type::kInt64: {
4080       vixl32::Register out_hi = HighRegisterFrom(out);
4081       vixl32::Register out_lo = LowRegisterFrom(out);
4082       vixl32::Register in1_hi = HighRegisterFrom(first);
4083       vixl32::Register in1_lo = LowRegisterFrom(first);
4084       vixl32::Register in2_hi = HighRegisterFrom(second);
4085       vixl32::Register in2_lo = LowRegisterFrom(second);
4086 
4087       // Extra checks to protect caused by the existence of R1_R2.
4088       // The algorithm is wrong if out.hi is either in1.lo or in2.lo:
4089       // (e.g. in1=r0_r1, in2=r2_r3 and out=r1_r2);
4090       DCHECK(!out_hi.Is(in1_lo));
4091       DCHECK(!out_hi.Is(in2_lo));
4092 
4093       // input: in1 - 64 bits, in2 - 64 bits
4094       // output: out
4095       // formula: out.hi : out.lo = (in1.lo * in2.hi + in1.hi * in2.lo)* 2^32 + in1.lo * in2.lo
4096       // parts: out.hi = in1.lo * in2.hi + in1.hi * in2.lo + (in1.lo * in2.lo)[63:32]
4097       // parts: out.lo = (in1.lo * in2.lo)[31:0]
4098 
4099       UseScratchRegisterScope temps(GetVIXLAssembler());
4100       vixl32::Register temp = temps.Acquire();
4101       // temp <- in1.lo * in2.hi
4102       __ Mul(temp, in1_lo, in2_hi);
4103       // out.hi <- in1.lo * in2.hi + in1.hi * in2.lo
4104       __ Mla(out_hi, in1_hi, in2_lo, temp);
4105       // out.lo <- (in1.lo * in2.lo)[31:0];
4106       __ Umull(out_lo, temp, in1_lo, in2_lo);
4107       // out.hi <- in2.hi * in1.lo +  in2.lo * in1.hi + (in1.lo * in2.lo)[63:32]
4108       __ Add(out_hi, out_hi, temp);
4109       break;
4110     }
4111 
4112     case DataType::Type::kFloat32:
4113     case DataType::Type::kFloat64:
4114       __ Vmul(OutputVRegister(mul), InputVRegisterAt(mul, 0), InputVRegisterAt(mul, 1));
4115       break;
4116 
4117     default:
4118       LOG(FATAL) << "Unexpected mul type " << mul->GetResultType();
4119   }
4120 }
4121 
DivRemOneOrMinusOne(HBinaryOperation * instruction)4122 void InstructionCodeGeneratorARMVIXL::DivRemOneOrMinusOne(HBinaryOperation* instruction) {
4123   DCHECK(instruction->IsDiv() || instruction->IsRem());
4124   DCHECK(instruction->GetResultType() == DataType::Type::kInt32);
4125 
4126   Location second = instruction->GetLocations()->InAt(1);
4127   DCHECK(second.IsConstant());
4128 
4129   vixl32::Register out = OutputRegister(instruction);
4130   vixl32::Register dividend = InputRegisterAt(instruction, 0);
4131   int32_t imm = Int32ConstantFrom(second);
4132   DCHECK(imm == 1 || imm == -1);
4133 
4134   if (instruction->IsRem()) {
4135     __ Mov(out, 0);
4136   } else {
4137     if (imm == 1) {
4138       __ Mov(out, dividend);
4139     } else {
4140       __ Rsb(out, dividend, 0);
4141     }
4142   }
4143 }
4144 
DivRemByPowerOfTwo(HBinaryOperation * instruction)4145 void InstructionCodeGeneratorARMVIXL::DivRemByPowerOfTwo(HBinaryOperation* instruction) {
4146   DCHECK(instruction->IsDiv() || instruction->IsRem());
4147   DCHECK(instruction->GetResultType() == DataType::Type::kInt32);
4148 
4149   LocationSummary* locations = instruction->GetLocations();
4150   Location second = locations->InAt(1);
4151   DCHECK(second.IsConstant());
4152 
4153   vixl32::Register out = OutputRegister(instruction);
4154   vixl32::Register dividend = InputRegisterAt(instruction, 0);
4155   vixl32::Register temp = RegisterFrom(locations->GetTemp(0));
4156   int32_t imm = Int32ConstantFrom(second);
4157   uint32_t abs_imm = static_cast<uint32_t>(AbsOrMin(imm));
4158   int ctz_imm = CTZ(abs_imm);
4159 
4160   if (ctz_imm == 1) {
4161     __ Lsr(temp, dividend, 32 - ctz_imm);
4162   } else {
4163     __ Asr(temp, dividend, 31);
4164     __ Lsr(temp, temp, 32 - ctz_imm);
4165   }
4166   __ Add(out, temp, dividend);
4167 
4168   if (instruction->IsDiv()) {
4169     __ Asr(out, out, ctz_imm);
4170     if (imm < 0) {
4171       __ Rsb(out, out, 0);
4172     }
4173   } else {
4174     __ Ubfx(out, out, 0, ctz_imm);
4175     __ Sub(out, out, temp);
4176   }
4177 }
4178 
GenerateDivRemWithAnyConstant(HBinaryOperation * instruction)4179 void InstructionCodeGeneratorARMVIXL::GenerateDivRemWithAnyConstant(HBinaryOperation* instruction) {
4180   DCHECK(instruction->IsDiv() || instruction->IsRem());
4181   DCHECK(instruction->GetResultType() == DataType::Type::kInt32);
4182 
4183   LocationSummary* locations = instruction->GetLocations();
4184   Location second = locations->InAt(1);
4185   DCHECK(second.IsConstant());
4186 
4187   vixl32::Register out = OutputRegister(instruction);
4188   vixl32::Register dividend = InputRegisterAt(instruction, 0);
4189   vixl32::Register temp1 = RegisterFrom(locations->GetTemp(0));
4190   vixl32::Register temp2 = RegisterFrom(locations->GetTemp(1));
4191   int32_t imm = Int32ConstantFrom(second);
4192 
4193   int64_t magic;
4194   int shift;
4195   CalculateMagicAndShiftForDivRem(imm, /* is_long= */ false, &magic, &shift);
4196 
4197   // TODO(VIXL): Change the static cast to Operand::From() after VIXL is fixed.
4198   __ Mov(temp1, static_cast<int32_t>(magic));
4199   __ Smull(temp2, temp1, dividend, temp1);
4200 
4201   if (imm > 0 && magic < 0) {
4202     __ Add(temp1, temp1, dividend);
4203   } else if (imm < 0 && magic > 0) {
4204     __ Sub(temp1, temp1, dividend);
4205   }
4206 
4207   if (shift != 0) {
4208     __ Asr(temp1, temp1, shift);
4209   }
4210 
4211   if (instruction->IsDiv()) {
4212     __ Sub(out, temp1, Operand(temp1, vixl32::Shift(ASR), 31));
4213   } else {
4214     __ Sub(temp1, temp1, Operand(temp1, vixl32::Shift(ASR), 31));
4215     // TODO: Strength reduction for mls.
4216     __ Mov(temp2, imm);
4217     __ Mls(out, temp1, temp2, dividend);
4218   }
4219 }
4220 
GenerateDivRemConstantIntegral(HBinaryOperation * instruction)4221 void InstructionCodeGeneratorARMVIXL::GenerateDivRemConstantIntegral(
4222     HBinaryOperation* instruction) {
4223   DCHECK(instruction->IsDiv() || instruction->IsRem());
4224   DCHECK(instruction->GetResultType() == DataType::Type::kInt32);
4225 
4226   Location second = instruction->GetLocations()->InAt(1);
4227   DCHECK(second.IsConstant());
4228 
4229   int32_t imm = Int32ConstantFrom(second);
4230   if (imm == 0) {
4231     // Do not generate anything. DivZeroCheck would prevent any code to be executed.
4232   } else if (imm == 1 || imm == -1) {
4233     DivRemOneOrMinusOne(instruction);
4234   } else if (IsPowerOfTwo(AbsOrMin(imm))) {
4235     DivRemByPowerOfTwo(instruction);
4236   } else {
4237     DCHECK(imm <= -2 || imm >= 2);
4238     GenerateDivRemWithAnyConstant(instruction);
4239   }
4240 }
4241 
VisitDiv(HDiv * div)4242 void LocationsBuilderARMVIXL::VisitDiv(HDiv* div) {
4243   LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
4244   if (div->GetResultType() == DataType::Type::kInt64) {
4245     // pLdiv runtime call.
4246     call_kind = LocationSummary::kCallOnMainOnly;
4247   } else if (div->GetResultType() == DataType::Type::kInt32 && div->InputAt(1)->IsConstant()) {
4248     // sdiv will be replaced by other instruction sequence.
4249   } else if (div->GetResultType() == DataType::Type::kInt32 &&
4250              !codegen_->GetInstructionSetFeatures().HasDivideInstruction()) {
4251     // pIdivmod runtime call.
4252     call_kind = LocationSummary::kCallOnMainOnly;
4253   }
4254 
4255   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(div, call_kind);
4256 
4257   switch (div->GetResultType()) {
4258     case DataType::Type::kInt32: {
4259       if (div->InputAt(1)->IsConstant()) {
4260         locations->SetInAt(0, Location::RequiresRegister());
4261         locations->SetInAt(1, Location::ConstantLocation(div->InputAt(1)->AsConstant()));
4262         locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
4263         int32_t value = Int32ConstantFrom(div->InputAt(1));
4264         if (value == 1 || value == 0 || value == -1) {
4265           // No temp register required.
4266         } else {
4267           locations->AddTemp(Location::RequiresRegister());
4268           if (!IsPowerOfTwo(AbsOrMin(value))) {
4269             locations->AddTemp(Location::RequiresRegister());
4270           }
4271         }
4272       } else if (codegen_->GetInstructionSetFeatures().HasDivideInstruction()) {
4273         locations->SetInAt(0, Location::RequiresRegister());
4274         locations->SetInAt(1, Location::RequiresRegister());
4275         locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
4276       } else {
4277         InvokeRuntimeCallingConventionARMVIXL calling_convention;
4278         locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
4279         locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1)));
4280         // Note: divmod will compute both the quotient and the remainder as the pair R0 and R1, but
4281         //       we only need the former.
4282         locations->SetOut(LocationFrom(r0));
4283       }
4284       break;
4285     }
4286     case DataType::Type::kInt64: {
4287       InvokeRuntimeCallingConventionARMVIXL calling_convention;
4288       locations->SetInAt(0, LocationFrom(
4289           calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1)));
4290       locations->SetInAt(1, LocationFrom(
4291           calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3)));
4292       locations->SetOut(LocationFrom(r0, r1));
4293       break;
4294     }
4295     case DataType::Type::kFloat32:
4296     case DataType::Type::kFloat64: {
4297       locations->SetInAt(0, Location::RequiresFpuRegister());
4298       locations->SetInAt(1, Location::RequiresFpuRegister());
4299       locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
4300       break;
4301     }
4302 
4303     default:
4304       LOG(FATAL) << "Unexpected div type " << div->GetResultType();
4305   }
4306 }
4307 
VisitDiv(HDiv * div)4308 void InstructionCodeGeneratorARMVIXL::VisitDiv(HDiv* div) {
4309   Location lhs = div->GetLocations()->InAt(0);
4310   Location rhs = div->GetLocations()->InAt(1);
4311 
4312   switch (div->GetResultType()) {
4313     case DataType::Type::kInt32: {
4314       if (rhs.IsConstant()) {
4315         GenerateDivRemConstantIntegral(div);
4316       } else if (codegen_->GetInstructionSetFeatures().HasDivideInstruction()) {
4317         __ Sdiv(OutputRegister(div), InputRegisterAt(div, 0), InputRegisterAt(div, 1));
4318       } else {
4319         InvokeRuntimeCallingConventionARMVIXL calling_convention;
4320         DCHECK(calling_convention.GetRegisterAt(0).Is(RegisterFrom(lhs)));
4321         DCHECK(calling_convention.GetRegisterAt(1).Is(RegisterFrom(rhs)));
4322         DCHECK(r0.Is(OutputRegister(div)));
4323 
4324         codegen_->InvokeRuntime(kQuickIdivmod, div, div->GetDexPc());
4325         CheckEntrypointTypes<kQuickIdivmod, int32_t, int32_t, int32_t>();
4326       }
4327       break;
4328     }
4329 
4330     case DataType::Type::kInt64: {
4331       InvokeRuntimeCallingConventionARMVIXL calling_convention;
4332       DCHECK(calling_convention.GetRegisterAt(0).Is(LowRegisterFrom(lhs)));
4333       DCHECK(calling_convention.GetRegisterAt(1).Is(HighRegisterFrom(lhs)));
4334       DCHECK(calling_convention.GetRegisterAt(2).Is(LowRegisterFrom(rhs)));
4335       DCHECK(calling_convention.GetRegisterAt(3).Is(HighRegisterFrom(rhs)));
4336       DCHECK(LowRegisterFrom(div->GetLocations()->Out()).Is(r0));
4337       DCHECK(HighRegisterFrom(div->GetLocations()->Out()).Is(r1));
4338 
4339       codegen_->InvokeRuntime(kQuickLdiv, div, div->GetDexPc());
4340       CheckEntrypointTypes<kQuickLdiv, int64_t, int64_t, int64_t>();
4341       break;
4342     }
4343 
4344     case DataType::Type::kFloat32:
4345     case DataType::Type::kFloat64:
4346       __ Vdiv(OutputVRegister(div), InputVRegisterAt(div, 0), InputVRegisterAt(div, 1));
4347       break;
4348 
4349     default:
4350       LOG(FATAL) << "Unexpected div type " << div->GetResultType();
4351   }
4352 }
4353 
VisitRem(HRem * rem)4354 void LocationsBuilderARMVIXL::VisitRem(HRem* rem) {
4355   DataType::Type type = rem->GetResultType();
4356 
4357   // Most remainders are implemented in the runtime.
4358   LocationSummary::CallKind call_kind = LocationSummary::kCallOnMainOnly;
4359   if (rem->GetResultType() == DataType::Type::kInt32 && rem->InputAt(1)->IsConstant()) {
4360     // sdiv will be replaced by other instruction sequence.
4361     call_kind = LocationSummary::kNoCall;
4362   } else if ((rem->GetResultType() == DataType::Type::kInt32)
4363              && codegen_->GetInstructionSetFeatures().HasDivideInstruction()) {
4364     // Have hardware divide instruction for int, do it with three instructions.
4365     call_kind = LocationSummary::kNoCall;
4366   }
4367 
4368   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(rem, call_kind);
4369 
4370   switch (type) {
4371     case DataType::Type::kInt32: {
4372       if (rem->InputAt(1)->IsConstant()) {
4373         locations->SetInAt(0, Location::RequiresRegister());
4374         locations->SetInAt(1, Location::ConstantLocation(rem->InputAt(1)->AsConstant()));
4375         locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
4376         int32_t value = Int32ConstantFrom(rem->InputAt(1));
4377         if (value == 1 || value == 0 || value == -1) {
4378           // No temp register required.
4379         } else {
4380           locations->AddTemp(Location::RequiresRegister());
4381           if (!IsPowerOfTwo(AbsOrMin(value))) {
4382             locations->AddTemp(Location::RequiresRegister());
4383           }
4384         }
4385       } else if (codegen_->GetInstructionSetFeatures().HasDivideInstruction()) {
4386         locations->SetInAt(0, Location::RequiresRegister());
4387         locations->SetInAt(1, Location::RequiresRegister());
4388         locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
4389         locations->AddTemp(Location::RequiresRegister());
4390       } else {
4391         InvokeRuntimeCallingConventionARMVIXL calling_convention;
4392         locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
4393         locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1)));
4394         // Note: divmod will compute both the quotient and the remainder as the pair R0 and R1, but
4395         //       we only need the latter.
4396         locations->SetOut(LocationFrom(r1));
4397       }
4398       break;
4399     }
4400     case DataType::Type::kInt64: {
4401       InvokeRuntimeCallingConventionARMVIXL calling_convention;
4402       locations->SetInAt(0, LocationFrom(
4403           calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1)));
4404       locations->SetInAt(1, LocationFrom(
4405           calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3)));
4406       // The runtime helper puts the output in R2,R3.
4407       locations->SetOut(LocationFrom(r2, r3));
4408       break;
4409     }
4410     case DataType::Type::kFloat32: {
4411       InvokeRuntimeCallingConventionARMVIXL calling_convention;
4412       locations->SetInAt(0, LocationFrom(calling_convention.GetFpuRegisterAt(0)));
4413       locations->SetInAt(1, LocationFrom(calling_convention.GetFpuRegisterAt(1)));
4414       locations->SetOut(LocationFrom(s0));
4415       break;
4416     }
4417 
4418     case DataType::Type::kFloat64: {
4419       InvokeRuntimeCallingConventionARMVIXL calling_convention;
4420       locations->SetInAt(0, LocationFrom(
4421           calling_convention.GetFpuRegisterAt(0), calling_convention.GetFpuRegisterAt(1)));
4422       locations->SetInAt(1, LocationFrom(
4423           calling_convention.GetFpuRegisterAt(2), calling_convention.GetFpuRegisterAt(3)));
4424       locations->SetOut(LocationFrom(s0, s1));
4425       break;
4426     }
4427 
4428     default:
4429       LOG(FATAL) << "Unexpected rem type " << type;
4430   }
4431 }
4432 
VisitRem(HRem * rem)4433 void InstructionCodeGeneratorARMVIXL::VisitRem(HRem* rem) {
4434   LocationSummary* locations = rem->GetLocations();
4435   Location second = locations->InAt(1);
4436 
4437   DataType::Type type = rem->GetResultType();
4438   switch (type) {
4439     case DataType::Type::kInt32: {
4440         vixl32::Register reg1 = InputRegisterAt(rem, 0);
4441         vixl32::Register out_reg = OutputRegister(rem);
4442         if (second.IsConstant()) {
4443           GenerateDivRemConstantIntegral(rem);
4444         } else if (codegen_->GetInstructionSetFeatures().HasDivideInstruction()) {
4445         vixl32::Register reg2 = RegisterFrom(second);
4446         vixl32::Register temp = RegisterFrom(locations->GetTemp(0));
4447 
4448         // temp = reg1 / reg2  (integer division)
4449         // dest = reg1 - temp * reg2
4450         __ Sdiv(temp, reg1, reg2);
4451         __ Mls(out_reg, temp, reg2, reg1);
4452       } else {
4453         InvokeRuntimeCallingConventionARMVIXL calling_convention;
4454         DCHECK(reg1.Is(calling_convention.GetRegisterAt(0)));
4455         DCHECK(RegisterFrom(second).Is(calling_convention.GetRegisterAt(1)));
4456         DCHECK(out_reg.Is(r1));
4457 
4458         codegen_->InvokeRuntime(kQuickIdivmod, rem, rem->GetDexPc());
4459         CheckEntrypointTypes<kQuickIdivmod, int32_t, int32_t, int32_t>();
4460       }
4461       break;
4462     }
4463 
4464     case DataType::Type::kInt64: {
4465       codegen_->InvokeRuntime(kQuickLmod, rem, rem->GetDexPc());
4466         CheckEntrypointTypes<kQuickLmod, int64_t, int64_t, int64_t>();
4467       break;
4468     }
4469 
4470     case DataType::Type::kFloat32: {
4471       codegen_->InvokeRuntime(kQuickFmodf, rem, rem->GetDexPc());
4472       CheckEntrypointTypes<kQuickFmodf, float, float, float>();
4473       break;
4474     }
4475 
4476     case DataType::Type::kFloat64: {
4477       codegen_->InvokeRuntime(kQuickFmod, rem, rem->GetDexPc());
4478       CheckEntrypointTypes<kQuickFmod, double, double, double>();
4479       break;
4480     }
4481 
4482     default:
4483       LOG(FATAL) << "Unexpected rem type " << type;
4484   }
4485 }
4486 
CreateMinMaxLocations(ArenaAllocator * allocator,HBinaryOperation * minmax)4487 static void CreateMinMaxLocations(ArenaAllocator* allocator, HBinaryOperation* minmax) {
4488   LocationSummary* locations = new (allocator) LocationSummary(minmax);
4489   switch (minmax->GetResultType()) {
4490     case DataType::Type::kInt32:
4491       locations->SetInAt(0, Location::RequiresRegister());
4492       locations->SetInAt(1, Location::RequiresRegister());
4493       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
4494       break;
4495     case DataType::Type::kInt64:
4496       locations->SetInAt(0, Location::RequiresRegister());
4497       locations->SetInAt(1, Location::RequiresRegister());
4498       locations->SetOut(Location::SameAsFirstInput());
4499       break;
4500     case DataType::Type::kFloat32:
4501       locations->SetInAt(0, Location::RequiresFpuRegister());
4502       locations->SetInAt(1, Location::RequiresFpuRegister());
4503       locations->SetOut(Location::SameAsFirstInput());
4504       locations->AddTemp(Location::RequiresRegister());
4505       break;
4506     case DataType::Type::kFloat64:
4507       locations->SetInAt(0, Location::RequiresFpuRegister());
4508       locations->SetInAt(1, Location::RequiresFpuRegister());
4509       locations->SetOut(Location::SameAsFirstInput());
4510       break;
4511     default:
4512       LOG(FATAL) << "Unexpected type for HMinMax " << minmax->GetResultType();
4513   }
4514 }
4515 
GenerateMinMaxInt(LocationSummary * locations,bool is_min)4516 void InstructionCodeGeneratorARMVIXL::GenerateMinMaxInt(LocationSummary* locations, bool is_min) {
4517   Location op1_loc = locations->InAt(0);
4518   Location op2_loc = locations->InAt(1);
4519   Location out_loc = locations->Out();
4520 
4521   vixl32::Register op1 = RegisterFrom(op1_loc);
4522   vixl32::Register op2 = RegisterFrom(op2_loc);
4523   vixl32::Register out = RegisterFrom(out_loc);
4524 
4525   __ Cmp(op1, op2);
4526 
4527   {
4528     ExactAssemblyScope aas(GetVIXLAssembler(),
4529                            3 * kMaxInstructionSizeInBytes,
4530                            CodeBufferCheckScope::kMaximumSize);
4531 
4532     __ ite(is_min ? lt : gt);
4533     __ mov(is_min ? lt : gt, out, op1);
4534     __ mov(is_min ? ge : le, out, op2);
4535   }
4536 }
4537 
GenerateMinMaxLong(LocationSummary * locations,bool is_min)4538 void InstructionCodeGeneratorARMVIXL::GenerateMinMaxLong(LocationSummary* locations, bool is_min) {
4539   Location op1_loc = locations->InAt(0);
4540   Location op2_loc = locations->InAt(1);
4541   Location out_loc = locations->Out();
4542 
4543   // Optimization: don't generate any code if inputs are the same.
4544   if (op1_loc.Equals(op2_loc)) {
4545     DCHECK(out_loc.Equals(op1_loc));  // out_loc is set as SameAsFirstInput() in location builder.
4546     return;
4547   }
4548 
4549   vixl32::Register op1_lo = LowRegisterFrom(op1_loc);
4550   vixl32::Register op1_hi = HighRegisterFrom(op1_loc);
4551   vixl32::Register op2_lo = LowRegisterFrom(op2_loc);
4552   vixl32::Register op2_hi = HighRegisterFrom(op2_loc);
4553   vixl32::Register out_lo = LowRegisterFrom(out_loc);
4554   vixl32::Register out_hi = HighRegisterFrom(out_loc);
4555   UseScratchRegisterScope temps(GetVIXLAssembler());
4556   const vixl32::Register temp = temps.Acquire();
4557 
4558   DCHECK(op1_lo.Is(out_lo));
4559   DCHECK(op1_hi.Is(out_hi));
4560 
4561   // Compare op1 >= op2, or op1 < op2.
4562   __ Cmp(out_lo, op2_lo);
4563   __ Sbcs(temp, out_hi, op2_hi);
4564 
4565   // Now GE/LT condition code is correct for the long comparison.
4566   {
4567     vixl32::ConditionType cond = is_min ? ge : lt;
4568     ExactAssemblyScope it_scope(GetVIXLAssembler(),
4569                                 3 * kMaxInstructionSizeInBytes,
4570                                 CodeBufferCheckScope::kMaximumSize);
4571     __ itt(cond);
4572     __ mov(cond, out_lo, op2_lo);
4573     __ mov(cond, out_hi, op2_hi);
4574   }
4575 }
4576 
GenerateMinMaxFloat(HInstruction * minmax,bool is_min)4577 void InstructionCodeGeneratorARMVIXL::GenerateMinMaxFloat(HInstruction* minmax, bool is_min) {
4578   LocationSummary* locations = minmax->GetLocations();
4579   Location op1_loc = locations->InAt(0);
4580   Location op2_loc = locations->InAt(1);
4581   Location out_loc = locations->Out();
4582 
4583   // Optimization: don't generate any code if inputs are the same.
4584   if (op1_loc.Equals(op2_loc)) {
4585     DCHECK(out_loc.Equals(op1_loc));  // out_loc is set as SameAsFirstInput() in location builder.
4586     return;
4587   }
4588 
4589   vixl32::SRegister op1 = SRegisterFrom(op1_loc);
4590   vixl32::SRegister op2 = SRegisterFrom(op2_loc);
4591   vixl32::SRegister out = SRegisterFrom(out_loc);
4592 
4593   UseScratchRegisterScope temps(GetVIXLAssembler());
4594   const vixl32::Register temp1 = temps.Acquire();
4595   vixl32::Register temp2 = RegisterFrom(locations->GetTemp(0));
4596   vixl32::Label nan, done;
4597   vixl32::Label* final_label = codegen_->GetFinalLabel(minmax, &done);
4598 
4599   DCHECK(op1.Is(out));
4600 
4601   __ Vcmp(op1, op2);
4602   __ Vmrs(RegisterOrAPSR_nzcv(kPcCode), FPSCR);
4603   __ B(vs, &nan, /* is_far_target= */ false);  // if un-ordered, go to NaN handling.
4604 
4605   // op1 <> op2
4606   vixl32::ConditionType cond = is_min ? gt : lt;
4607   {
4608     ExactAssemblyScope it_scope(GetVIXLAssembler(),
4609                                 2 * kMaxInstructionSizeInBytes,
4610                                 CodeBufferCheckScope::kMaximumSize);
4611     __ it(cond);
4612     __ vmov(cond, F32, out, op2);
4613   }
4614   // for <>(not equal), we've done min/max calculation.
4615   __ B(ne, final_label, /* is_far_target= */ false);
4616 
4617   // handle op1 == op2, max(+0.0,-0.0), min(+0.0,-0.0).
4618   __ Vmov(temp1, op1);
4619   __ Vmov(temp2, op2);
4620   if (is_min) {
4621     __ Orr(temp1, temp1, temp2);
4622   } else {
4623     __ And(temp1, temp1, temp2);
4624   }
4625   __ Vmov(out, temp1);
4626   __ B(final_label);
4627 
4628   // handle NaN input.
4629   __ Bind(&nan);
4630   __ Movt(temp1, High16Bits(kNanFloat));  // 0x7FC0xxxx is a NaN.
4631   __ Vmov(out, temp1);
4632 
4633   if (done.IsReferenced()) {
4634     __ Bind(&done);
4635   }
4636 }
4637 
GenerateMinMaxDouble(HInstruction * minmax,bool is_min)4638 void InstructionCodeGeneratorARMVIXL::GenerateMinMaxDouble(HInstruction* minmax, bool is_min) {
4639   LocationSummary* locations = minmax->GetLocations();
4640   Location op1_loc = locations->InAt(0);
4641   Location op2_loc = locations->InAt(1);
4642   Location out_loc = locations->Out();
4643 
4644   // Optimization: don't generate any code if inputs are the same.
4645   if (op1_loc.Equals(op2_loc)) {
4646     DCHECK(out_loc.Equals(op1_loc));  // out_loc is set as SameAsFirstInput() in.
4647     return;
4648   }
4649 
4650   vixl32::DRegister op1 = DRegisterFrom(op1_loc);
4651   vixl32::DRegister op2 = DRegisterFrom(op2_loc);
4652   vixl32::DRegister out = DRegisterFrom(out_loc);
4653   vixl32::Label handle_nan_eq, done;
4654   vixl32::Label* final_label = codegen_->GetFinalLabel(minmax, &done);
4655 
4656   DCHECK(op1.Is(out));
4657 
4658   __ Vcmp(op1, op2);
4659   __ Vmrs(RegisterOrAPSR_nzcv(kPcCode), FPSCR);
4660   __ B(vs, &handle_nan_eq, /* is_far_target= */ false);  // if un-ordered, go to NaN handling.
4661 
4662   // op1 <> op2
4663   vixl32::ConditionType cond = is_min ? gt : lt;
4664   {
4665     ExactAssemblyScope it_scope(GetVIXLAssembler(),
4666                                 2 * kMaxInstructionSizeInBytes,
4667                                 CodeBufferCheckScope::kMaximumSize);
4668     __ it(cond);
4669     __ vmov(cond, F64, out, op2);
4670   }
4671   // for <>(not equal), we've done min/max calculation.
4672   __ B(ne, final_label, /* is_far_target= */ false);
4673 
4674   // handle op1 == op2, max(+0.0,-0.0).
4675   if (!is_min) {
4676     __ Vand(F64, out, op1, op2);
4677     __ B(final_label);
4678   }
4679 
4680   // handle op1 == op2, min(+0.0,-0.0), NaN input.
4681   __ Bind(&handle_nan_eq);
4682   __ Vorr(F64, out, op1, op2);  // assemble op1/-0.0/NaN.
4683 
4684   if (done.IsReferenced()) {
4685     __ Bind(&done);
4686   }
4687 }
4688 
GenerateMinMax(HBinaryOperation * minmax,bool is_min)4689 void InstructionCodeGeneratorARMVIXL::GenerateMinMax(HBinaryOperation* minmax, bool is_min) {
4690   DataType::Type type = minmax->GetResultType();
4691   switch (type) {
4692     case DataType::Type::kInt32:
4693       GenerateMinMaxInt(minmax->GetLocations(), is_min);
4694       break;
4695     case DataType::Type::kInt64:
4696       GenerateMinMaxLong(minmax->GetLocations(), is_min);
4697       break;
4698     case DataType::Type::kFloat32:
4699       GenerateMinMaxFloat(minmax, is_min);
4700       break;
4701     case DataType::Type::kFloat64:
4702       GenerateMinMaxDouble(minmax, is_min);
4703       break;
4704     default:
4705       LOG(FATAL) << "Unexpected type for HMinMax " << type;
4706   }
4707 }
4708 
VisitMin(HMin * min)4709 void LocationsBuilderARMVIXL::VisitMin(HMin* min) {
4710   CreateMinMaxLocations(GetGraph()->GetAllocator(), min);
4711 }
4712 
VisitMin(HMin * min)4713 void InstructionCodeGeneratorARMVIXL::VisitMin(HMin* min) {
4714   GenerateMinMax(min, /*is_min*/ true);
4715 }
4716 
VisitMax(HMax * max)4717 void LocationsBuilderARMVIXL::VisitMax(HMax* max) {
4718   CreateMinMaxLocations(GetGraph()->GetAllocator(), max);
4719 }
4720 
VisitMax(HMax * max)4721 void InstructionCodeGeneratorARMVIXL::VisitMax(HMax* max) {
4722   GenerateMinMax(max, /*is_min*/ false);
4723 }
4724 
VisitAbs(HAbs * abs)4725 void LocationsBuilderARMVIXL::VisitAbs(HAbs* abs) {
4726   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(abs);
4727   switch (abs->GetResultType()) {
4728     case DataType::Type::kInt32:
4729     case DataType::Type::kInt64:
4730       locations->SetInAt(0, Location::RequiresRegister());
4731       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
4732       locations->AddTemp(Location::RequiresRegister());
4733       break;
4734     case DataType::Type::kFloat32:
4735     case DataType::Type::kFloat64:
4736       locations->SetInAt(0, Location::RequiresFpuRegister());
4737       locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
4738       break;
4739     default:
4740       LOG(FATAL) << "Unexpected type for abs operation " << abs->GetResultType();
4741   }
4742 }
4743 
VisitAbs(HAbs * abs)4744 void InstructionCodeGeneratorARMVIXL::VisitAbs(HAbs* abs) {
4745   LocationSummary* locations = abs->GetLocations();
4746   switch (abs->GetResultType()) {
4747     case DataType::Type::kInt32: {
4748       vixl32::Register in_reg = RegisterFrom(locations->InAt(0));
4749       vixl32::Register out_reg = RegisterFrom(locations->Out());
4750       vixl32::Register mask = RegisterFrom(locations->GetTemp(0));
4751       __ Asr(mask, in_reg, 31);
4752       __ Add(out_reg, in_reg, mask);
4753       __ Eor(out_reg, out_reg, mask);
4754       break;
4755     }
4756     case DataType::Type::kInt64: {
4757       Location in = locations->InAt(0);
4758       vixl32::Register in_reg_lo = LowRegisterFrom(in);
4759       vixl32::Register in_reg_hi = HighRegisterFrom(in);
4760       Location output = locations->Out();
4761       vixl32::Register out_reg_lo = LowRegisterFrom(output);
4762       vixl32::Register out_reg_hi = HighRegisterFrom(output);
4763       DCHECK(!out_reg_lo.Is(in_reg_hi)) << "Diagonal overlap unexpected.";
4764       vixl32::Register mask = RegisterFrom(locations->GetTemp(0));
4765       __ Asr(mask, in_reg_hi, 31);
4766       __ Adds(out_reg_lo, in_reg_lo, mask);
4767       __ Adc(out_reg_hi, in_reg_hi, mask);
4768       __ Eor(out_reg_lo, out_reg_lo, mask);
4769       __ Eor(out_reg_hi, out_reg_hi, mask);
4770       break;
4771     }
4772     case DataType::Type::kFloat32:
4773     case DataType::Type::kFloat64:
4774       __ Vabs(OutputVRegister(abs), InputVRegisterAt(abs, 0));
4775       break;
4776     default:
4777       LOG(FATAL) << "Unexpected type for abs operation " << abs->GetResultType();
4778   }
4779 }
4780 
VisitDivZeroCheck(HDivZeroCheck * instruction)4781 void LocationsBuilderARMVIXL::VisitDivZeroCheck(HDivZeroCheck* instruction) {
4782   LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction);
4783   locations->SetInAt(0, Location::RegisterOrConstant(instruction->InputAt(0)));
4784 }
4785 
VisitDivZeroCheck(HDivZeroCheck * instruction)4786 void InstructionCodeGeneratorARMVIXL::VisitDivZeroCheck(HDivZeroCheck* instruction) {
4787   DivZeroCheckSlowPathARMVIXL* slow_path =
4788       new (codegen_->GetScopedAllocator()) DivZeroCheckSlowPathARMVIXL(instruction);
4789   codegen_->AddSlowPath(slow_path);
4790 
4791   LocationSummary* locations = instruction->GetLocations();
4792   Location value = locations->InAt(0);
4793 
4794   switch (instruction->GetType()) {
4795     case DataType::Type::kBool:
4796     case DataType::Type::kUint8:
4797     case DataType::Type::kInt8:
4798     case DataType::Type::kUint16:
4799     case DataType::Type::kInt16:
4800     case DataType::Type::kInt32: {
4801       if (value.IsRegister()) {
4802         __ CompareAndBranchIfZero(InputRegisterAt(instruction, 0), slow_path->GetEntryLabel());
4803       } else {
4804         DCHECK(value.IsConstant()) << value;
4805         if (Int32ConstantFrom(value) == 0) {
4806           __ B(slow_path->GetEntryLabel());
4807         }
4808       }
4809       break;
4810     }
4811     case DataType::Type::kInt64: {
4812       if (value.IsRegisterPair()) {
4813         UseScratchRegisterScope temps(GetVIXLAssembler());
4814         vixl32::Register temp = temps.Acquire();
4815         __ Orrs(temp, LowRegisterFrom(value), HighRegisterFrom(value));
4816         __ B(eq, slow_path->GetEntryLabel());
4817       } else {
4818         DCHECK(value.IsConstant()) << value;
4819         if (Int64ConstantFrom(value) == 0) {
4820           __ B(slow_path->GetEntryLabel());
4821         }
4822       }
4823       break;
4824     }
4825     default:
4826       LOG(FATAL) << "Unexpected type for HDivZeroCheck " << instruction->GetType();
4827   }
4828 }
4829 
HandleIntegerRotate(HRor * ror)4830 void InstructionCodeGeneratorARMVIXL::HandleIntegerRotate(HRor* ror) {
4831   LocationSummary* locations = ror->GetLocations();
4832   vixl32::Register in = InputRegisterAt(ror, 0);
4833   Location rhs = locations->InAt(1);
4834   vixl32::Register out = OutputRegister(ror);
4835 
4836   if (rhs.IsConstant()) {
4837     // Arm32 and Thumb2 assemblers require a rotation on the interval [1,31],
4838     // so map all rotations to a +ve. equivalent in that range.
4839     // (e.g. left *or* right by -2 bits == 30 bits in the same direction.)
4840     uint32_t rot = CodeGenerator::GetInt32ValueOf(rhs.GetConstant()) & 0x1F;
4841     if (rot) {
4842       // Rotate, mapping left rotations to right equivalents if necessary.
4843       // (e.g. left by 2 bits == right by 30.)
4844       __ Ror(out, in, rot);
4845     } else if (!out.Is(in)) {
4846       __ Mov(out, in);
4847     }
4848   } else {
4849     __ Ror(out, in, RegisterFrom(rhs));
4850   }
4851 }
4852 
4853 // Gain some speed by mapping all Long rotates onto equivalent pairs of Integer
4854 // rotates by swapping input regs (effectively rotating by the first 32-bits of
4855 // a larger rotation) or flipping direction (thus treating larger right/left
4856 // rotations as sub-word sized rotations in the other direction) as appropriate.
HandleLongRotate(HRor * ror)4857 void InstructionCodeGeneratorARMVIXL::HandleLongRotate(HRor* ror) {
4858   LocationSummary* locations = ror->GetLocations();
4859   vixl32::Register in_reg_lo = LowRegisterFrom(locations->InAt(0));
4860   vixl32::Register in_reg_hi = HighRegisterFrom(locations->InAt(0));
4861   Location rhs = locations->InAt(1);
4862   vixl32::Register out_reg_lo = LowRegisterFrom(locations->Out());
4863   vixl32::Register out_reg_hi = HighRegisterFrom(locations->Out());
4864 
4865   if (rhs.IsConstant()) {
4866     uint64_t rot = CodeGenerator::GetInt64ValueOf(rhs.GetConstant());
4867     // Map all rotations to +ve. equivalents on the interval [0,63].
4868     rot &= kMaxLongShiftDistance;
4869     // For rotates over a word in size, 'pre-rotate' by 32-bits to keep rotate
4870     // logic below to a simple pair of binary orr.
4871     // (e.g. 34 bits == in_reg swap + 2 bits right.)
4872     if (rot >= kArmBitsPerWord) {
4873       rot -= kArmBitsPerWord;
4874       std::swap(in_reg_hi, in_reg_lo);
4875     }
4876     // Rotate, or mov to out for zero or word size rotations.
4877     if (rot != 0u) {
4878       __ Lsr(out_reg_hi, in_reg_hi, Operand::From(rot));
4879       __ Orr(out_reg_hi, out_reg_hi, Operand(in_reg_lo, ShiftType::LSL, kArmBitsPerWord - rot));
4880       __ Lsr(out_reg_lo, in_reg_lo, Operand::From(rot));
4881       __ Orr(out_reg_lo, out_reg_lo, Operand(in_reg_hi, ShiftType::LSL, kArmBitsPerWord - rot));
4882     } else {
4883       __ Mov(out_reg_lo, in_reg_lo);
4884       __ Mov(out_reg_hi, in_reg_hi);
4885     }
4886   } else {
4887     vixl32::Register shift_right = RegisterFrom(locations->GetTemp(0));
4888     vixl32::Register shift_left = RegisterFrom(locations->GetTemp(1));
4889     vixl32::Label end;
4890     vixl32::Label shift_by_32_plus_shift_right;
4891     vixl32::Label* final_label = codegen_->GetFinalLabel(ror, &end);
4892 
4893     __ And(shift_right, RegisterFrom(rhs), 0x1F);
4894     __ Lsrs(shift_left, RegisterFrom(rhs), 6);
4895     __ Rsb(LeaveFlags, shift_left, shift_right, Operand::From(kArmBitsPerWord));
4896     __ B(cc, &shift_by_32_plus_shift_right, /* is_far_target= */ false);
4897 
4898     // out_reg_hi = (reg_hi << shift_left) | (reg_lo >> shift_right).
4899     // out_reg_lo = (reg_lo << shift_left) | (reg_hi >> shift_right).
4900     __ Lsl(out_reg_hi, in_reg_hi, shift_left);
4901     __ Lsr(out_reg_lo, in_reg_lo, shift_right);
4902     __ Add(out_reg_hi, out_reg_hi, out_reg_lo);
4903     __ Lsl(out_reg_lo, in_reg_lo, shift_left);
4904     __ Lsr(shift_left, in_reg_hi, shift_right);
4905     __ Add(out_reg_lo, out_reg_lo, shift_left);
4906     __ B(final_label);
4907 
4908     __ Bind(&shift_by_32_plus_shift_right);  // Shift by 32+shift_right.
4909     // out_reg_hi = (reg_hi >> shift_right) | (reg_lo << shift_left).
4910     // out_reg_lo = (reg_lo >> shift_right) | (reg_hi << shift_left).
4911     __ Lsr(out_reg_hi, in_reg_hi, shift_right);
4912     __ Lsl(out_reg_lo, in_reg_lo, shift_left);
4913     __ Add(out_reg_hi, out_reg_hi, out_reg_lo);
4914     __ Lsr(out_reg_lo, in_reg_lo, shift_right);
4915     __ Lsl(shift_right, in_reg_hi, shift_left);
4916     __ Add(out_reg_lo, out_reg_lo, shift_right);
4917 
4918     if (end.IsReferenced()) {
4919       __ Bind(&end);
4920     }
4921   }
4922 }
4923 
VisitRor(HRor * ror)4924 void LocationsBuilderARMVIXL::VisitRor(HRor* ror) {
4925   LocationSummary* locations =
4926       new (GetGraph()->GetAllocator()) LocationSummary(ror, LocationSummary::kNoCall);
4927   switch (ror->GetResultType()) {
4928     case DataType::Type::kInt32: {
4929       locations->SetInAt(0, Location::RequiresRegister());
4930       locations->SetInAt(1, Location::RegisterOrConstant(ror->InputAt(1)));
4931       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
4932       break;
4933     }
4934     case DataType::Type::kInt64: {
4935       locations->SetInAt(0, Location::RequiresRegister());
4936       if (ror->InputAt(1)->IsConstant()) {
4937         locations->SetInAt(1, Location::ConstantLocation(ror->InputAt(1)->AsConstant()));
4938       } else {
4939         locations->SetInAt(1, Location::RequiresRegister());
4940         locations->AddTemp(Location::RequiresRegister());
4941         locations->AddTemp(Location::RequiresRegister());
4942       }
4943       locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
4944       break;
4945     }
4946     default:
4947       LOG(FATAL) << "Unexpected operation type " << ror->GetResultType();
4948   }
4949 }
4950 
VisitRor(HRor * ror)4951 void InstructionCodeGeneratorARMVIXL::VisitRor(HRor* ror) {
4952   DataType::Type type = ror->GetResultType();
4953   switch (type) {
4954     case DataType::Type::kInt32: {
4955       HandleIntegerRotate(ror);
4956       break;
4957     }
4958     case DataType::Type::kInt64: {
4959       HandleLongRotate(ror);
4960       break;
4961     }
4962     default:
4963       LOG(FATAL) << "Unexpected operation type " << type;
4964       UNREACHABLE();
4965   }
4966 }
4967 
HandleShift(HBinaryOperation * op)4968 void LocationsBuilderARMVIXL::HandleShift(HBinaryOperation* op) {
4969   DCHECK(op->IsShl() || op->IsShr() || op->IsUShr());
4970 
4971   LocationSummary* locations =
4972       new (GetGraph()->GetAllocator()) LocationSummary(op, LocationSummary::kNoCall);
4973 
4974   switch (op->GetResultType()) {
4975     case DataType::Type::kInt32: {
4976       locations->SetInAt(0, Location::RequiresRegister());
4977       if (op->InputAt(1)->IsConstant()) {
4978         locations->SetInAt(1, Location::ConstantLocation(op->InputAt(1)->AsConstant()));
4979         locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
4980       } else {
4981         locations->SetInAt(1, Location::RequiresRegister());
4982         // Make the output overlap, as it will be used to hold the masked
4983         // second input.
4984         locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
4985       }
4986       break;
4987     }
4988     case DataType::Type::kInt64: {
4989       locations->SetInAt(0, Location::RequiresRegister());
4990       if (op->InputAt(1)->IsConstant()) {
4991         locations->SetInAt(1, Location::ConstantLocation(op->InputAt(1)->AsConstant()));
4992         // For simplicity, use kOutputOverlap even though we only require that low registers
4993         // don't clash with high registers which the register allocator currently guarantees.
4994         locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
4995       } else {
4996         locations->SetInAt(1, Location::RequiresRegister());
4997         locations->AddTemp(Location::RequiresRegister());
4998         locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
4999       }
5000       break;
5001     }
5002     default:
5003       LOG(FATAL) << "Unexpected operation type " << op->GetResultType();
5004   }
5005 }
5006 
HandleShift(HBinaryOperation * op)5007 void InstructionCodeGeneratorARMVIXL::HandleShift(HBinaryOperation* op) {
5008   DCHECK(op->IsShl() || op->IsShr() || op->IsUShr());
5009 
5010   LocationSummary* locations = op->GetLocations();
5011   Location out = locations->Out();
5012   Location first = locations->InAt(0);
5013   Location second = locations->InAt(1);
5014 
5015   DataType::Type type = op->GetResultType();
5016   switch (type) {
5017     case DataType::Type::kInt32: {
5018       vixl32::Register out_reg = OutputRegister(op);
5019       vixl32::Register first_reg = InputRegisterAt(op, 0);
5020       if (second.IsRegister()) {
5021         vixl32::Register second_reg = RegisterFrom(second);
5022         // ARM doesn't mask the shift count so we need to do it ourselves.
5023         __ And(out_reg, second_reg, kMaxIntShiftDistance);
5024         if (op->IsShl()) {
5025           __ Lsl(out_reg, first_reg, out_reg);
5026         } else if (op->IsShr()) {
5027           __ Asr(out_reg, first_reg, out_reg);
5028         } else {
5029           __ Lsr(out_reg, first_reg, out_reg);
5030         }
5031       } else {
5032         int32_t cst = Int32ConstantFrom(second);
5033         uint32_t shift_value = cst & kMaxIntShiftDistance;
5034         if (shift_value == 0) {  // ARM does not support shifting with 0 immediate.
5035           __ Mov(out_reg, first_reg);
5036         } else if (op->IsShl()) {
5037           __ Lsl(out_reg, first_reg, shift_value);
5038         } else if (op->IsShr()) {
5039           __ Asr(out_reg, first_reg, shift_value);
5040         } else {
5041           __ Lsr(out_reg, first_reg, shift_value);
5042         }
5043       }
5044       break;
5045     }
5046     case DataType::Type::kInt64: {
5047       vixl32::Register o_h = HighRegisterFrom(out);
5048       vixl32::Register o_l = LowRegisterFrom(out);
5049 
5050       vixl32::Register high = HighRegisterFrom(first);
5051       vixl32::Register low = LowRegisterFrom(first);
5052 
5053       if (second.IsRegister()) {
5054         vixl32::Register temp = RegisterFrom(locations->GetTemp(0));
5055 
5056         vixl32::Register second_reg = RegisterFrom(second);
5057 
5058         if (op->IsShl()) {
5059           __ And(o_l, second_reg, kMaxLongShiftDistance);
5060           // Shift the high part
5061           __ Lsl(o_h, high, o_l);
5062           // Shift the low part and `or` what overflew on the high part
5063           __ Rsb(temp, o_l, Operand::From(kArmBitsPerWord));
5064           __ Lsr(temp, low, temp);
5065           __ Orr(o_h, o_h, temp);
5066           // If the shift is > 32 bits, override the high part
5067           __ Subs(temp, o_l, Operand::From(kArmBitsPerWord));
5068           {
5069             ExactAssemblyScope guard(GetVIXLAssembler(),
5070                                      2 * vixl32::kMaxInstructionSizeInBytes,
5071                                      CodeBufferCheckScope::kMaximumSize);
5072             __ it(pl);
5073             __ lsl(pl, o_h, low, temp);
5074           }
5075           // Shift the low part
5076           __ Lsl(o_l, low, o_l);
5077         } else if (op->IsShr()) {
5078           __ And(o_h, second_reg, kMaxLongShiftDistance);
5079           // Shift the low part
5080           __ Lsr(o_l, low, o_h);
5081           // Shift the high part and `or` what underflew on the low part
5082           __ Rsb(temp, o_h, Operand::From(kArmBitsPerWord));
5083           __ Lsl(temp, high, temp);
5084           __ Orr(o_l, o_l, temp);
5085           // If the shift is > 32 bits, override the low part
5086           __ Subs(temp, o_h, Operand::From(kArmBitsPerWord));
5087           {
5088             ExactAssemblyScope guard(GetVIXLAssembler(),
5089                                      2 * vixl32::kMaxInstructionSizeInBytes,
5090                                      CodeBufferCheckScope::kMaximumSize);
5091             __ it(pl);
5092             __ asr(pl, o_l, high, temp);
5093           }
5094           // Shift the high part
5095           __ Asr(o_h, high, o_h);
5096         } else {
5097           __ And(o_h, second_reg, kMaxLongShiftDistance);
5098           // same as Shr except we use `Lsr`s and not `Asr`s
5099           __ Lsr(o_l, low, o_h);
5100           __ Rsb(temp, o_h, Operand::From(kArmBitsPerWord));
5101           __ Lsl(temp, high, temp);
5102           __ Orr(o_l, o_l, temp);
5103           __ Subs(temp, o_h, Operand::From(kArmBitsPerWord));
5104           {
5105             ExactAssemblyScope guard(GetVIXLAssembler(),
5106                                      2 * vixl32::kMaxInstructionSizeInBytes,
5107                                      CodeBufferCheckScope::kMaximumSize);
5108           __ it(pl);
5109           __ lsr(pl, o_l, high, temp);
5110           }
5111           __ Lsr(o_h, high, o_h);
5112         }
5113       } else {
5114         // Register allocator doesn't create partial overlap.
5115         DCHECK(!o_l.Is(high));
5116         DCHECK(!o_h.Is(low));
5117         int32_t cst = Int32ConstantFrom(second);
5118         uint32_t shift_value = cst & kMaxLongShiftDistance;
5119         if (shift_value > 32) {
5120           if (op->IsShl()) {
5121             __ Lsl(o_h, low, shift_value - 32);
5122             __ Mov(o_l, 0);
5123           } else if (op->IsShr()) {
5124             __ Asr(o_l, high, shift_value - 32);
5125             __ Asr(o_h, high, 31);
5126           } else {
5127             __ Lsr(o_l, high, shift_value - 32);
5128             __ Mov(o_h, 0);
5129           }
5130         } else if (shift_value == 32) {
5131           if (op->IsShl()) {
5132             __ Mov(o_h, low);
5133             __ Mov(o_l, 0);
5134           } else if (op->IsShr()) {
5135             __ Mov(o_l, high);
5136             __ Asr(o_h, high, 31);
5137           } else {
5138             __ Mov(o_l, high);
5139             __ Mov(o_h, 0);
5140           }
5141         } else if (shift_value == 1) {
5142           if (op->IsShl()) {
5143             __ Lsls(o_l, low, 1);
5144             __ Adc(o_h, high, high);
5145           } else if (op->IsShr()) {
5146             __ Asrs(o_h, high, 1);
5147             __ Rrx(o_l, low);
5148           } else {
5149             __ Lsrs(o_h, high, 1);
5150             __ Rrx(o_l, low);
5151           }
5152         } else if (shift_value == 0) {
5153           __ Mov(o_l, low);
5154           __ Mov(o_h, high);
5155         } else {
5156           DCHECK(0 < shift_value && shift_value < 32) << shift_value;
5157           if (op->IsShl()) {
5158             __ Lsl(o_h, high, shift_value);
5159             __ Orr(o_h, o_h, Operand(low, ShiftType::LSR, 32 - shift_value));
5160             __ Lsl(o_l, low, shift_value);
5161           } else if (op->IsShr()) {
5162             __ Lsr(o_l, low, shift_value);
5163             __ Orr(o_l, o_l, Operand(high, ShiftType::LSL, 32 - shift_value));
5164             __ Asr(o_h, high, shift_value);
5165           } else {
5166             __ Lsr(o_l, low, shift_value);
5167             __ Orr(o_l, o_l, Operand(high, ShiftType::LSL, 32 - shift_value));
5168             __ Lsr(o_h, high, shift_value);
5169           }
5170         }
5171       }
5172       break;
5173     }
5174     default:
5175       LOG(FATAL) << "Unexpected operation type " << type;
5176       UNREACHABLE();
5177   }
5178 }
5179 
VisitShl(HShl * shl)5180 void LocationsBuilderARMVIXL::VisitShl(HShl* shl) {
5181   HandleShift(shl);
5182 }
5183 
VisitShl(HShl * shl)5184 void InstructionCodeGeneratorARMVIXL::VisitShl(HShl* shl) {
5185   HandleShift(shl);
5186 }
5187 
VisitShr(HShr * shr)5188 void LocationsBuilderARMVIXL::VisitShr(HShr* shr) {
5189   HandleShift(shr);
5190 }
5191 
VisitShr(HShr * shr)5192 void InstructionCodeGeneratorARMVIXL::VisitShr(HShr* shr) {
5193   HandleShift(shr);
5194 }
5195 
VisitUShr(HUShr * ushr)5196 void LocationsBuilderARMVIXL::VisitUShr(HUShr* ushr) {
5197   HandleShift(ushr);
5198 }
5199 
VisitUShr(HUShr * ushr)5200 void InstructionCodeGeneratorARMVIXL::VisitUShr(HUShr* ushr) {
5201   HandleShift(ushr);
5202 }
5203 
VisitNewInstance(HNewInstance * instruction)5204 void LocationsBuilderARMVIXL::VisitNewInstance(HNewInstance* instruction) {
5205   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
5206       instruction, LocationSummary::kCallOnMainOnly);
5207   InvokeRuntimeCallingConventionARMVIXL calling_convention;
5208   locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
5209   locations->SetOut(LocationFrom(r0));
5210 }
5211 
VisitNewInstance(HNewInstance * instruction)5212 void InstructionCodeGeneratorARMVIXL::VisitNewInstance(HNewInstance* instruction) {
5213   codegen_->InvokeRuntime(instruction->GetEntrypoint(), instruction, instruction->GetDexPc());
5214   CheckEntrypointTypes<kQuickAllocObjectWithChecks, void*, mirror::Class*>();
5215   codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 11);
5216 }
5217 
VisitNewArray(HNewArray * instruction)5218 void LocationsBuilderARMVIXL::VisitNewArray(HNewArray* instruction) {
5219   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
5220       instruction, LocationSummary::kCallOnMainOnly);
5221   InvokeRuntimeCallingConventionARMVIXL calling_convention;
5222   locations->SetOut(LocationFrom(r0));
5223   locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
5224   locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1)));
5225 }
5226 
VisitNewArray(HNewArray * instruction)5227 void InstructionCodeGeneratorARMVIXL::VisitNewArray(HNewArray* instruction) {
5228   // Note: if heap poisoning is enabled, the entry point takes care of poisoning the reference.
5229   QuickEntrypointEnum entrypoint = CodeGenerator::GetArrayAllocationEntrypoint(instruction);
5230   codegen_->InvokeRuntime(entrypoint, instruction, instruction->GetDexPc());
5231   CheckEntrypointTypes<kQuickAllocArrayResolved, void*, mirror::Class*, int32_t>();
5232   DCHECK(!codegen_->IsLeafMethod());
5233   codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 12);
5234 }
5235 
VisitParameterValue(HParameterValue * instruction)5236 void LocationsBuilderARMVIXL::VisitParameterValue(HParameterValue* instruction) {
5237   LocationSummary* locations =
5238       new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
5239   Location location = parameter_visitor_.GetNextLocation(instruction->GetType());
5240   if (location.IsStackSlot()) {
5241     location = Location::StackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
5242   } else if (location.IsDoubleStackSlot()) {
5243     location = Location::DoubleStackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
5244   }
5245   locations->SetOut(location);
5246 }
5247 
VisitParameterValue(HParameterValue * instruction ATTRIBUTE_UNUSED)5248 void InstructionCodeGeneratorARMVIXL::VisitParameterValue(
5249     HParameterValue* instruction ATTRIBUTE_UNUSED) {
5250   // Nothing to do, the parameter is already at its location.
5251 }
5252 
VisitCurrentMethod(HCurrentMethod * instruction)5253 void LocationsBuilderARMVIXL::VisitCurrentMethod(HCurrentMethod* instruction) {
5254   LocationSummary* locations =
5255       new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
5256   locations->SetOut(LocationFrom(kMethodRegister));
5257 }
5258 
VisitCurrentMethod(HCurrentMethod * instruction ATTRIBUTE_UNUSED)5259 void InstructionCodeGeneratorARMVIXL::VisitCurrentMethod(
5260     HCurrentMethod* instruction ATTRIBUTE_UNUSED) {
5261   // Nothing to do, the method is already at its location.
5262 }
5263 
VisitNot(HNot * not_)5264 void LocationsBuilderARMVIXL::VisitNot(HNot* not_) {
5265   LocationSummary* locations =
5266       new (GetGraph()->GetAllocator()) LocationSummary(not_, LocationSummary::kNoCall);
5267   locations->SetInAt(0, Location::RequiresRegister());
5268   locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
5269 }
5270 
VisitNot(HNot * not_)5271 void InstructionCodeGeneratorARMVIXL::VisitNot(HNot* not_) {
5272   LocationSummary* locations = not_->GetLocations();
5273   Location out = locations->Out();
5274   Location in = locations->InAt(0);
5275   switch (not_->GetResultType()) {
5276     case DataType::Type::kInt32:
5277       __ Mvn(OutputRegister(not_), InputRegisterAt(not_, 0));
5278       break;
5279 
5280     case DataType::Type::kInt64:
5281       __ Mvn(LowRegisterFrom(out), LowRegisterFrom(in));
5282       __ Mvn(HighRegisterFrom(out), HighRegisterFrom(in));
5283       break;
5284 
5285     default:
5286       LOG(FATAL) << "Unimplemented type for not operation " << not_->GetResultType();
5287   }
5288 }
5289 
VisitBooleanNot(HBooleanNot * bool_not)5290 void LocationsBuilderARMVIXL::VisitBooleanNot(HBooleanNot* bool_not) {
5291   LocationSummary* locations =
5292       new (GetGraph()->GetAllocator()) LocationSummary(bool_not, LocationSummary::kNoCall);
5293   locations->SetInAt(0, Location::RequiresRegister());
5294   locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
5295 }
5296 
VisitBooleanNot(HBooleanNot * bool_not)5297 void InstructionCodeGeneratorARMVIXL::VisitBooleanNot(HBooleanNot* bool_not) {
5298   __ Eor(OutputRegister(bool_not), InputRegister(bool_not), 1);
5299 }
5300 
VisitCompare(HCompare * compare)5301 void LocationsBuilderARMVIXL::VisitCompare(HCompare* compare) {
5302   LocationSummary* locations =
5303       new (GetGraph()->GetAllocator()) LocationSummary(compare, LocationSummary::kNoCall);
5304   switch (compare->InputAt(0)->GetType()) {
5305     case DataType::Type::kBool:
5306     case DataType::Type::kUint8:
5307     case DataType::Type::kInt8:
5308     case DataType::Type::kUint16:
5309     case DataType::Type::kInt16:
5310     case DataType::Type::kInt32:
5311     case DataType::Type::kInt64: {
5312       locations->SetInAt(0, Location::RequiresRegister());
5313       locations->SetInAt(1, Location::RequiresRegister());
5314       // Output overlaps because it is written before doing the low comparison.
5315       locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
5316       break;
5317     }
5318     case DataType::Type::kFloat32:
5319     case DataType::Type::kFloat64: {
5320       locations->SetInAt(0, Location::RequiresFpuRegister());
5321       locations->SetInAt(1, ArithmeticZeroOrFpuRegister(compare->InputAt(1)));
5322       locations->SetOut(Location::RequiresRegister());
5323       break;
5324     }
5325     default:
5326       LOG(FATAL) << "Unexpected type for compare operation " << compare->InputAt(0)->GetType();
5327   }
5328 }
5329 
VisitCompare(HCompare * compare)5330 void InstructionCodeGeneratorARMVIXL::VisitCompare(HCompare* compare) {
5331   LocationSummary* locations = compare->GetLocations();
5332   vixl32::Register out = OutputRegister(compare);
5333   Location left = locations->InAt(0);
5334   Location right = locations->InAt(1);
5335 
5336   vixl32::Label less, greater, done;
5337   vixl32::Label* final_label = codegen_->GetFinalLabel(compare, &done);
5338   DataType::Type type = compare->InputAt(0)->GetType();
5339   vixl32::Condition less_cond = vixl32::Condition::None();
5340   switch (type) {
5341     case DataType::Type::kBool:
5342     case DataType::Type::kUint8:
5343     case DataType::Type::kInt8:
5344     case DataType::Type::kUint16:
5345     case DataType::Type::kInt16:
5346     case DataType::Type::kInt32: {
5347       // Emit move to `out` before the `Cmp`, as `Mov` might affect the status flags.
5348       __ Mov(out, 0);
5349       __ Cmp(RegisterFrom(left), RegisterFrom(right));  // Signed compare.
5350       less_cond = lt;
5351       break;
5352     }
5353     case DataType::Type::kInt64: {
5354       __ Cmp(HighRegisterFrom(left), HighRegisterFrom(right));  // Signed compare.
5355       __ B(lt, &less, /* is_far_target= */ false);
5356       __ B(gt, &greater, /* is_far_target= */ false);
5357       // Emit move to `out` before the last `Cmp`, as `Mov` might affect the status flags.
5358       __ Mov(out, 0);
5359       __ Cmp(LowRegisterFrom(left), LowRegisterFrom(right));  // Unsigned compare.
5360       less_cond = lo;
5361       break;
5362     }
5363     case DataType::Type::kFloat32:
5364     case DataType::Type::kFloat64: {
5365       __ Mov(out, 0);
5366       GenerateVcmp(compare, codegen_);
5367       // To branch on the FP compare result we transfer FPSCR to APSR (encoded as PC in VMRS).
5368       __ Vmrs(RegisterOrAPSR_nzcv(kPcCode), FPSCR);
5369       less_cond = ARMFPCondition(kCondLT, compare->IsGtBias());
5370       break;
5371     }
5372     default:
5373       LOG(FATAL) << "Unexpected compare type " << type;
5374       UNREACHABLE();
5375   }
5376 
5377   __ B(eq, final_label, /* is_far_target= */ false);
5378   __ B(less_cond, &less, /* is_far_target= */ false);
5379 
5380   __ Bind(&greater);
5381   __ Mov(out, 1);
5382   __ B(final_label);
5383 
5384   __ Bind(&less);
5385   __ Mov(out, -1);
5386 
5387   if (done.IsReferenced()) {
5388     __ Bind(&done);
5389   }
5390 }
5391 
VisitPhi(HPhi * instruction)5392 void LocationsBuilderARMVIXL::VisitPhi(HPhi* instruction) {
5393   LocationSummary* locations =
5394       new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
5395   for (size_t i = 0, e = locations->GetInputCount(); i < e; ++i) {
5396     locations->SetInAt(i, Location::Any());
5397   }
5398   locations->SetOut(Location::Any());
5399 }
5400 
VisitPhi(HPhi * instruction ATTRIBUTE_UNUSED)5401 void InstructionCodeGeneratorARMVIXL::VisitPhi(HPhi* instruction ATTRIBUTE_UNUSED) {
5402   LOG(FATAL) << "Unreachable";
5403 }
5404 
GenerateMemoryBarrier(MemBarrierKind kind)5405 void CodeGeneratorARMVIXL::GenerateMemoryBarrier(MemBarrierKind kind) {
5406   // TODO (ported from quick): revisit ARM barrier kinds.
5407   DmbOptions flavor = DmbOptions::ISH;  // Quiet C++ warnings.
5408   switch (kind) {
5409     case MemBarrierKind::kAnyStore:
5410     case MemBarrierKind::kLoadAny:
5411     case MemBarrierKind::kAnyAny: {
5412       flavor = DmbOptions::ISH;
5413       break;
5414     }
5415     case MemBarrierKind::kStoreStore: {
5416       flavor = DmbOptions::ISHST;
5417       break;
5418     }
5419     default:
5420       LOG(FATAL) << "Unexpected memory barrier " << kind;
5421   }
5422   __ Dmb(flavor);
5423 }
5424 
GenerateWideAtomicLoad(vixl32::Register addr,uint32_t offset,vixl32::Register out_lo,vixl32::Register out_hi)5425 void InstructionCodeGeneratorARMVIXL::GenerateWideAtomicLoad(vixl32::Register addr,
5426                                                              uint32_t offset,
5427                                                              vixl32::Register out_lo,
5428                                                              vixl32::Register out_hi) {
5429   UseScratchRegisterScope temps(GetVIXLAssembler());
5430   if (offset != 0) {
5431     vixl32::Register temp = temps.Acquire();
5432     __ Add(temp, addr, offset);
5433     addr = temp;
5434   }
5435   __ Ldrexd(out_lo, out_hi, MemOperand(addr));
5436 }
5437 
GenerateWideAtomicStore(vixl32::Register addr,uint32_t offset,vixl32::Register value_lo,vixl32::Register value_hi,vixl32::Register temp1,vixl32::Register temp2,HInstruction * instruction)5438 void InstructionCodeGeneratorARMVIXL::GenerateWideAtomicStore(vixl32::Register addr,
5439                                                               uint32_t offset,
5440                                                               vixl32::Register value_lo,
5441                                                               vixl32::Register value_hi,
5442                                                               vixl32::Register temp1,
5443                                                               vixl32::Register temp2,
5444                                                               HInstruction* instruction) {
5445   UseScratchRegisterScope temps(GetVIXLAssembler());
5446   vixl32::Label fail;
5447   if (offset != 0) {
5448     vixl32::Register temp = temps.Acquire();
5449     __ Add(temp, addr, offset);
5450     addr = temp;
5451   }
5452   __ Bind(&fail);
5453   {
5454     // Ensure the pc position is recorded immediately after the `ldrexd` instruction.
5455     ExactAssemblyScope aas(GetVIXLAssembler(),
5456                            vixl32::kMaxInstructionSizeInBytes,
5457                            CodeBufferCheckScope::kMaximumSize);
5458     // We need a load followed by store. (The address used in a STREX instruction must
5459     // be the same as the address in the most recently executed LDREX instruction.)
5460     __ ldrexd(temp1, temp2, MemOperand(addr));
5461     codegen_->MaybeRecordImplicitNullCheck(instruction);
5462   }
5463   __ Strexd(temp1, value_lo, value_hi, MemOperand(addr));
5464   __ CompareAndBranchIfNonZero(temp1, &fail);
5465 }
5466 
HandleFieldSet(HInstruction * instruction,const FieldInfo & field_info)5467 void LocationsBuilderARMVIXL::HandleFieldSet(
5468     HInstruction* instruction, const FieldInfo& field_info) {
5469   DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet());
5470 
5471   LocationSummary* locations =
5472       new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
5473   locations->SetInAt(0, Location::RequiresRegister());
5474 
5475   DataType::Type field_type = field_info.GetFieldType();
5476   if (DataType::IsFloatingPointType(field_type)) {
5477     locations->SetInAt(1, Location::RequiresFpuRegister());
5478   } else {
5479     locations->SetInAt(1, Location::RequiresRegister());
5480   }
5481 
5482   bool is_wide = field_type == DataType::Type::kInt64 || field_type == DataType::Type::kFloat64;
5483   bool generate_volatile = field_info.IsVolatile()
5484       && is_wide
5485       && !codegen_->GetInstructionSetFeatures().HasAtomicLdrdAndStrd();
5486   bool needs_write_barrier =
5487       CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1));
5488   // Temporary registers for the write barrier.
5489   // TODO: consider renaming StoreNeedsWriteBarrier to StoreNeedsGCMark.
5490   if (needs_write_barrier) {
5491     locations->AddTemp(Location::RequiresRegister());  // Possibly used for reference poisoning too.
5492     locations->AddTemp(Location::RequiresRegister());
5493   } else if (generate_volatile) {
5494     // ARM encoding have some additional constraints for ldrexd/strexd:
5495     // - registers need to be consecutive
5496     // - the first register should be even but not R14.
5497     // We don't test for ARM yet, and the assertion makes sure that we
5498     // revisit this if we ever enable ARM encoding.
5499     DCHECK_EQ(InstructionSet::kThumb2, codegen_->GetInstructionSet());
5500 
5501     locations->AddTemp(Location::RequiresRegister());
5502     locations->AddTemp(Location::RequiresRegister());
5503     if (field_type == DataType::Type::kFloat64) {
5504       // For doubles we need two more registers to copy the value.
5505       locations->AddTemp(LocationFrom(r2));
5506       locations->AddTemp(LocationFrom(r3));
5507     }
5508   }
5509 }
5510 
HandleFieldSet(HInstruction * instruction,const FieldInfo & field_info,bool value_can_be_null)5511 void InstructionCodeGeneratorARMVIXL::HandleFieldSet(HInstruction* instruction,
5512                                                      const FieldInfo& field_info,
5513                                                      bool value_can_be_null) {
5514   DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet());
5515 
5516   LocationSummary* locations = instruction->GetLocations();
5517   vixl32::Register base = InputRegisterAt(instruction, 0);
5518   Location value = locations->InAt(1);
5519 
5520   bool is_volatile = field_info.IsVolatile();
5521   bool atomic_ldrd_strd = codegen_->GetInstructionSetFeatures().HasAtomicLdrdAndStrd();
5522   DataType::Type field_type = field_info.GetFieldType();
5523   uint32_t offset = field_info.GetFieldOffset().Uint32Value();
5524   bool needs_write_barrier =
5525       CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1));
5526 
5527   if (is_volatile) {
5528     codegen_->GenerateMemoryBarrier(MemBarrierKind::kAnyStore);
5529   }
5530 
5531   switch (field_type) {
5532     case DataType::Type::kBool:
5533     case DataType::Type::kUint8:
5534     case DataType::Type::kInt8:
5535     case DataType::Type::kUint16:
5536     case DataType::Type::kInt16:
5537     case DataType::Type::kInt32: {
5538       // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted.
5539       EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
5540       StoreOperandType operand_type = GetStoreOperandType(field_type);
5541       GetAssembler()->StoreToOffset(operand_type, RegisterFrom(value), base, offset);
5542       codegen_->MaybeRecordImplicitNullCheck(instruction);
5543       break;
5544     }
5545 
5546     case DataType::Type::kReference: {
5547       vixl32::Register value_reg = RegisterFrom(value);
5548       if (kPoisonHeapReferences && needs_write_barrier) {
5549         // Note that in the case where `value` is a null reference,
5550         // we do not enter this block, as a null reference does not
5551         // need poisoning.
5552         DCHECK_EQ(field_type, DataType::Type::kReference);
5553         value_reg = RegisterFrom(locations->GetTemp(0));
5554         __ Mov(value_reg, RegisterFrom(value));
5555         GetAssembler()->PoisonHeapReference(value_reg);
5556       }
5557       // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted.
5558       EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
5559       GetAssembler()->StoreToOffset(kStoreWord, value_reg, base, offset);
5560       codegen_->MaybeRecordImplicitNullCheck(instruction);
5561       break;
5562     }
5563 
5564     case DataType::Type::kInt64: {
5565       if (is_volatile && !atomic_ldrd_strd) {
5566         GenerateWideAtomicStore(base,
5567                                 offset,
5568                                 LowRegisterFrom(value),
5569                                 HighRegisterFrom(value),
5570                                 RegisterFrom(locations->GetTemp(0)),
5571                                 RegisterFrom(locations->GetTemp(1)),
5572                                 instruction);
5573       } else {
5574         // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted.
5575         EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
5576         GetAssembler()->StoreToOffset(kStoreWordPair, LowRegisterFrom(value), base, offset);
5577         codegen_->MaybeRecordImplicitNullCheck(instruction);
5578       }
5579       break;
5580     }
5581 
5582     case DataType::Type::kFloat32: {
5583       // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted.
5584       EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
5585       GetAssembler()->StoreSToOffset(SRegisterFrom(value), base, offset);
5586       codegen_->MaybeRecordImplicitNullCheck(instruction);
5587       break;
5588     }
5589 
5590     case DataType::Type::kFloat64: {
5591       vixl32::DRegister value_reg = DRegisterFrom(value);
5592       if (is_volatile && !atomic_ldrd_strd) {
5593         vixl32::Register value_reg_lo = RegisterFrom(locations->GetTemp(0));
5594         vixl32::Register value_reg_hi = RegisterFrom(locations->GetTemp(1));
5595 
5596         __ Vmov(value_reg_lo, value_reg_hi, value_reg);
5597 
5598         GenerateWideAtomicStore(base,
5599                                 offset,
5600                                 value_reg_lo,
5601                                 value_reg_hi,
5602                                 RegisterFrom(locations->GetTemp(2)),
5603                                 RegisterFrom(locations->GetTemp(3)),
5604                                 instruction);
5605       } else {
5606         // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted.
5607         EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
5608         GetAssembler()->StoreDToOffset(value_reg, base, offset);
5609         codegen_->MaybeRecordImplicitNullCheck(instruction);
5610       }
5611       break;
5612     }
5613 
5614     case DataType::Type::kUint32:
5615     case DataType::Type::kUint64:
5616     case DataType::Type::kVoid:
5617       LOG(FATAL) << "Unreachable type " << field_type;
5618       UNREACHABLE();
5619   }
5620 
5621   if (CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1))) {
5622     vixl32::Register temp = RegisterFrom(locations->GetTemp(0));
5623     vixl32::Register card = RegisterFrom(locations->GetTemp(1));
5624     codegen_->MarkGCCard(temp, card, base, RegisterFrom(value), value_can_be_null);
5625   }
5626 
5627   if (is_volatile) {
5628     codegen_->GenerateMemoryBarrier(MemBarrierKind::kAnyAny);
5629   }
5630 }
5631 
HandleFieldGet(HInstruction * instruction,const FieldInfo & field_info)5632 void LocationsBuilderARMVIXL::HandleFieldGet(HInstruction* instruction,
5633                                              const FieldInfo& field_info) {
5634   DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet());
5635 
5636   bool object_field_get_with_read_barrier =
5637       kEmitCompilerReadBarrier && (field_info.GetFieldType() == DataType::Type::kReference);
5638   LocationSummary* locations =
5639       new (GetGraph()->GetAllocator()) LocationSummary(instruction,
5640                                                        object_field_get_with_read_barrier
5641                                                            ? LocationSummary::kCallOnSlowPath
5642                                                            : LocationSummary::kNoCall);
5643   if (object_field_get_with_read_barrier && kUseBakerReadBarrier) {
5644     locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty());  // No caller-save registers.
5645   }
5646   locations->SetInAt(0, Location::RequiresRegister());
5647 
5648   bool volatile_for_double = field_info.IsVolatile()
5649       && (field_info.GetFieldType() == DataType::Type::kFloat64)
5650       && !codegen_->GetInstructionSetFeatures().HasAtomicLdrdAndStrd();
5651   // The output overlaps in case of volatile long: we don't want the
5652   // code generated by GenerateWideAtomicLoad to overwrite the
5653   // object's location.  Likewise, in the case of an object field get
5654   // with read barriers enabled, we do not want the load to overwrite
5655   // the object's location, as we need it to emit the read barrier.
5656   bool overlap =
5657       (field_info.IsVolatile() && (field_info.GetFieldType() == DataType::Type::kInt64)) ||
5658       object_field_get_with_read_barrier;
5659 
5660   if (DataType::IsFloatingPointType(instruction->GetType())) {
5661     locations->SetOut(Location::RequiresFpuRegister());
5662   } else {
5663     locations->SetOut(Location::RequiresRegister(),
5664                       (overlap ? Location::kOutputOverlap : Location::kNoOutputOverlap));
5665   }
5666   if (volatile_for_double) {
5667     // ARM encoding have some additional constraints for ldrexd/strexd:
5668     // - registers need to be consecutive
5669     // - the first register should be even but not R14.
5670     // We don't test for ARM yet, and the assertion makes sure that we
5671     // revisit this if we ever enable ARM encoding.
5672     DCHECK_EQ(InstructionSet::kThumb2, codegen_->GetInstructionSet());
5673     locations->AddTemp(Location::RequiresRegister());
5674     locations->AddTemp(Location::RequiresRegister());
5675   } else if (object_field_get_with_read_barrier && kUseBakerReadBarrier) {
5676     // We need a temporary register for the read barrier load in
5677     // CodeGeneratorARMVIXL::GenerateFieldLoadWithBakerReadBarrier()
5678     // only if the offset is too big.
5679     if (field_info.GetFieldOffset().Uint32Value() >= kReferenceLoadMinFarOffset) {
5680       locations->AddTemp(Location::RequiresRegister());
5681     }
5682   }
5683 }
5684 
ArithmeticZeroOrFpuRegister(HInstruction * input)5685 Location LocationsBuilderARMVIXL::ArithmeticZeroOrFpuRegister(HInstruction* input) {
5686   DCHECK(DataType::IsFloatingPointType(input->GetType())) << input->GetType();
5687   if ((input->IsFloatConstant() && (input->AsFloatConstant()->IsArithmeticZero())) ||
5688       (input->IsDoubleConstant() && (input->AsDoubleConstant()->IsArithmeticZero()))) {
5689     return Location::ConstantLocation(input->AsConstant());
5690   } else {
5691     return Location::RequiresFpuRegister();
5692   }
5693 }
5694 
ArmEncodableConstantOrRegister(HInstruction * constant,Opcode opcode)5695 Location LocationsBuilderARMVIXL::ArmEncodableConstantOrRegister(HInstruction* constant,
5696                                                                  Opcode opcode) {
5697   DCHECK(!DataType::IsFloatingPointType(constant->GetType()));
5698   if (constant->IsConstant() &&
5699       CanEncodeConstantAsImmediate(constant->AsConstant(), opcode)) {
5700     return Location::ConstantLocation(constant->AsConstant());
5701   }
5702   return Location::RequiresRegister();
5703 }
5704 
CanEncode32BitConstantAsImmediate(CodeGeneratorARMVIXL * codegen,uint32_t value,Opcode opcode,vixl32::FlagsUpdate flags_update=vixl32::FlagsUpdate::DontCare)5705 static bool CanEncode32BitConstantAsImmediate(
5706     CodeGeneratorARMVIXL* codegen,
5707     uint32_t value,
5708     Opcode opcode,
5709     vixl32::FlagsUpdate flags_update = vixl32::FlagsUpdate::DontCare) {
5710   ArmVIXLAssembler* assembler = codegen->GetAssembler();
5711   if (assembler->ShifterOperandCanHold(opcode, value, flags_update)) {
5712     return true;
5713   }
5714   Opcode neg_opcode = kNoOperand;
5715   uint32_t neg_value = 0;
5716   switch (opcode) {
5717     case AND: neg_opcode = BIC; neg_value = ~value; break;
5718     case ORR: neg_opcode = ORN; neg_value = ~value; break;
5719     case ADD: neg_opcode = SUB; neg_value = -value; break;
5720     case ADC: neg_opcode = SBC; neg_value = ~value; break;
5721     case SUB: neg_opcode = ADD; neg_value = -value; break;
5722     case SBC: neg_opcode = ADC; neg_value = ~value; break;
5723     case MOV: neg_opcode = MVN; neg_value = ~value; break;
5724     default:
5725       return false;
5726   }
5727 
5728   if (assembler->ShifterOperandCanHold(neg_opcode, neg_value, flags_update)) {
5729     return true;
5730   }
5731 
5732   return opcode == AND && IsPowerOfTwo(value + 1);
5733 }
5734 
CanEncodeConstantAsImmediate(HConstant * input_cst,Opcode opcode)5735 bool LocationsBuilderARMVIXL::CanEncodeConstantAsImmediate(HConstant* input_cst, Opcode opcode) {
5736   uint64_t value = static_cast<uint64_t>(Int64FromConstant(input_cst));
5737   if (DataType::Is64BitType(input_cst->GetType())) {
5738     Opcode high_opcode = opcode;
5739     vixl32::FlagsUpdate low_flags_update = vixl32::FlagsUpdate::DontCare;
5740     switch (opcode) {
5741       case SUB:
5742         // Flip the operation to an ADD.
5743         value = -value;
5744         opcode = ADD;
5745         FALLTHROUGH_INTENDED;
5746       case ADD:
5747         if (Low32Bits(value) == 0u) {
5748           return CanEncode32BitConstantAsImmediate(codegen_, High32Bits(value), opcode);
5749         }
5750         high_opcode = ADC;
5751         low_flags_update = vixl32::FlagsUpdate::SetFlags;
5752         break;
5753       default:
5754         break;
5755     }
5756     return CanEncode32BitConstantAsImmediate(codegen_, High32Bits(value), high_opcode) &&
5757            CanEncode32BitConstantAsImmediate(codegen_, Low32Bits(value), opcode, low_flags_update);
5758   } else {
5759     return CanEncode32BitConstantAsImmediate(codegen_, Low32Bits(value), opcode);
5760   }
5761 }
5762 
HandleFieldGet(HInstruction * instruction,const FieldInfo & field_info)5763 void InstructionCodeGeneratorARMVIXL::HandleFieldGet(HInstruction* instruction,
5764                                                      const FieldInfo& field_info) {
5765   DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet());
5766 
5767   LocationSummary* locations = instruction->GetLocations();
5768   vixl32::Register base = InputRegisterAt(instruction, 0);
5769   Location out = locations->Out();
5770   bool is_volatile = field_info.IsVolatile();
5771   bool atomic_ldrd_strd = codegen_->GetInstructionSetFeatures().HasAtomicLdrdAndStrd();
5772   DCHECK_EQ(DataType::Size(field_info.GetFieldType()), DataType::Size(instruction->GetType()));
5773   DataType::Type load_type = instruction->GetType();
5774   uint32_t offset = field_info.GetFieldOffset().Uint32Value();
5775 
5776   switch (load_type) {
5777     case DataType::Type::kBool:
5778     case DataType::Type::kUint8:
5779     case DataType::Type::kInt8:
5780     case DataType::Type::kUint16:
5781     case DataType::Type::kInt16:
5782     case DataType::Type::kInt32: {
5783       // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
5784       EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
5785       LoadOperandType operand_type = GetLoadOperandType(load_type);
5786       GetAssembler()->LoadFromOffset(operand_type, RegisterFrom(out), base, offset);
5787       codegen_->MaybeRecordImplicitNullCheck(instruction);
5788       break;
5789     }
5790 
5791     case DataType::Type::kReference: {
5792       // /* HeapReference<Object> */ out = *(base + offset)
5793       if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
5794         Location maybe_temp = (locations->GetTempCount() != 0) ? locations->GetTemp(0) : Location();
5795         // Note that a potential implicit null check is handled in this
5796         // CodeGeneratorARMVIXL::GenerateFieldLoadWithBakerReadBarrier call.
5797         codegen_->GenerateFieldLoadWithBakerReadBarrier(
5798             instruction, out, base, offset, maybe_temp, /* needs_null_check= */ true);
5799         if (is_volatile) {
5800           codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
5801         }
5802       } else {
5803         {
5804           // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
5805           EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
5806           GetAssembler()->LoadFromOffset(kLoadWord, RegisterFrom(out), base, offset);
5807           codegen_->MaybeRecordImplicitNullCheck(instruction);
5808         }
5809         if (is_volatile) {
5810           codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
5811         }
5812         // If read barriers are enabled, emit read barriers other than
5813         // Baker's using a slow path (and also unpoison the loaded
5814         // reference, if heap poisoning is enabled).
5815         codegen_->MaybeGenerateReadBarrierSlow(instruction, out, out, locations->InAt(0), offset);
5816       }
5817       break;
5818     }
5819 
5820     case DataType::Type::kInt64: {
5821       // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
5822       EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
5823       if (is_volatile && !atomic_ldrd_strd) {
5824         GenerateWideAtomicLoad(base, offset, LowRegisterFrom(out), HighRegisterFrom(out));
5825       } else {
5826         GetAssembler()->LoadFromOffset(kLoadWordPair, LowRegisterFrom(out), base, offset);
5827       }
5828       codegen_->MaybeRecordImplicitNullCheck(instruction);
5829       break;
5830     }
5831 
5832     case DataType::Type::kFloat32: {
5833       // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
5834       EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
5835       GetAssembler()->LoadSFromOffset(SRegisterFrom(out), base, offset);
5836       codegen_->MaybeRecordImplicitNullCheck(instruction);
5837       break;
5838     }
5839 
5840     case DataType::Type::kFloat64: {
5841       // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
5842       EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
5843       vixl32::DRegister out_dreg = DRegisterFrom(out);
5844       if (is_volatile && !atomic_ldrd_strd) {
5845         vixl32::Register lo = RegisterFrom(locations->GetTemp(0));
5846         vixl32::Register hi = RegisterFrom(locations->GetTemp(1));
5847         GenerateWideAtomicLoad(base, offset, lo, hi);
5848         codegen_->MaybeRecordImplicitNullCheck(instruction);
5849         __ Vmov(out_dreg, lo, hi);
5850       } else {
5851         GetAssembler()->LoadDFromOffset(out_dreg, base, offset);
5852         codegen_->MaybeRecordImplicitNullCheck(instruction);
5853       }
5854       break;
5855     }
5856 
5857     case DataType::Type::kUint32:
5858     case DataType::Type::kUint64:
5859     case DataType::Type::kVoid:
5860       LOG(FATAL) << "Unreachable type " << load_type;
5861       UNREACHABLE();
5862   }
5863 
5864   if (is_volatile) {
5865     if (load_type == DataType::Type::kReference) {
5866       // Memory barriers, in the case of references, are also handled
5867       // in the previous switch statement.
5868     } else {
5869       codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
5870     }
5871   }
5872 }
5873 
VisitInstanceFieldSet(HInstanceFieldSet * instruction)5874 void LocationsBuilderARMVIXL::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
5875   HandleFieldSet(instruction, instruction->GetFieldInfo());
5876 }
5877 
VisitInstanceFieldSet(HInstanceFieldSet * instruction)5878 void InstructionCodeGeneratorARMVIXL::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
5879   HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull());
5880 }
5881 
VisitInstanceFieldGet(HInstanceFieldGet * instruction)5882 void LocationsBuilderARMVIXL::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
5883   HandleFieldGet(instruction, instruction->GetFieldInfo());
5884 }
5885 
VisitInstanceFieldGet(HInstanceFieldGet * instruction)5886 void InstructionCodeGeneratorARMVIXL::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
5887   HandleFieldGet(instruction, instruction->GetFieldInfo());
5888 }
5889 
VisitStaticFieldGet(HStaticFieldGet * instruction)5890 void LocationsBuilderARMVIXL::VisitStaticFieldGet(HStaticFieldGet* instruction) {
5891   HandleFieldGet(instruction, instruction->GetFieldInfo());
5892 }
5893 
VisitStaticFieldGet(HStaticFieldGet * instruction)5894 void InstructionCodeGeneratorARMVIXL::VisitStaticFieldGet(HStaticFieldGet* instruction) {
5895   HandleFieldGet(instruction, instruction->GetFieldInfo());
5896 }
5897 
VisitStaticFieldSet(HStaticFieldSet * instruction)5898 void LocationsBuilderARMVIXL::VisitStaticFieldSet(HStaticFieldSet* instruction) {
5899   HandleFieldSet(instruction, instruction->GetFieldInfo());
5900 }
5901 
VisitStaticFieldSet(HStaticFieldSet * instruction)5902 void InstructionCodeGeneratorARMVIXL::VisitStaticFieldSet(HStaticFieldSet* instruction) {
5903   HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull());
5904 }
5905 
VisitStringBuilderAppend(HStringBuilderAppend * instruction)5906 void LocationsBuilderARMVIXL::VisitStringBuilderAppend(HStringBuilderAppend* instruction) {
5907   codegen_->CreateStringBuilderAppendLocations(instruction, LocationFrom(r0));
5908 }
5909 
VisitStringBuilderAppend(HStringBuilderAppend * instruction)5910 void InstructionCodeGeneratorARMVIXL::VisitStringBuilderAppend(HStringBuilderAppend* instruction) {
5911   __ Mov(r0, instruction->GetFormat()->GetValue());
5912   codegen_->InvokeRuntime(kQuickStringBuilderAppend, instruction, instruction->GetDexPc());
5913 }
5914 
VisitUnresolvedInstanceFieldGet(HUnresolvedInstanceFieldGet * instruction)5915 void LocationsBuilderARMVIXL::VisitUnresolvedInstanceFieldGet(
5916     HUnresolvedInstanceFieldGet* instruction) {
5917   FieldAccessCallingConventionARMVIXL calling_convention;
5918   codegen_->CreateUnresolvedFieldLocationSummary(
5919       instruction, instruction->GetFieldType(), calling_convention);
5920 }
5921 
VisitUnresolvedInstanceFieldGet(HUnresolvedInstanceFieldGet * instruction)5922 void InstructionCodeGeneratorARMVIXL::VisitUnresolvedInstanceFieldGet(
5923     HUnresolvedInstanceFieldGet* instruction) {
5924   FieldAccessCallingConventionARMVIXL calling_convention;
5925   codegen_->GenerateUnresolvedFieldAccess(instruction,
5926                                           instruction->GetFieldType(),
5927                                           instruction->GetFieldIndex(),
5928                                           instruction->GetDexPc(),
5929                                           calling_convention);
5930 }
5931 
VisitUnresolvedInstanceFieldSet(HUnresolvedInstanceFieldSet * instruction)5932 void LocationsBuilderARMVIXL::VisitUnresolvedInstanceFieldSet(
5933     HUnresolvedInstanceFieldSet* instruction) {
5934   FieldAccessCallingConventionARMVIXL calling_convention;
5935   codegen_->CreateUnresolvedFieldLocationSummary(
5936       instruction, instruction->GetFieldType(), calling_convention);
5937 }
5938 
VisitUnresolvedInstanceFieldSet(HUnresolvedInstanceFieldSet * instruction)5939 void InstructionCodeGeneratorARMVIXL::VisitUnresolvedInstanceFieldSet(
5940     HUnresolvedInstanceFieldSet* instruction) {
5941   FieldAccessCallingConventionARMVIXL calling_convention;
5942   codegen_->GenerateUnresolvedFieldAccess(instruction,
5943                                           instruction->GetFieldType(),
5944                                           instruction->GetFieldIndex(),
5945                                           instruction->GetDexPc(),
5946                                           calling_convention);
5947 }
5948 
VisitUnresolvedStaticFieldGet(HUnresolvedStaticFieldGet * instruction)5949 void LocationsBuilderARMVIXL::VisitUnresolvedStaticFieldGet(
5950     HUnresolvedStaticFieldGet* instruction) {
5951   FieldAccessCallingConventionARMVIXL calling_convention;
5952   codegen_->CreateUnresolvedFieldLocationSummary(
5953       instruction, instruction->GetFieldType(), calling_convention);
5954 }
5955 
VisitUnresolvedStaticFieldGet(HUnresolvedStaticFieldGet * instruction)5956 void InstructionCodeGeneratorARMVIXL::VisitUnresolvedStaticFieldGet(
5957     HUnresolvedStaticFieldGet* instruction) {
5958   FieldAccessCallingConventionARMVIXL calling_convention;
5959   codegen_->GenerateUnresolvedFieldAccess(instruction,
5960                                           instruction->GetFieldType(),
5961                                           instruction->GetFieldIndex(),
5962                                           instruction->GetDexPc(),
5963                                           calling_convention);
5964 }
5965 
VisitUnresolvedStaticFieldSet(HUnresolvedStaticFieldSet * instruction)5966 void LocationsBuilderARMVIXL::VisitUnresolvedStaticFieldSet(
5967     HUnresolvedStaticFieldSet* instruction) {
5968   FieldAccessCallingConventionARMVIXL calling_convention;
5969   codegen_->CreateUnresolvedFieldLocationSummary(
5970       instruction, instruction->GetFieldType(), calling_convention);
5971 }
5972 
VisitUnresolvedStaticFieldSet(HUnresolvedStaticFieldSet * instruction)5973 void InstructionCodeGeneratorARMVIXL::VisitUnresolvedStaticFieldSet(
5974     HUnresolvedStaticFieldSet* instruction) {
5975   FieldAccessCallingConventionARMVIXL calling_convention;
5976   codegen_->GenerateUnresolvedFieldAccess(instruction,
5977                                           instruction->GetFieldType(),
5978                                           instruction->GetFieldIndex(),
5979                                           instruction->GetDexPc(),
5980                                           calling_convention);
5981 }
5982 
VisitNullCheck(HNullCheck * instruction)5983 void LocationsBuilderARMVIXL::VisitNullCheck(HNullCheck* instruction) {
5984   LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction);
5985   locations->SetInAt(0, Location::RequiresRegister());
5986 }
5987 
GenerateImplicitNullCheck(HNullCheck * instruction)5988 void CodeGeneratorARMVIXL::GenerateImplicitNullCheck(HNullCheck* instruction) {
5989   if (CanMoveNullCheckToUser(instruction)) {
5990     return;
5991   }
5992 
5993   UseScratchRegisterScope temps(GetVIXLAssembler());
5994   // Ensure the pc position is recorded immediately after the `ldr` instruction.
5995   ExactAssemblyScope aas(GetVIXLAssembler(),
5996                          vixl32::kMaxInstructionSizeInBytes,
5997                          CodeBufferCheckScope::kMaximumSize);
5998   __ ldr(temps.Acquire(), MemOperand(InputRegisterAt(instruction, 0)));
5999   RecordPcInfo(instruction, instruction->GetDexPc());
6000 }
6001 
GenerateExplicitNullCheck(HNullCheck * instruction)6002 void CodeGeneratorARMVIXL::GenerateExplicitNullCheck(HNullCheck* instruction) {
6003   NullCheckSlowPathARMVIXL* slow_path =
6004       new (GetScopedAllocator()) NullCheckSlowPathARMVIXL(instruction);
6005   AddSlowPath(slow_path);
6006   __ CompareAndBranchIfZero(InputRegisterAt(instruction, 0), slow_path->GetEntryLabel());
6007 }
6008 
VisitNullCheck(HNullCheck * instruction)6009 void InstructionCodeGeneratorARMVIXL::VisitNullCheck(HNullCheck* instruction) {
6010   codegen_->GenerateNullCheck(instruction);
6011 }
6012 
LoadFromShiftedRegOffset(DataType::Type type,Location out_loc,vixl32::Register base,vixl32::Register reg_index,vixl32::Condition cond)6013 void CodeGeneratorARMVIXL::LoadFromShiftedRegOffset(DataType::Type type,
6014                                                     Location out_loc,
6015                                                     vixl32::Register base,
6016                                                     vixl32::Register reg_index,
6017                                                     vixl32::Condition cond) {
6018   uint32_t shift_count = DataType::SizeShift(type);
6019   MemOperand mem_address(base, reg_index, vixl32::LSL, shift_count);
6020 
6021   switch (type) {
6022     case DataType::Type::kBool:
6023     case DataType::Type::kUint8:
6024       __ Ldrb(cond, RegisterFrom(out_loc), mem_address);
6025       break;
6026     case DataType::Type::kInt8:
6027       __ Ldrsb(cond, RegisterFrom(out_loc), mem_address);
6028       break;
6029     case DataType::Type::kUint16:
6030       __ Ldrh(cond, RegisterFrom(out_loc), mem_address);
6031       break;
6032     case DataType::Type::kInt16:
6033       __ Ldrsh(cond, RegisterFrom(out_loc), mem_address);
6034       break;
6035     case DataType::Type::kReference:
6036     case DataType::Type::kInt32:
6037       __ Ldr(cond, RegisterFrom(out_loc), mem_address);
6038       break;
6039     // T32 doesn't support LoadFromShiftedRegOffset mem address mode for these types.
6040     case DataType::Type::kInt64:
6041     case DataType::Type::kFloat32:
6042     case DataType::Type::kFloat64:
6043     default:
6044       LOG(FATAL) << "Unreachable type " << type;
6045       UNREACHABLE();
6046   }
6047 }
6048 
StoreToShiftedRegOffset(DataType::Type type,Location loc,vixl32::Register base,vixl32::Register reg_index,vixl32::Condition cond)6049 void CodeGeneratorARMVIXL::StoreToShiftedRegOffset(DataType::Type type,
6050                                                    Location loc,
6051                                                    vixl32::Register base,
6052                                                    vixl32::Register reg_index,
6053                                                    vixl32::Condition cond) {
6054   uint32_t shift_count = DataType::SizeShift(type);
6055   MemOperand mem_address(base, reg_index, vixl32::LSL, shift_count);
6056 
6057   switch (type) {
6058     case DataType::Type::kBool:
6059     case DataType::Type::kUint8:
6060     case DataType::Type::kInt8:
6061       __ Strb(cond, RegisterFrom(loc), mem_address);
6062       break;
6063     case DataType::Type::kUint16:
6064     case DataType::Type::kInt16:
6065       __ Strh(cond, RegisterFrom(loc), mem_address);
6066       break;
6067     case DataType::Type::kReference:
6068     case DataType::Type::kInt32:
6069       __ Str(cond, RegisterFrom(loc), mem_address);
6070       break;
6071     // T32 doesn't support StoreToShiftedRegOffset mem address mode for these types.
6072     case DataType::Type::kInt64:
6073     case DataType::Type::kFloat32:
6074     case DataType::Type::kFloat64:
6075     default:
6076       LOG(FATAL) << "Unreachable type " << type;
6077       UNREACHABLE();
6078   }
6079 }
6080 
VisitArrayGet(HArrayGet * instruction)6081 void LocationsBuilderARMVIXL::VisitArrayGet(HArrayGet* instruction) {
6082   bool object_array_get_with_read_barrier =
6083       kEmitCompilerReadBarrier && (instruction->GetType() == DataType::Type::kReference);
6084   LocationSummary* locations =
6085       new (GetGraph()->GetAllocator()) LocationSummary(instruction,
6086                                                        object_array_get_with_read_barrier
6087                                                            ? LocationSummary::kCallOnSlowPath
6088                                                            : LocationSummary::kNoCall);
6089   if (object_array_get_with_read_barrier && kUseBakerReadBarrier) {
6090     locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty());  // No caller-save registers.
6091   }
6092   locations->SetInAt(0, Location::RequiresRegister());
6093   locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
6094   if (DataType::IsFloatingPointType(instruction->GetType())) {
6095     locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
6096   } else {
6097     // The output overlaps in the case of an object array get with
6098     // read barriers enabled: we do not want the move to overwrite the
6099     // array's location, as we need it to emit the read barrier.
6100     locations->SetOut(
6101         Location::RequiresRegister(),
6102         object_array_get_with_read_barrier ? Location::kOutputOverlap : Location::kNoOutputOverlap);
6103   }
6104   if (object_array_get_with_read_barrier && kUseBakerReadBarrier) {
6105     if (instruction->GetIndex()->IsConstant()) {
6106       // Array loads with constant index are treated as field loads.
6107       // We need a temporary register for the read barrier load in
6108       // CodeGeneratorARMVIXL::GenerateFieldLoadWithBakerReadBarrier()
6109       // only if the offset is too big.
6110       uint32_t offset = CodeGenerator::GetArrayDataOffset(instruction);
6111       uint32_t index = instruction->GetIndex()->AsIntConstant()->GetValue();
6112       offset += index << DataType::SizeShift(DataType::Type::kReference);
6113       if (offset >= kReferenceLoadMinFarOffset) {
6114         locations->AddTemp(Location::RequiresRegister());
6115       }
6116     } else {
6117       // We need a non-scratch temporary for the array data pointer in
6118       // CodeGeneratorARMVIXL::GenerateArrayLoadWithBakerReadBarrier().
6119       locations->AddTemp(Location::RequiresRegister());
6120     }
6121   } else if (mirror::kUseStringCompression && instruction->IsStringCharAt()) {
6122     // Also need a temporary for String compression feature.
6123     locations->AddTemp(Location::RequiresRegister());
6124   }
6125 }
6126 
VisitArrayGet(HArrayGet * instruction)6127 void InstructionCodeGeneratorARMVIXL::VisitArrayGet(HArrayGet* instruction) {
6128   LocationSummary* locations = instruction->GetLocations();
6129   Location obj_loc = locations->InAt(0);
6130   vixl32::Register obj = InputRegisterAt(instruction, 0);
6131   Location index = locations->InAt(1);
6132   Location out_loc = locations->Out();
6133   uint32_t data_offset = CodeGenerator::GetArrayDataOffset(instruction);
6134   DataType::Type type = instruction->GetType();
6135   const bool maybe_compressed_char_at = mirror::kUseStringCompression &&
6136                                         instruction->IsStringCharAt();
6137   HInstruction* array_instr = instruction->GetArray();
6138   bool has_intermediate_address = array_instr->IsIntermediateAddress();
6139 
6140   switch (type) {
6141     case DataType::Type::kBool:
6142     case DataType::Type::kUint8:
6143     case DataType::Type::kInt8:
6144     case DataType::Type::kUint16:
6145     case DataType::Type::kInt16:
6146     case DataType::Type::kInt32: {
6147       vixl32::Register length;
6148       if (maybe_compressed_char_at) {
6149         length = RegisterFrom(locations->GetTemp(0));
6150         uint32_t count_offset = mirror::String::CountOffset().Uint32Value();
6151         // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
6152         EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
6153         GetAssembler()->LoadFromOffset(kLoadWord, length, obj, count_offset);
6154         codegen_->MaybeRecordImplicitNullCheck(instruction);
6155       }
6156       if (index.IsConstant()) {
6157         int32_t const_index = Int32ConstantFrom(index);
6158         if (maybe_compressed_char_at) {
6159           vixl32::Label uncompressed_load, done;
6160           vixl32::Label* final_label = codegen_->GetFinalLabel(instruction, &done);
6161           __ Lsrs(length, length, 1u);  // LSRS has a 16-bit encoding, TST (immediate) does not.
6162           static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u,
6163                         "Expecting 0=compressed, 1=uncompressed");
6164           __ B(cs, &uncompressed_load, /* is_far_target= */ false);
6165           GetAssembler()->LoadFromOffset(kLoadUnsignedByte,
6166                                          RegisterFrom(out_loc),
6167                                          obj,
6168                                          data_offset + const_index);
6169           __ B(final_label);
6170           __ Bind(&uncompressed_load);
6171           GetAssembler()->LoadFromOffset(GetLoadOperandType(DataType::Type::kUint16),
6172                                          RegisterFrom(out_loc),
6173                                          obj,
6174                                          data_offset + (const_index << 1));
6175           if (done.IsReferenced()) {
6176             __ Bind(&done);
6177           }
6178         } else {
6179           uint32_t full_offset = data_offset + (const_index << DataType::SizeShift(type));
6180 
6181           // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
6182           EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
6183           LoadOperandType load_type = GetLoadOperandType(type);
6184           GetAssembler()->LoadFromOffset(load_type, RegisterFrom(out_loc), obj, full_offset);
6185           codegen_->MaybeRecordImplicitNullCheck(instruction);
6186         }
6187       } else {
6188         UseScratchRegisterScope temps(GetVIXLAssembler());
6189         vixl32::Register temp = temps.Acquire();
6190 
6191         if (has_intermediate_address) {
6192           // We do not need to compute the intermediate address from the array: the
6193           // input instruction has done it already. See the comment in
6194           // `TryExtractArrayAccessAddress()`.
6195           if (kIsDebugBuild) {
6196             HIntermediateAddress* tmp = array_instr->AsIntermediateAddress();
6197             DCHECK_EQ(Uint64ConstantFrom(tmp->GetOffset()), data_offset);
6198           }
6199           temp = obj;
6200         } else {
6201           __ Add(temp, obj, data_offset);
6202         }
6203         if (maybe_compressed_char_at) {
6204           vixl32::Label uncompressed_load, done;
6205           vixl32::Label* final_label = codegen_->GetFinalLabel(instruction, &done);
6206           __ Lsrs(length, length, 1u);  // LSRS has a 16-bit encoding, TST (immediate) does not.
6207           static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u,
6208                         "Expecting 0=compressed, 1=uncompressed");
6209           __ B(cs, &uncompressed_load, /* is_far_target= */ false);
6210           __ Ldrb(RegisterFrom(out_loc), MemOperand(temp, RegisterFrom(index), vixl32::LSL, 0));
6211           __ B(final_label);
6212           __ Bind(&uncompressed_load);
6213           __ Ldrh(RegisterFrom(out_loc), MemOperand(temp, RegisterFrom(index), vixl32::LSL, 1));
6214           if (done.IsReferenced()) {
6215             __ Bind(&done);
6216           }
6217         } else {
6218           // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
6219           EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
6220           codegen_->LoadFromShiftedRegOffset(type, out_loc, temp, RegisterFrom(index));
6221           codegen_->MaybeRecordImplicitNullCheck(instruction);
6222         }
6223       }
6224       break;
6225     }
6226 
6227     case DataType::Type::kReference: {
6228       // The read barrier instrumentation of object ArrayGet
6229       // instructions does not support the HIntermediateAddress
6230       // instruction.
6231       DCHECK(!(has_intermediate_address && kEmitCompilerReadBarrier));
6232 
6233       static_assert(
6234           sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
6235           "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
6236       // /* HeapReference<Object> */ out =
6237       //     *(obj + data_offset + index * sizeof(HeapReference<Object>))
6238       if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
6239         // Note that a potential implicit null check is handled in this
6240         // CodeGeneratorARMVIXL::GenerateArrayLoadWithBakerReadBarrier call.
6241         DCHECK(!instruction->CanDoImplicitNullCheckOn(instruction->InputAt(0)));
6242         if (index.IsConstant()) {
6243           // Array load with a constant index can be treated as a field load.
6244           Location maybe_temp =
6245               (locations->GetTempCount() != 0) ? locations->GetTemp(0) : Location();
6246           data_offset += Int32ConstantFrom(index) << DataType::SizeShift(type);
6247           codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction,
6248                                                           out_loc,
6249                                                           obj,
6250                                                           data_offset,
6251                                                           maybe_temp,
6252                                                           /* needs_null_check= */ false);
6253         } else {
6254           Location temp = locations->GetTemp(0);
6255           codegen_->GenerateArrayLoadWithBakerReadBarrier(
6256               out_loc, obj, data_offset, index, temp, /* needs_null_check= */ false);
6257         }
6258       } else {
6259         vixl32::Register out = OutputRegister(instruction);
6260         if (index.IsConstant()) {
6261           size_t offset = (Int32ConstantFrom(index) << TIMES_4) + data_offset;
6262           {
6263             // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
6264             EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
6265             GetAssembler()->LoadFromOffset(kLoadWord, out, obj, offset);
6266             codegen_->MaybeRecordImplicitNullCheck(instruction);
6267           }
6268           // If read barriers are enabled, emit read barriers other than
6269           // Baker's using a slow path (and also unpoison the loaded
6270           // reference, if heap poisoning is enabled).
6271           codegen_->MaybeGenerateReadBarrierSlow(instruction, out_loc, out_loc, obj_loc, offset);
6272         } else {
6273           UseScratchRegisterScope temps(GetVIXLAssembler());
6274           vixl32::Register temp = temps.Acquire();
6275 
6276           if (has_intermediate_address) {
6277             // We do not need to compute the intermediate address from the array: the
6278             // input instruction has done it already. See the comment in
6279             // `TryExtractArrayAccessAddress()`.
6280             if (kIsDebugBuild) {
6281               HIntermediateAddress* tmp = array_instr->AsIntermediateAddress();
6282               DCHECK_EQ(Uint64ConstantFrom(tmp->GetOffset()), data_offset);
6283             }
6284             temp = obj;
6285           } else {
6286             __ Add(temp, obj, data_offset);
6287           }
6288           {
6289             // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
6290             EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
6291             codegen_->LoadFromShiftedRegOffset(type, out_loc, temp, RegisterFrom(index));
6292             temps.Close();
6293             codegen_->MaybeRecordImplicitNullCheck(instruction);
6294           }
6295           // If read barriers are enabled, emit read barriers other than
6296           // Baker's using a slow path (and also unpoison the loaded
6297           // reference, if heap poisoning is enabled).
6298           codegen_->MaybeGenerateReadBarrierSlow(
6299               instruction, out_loc, out_loc, obj_loc, data_offset, index);
6300         }
6301       }
6302       break;
6303     }
6304 
6305     case DataType::Type::kInt64: {
6306       // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
6307       // As two macro instructions can be emitted the max size is doubled.
6308       EmissionCheckScope guard(GetVIXLAssembler(), 2 * kMaxMacroInstructionSizeInBytes);
6309       if (index.IsConstant()) {
6310         size_t offset =
6311             (Int32ConstantFrom(index) << TIMES_8) + data_offset;
6312         GetAssembler()->LoadFromOffset(kLoadWordPair, LowRegisterFrom(out_loc), obj, offset);
6313       } else {
6314         UseScratchRegisterScope temps(GetVIXLAssembler());
6315         vixl32::Register temp = temps.Acquire();
6316         __ Add(temp, obj, Operand(RegisterFrom(index), vixl32::LSL, TIMES_8));
6317         GetAssembler()->LoadFromOffset(kLoadWordPair, LowRegisterFrom(out_loc), temp, data_offset);
6318       }
6319       codegen_->MaybeRecordImplicitNullCheck(instruction);
6320       break;
6321     }
6322 
6323     case DataType::Type::kFloat32: {
6324       // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
6325       // As two macro instructions can be emitted the max size is doubled.
6326       EmissionCheckScope guard(GetVIXLAssembler(), 2 * kMaxMacroInstructionSizeInBytes);
6327       vixl32::SRegister out = SRegisterFrom(out_loc);
6328       if (index.IsConstant()) {
6329         size_t offset = (Int32ConstantFrom(index) << TIMES_4) + data_offset;
6330         GetAssembler()->LoadSFromOffset(out, obj, offset);
6331       } else {
6332         UseScratchRegisterScope temps(GetVIXLAssembler());
6333         vixl32::Register temp = temps.Acquire();
6334         __ Add(temp, obj, Operand(RegisterFrom(index), vixl32::LSL, TIMES_4));
6335         GetAssembler()->LoadSFromOffset(out, temp, data_offset);
6336       }
6337       codegen_->MaybeRecordImplicitNullCheck(instruction);
6338       break;
6339     }
6340 
6341     case DataType::Type::kFloat64: {
6342       // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
6343       // As two macro instructions can be emitted the max size is doubled.
6344       EmissionCheckScope guard(GetVIXLAssembler(), 2 * kMaxMacroInstructionSizeInBytes);
6345       if (index.IsConstant()) {
6346         size_t offset = (Int32ConstantFrom(index) << TIMES_8) + data_offset;
6347         GetAssembler()->LoadDFromOffset(DRegisterFrom(out_loc), obj, offset);
6348       } else {
6349         UseScratchRegisterScope temps(GetVIXLAssembler());
6350         vixl32::Register temp = temps.Acquire();
6351         __ Add(temp, obj, Operand(RegisterFrom(index), vixl32::LSL, TIMES_8));
6352         GetAssembler()->LoadDFromOffset(DRegisterFrom(out_loc), temp, data_offset);
6353       }
6354       codegen_->MaybeRecordImplicitNullCheck(instruction);
6355       break;
6356     }
6357 
6358     case DataType::Type::kUint32:
6359     case DataType::Type::kUint64:
6360     case DataType::Type::kVoid:
6361       LOG(FATAL) << "Unreachable type " << type;
6362       UNREACHABLE();
6363   }
6364 }
6365 
VisitArraySet(HArraySet * instruction)6366 void LocationsBuilderARMVIXL::VisitArraySet(HArraySet* instruction) {
6367   DataType::Type value_type = instruction->GetComponentType();
6368 
6369   bool needs_write_barrier =
6370       CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue());
6371   bool needs_type_check = instruction->NeedsTypeCheck();
6372 
6373   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
6374       instruction,
6375       needs_type_check ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall);
6376 
6377   locations->SetInAt(0, Location::RequiresRegister());
6378   locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
6379   if (DataType::IsFloatingPointType(value_type)) {
6380     locations->SetInAt(2, Location::RequiresFpuRegister());
6381   } else {
6382     locations->SetInAt(2, Location::RequiresRegister());
6383   }
6384   if (needs_write_barrier) {
6385     // Temporary registers for the write barrier.
6386     locations->AddTemp(Location::RequiresRegister());  // Possibly used for ref. poisoning too.
6387     locations->AddTemp(Location::RequiresRegister());
6388   }
6389 }
6390 
VisitArraySet(HArraySet * instruction)6391 void InstructionCodeGeneratorARMVIXL::VisitArraySet(HArraySet* instruction) {
6392   LocationSummary* locations = instruction->GetLocations();
6393   vixl32::Register array = InputRegisterAt(instruction, 0);
6394   Location index = locations->InAt(1);
6395   DataType::Type value_type = instruction->GetComponentType();
6396   bool needs_type_check = instruction->NeedsTypeCheck();
6397   bool needs_write_barrier =
6398       CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue());
6399   uint32_t data_offset =
6400       mirror::Array::DataOffset(DataType::Size(value_type)).Uint32Value();
6401   Location value_loc = locations->InAt(2);
6402   HInstruction* array_instr = instruction->GetArray();
6403   bool has_intermediate_address = array_instr->IsIntermediateAddress();
6404 
6405   switch (value_type) {
6406     case DataType::Type::kBool:
6407     case DataType::Type::kUint8:
6408     case DataType::Type::kInt8:
6409     case DataType::Type::kUint16:
6410     case DataType::Type::kInt16:
6411     case DataType::Type::kInt32: {
6412       if (index.IsConstant()) {
6413         int32_t const_index = Int32ConstantFrom(index);
6414         uint32_t full_offset =
6415             data_offset + (const_index << DataType::SizeShift(value_type));
6416         StoreOperandType store_type = GetStoreOperandType(value_type);
6417         // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted.
6418         EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
6419         GetAssembler()->StoreToOffset(store_type, RegisterFrom(value_loc), array, full_offset);
6420         codegen_->MaybeRecordImplicitNullCheck(instruction);
6421       } else {
6422         UseScratchRegisterScope temps(GetVIXLAssembler());
6423         vixl32::Register temp = temps.Acquire();
6424 
6425         if (has_intermediate_address) {
6426           // We do not need to compute the intermediate address from the array: the
6427           // input instruction has done it already. See the comment in
6428           // `TryExtractArrayAccessAddress()`.
6429           if (kIsDebugBuild) {
6430             HIntermediateAddress* tmp = array_instr->AsIntermediateAddress();
6431             DCHECK_EQ(Uint64ConstantFrom(tmp->GetOffset()), data_offset);
6432           }
6433           temp = array;
6434         } else {
6435           __ Add(temp, array, data_offset);
6436         }
6437         // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted.
6438         EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
6439         codegen_->StoreToShiftedRegOffset(value_type, value_loc, temp, RegisterFrom(index));
6440         codegen_->MaybeRecordImplicitNullCheck(instruction);
6441       }
6442       break;
6443     }
6444 
6445     case DataType::Type::kReference: {
6446       vixl32::Register value = RegisterFrom(value_loc);
6447       // TryExtractArrayAccessAddress optimization is never applied for non-primitive ArraySet.
6448       // See the comment in instruction_simplifier_shared.cc.
6449       DCHECK(!has_intermediate_address);
6450 
6451       if (instruction->InputAt(2)->IsNullConstant()) {
6452         // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted.
6453         // As two macro instructions can be emitted the max size is doubled.
6454         EmissionCheckScope guard(GetVIXLAssembler(), 2 * kMaxMacroInstructionSizeInBytes);
6455         // Just setting null.
6456         if (index.IsConstant()) {
6457           size_t offset = (Int32ConstantFrom(index) << TIMES_4) + data_offset;
6458           GetAssembler()->StoreToOffset(kStoreWord, value, array, offset);
6459         } else {
6460           DCHECK(index.IsRegister()) << index;
6461           UseScratchRegisterScope temps(GetVIXLAssembler());
6462           vixl32::Register temp = temps.Acquire();
6463           __ Add(temp, array, data_offset);
6464           codegen_->StoreToShiftedRegOffset(value_type, value_loc, temp, RegisterFrom(index));
6465         }
6466         codegen_->MaybeRecordImplicitNullCheck(instruction);
6467         DCHECK(!needs_write_barrier);
6468         DCHECK(!needs_type_check);
6469         break;
6470       }
6471 
6472       DCHECK(needs_write_barrier);
6473       Location temp1_loc = locations->GetTemp(0);
6474       vixl32::Register temp1 = RegisterFrom(temp1_loc);
6475       Location temp2_loc = locations->GetTemp(1);
6476       vixl32::Register temp2 = RegisterFrom(temp2_loc);
6477 
6478       bool can_value_be_null = instruction->GetValueCanBeNull();
6479       vixl32::Label do_store;
6480       if (can_value_be_null) {
6481         __ CompareAndBranchIfZero(value, &do_store, /* is_far_target= */ false);
6482       }
6483 
6484       SlowPathCodeARMVIXL* slow_path = nullptr;
6485       if (needs_type_check) {
6486         slow_path = new (codegen_->GetScopedAllocator()) ArraySetSlowPathARMVIXL(instruction);
6487         codegen_->AddSlowPath(slow_path);
6488 
6489         const uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
6490         const uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
6491         const uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
6492 
6493         // Note that when read barriers are enabled, the type checks
6494         // are performed without read barriers.  This is fine, even in
6495         // the case where a class object is in the from-space after
6496         // the flip, as a comparison involving such a type would not
6497         // produce a false positive; it may of course produce a false
6498         // negative, in which case we would take the ArraySet slow
6499         // path.
6500 
6501         {
6502           // Ensure we record the pc position immediately after the `ldr` instruction.
6503           ExactAssemblyScope aas(GetVIXLAssembler(),
6504                                  vixl32::kMaxInstructionSizeInBytes,
6505                                  CodeBufferCheckScope::kMaximumSize);
6506           // /* HeapReference<Class> */ temp1 = array->klass_
6507           __ ldr(temp1, MemOperand(array, class_offset));
6508           codegen_->MaybeRecordImplicitNullCheck(instruction);
6509         }
6510         GetAssembler()->MaybeUnpoisonHeapReference(temp1);
6511 
6512         // /* HeapReference<Class> */ temp1 = temp1->component_type_
6513         GetAssembler()->LoadFromOffset(kLoadWord, temp1, temp1, component_offset);
6514         // /* HeapReference<Class> */ temp2 = value->klass_
6515         GetAssembler()->LoadFromOffset(kLoadWord, temp2, value, class_offset);
6516         // If heap poisoning is enabled, no need to unpoison `temp1`
6517         // nor `temp2`, as we are comparing two poisoned references.
6518         __ Cmp(temp1, temp2);
6519 
6520         if (instruction->StaticTypeOfArrayIsObjectArray()) {
6521           vixl32::Label do_put;
6522           __ B(eq, &do_put, /* is_far_target= */ false);
6523           // If heap poisoning is enabled, the `temp1` reference has
6524           // not been unpoisoned yet; unpoison it now.
6525           GetAssembler()->MaybeUnpoisonHeapReference(temp1);
6526 
6527           // /* HeapReference<Class> */ temp1 = temp1->super_class_
6528           GetAssembler()->LoadFromOffset(kLoadWord, temp1, temp1, super_offset);
6529           // If heap poisoning is enabled, no need to unpoison
6530           // `temp1`, as we are comparing against null below.
6531           __ CompareAndBranchIfNonZero(temp1, slow_path->GetEntryLabel());
6532           __ Bind(&do_put);
6533         } else {
6534           __ B(ne, slow_path->GetEntryLabel());
6535         }
6536       }
6537 
6538       codegen_->MarkGCCard(temp1, temp2, array, value, /* can_be_null= */ false);
6539 
6540       if (can_value_be_null) {
6541         DCHECK(do_store.IsReferenced());
6542         __ Bind(&do_store);
6543       }
6544 
6545       vixl32::Register source = value;
6546       if (kPoisonHeapReferences) {
6547         // Note that in the case where `value` is a null reference,
6548         // we do not enter this block, as a null reference does not
6549         // need poisoning.
6550         DCHECK_EQ(value_type, DataType::Type::kReference);
6551         __ Mov(temp1, value);
6552         GetAssembler()->PoisonHeapReference(temp1);
6553         source = temp1;
6554       }
6555 
6556       {
6557         // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted.
6558         // As two macro instructions can be emitted the max size is doubled.
6559         EmissionCheckScope guard(GetVIXLAssembler(), 2 * kMaxMacroInstructionSizeInBytes);
6560         if (index.IsConstant()) {
6561           size_t offset = (Int32ConstantFrom(index) << TIMES_4) + data_offset;
6562           GetAssembler()->StoreToOffset(kStoreWord, source, array, offset);
6563         } else {
6564           DCHECK(index.IsRegister()) << index;
6565 
6566           UseScratchRegisterScope temps(GetVIXLAssembler());
6567           vixl32::Register temp = temps.Acquire();
6568           __ Add(temp, array, data_offset);
6569           codegen_->StoreToShiftedRegOffset(value_type,
6570                                             LocationFrom(source),
6571                                             temp,
6572                                             RegisterFrom(index));
6573         }
6574 
6575         if (can_value_be_null || !needs_type_check) {
6576           codegen_->MaybeRecordImplicitNullCheck(instruction);
6577         }
6578       }
6579 
6580       if (slow_path != nullptr) {
6581         __ Bind(slow_path->GetExitLabel());
6582       }
6583 
6584       break;
6585     }
6586 
6587     case DataType::Type::kInt64: {
6588       // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted.
6589       // As two macro instructions can be emitted the max size is doubled.
6590       EmissionCheckScope guard(GetVIXLAssembler(), 2 * kMaxMacroInstructionSizeInBytes);
6591       Location value = locations->InAt(2);
6592       if (index.IsConstant()) {
6593         size_t offset =
6594             (Int32ConstantFrom(index) << TIMES_8) + data_offset;
6595         GetAssembler()->StoreToOffset(kStoreWordPair, LowRegisterFrom(value), array, offset);
6596       } else {
6597         UseScratchRegisterScope temps(GetVIXLAssembler());
6598         vixl32::Register temp = temps.Acquire();
6599         __ Add(temp, array, Operand(RegisterFrom(index), vixl32::LSL, TIMES_8));
6600         GetAssembler()->StoreToOffset(kStoreWordPair, LowRegisterFrom(value), temp, data_offset);
6601       }
6602       codegen_->MaybeRecordImplicitNullCheck(instruction);
6603       break;
6604     }
6605 
6606     case DataType::Type::kFloat32: {
6607       // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted.
6608       // As two macro instructions can be emitted the max size is doubled.
6609       EmissionCheckScope guard(GetVIXLAssembler(), 2 * kMaxMacroInstructionSizeInBytes);
6610       Location value = locations->InAt(2);
6611       DCHECK(value.IsFpuRegister());
6612       if (index.IsConstant()) {
6613         size_t offset = (Int32ConstantFrom(index) << TIMES_4) + data_offset;
6614         GetAssembler()->StoreSToOffset(SRegisterFrom(value), array, offset);
6615       } else {
6616         UseScratchRegisterScope temps(GetVIXLAssembler());
6617         vixl32::Register temp = temps.Acquire();
6618         __ Add(temp, array, Operand(RegisterFrom(index), vixl32::LSL, TIMES_4));
6619         GetAssembler()->StoreSToOffset(SRegisterFrom(value), temp, data_offset);
6620       }
6621       codegen_->MaybeRecordImplicitNullCheck(instruction);
6622       break;
6623     }
6624 
6625     case DataType::Type::kFloat64: {
6626       // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted.
6627       // As two macro instructions can be emitted the max size is doubled.
6628       EmissionCheckScope guard(GetVIXLAssembler(), 2 * kMaxMacroInstructionSizeInBytes);
6629       Location value = locations->InAt(2);
6630       DCHECK(value.IsFpuRegisterPair());
6631       if (index.IsConstant()) {
6632         size_t offset = (Int32ConstantFrom(index) << TIMES_8) + data_offset;
6633         GetAssembler()->StoreDToOffset(DRegisterFrom(value), array, offset);
6634       } else {
6635         UseScratchRegisterScope temps(GetVIXLAssembler());
6636         vixl32::Register temp = temps.Acquire();
6637         __ Add(temp, array, Operand(RegisterFrom(index), vixl32::LSL, TIMES_8));
6638         GetAssembler()->StoreDToOffset(DRegisterFrom(value), temp, data_offset);
6639       }
6640       codegen_->MaybeRecordImplicitNullCheck(instruction);
6641       break;
6642     }
6643 
6644     case DataType::Type::kUint32:
6645     case DataType::Type::kUint64:
6646     case DataType::Type::kVoid:
6647       LOG(FATAL) << "Unreachable type " << value_type;
6648       UNREACHABLE();
6649   }
6650 }
6651 
VisitArrayLength(HArrayLength * instruction)6652 void LocationsBuilderARMVIXL::VisitArrayLength(HArrayLength* instruction) {
6653   LocationSummary* locations =
6654       new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
6655   locations->SetInAt(0, Location::RequiresRegister());
6656   locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
6657 }
6658 
VisitArrayLength(HArrayLength * instruction)6659 void InstructionCodeGeneratorARMVIXL::VisitArrayLength(HArrayLength* instruction) {
6660   uint32_t offset = CodeGenerator::GetArrayLengthOffset(instruction);
6661   vixl32::Register obj = InputRegisterAt(instruction, 0);
6662   vixl32::Register out = OutputRegister(instruction);
6663   {
6664     ExactAssemblyScope aas(GetVIXLAssembler(),
6665                            vixl32::kMaxInstructionSizeInBytes,
6666                            CodeBufferCheckScope::kMaximumSize);
6667     __ ldr(out, MemOperand(obj, offset));
6668     codegen_->MaybeRecordImplicitNullCheck(instruction);
6669   }
6670   // Mask out compression flag from String's array length.
6671   if (mirror::kUseStringCompression && instruction->IsStringLength()) {
6672     __ Lsr(out, out, 1u);
6673   }
6674 }
6675 
VisitIntermediateAddress(HIntermediateAddress * instruction)6676 void LocationsBuilderARMVIXL::VisitIntermediateAddress(HIntermediateAddress* instruction) {
6677   LocationSummary* locations =
6678       new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
6679 
6680   locations->SetInAt(0, Location::RequiresRegister());
6681   locations->SetInAt(1, Location::RegisterOrConstant(instruction->GetOffset()));
6682   locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
6683 }
6684 
VisitIntermediateAddress(HIntermediateAddress * instruction)6685 void InstructionCodeGeneratorARMVIXL::VisitIntermediateAddress(HIntermediateAddress* instruction) {
6686   vixl32::Register out = OutputRegister(instruction);
6687   vixl32::Register first = InputRegisterAt(instruction, 0);
6688   Location second = instruction->GetLocations()->InAt(1);
6689 
6690   if (second.IsRegister()) {
6691     __ Add(out, first, RegisterFrom(second));
6692   } else {
6693     __ Add(out, first, Int32ConstantFrom(second));
6694   }
6695 }
6696 
VisitIntermediateAddressIndex(HIntermediateAddressIndex * instruction)6697 void LocationsBuilderARMVIXL::VisitIntermediateAddressIndex(
6698     HIntermediateAddressIndex* instruction) {
6699   LOG(FATAL) << "Unreachable " << instruction->GetId();
6700 }
6701 
VisitIntermediateAddressIndex(HIntermediateAddressIndex * instruction)6702 void InstructionCodeGeneratorARMVIXL::VisitIntermediateAddressIndex(
6703     HIntermediateAddressIndex* instruction) {
6704   LOG(FATAL) << "Unreachable " << instruction->GetId();
6705 }
6706 
VisitBoundsCheck(HBoundsCheck * instruction)6707 void LocationsBuilderARMVIXL::VisitBoundsCheck(HBoundsCheck* instruction) {
6708   RegisterSet caller_saves = RegisterSet::Empty();
6709   InvokeRuntimeCallingConventionARMVIXL calling_convention;
6710   caller_saves.Add(LocationFrom(calling_convention.GetRegisterAt(0)));
6711   caller_saves.Add(LocationFrom(calling_convention.GetRegisterAt(1)));
6712   LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction, caller_saves);
6713 
6714   HInstruction* index = instruction->InputAt(0);
6715   HInstruction* length = instruction->InputAt(1);
6716   // If both index and length are constants we can statically check the bounds. But if at least one
6717   // of them is not encodable ArmEncodableConstantOrRegister will create
6718   // Location::RequiresRegister() which is not desired to happen. Instead we create constant
6719   // locations.
6720   bool both_const = index->IsConstant() && length->IsConstant();
6721   locations->SetInAt(0, both_const
6722       ? Location::ConstantLocation(index->AsConstant())
6723       : ArmEncodableConstantOrRegister(index, CMP));
6724   locations->SetInAt(1, both_const
6725       ? Location::ConstantLocation(length->AsConstant())
6726       : ArmEncodableConstantOrRegister(length, CMP));
6727 }
6728 
VisitBoundsCheck(HBoundsCheck * instruction)6729 void InstructionCodeGeneratorARMVIXL::VisitBoundsCheck(HBoundsCheck* instruction) {
6730   LocationSummary* locations = instruction->GetLocations();
6731   Location index_loc = locations->InAt(0);
6732   Location length_loc = locations->InAt(1);
6733 
6734   if (length_loc.IsConstant()) {
6735     int32_t length = Int32ConstantFrom(length_loc);
6736     if (index_loc.IsConstant()) {
6737       // BCE will remove the bounds check if we are guaranteed to pass.
6738       int32_t index = Int32ConstantFrom(index_loc);
6739       if (index < 0 || index >= length) {
6740         SlowPathCodeARMVIXL* slow_path =
6741             new (codegen_->GetScopedAllocator()) BoundsCheckSlowPathARMVIXL(instruction);
6742         codegen_->AddSlowPath(slow_path);
6743         __ B(slow_path->GetEntryLabel());
6744       } else {
6745         // Some optimization after BCE may have generated this, and we should not
6746         // generate a bounds check if it is a valid range.
6747       }
6748       return;
6749     }
6750 
6751     SlowPathCodeARMVIXL* slow_path =
6752         new (codegen_->GetScopedAllocator()) BoundsCheckSlowPathARMVIXL(instruction);
6753     __ Cmp(RegisterFrom(index_loc), length);
6754     codegen_->AddSlowPath(slow_path);
6755     __ B(hs, slow_path->GetEntryLabel());
6756   } else {
6757     SlowPathCodeARMVIXL* slow_path =
6758         new (codegen_->GetScopedAllocator()) BoundsCheckSlowPathARMVIXL(instruction);
6759     __ Cmp(RegisterFrom(length_loc), InputOperandAt(instruction, 0));
6760     codegen_->AddSlowPath(slow_path);
6761     __ B(ls, slow_path->GetEntryLabel());
6762   }
6763 }
6764 
MarkGCCard(vixl32::Register temp,vixl32::Register card,vixl32::Register object,vixl32::Register value,bool can_be_null)6765 void CodeGeneratorARMVIXL::MarkGCCard(vixl32::Register temp,
6766                                       vixl32::Register card,
6767                                       vixl32::Register object,
6768                                       vixl32::Register value,
6769                                       bool can_be_null) {
6770   vixl32::Label is_null;
6771   if (can_be_null) {
6772     __ CompareAndBranchIfZero(value, &is_null);
6773   }
6774   // Load the address of the card table into `card`.
6775   GetAssembler()->LoadFromOffset(
6776       kLoadWord, card, tr, Thread::CardTableOffset<kArmPointerSize>().Int32Value());
6777   // Calculate the offset (in the card table) of the card corresponding to
6778   // `object`.
6779   __ Lsr(temp, object, Operand::From(gc::accounting::CardTable::kCardShift));
6780   // Write the `art::gc::accounting::CardTable::kCardDirty` value into the
6781   // `object`'s card.
6782   //
6783   // Register `card` contains the address of the card table. Note that the card
6784   // table's base is biased during its creation so that it always starts at an
6785   // address whose least-significant byte is equal to `kCardDirty` (see
6786   // art::gc::accounting::CardTable::Create). Therefore the STRB instruction
6787   // below writes the `kCardDirty` (byte) value into the `object`'s card
6788   // (located at `card + object >> kCardShift`).
6789   //
6790   // This dual use of the value in register `card` (1. to calculate the location
6791   // of the card to mark; and 2. to load the `kCardDirty` value) saves a load
6792   // (no need to explicitly load `kCardDirty` as an immediate value).
6793   __ Strb(card, MemOperand(card, temp));
6794   if (can_be_null) {
6795     __ Bind(&is_null);
6796   }
6797 }
6798 
VisitParallelMove(HParallelMove * instruction ATTRIBUTE_UNUSED)6799 void LocationsBuilderARMVIXL::VisitParallelMove(HParallelMove* instruction ATTRIBUTE_UNUSED) {
6800   LOG(FATAL) << "Unreachable";
6801 }
6802 
VisitParallelMove(HParallelMove * instruction)6803 void InstructionCodeGeneratorARMVIXL::VisitParallelMove(HParallelMove* instruction) {
6804   if (instruction->GetNext()->IsSuspendCheck() &&
6805       instruction->GetBlock()->GetLoopInformation() != nullptr) {
6806     HSuspendCheck* suspend_check = instruction->GetNext()->AsSuspendCheck();
6807     // The back edge will generate the suspend check.
6808     codegen_->ClearSpillSlotsFromLoopPhisInStackMap(suspend_check, instruction);
6809   }
6810 
6811   codegen_->GetMoveResolver()->EmitNativeCode(instruction);
6812 }
6813 
VisitSuspendCheck(HSuspendCheck * instruction)6814 void LocationsBuilderARMVIXL::VisitSuspendCheck(HSuspendCheck* instruction) {
6815   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
6816       instruction, LocationSummary::kCallOnSlowPath);
6817   locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty());  // No caller-save registers.
6818 }
6819 
VisitSuspendCheck(HSuspendCheck * instruction)6820 void InstructionCodeGeneratorARMVIXL::VisitSuspendCheck(HSuspendCheck* instruction) {
6821   HBasicBlock* block = instruction->GetBlock();
6822   if (block->GetLoopInformation() != nullptr) {
6823     DCHECK(block->GetLoopInformation()->GetSuspendCheck() == instruction);
6824     // The back edge will generate the suspend check.
6825     return;
6826   }
6827   if (block->IsEntryBlock() && instruction->GetNext()->IsGoto()) {
6828     // The goto will generate the suspend check.
6829     return;
6830   }
6831   GenerateSuspendCheck(instruction, nullptr);
6832   codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 13);
6833 }
6834 
GenerateSuspendCheck(HSuspendCheck * instruction,HBasicBlock * successor)6835 void InstructionCodeGeneratorARMVIXL::GenerateSuspendCheck(HSuspendCheck* instruction,
6836                                                            HBasicBlock* successor) {
6837   SuspendCheckSlowPathARMVIXL* slow_path =
6838       down_cast<SuspendCheckSlowPathARMVIXL*>(instruction->GetSlowPath());
6839   if (slow_path == nullptr) {
6840     slow_path =
6841         new (codegen_->GetScopedAllocator()) SuspendCheckSlowPathARMVIXL(instruction, successor);
6842     instruction->SetSlowPath(slow_path);
6843     codegen_->AddSlowPath(slow_path);
6844     if (successor != nullptr) {
6845       DCHECK(successor->IsLoopHeader());
6846     }
6847   } else {
6848     DCHECK_EQ(slow_path->GetSuccessor(), successor);
6849   }
6850 
6851   UseScratchRegisterScope temps(GetVIXLAssembler());
6852   vixl32::Register temp = temps.Acquire();
6853   GetAssembler()->LoadFromOffset(
6854       kLoadUnsignedHalfword, temp, tr, Thread::ThreadFlagsOffset<kArmPointerSize>().Int32Value());
6855   if (successor == nullptr) {
6856     __ CompareAndBranchIfNonZero(temp, slow_path->GetEntryLabel());
6857     __ Bind(slow_path->GetReturnLabel());
6858   } else {
6859     __ CompareAndBranchIfZero(temp, codegen_->GetLabelOf(successor));
6860     __ B(slow_path->GetEntryLabel());
6861   }
6862 }
6863 
GetAssembler() const6864 ArmVIXLAssembler* ParallelMoveResolverARMVIXL::GetAssembler() const {
6865   return codegen_->GetAssembler();
6866 }
6867 
EmitMove(size_t index)6868 void ParallelMoveResolverARMVIXL::EmitMove(size_t index) {
6869   UseScratchRegisterScope temps(GetAssembler()->GetVIXLAssembler());
6870   MoveOperands* move = moves_[index];
6871   Location source = move->GetSource();
6872   Location destination = move->GetDestination();
6873 
6874   if (source.IsRegister()) {
6875     if (destination.IsRegister()) {
6876       __ Mov(RegisterFrom(destination), RegisterFrom(source));
6877     } else if (destination.IsFpuRegister()) {
6878       __ Vmov(SRegisterFrom(destination), RegisterFrom(source));
6879     } else {
6880       DCHECK(destination.IsStackSlot());
6881       GetAssembler()->StoreToOffset(kStoreWord,
6882                                     RegisterFrom(source),
6883                                     sp,
6884                                     destination.GetStackIndex());
6885     }
6886   } else if (source.IsStackSlot()) {
6887     if (destination.IsRegister()) {
6888       GetAssembler()->LoadFromOffset(kLoadWord,
6889                                      RegisterFrom(destination),
6890                                      sp,
6891                                      source.GetStackIndex());
6892     } else if (destination.IsFpuRegister()) {
6893       GetAssembler()->LoadSFromOffset(SRegisterFrom(destination), sp, source.GetStackIndex());
6894     } else {
6895       DCHECK(destination.IsStackSlot());
6896       vixl32::Register temp = temps.Acquire();
6897       GetAssembler()->LoadFromOffset(kLoadWord, temp, sp, source.GetStackIndex());
6898       GetAssembler()->StoreToOffset(kStoreWord, temp, sp, destination.GetStackIndex());
6899     }
6900   } else if (source.IsFpuRegister()) {
6901     if (destination.IsRegister()) {
6902       __ Vmov(RegisterFrom(destination), SRegisterFrom(source));
6903     } else if (destination.IsFpuRegister()) {
6904       __ Vmov(SRegisterFrom(destination), SRegisterFrom(source));
6905     } else {
6906       DCHECK(destination.IsStackSlot());
6907       GetAssembler()->StoreSToOffset(SRegisterFrom(source), sp, destination.GetStackIndex());
6908     }
6909   } else if (source.IsDoubleStackSlot()) {
6910     if (destination.IsDoubleStackSlot()) {
6911       vixl32::DRegister temp = temps.AcquireD();
6912       GetAssembler()->LoadDFromOffset(temp, sp, source.GetStackIndex());
6913       GetAssembler()->StoreDToOffset(temp, sp, destination.GetStackIndex());
6914     } else if (destination.IsRegisterPair()) {
6915       DCHECK(ExpectedPairLayout(destination));
6916       GetAssembler()->LoadFromOffset(
6917           kLoadWordPair, LowRegisterFrom(destination), sp, source.GetStackIndex());
6918     } else {
6919       DCHECK(destination.IsFpuRegisterPair()) << destination;
6920       GetAssembler()->LoadDFromOffset(DRegisterFrom(destination), sp, source.GetStackIndex());
6921     }
6922   } else if (source.IsRegisterPair()) {
6923     if (destination.IsRegisterPair()) {
6924       __ Mov(LowRegisterFrom(destination), LowRegisterFrom(source));
6925       __ Mov(HighRegisterFrom(destination), HighRegisterFrom(source));
6926     } else if (destination.IsFpuRegisterPair()) {
6927       __ Vmov(DRegisterFrom(destination), LowRegisterFrom(source), HighRegisterFrom(source));
6928     } else {
6929       DCHECK(destination.IsDoubleStackSlot()) << destination;
6930       DCHECK(ExpectedPairLayout(source));
6931       GetAssembler()->StoreToOffset(kStoreWordPair,
6932                                     LowRegisterFrom(source),
6933                                     sp,
6934                                     destination.GetStackIndex());
6935     }
6936   } else if (source.IsFpuRegisterPair()) {
6937     if (destination.IsRegisterPair()) {
6938       __ Vmov(LowRegisterFrom(destination), HighRegisterFrom(destination), DRegisterFrom(source));
6939     } else if (destination.IsFpuRegisterPair()) {
6940       __ Vmov(DRegisterFrom(destination), DRegisterFrom(source));
6941     } else {
6942       DCHECK(destination.IsDoubleStackSlot()) << destination;
6943       GetAssembler()->StoreDToOffset(DRegisterFrom(source), sp, destination.GetStackIndex());
6944     }
6945   } else {
6946     DCHECK(source.IsConstant()) << source;
6947     HConstant* constant = source.GetConstant();
6948     if (constant->IsIntConstant() || constant->IsNullConstant()) {
6949       int32_t value = CodeGenerator::GetInt32ValueOf(constant);
6950       if (destination.IsRegister()) {
6951         __ Mov(RegisterFrom(destination), value);
6952       } else {
6953         DCHECK(destination.IsStackSlot());
6954         vixl32::Register temp = temps.Acquire();
6955         __ Mov(temp, value);
6956         GetAssembler()->StoreToOffset(kStoreWord, temp, sp, destination.GetStackIndex());
6957       }
6958     } else if (constant->IsLongConstant()) {
6959       int64_t value = Int64ConstantFrom(source);
6960       if (destination.IsRegisterPair()) {
6961         __ Mov(LowRegisterFrom(destination), Low32Bits(value));
6962         __ Mov(HighRegisterFrom(destination), High32Bits(value));
6963       } else {
6964         DCHECK(destination.IsDoubleStackSlot()) << destination;
6965         vixl32::Register temp = temps.Acquire();
6966         __ Mov(temp, Low32Bits(value));
6967         GetAssembler()->StoreToOffset(kStoreWord, temp, sp, destination.GetStackIndex());
6968         __ Mov(temp, High32Bits(value));
6969         GetAssembler()->StoreToOffset(kStoreWord,
6970                                       temp,
6971                                       sp,
6972                                       destination.GetHighStackIndex(kArmWordSize));
6973       }
6974     } else if (constant->IsDoubleConstant()) {
6975       double value = constant->AsDoubleConstant()->GetValue();
6976       if (destination.IsFpuRegisterPair()) {
6977         __ Vmov(DRegisterFrom(destination), value);
6978       } else {
6979         DCHECK(destination.IsDoubleStackSlot()) << destination;
6980         uint64_t int_value = bit_cast<uint64_t, double>(value);
6981         vixl32::Register temp = temps.Acquire();
6982         __ Mov(temp, Low32Bits(int_value));
6983         GetAssembler()->StoreToOffset(kStoreWord, temp, sp, destination.GetStackIndex());
6984         __ Mov(temp, High32Bits(int_value));
6985         GetAssembler()->StoreToOffset(kStoreWord,
6986                                       temp,
6987                                       sp,
6988                                       destination.GetHighStackIndex(kArmWordSize));
6989       }
6990     } else {
6991       DCHECK(constant->IsFloatConstant()) << constant->DebugName();
6992       float value = constant->AsFloatConstant()->GetValue();
6993       if (destination.IsFpuRegister()) {
6994         __ Vmov(SRegisterFrom(destination), value);
6995       } else {
6996         DCHECK(destination.IsStackSlot());
6997         vixl32::Register temp = temps.Acquire();
6998         __ Mov(temp, bit_cast<int32_t, float>(value));
6999         GetAssembler()->StoreToOffset(kStoreWord, temp, sp, destination.GetStackIndex());
7000       }
7001     }
7002   }
7003 }
7004 
Exchange(vixl32::Register reg,int mem)7005 void ParallelMoveResolverARMVIXL::Exchange(vixl32::Register reg, int mem) {
7006   UseScratchRegisterScope temps(GetAssembler()->GetVIXLAssembler());
7007   vixl32::Register temp = temps.Acquire();
7008   __ Mov(temp, reg);
7009   GetAssembler()->LoadFromOffset(kLoadWord, reg, sp, mem);
7010   GetAssembler()->StoreToOffset(kStoreWord, temp, sp, mem);
7011 }
7012 
Exchange(int mem1,int mem2)7013 void ParallelMoveResolverARMVIXL::Exchange(int mem1, int mem2) {
7014   // TODO(VIXL32): Double check the performance of this implementation.
7015   UseScratchRegisterScope temps(GetAssembler()->GetVIXLAssembler());
7016   vixl32::Register temp1 = temps.Acquire();
7017   ScratchRegisterScope ensure_scratch(
7018       this, temp1.GetCode(), r0.GetCode(), codegen_->GetNumberOfCoreRegisters());
7019   vixl32::Register temp2(ensure_scratch.GetRegister());
7020 
7021   int stack_offset = ensure_scratch.IsSpilled() ? kArmWordSize : 0;
7022   GetAssembler()->LoadFromOffset(kLoadWord, temp1, sp, mem1 + stack_offset);
7023   GetAssembler()->LoadFromOffset(kLoadWord, temp2, sp, mem2 + stack_offset);
7024   GetAssembler()->StoreToOffset(kStoreWord, temp1, sp, mem2 + stack_offset);
7025   GetAssembler()->StoreToOffset(kStoreWord, temp2, sp, mem1 + stack_offset);
7026 }
7027 
EmitSwap(size_t index)7028 void ParallelMoveResolverARMVIXL::EmitSwap(size_t index) {
7029   MoveOperands* move = moves_[index];
7030   Location source = move->GetSource();
7031   Location destination = move->GetDestination();
7032   UseScratchRegisterScope temps(GetAssembler()->GetVIXLAssembler());
7033 
7034   if (source.IsRegister() && destination.IsRegister()) {
7035     vixl32::Register temp = temps.Acquire();
7036     DCHECK(!RegisterFrom(source).Is(temp));
7037     DCHECK(!RegisterFrom(destination).Is(temp));
7038     __ Mov(temp, RegisterFrom(destination));
7039     __ Mov(RegisterFrom(destination), RegisterFrom(source));
7040     __ Mov(RegisterFrom(source), temp);
7041   } else if (source.IsRegister() && destination.IsStackSlot()) {
7042     Exchange(RegisterFrom(source), destination.GetStackIndex());
7043   } else if (source.IsStackSlot() && destination.IsRegister()) {
7044     Exchange(RegisterFrom(destination), source.GetStackIndex());
7045   } else if (source.IsStackSlot() && destination.IsStackSlot()) {
7046     Exchange(source.GetStackIndex(), destination.GetStackIndex());
7047   } else if (source.IsFpuRegister() && destination.IsFpuRegister()) {
7048     vixl32::Register temp = temps.Acquire();
7049     __ Vmov(temp, SRegisterFrom(source));
7050     __ Vmov(SRegisterFrom(source), SRegisterFrom(destination));
7051     __ Vmov(SRegisterFrom(destination), temp);
7052   } else if (source.IsRegisterPair() && destination.IsRegisterPair()) {
7053     vixl32::DRegister temp = temps.AcquireD();
7054     __ Vmov(temp, LowRegisterFrom(source), HighRegisterFrom(source));
7055     __ Mov(LowRegisterFrom(source), LowRegisterFrom(destination));
7056     __ Mov(HighRegisterFrom(source), HighRegisterFrom(destination));
7057     __ Vmov(LowRegisterFrom(destination), HighRegisterFrom(destination), temp);
7058   } else if (source.IsRegisterPair() || destination.IsRegisterPair()) {
7059     vixl32::Register low_reg = LowRegisterFrom(source.IsRegisterPair() ? source : destination);
7060     int mem = source.IsRegisterPair() ? destination.GetStackIndex() : source.GetStackIndex();
7061     DCHECK(ExpectedPairLayout(source.IsRegisterPair() ? source : destination));
7062     vixl32::DRegister temp = temps.AcquireD();
7063     __ Vmov(temp, low_reg, vixl32::Register(low_reg.GetCode() + 1));
7064     GetAssembler()->LoadFromOffset(kLoadWordPair, low_reg, sp, mem);
7065     GetAssembler()->StoreDToOffset(temp, sp, mem);
7066   } else if (source.IsFpuRegisterPair() && destination.IsFpuRegisterPair()) {
7067     vixl32::DRegister first = DRegisterFrom(source);
7068     vixl32::DRegister second = DRegisterFrom(destination);
7069     vixl32::DRegister temp = temps.AcquireD();
7070     __ Vmov(temp, first);
7071     __ Vmov(first, second);
7072     __ Vmov(second, temp);
7073   } else if (source.IsFpuRegisterPair() || destination.IsFpuRegisterPair()) {
7074     vixl32::DRegister reg = source.IsFpuRegisterPair()
7075         ? DRegisterFrom(source)
7076         : DRegisterFrom(destination);
7077     int mem = source.IsFpuRegisterPair()
7078         ? destination.GetStackIndex()
7079         : source.GetStackIndex();
7080     vixl32::DRegister temp = temps.AcquireD();
7081     __ Vmov(temp, reg);
7082     GetAssembler()->LoadDFromOffset(reg, sp, mem);
7083     GetAssembler()->StoreDToOffset(temp, sp, mem);
7084   } else if (source.IsFpuRegister() || destination.IsFpuRegister()) {
7085     vixl32::SRegister reg = source.IsFpuRegister()
7086         ? SRegisterFrom(source)
7087         : SRegisterFrom(destination);
7088     int mem = source.IsFpuRegister()
7089         ? destination.GetStackIndex()
7090         : source.GetStackIndex();
7091     vixl32::Register temp = temps.Acquire();
7092     __ Vmov(temp, reg);
7093     GetAssembler()->LoadSFromOffset(reg, sp, mem);
7094     GetAssembler()->StoreToOffset(kStoreWord, temp, sp, mem);
7095   } else if (source.IsDoubleStackSlot() && destination.IsDoubleStackSlot()) {
7096     vixl32::DRegister temp1 = temps.AcquireD();
7097     vixl32::DRegister temp2 = temps.AcquireD();
7098     __ Vldr(temp1, MemOperand(sp, source.GetStackIndex()));
7099     __ Vldr(temp2, MemOperand(sp, destination.GetStackIndex()));
7100     __ Vstr(temp1, MemOperand(sp, destination.GetStackIndex()));
7101     __ Vstr(temp2, MemOperand(sp, source.GetStackIndex()));
7102   } else {
7103     LOG(FATAL) << "Unimplemented" << source << " <-> " << destination;
7104   }
7105 }
7106 
SpillScratch(int reg)7107 void ParallelMoveResolverARMVIXL::SpillScratch(int reg) {
7108   __ Push(vixl32::Register(reg));
7109 }
7110 
RestoreScratch(int reg)7111 void ParallelMoveResolverARMVIXL::RestoreScratch(int reg) {
7112   __ Pop(vixl32::Register(reg));
7113 }
7114 
GetSupportedLoadClassKind(HLoadClass::LoadKind desired_class_load_kind)7115 HLoadClass::LoadKind CodeGeneratorARMVIXL::GetSupportedLoadClassKind(
7116     HLoadClass::LoadKind desired_class_load_kind) {
7117   switch (desired_class_load_kind) {
7118     case HLoadClass::LoadKind::kInvalid:
7119       LOG(FATAL) << "UNREACHABLE";
7120       UNREACHABLE();
7121     case HLoadClass::LoadKind::kReferrersClass:
7122       break;
7123     case HLoadClass::LoadKind::kBootImageLinkTimePcRelative:
7124     case HLoadClass::LoadKind::kBootImageRelRo:
7125     case HLoadClass::LoadKind::kBssEntry:
7126       DCHECK(!Runtime::Current()->UseJitCompilation());
7127       break;
7128     case HLoadClass::LoadKind::kJitBootImageAddress:
7129     case HLoadClass::LoadKind::kJitTableAddress:
7130       DCHECK(Runtime::Current()->UseJitCompilation());
7131       break;
7132     case HLoadClass::LoadKind::kRuntimeCall:
7133       break;
7134   }
7135   return desired_class_load_kind;
7136 }
7137 
VisitLoadClass(HLoadClass * cls)7138 void LocationsBuilderARMVIXL::VisitLoadClass(HLoadClass* cls) {
7139   HLoadClass::LoadKind load_kind = cls->GetLoadKind();
7140   if (load_kind == HLoadClass::LoadKind::kRuntimeCall) {
7141     InvokeRuntimeCallingConventionARMVIXL calling_convention;
7142     CodeGenerator::CreateLoadClassRuntimeCallLocationSummary(
7143         cls,
7144         LocationFrom(calling_convention.GetRegisterAt(0)),
7145         LocationFrom(r0));
7146     DCHECK(calling_convention.GetRegisterAt(0).Is(r0));
7147     return;
7148   }
7149   DCHECK(!cls->NeedsAccessCheck());
7150 
7151   const bool requires_read_barrier = kEmitCompilerReadBarrier && !cls->IsInBootImage();
7152   LocationSummary::CallKind call_kind = (cls->NeedsEnvironment() || requires_read_barrier)
7153       ? LocationSummary::kCallOnSlowPath
7154       : LocationSummary::kNoCall;
7155   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(cls, call_kind);
7156   if (kUseBakerReadBarrier && requires_read_barrier && !cls->NeedsEnvironment()) {
7157     locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty());  // No caller-save registers.
7158   }
7159 
7160   if (load_kind == HLoadClass::LoadKind::kReferrersClass) {
7161     locations->SetInAt(0, Location::RequiresRegister());
7162   }
7163   locations->SetOut(Location::RequiresRegister());
7164   if (load_kind == HLoadClass::LoadKind::kBssEntry) {
7165     if (!kUseReadBarrier || kUseBakerReadBarrier) {
7166       // Rely on the type resolution or initialization and marking to save everything we need.
7167       locations->SetCustomSlowPathCallerSaves(OneRegInReferenceOutSaveEverythingCallerSaves());
7168     } else {
7169       // For non-Baker read barrier we have a temp-clobbering call.
7170     }
7171   }
7172 }
7173 
7174 // NO_THREAD_SAFETY_ANALYSIS as we manipulate handles whose internal object we know does not
7175 // move.
VisitLoadClass(HLoadClass * cls)7176 void InstructionCodeGeneratorARMVIXL::VisitLoadClass(HLoadClass* cls) NO_THREAD_SAFETY_ANALYSIS {
7177   HLoadClass::LoadKind load_kind = cls->GetLoadKind();
7178   if (load_kind == HLoadClass::LoadKind::kRuntimeCall) {
7179     codegen_->GenerateLoadClassRuntimeCall(cls);
7180     codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 14);
7181     return;
7182   }
7183   DCHECK(!cls->NeedsAccessCheck());
7184 
7185   LocationSummary* locations = cls->GetLocations();
7186   Location out_loc = locations->Out();
7187   vixl32::Register out = OutputRegister(cls);
7188 
7189   const ReadBarrierOption read_barrier_option = cls->IsInBootImage()
7190       ? kWithoutReadBarrier
7191       : kCompilerReadBarrierOption;
7192   bool generate_null_check = false;
7193   switch (load_kind) {
7194     case HLoadClass::LoadKind::kReferrersClass: {
7195       DCHECK(!cls->CanCallRuntime());
7196       DCHECK(!cls->MustGenerateClinitCheck());
7197       // /* GcRoot<mirror::Class> */ out = current_method->declaring_class_
7198       vixl32::Register current_method = InputRegisterAt(cls, 0);
7199       codegen_->GenerateGcRootFieldLoad(cls,
7200                                         out_loc,
7201                                         current_method,
7202                                         ArtMethod::DeclaringClassOffset().Int32Value(),
7203                                         read_barrier_option);
7204       break;
7205     }
7206     case HLoadClass::LoadKind::kBootImageLinkTimePcRelative: {
7207       DCHECK(codegen_->GetCompilerOptions().IsBootImage() ||
7208              codegen_->GetCompilerOptions().IsBootImageExtension());
7209       DCHECK_EQ(read_barrier_option, kWithoutReadBarrier);
7210       CodeGeneratorARMVIXL::PcRelativePatchInfo* labels =
7211           codegen_->NewBootImageTypePatch(cls->GetDexFile(), cls->GetTypeIndex());
7212       codegen_->EmitMovwMovtPlaceholder(labels, out);
7213       break;
7214     }
7215     case HLoadClass::LoadKind::kBootImageRelRo: {
7216       DCHECK(!codegen_->GetCompilerOptions().IsBootImage());
7217       CodeGeneratorARMVIXL::PcRelativePatchInfo* labels =
7218           codegen_->NewBootImageRelRoPatch(codegen_->GetBootImageOffset(cls));
7219       codegen_->EmitMovwMovtPlaceholder(labels, out);
7220       __ Ldr(out, MemOperand(out, /* offset= */ 0));
7221       break;
7222     }
7223     case HLoadClass::LoadKind::kBssEntry: {
7224       CodeGeneratorARMVIXL::PcRelativePatchInfo* labels =
7225           codegen_->NewTypeBssEntryPatch(cls->GetDexFile(), cls->GetTypeIndex());
7226       codegen_->EmitMovwMovtPlaceholder(labels, out);
7227       // All aligned loads are implicitly atomic consume operations on ARM.
7228       codegen_->GenerateGcRootFieldLoad(cls, out_loc, out, /* offset= */ 0, read_barrier_option);
7229       generate_null_check = true;
7230       break;
7231     }
7232     case HLoadClass::LoadKind::kJitBootImageAddress: {
7233       DCHECK_EQ(read_barrier_option, kWithoutReadBarrier);
7234       uint32_t address = reinterpret_cast32<uint32_t>(cls->GetClass().Get());
7235       DCHECK_NE(address, 0u);
7236       __ Ldr(out, codegen_->DeduplicateBootImageAddressLiteral(address));
7237       break;
7238     }
7239     case HLoadClass::LoadKind::kJitTableAddress: {
7240       __ Ldr(out, codegen_->DeduplicateJitClassLiteral(cls->GetDexFile(),
7241                                                        cls->GetTypeIndex(),
7242                                                        cls->GetClass()));
7243       // /* GcRoot<mirror::Class> */ out = *out
7244       codegen_->GenerateGcRootFieldLoad(cls, out_loc, out, /* offset= */ 0, read_barrier_option);
7245       break;
7246     }
7247     case HLoadClass::LoadKind::kRuntimeCall:
7248     case HLoadClass::LoadKind::kInvalid:
7249       LOG(FATAL) << "UNREACHABLE";
7250       UNREACHABLE();
7251   }
7252 
7253   if (generate_null_check || cls->MustGenerateClinitCheck()) {
7254     DCHECK(cls->CanCallRuntime());
7255     LoadClassSlowPathARMVIXL* slow_path =
7256         new (codegen_->GetScopedAllocator()) LoadClassSlowPathARMVIXL(cls, cls);
7257     codegen_->AddSlowPath(slow_path);
7258     if (generate_null_check) {
7259       __ CompareAndBranchIfZero(out, slow_path->GetEntryLabel());
7260     }
7261     if (cls->MustGenerateClinitCheck()) {
7262       GenerateClassInitializationCheck(slow_path, out);
7263     } else {
7264       __ Bind(slow_path->GetExitLabel());
7265     }
7266     codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 15);
7267   }
7268 }
7269 
VisitLoadMethodHandle(HLoadMethodHandle * load)7270 void LocationsBuilderARMVIXL::VisitLoadMethodHandle(HLoadMethodHandle* load) {
7271   InvokeRuntimeCallingConventionARMVIXL calling_convention;
7272   Location location = LocationFrom(calling_convention.GetRegisterAt(0));
7273   CodeGenerator::CreateLoadMethodHandleRuntimeCallLocationSummary(load, location, location);
7274 }
7275 
VisitLoadMethodHandle(HLoadMethodHandle * load)7276 void InstructionCodeGeneratorARMVIXL::VisitLoadMethodHandle(HLoadMethodHandle* load) {
7277   codegen_->GenerateLoadMethodHandleRuntimeCall(load);
7278 }
7279 
VisitLoadMethodType(HLoadMethodType * load)7280 void LocationsBuilderARMVIXL::VisitLoadMethodType(HLoadMethodType* load) {
7281   InvokeRuntimeCallingConventionARMVIXL calling_convention;
7282   Location location = LocationFrom(calling_convention.GetRegisterAt(0));
7283   CodeGenerator::CreateLoadMethodTypeRuntimeCallLocationSummary(load, location, location);
7284 }
7285 
VisitLoadMethodType(HLoadMethodType * load)7286 void InstructionCodeGeneratorARMVIXL::VisitLoadMethodType(HLoadMethodType* load) {
7287   codegen_->GenerateLoadMethodTypeRuntimeCall(load);
7288 }
7289 
VisitClinitCheck(HClinitCheck * check)7290 void LocationsBuilderARMVIXL::VisitClinitCheck(HClinitCheck* check) {
7291   LocationSummary* locations =
7292       new (GetGraph()->GetAllocator()) LocationSummary(check, LocationSummary::kCallOnSlowPath);
7293   locations->SetInAt(0, Location::RequiresRegister());
7294   if (check->HasUses()) {
7295     locations->SetOut(Location::SameAsFirstInput());
7296   }
7297   // Rely on the type initialization to save everything we need.
7298   locations->SetCustomSlowPathCallerSaves(OneRegInReferenceOutSaveEverythingCallerSaves());
7299 }
7300 
VisitClinitCheck(HClinitCheck * check)7301 void InstructionCodeGeneratorARMVIXL::VisitClinitCheck(HClinitCheck* check) {
7302   // We assume the class is not null.
7303   LoadClassSlowPathARMVIXL* slow_path =
7304       new (codegen_->GetScopedAllocator()) LoadClassSlowPathARMVIXL(check->GetLoadClass(), check);
7305   codegen_->AddSlowPath(slow_path);
7306   GenerateClassInitializationCheck(slow_path, InputRegisterAt(check, 0));
7307 }
7308 
GenerateClassInitializationCheck(LoadClassSlowPathARMVIXL * slow_path,vixl32::Register class_reg)7309 void InstructionCodeGeneratorARMVIXL::GenerateClassInitializationCheck(
7310     LoadClassSlowPathARMVIXL* slow_path, vixl32::Register class_reg) {
7311   UseScratchRegisterScope temps(GetVIXLAssembler());
7312   vixl32::Register temp = temps.Acquire();
7313   constexpr size_t status_lsb_position = SubtypeCheckBits::BitStructSizeOf();
7314   constexpr uint32_t shifted_visibly_initialized_value =
7315       enum_cast<uint32_t>(ClassStatus::kVisiblyInitialized) << status_lsb_position;
7316 
7317   const size_t status_offset = mirror::Class::StatusOffset().SizeValue();
7318   GetAssembler()->LoadFromOffset(kLoadWord, temp, class_reg, status_offset);
7319   __ Cmp(temp, shifted_visibly_initialized_value);
7320   __ B(lo, slow_path->GetEntryLabel());
7321   __ Bind(slow_path->GetExitLabel());
7322 }
7323 
GenerateBitstringTypeCheckCompare(HTypeCheckInstruction * check,vixl32::Register temp,vixl32::FlagsUpdate flags_update)7324 void InstructionCodeGeneratorARMVIXL::GenerateBitstringTypeCheckCompare(
7325     HTypeCheckInstruction* check,
7326     vixl32::Register temp,
7327     vixl32::FlagsUpdate flags_update) {
7328   uint32_t path_to_root = check->GetBitstringPathToRoot();
7329   uint32_t mask = check->GetBitstringMask();
7330   DCHECK(IsPowerOfTwo(mask + 1));
7331   size_t mask_bits = WhichPowerOf2(mask + 1);
7332 
7333   // Note that HInstanceOf shall check for zero value in `temp` but HCheckCast needs
7334   // the Z flag for BNE. This is indicated by the `flags_update` parameter.
7335   if (mask_bits == 16u) {
7336     // Load only the bitstring part of the status word.
7337     __ Ldrh(temp, MemOperand(temp, mirror::Class::StatusOffset().Int32Value()));
7338     // Check if the bitstring bits are equal to `path_to_root`.
7339     if (flags_update == SetFlags) {
7340       __ Cmp(temp, path_to_root);
7341     } else {
7342       __ Sub(temp, temp, path_to_root);
7343     }
7344   } else {
7345     // /* uint32_t */ temp = temp->status_
7346     __ Ldr(temp, MemOperand(temp, mirror::Class::StatusOffset().Int32Value()));
7347     if (GetAssembler()->ShifterOperandCanHold(SUB, path_to_root)) {
7348       // Compare the bitstring bits using SUB.
7349       __ Sub(temp, temp, path_to_root);
7350       // Shift out bits that do not contribute to the comparison.
7351       __ Lsl(flags_update, temp, temp, dchecked_integral_cast<uint32_t>(32u - mask_bits));
7352     } else if (IsUint<16>(path_to_root)) {
7353       if (temp.IsLow()) {
7354         // Note: Optimized for size but contains one more dependent instruction than necessary.
7355         //       MOVW+SUB(register) would be 8 bytes unless we find a low-reg temporary but the
7356         //       macro assembler would use the high reg IP for the constant by default.
7357         // Compare the bitstring bits using SUB.
7358         __ Sub(temp, temp, path_to_root & 0x00ffu);  // 16-bit SUB (immediate) T2
7359         __ Sub(temp, temp, path_to_root & 0xff00u);  // 32-bit SUB (immediate) T3
7360         // Shift out bits that do not contribute to the comparison.
7361         __ Lsl(flags_update, temp, temp, dchecked_integral_cast<uint32_t>(32u - mask_bits));
7362       } else {
7363         // Extract the bitstring bits.
7364         __ Ubfx(temp, temp, 0, mask_bits);
7365         // Check if the bitstring bits are equal to `path_to_root`.
7366         if (flags_update == SetFlags) {
7367           __ Cmp(temp, path_to_root);
7368         } else {
7369           __ Sub(temp, temp, path_to_root);
7370         }
7371       }
7372     } else {
7373       // Shift out bits that do not contribute to the comparison.
7374       __ Lsl(temp, temp, dchecked_integral_cast<uint32_t>(32u - mask_bits));
7375       // Check if the shifted bitstring bits are equal to `path_to_root << (32u - mask_bits)`.
7376       if (flags_update == SetFlags) {
7377         __ Cmp(temp, path_to_root << (32u - mask_bits));
7378       } else {
7379         __ Sub(temp, temp, path_to_root << (32u - mask_bits));
7380       }
7381     }
7382   }
7383 }
7384 
GetSupportedLoadStringKind(HLoadString::LoadKind desired_string_load_kind)7385 HLoadString::LoadKind CodeGeneratorARMVIXL::GetSupportedLoadStringKind(
7386     HLoadString::LoadKind desired_string_load_kind) {
7387   switch (desired_string_load_kind) {
7388     case HLoadString::LoadKind::kBootImageLinkTimePcRelative:
7389     case HLoadString::LoadKind::kBootImageRelRo:
7390     case HLoadString::LoadKind::kBssEntry:
7391       DCHECK(!Runtime::Current()->UseJitCompilation());
7392       break;
7393     case HLoadString::LoadKind::kJitBootImageAddress:
7394     case HLoadString::LoadKind::kJitTableAddress:
7395       DCHECK(Runtime::Current()->UseJitCompilation());
7396       break;
7397     case HLoadString::LoadKind::kRuntimeCall:
7398       break;
7399   }
7400   return desired_string_load_kind;
7401 }
7402 
VisitLoadString(HLoadString * load)7403 void LocationsBuilderARMVIXL::VisitLoadString(HLoadString* load) {
7404   LocationSummary::CallKind call_kind = CodeGenerator::GetLoadStringCallKind(load);
7405   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(load, call_kind);
7406   HLoadString::LoadKind load_kind = load->GetLoadKind();
7407   if (load_kind == HLoadString::LoadKind::kRuntimeCall) {
7408     locations->SetOut(LocationFrom(r0));
7409   } else {
7410     locations->SetOut(Location::RequiresRegister());
7411     if (load_kind == HLoadString::LoadKind::kBssEntry) {
7412       if (!kUseReadBarrier || kUseBakerReadBarrier) {
7413         // Rely on the pResolveString and marking to save everything we need, including temps.
7414         locations->SetCustomSlowPathCallerSaves(OneRegInReferenceOutSaveEverythingCallerSaves());
7415       } else {
7416         // For non-Baker read barrier we have a temp-clobbering call.
7417       }
7418     }
7419   }
7420 }
7421 
7422 // NO_THREAD_SAFETY_ANALYSIS as we manipulate handles whose internal object we know does not
7423 // move.
VisitLoadString(HLoadString * load)7424 void InstructionCodeGeneratorARMVIXL::VisitLoadString(HLoadString* load) NO_THREAD_SAFETY_ANALYSIS {
7425   LocationSummary* locations = load->GetLocations();
7426   Location out_loc = locations->Out();
7427   vixl32::Register out = OutputRegister(load);
7428   HLoadString::LoadKind load_kind = load->GetLoadKind();
7429 
7430   switch (load_kind) {
7431     case HLoadString::LoadKind::kBootImageLinkTimePcRelative: {
7432       DCHECK(codegen_->GetCompilerOptions().IsBootImage() ||
7433              codegen_->GetCompilerOptions().IsBootImageExtension());
7434       CodeGeneratorARMVIXL::PcRelativePatchInfo* labels =
7435           codegen_->NewBootImageStringPatch(load->GetDexFile(), load->GetStringIndex());
7436       codegen_->EmitMovwMovtPlaceholder(labels, out);
7437       return;
7438     }
7439     case HLoadString::LoadKind::kBootImageRelRo: {
7440       DCHECK(!codegen_->GetCompilerOptions().IsBootImage());
7441       CodeGeneratorARMVIXL::PcRelativePatchInfo* labels =
7442           codegen_->NewBootImageRelRoPatch(codegen_->GetBootImageOffset(load));
7443       codegen_->EmitMovwMovtPlaceholder(labels, out);
7444       __ Ldr(out, MemOperand(out, /* offset= */ 0));
7445       return;
7446     }
7447     case HLoadString::LoadKind::kBssEntry: {
7448       CodeGeneratorARMVIXL::PcRelativePatchInfo* labels =
7449           codegen_->NewStringBssEntryPatch(load->GetDexFile(), load->GetStringIndex());
7450       codegen_->EmitMovwMovtPlaceholder(labels, out);
7451       // All aligned loads are implicitly atomic consume operations on ARM.
7452       codegen_->GenerateGcRootFieldLoad(
7453           load, out_loc, out, /* offset= */ 0, kCompilerReadBarrierOption);
7454       LoadStringSlowPathARMVIXL* slow_path =
7455           new (codegen_->GetScopedAllocator()) LoadStringSlowPathARMVIXL(load);
7456       codegen_->AddSlowPath(slow_path);
7457       __ CompareAndBranchIfZero(out, slow_path->GetEntryLabel());
7458       __ Bind(slow_path->GetExitLabel());
7459       codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 16);
7460       return;
7461     }
7462     case HLoadString::LoadKind::kJitBootImageAddress: {
7463       uint32_t address = reinterpret_cast32<uint32_t>(load->GetString().Get());
7464       DCHECK_NE(address, 0u);
7465       __ Ldr(out, codegen_->DeduplicateBootImageAddressLiteral(address));
7466       return;
7467     }
7468     case HLoadString::LoadKind::kJitTableAddress: {
7469       __ Ldr(out, codegen_->DeduplicateJitStringLiteral(load->GetDexFile(),
7470                                                         load->GetStringIndex(),
7471                                                         load->GetString()));
7472       // /* GcRoot<mirror::String> */ out = *out
7473       codegen_->GenerateGcRootFieldLoad(
7474           load, out_loc, out, /* offset= */ 0, kCompilerReadBarrierOption);
7475       return;
7476     }
7477     default:
7478       break;
7479   }
7480 
7481   // TODO: Re-add the compiler code to do string dex cache lookup again.
7482   DCHECK_EQ(load->GetLoadKind(), HLoadString::LoadKind::kRuntimeCall);
7483   InvokeRuntimeCallingConventionARMVIXL calling_convention;
7484   __ Mov(calling_convention.GetRegisterAt(0), load->GetStringIndex().index_);
7485   codegen_->InvokeRuntime(kQuickResolveString, load, load->GetDexPc());
7486   CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>();
7487   codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 17);
7488 }
7489 
GetExceptionTlsOffset()7490 static int32_t GetExceptionTlsOffset() {
7491   return Thread::ExceptionOffset<kArmPointerSize>().Int32Value();
7492 }
7493 
VisitLoadException(HLoadException * load)7494 void LocationsBuilderARMVIXL::VisitLoadException(HLoadException* load) {
7495   LocationSummary* locations =
7496       new (GetGraph()->GetAllocator()) LocationSummary(load, LocationSummary::kNoCall);
7497   locations->SetOut(Location::RequiresRegister());
7498 }
7499 
VisitLoadException(HLoadException * load)7500 void InstructionCodeGeneratorARMVIXL::VisitLoadException(HLoadException* load) {
7501   vixl32::Register out = OutputRegister(load);
7502   GetAssembler()->LoadFromOffset(kLoadWord, out, tr, GetExceptionTlsOffset());
7503 }
7504 
7505 
VisitClearException(HClearException * clear)7506 void LocationsBuilderARMVIXL::VisitClearException(HClearException* clear) {
7507   new (GetGraph()->GetAllocator()) LocationSummary(clear, LocationSummary::kNoCall);
7508 }
7509 
VisitClearException(HClearException * clear ATTRIBUTE_UNUSED)7510 void InstructionCodeGeneratorARMVIXL::VisitClearException(HClearException* clear ATTRIBUTE_UNUSED) {
7511   UseScratchRegisterScope temps(GetVIXLAssembler());
7512   vixl32::Register temp = temps.Acquire();
7513   __ Mov(temp, 0);
7514   GetAssembler()->StoreToOffset(kStoreWord, temp, tr, GetExceptionTlsOffset());
7515 }
7516 
VisitThrow(HThrow * instruction)7517 void LocationsBuilderARMVIXL::VisitThrow(HThrow* instruction) {
7518   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
7519       instruction, LocationSummary::kCallOnMainOnly);
7520   InvokeRuntimeCallingConventionARMVIXL calling_convention;
7521   locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
7522 }
7523 
VisitThrow(HThrow * instruction)7524 void InstructionCodeGeneratorARMVIXL::VisitThrow(HThrow* instruction) {
7525   codegen_->InvokeRuntime(kQuickDeliverException, instruction, instruction->GetDexPc());
7526   CheckEntrypointTypes<kQuickDeliverException, void, mirror::Object*>();
7527 }
7528 
7529 // Temp is used for read barrier.
NumberOfInstanceOfTemps(TypeCheckKind type_check_kind)7530 static size_t NumberOfInstanceOfTemps(TypeCheckKind type_check_kind) {
7531   if (kEmitCompilerReadBarrier &&
7532        (kUseBakerReadBarrier ||
7533           type_check_kind == TypeCheckKind::kAbstractClassCheck ||
7534           type_check_kind == TypeCheckKind::kClassHierarchyCheck ||
7535           type_check_kind == TypeCheckKind::kArrayObjectCheck)) {
7536     return 1;
7537   }
7538   return 0;
7539 }
7540 
7541 // Interface case has 3 temps, one for holding the number of interfaces, one for the current
7542 // interface pointer, one for loading the current interface.
7543 // The other checks have one temp for loading the object's class.
NumberOfCheckCastTemps(TypeCheckKind type_check_kind)7544 static size_t NumberOfCheckCastTemps(TypeCheckKind type_check_kind) {
7545   if (type_check_kind == TypeCheckKind::kInterfaceCheck) {
7546     return 3;
7547   }
7548   return 1 + NumberOfInstanceOfTemps(type_check_kind);
7549 }
7550 
VisitInstanceOf(HInstanceOf * instruction)7551 void LocationsBuilderARMVIXL::VisitInstanceOf(HInstanceOf* instruction) {
7552   LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
7553   TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
7554   bool baker_read_barrier_slow_path = false;
7555   switch (type_check_kind) {
7556     case TypeCheckKind::kExactCheck:
7557     case TypeCheckKind::kAbstractClassCheck:
7558     case TypeCheckKind::kClassHierarchyCheck:
7559     case TypeCheckKind::kArrayObjectCheck: {
7560       bool needs_read_barrier = CodeGenerator::InstanceOfNeedsReadBarrier(instruction);
7561       call_kind = needs_read_barrier ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall;
7562       baker_read_barrier_slow_path = kUseBakerReadBarrier && needs_read_barrier;
7563       break;
7564     }
7565     case TypeCheckKind::kArrayCheck:
7566     case TypeCheckKind::kUnresolvedCheck:
7567     case TypeCheckKind::kInterfaceCheck:
7568       call_kind = LocationSummary::kCallOnSlowPath;
7569       break;
7570     case TypeCheckKind::kBitstringCheck:
7571       break;
7572   }
7573 
7574   LocationSummary* locations =
7575       new (GetGraph()->GetAllocator()) LocationSummary(instruction, call_kind);
7576   if (baker_read_barrier_slow_path) {
7577     locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty());  // No caller-save registers.
7578   }
7579   locations->SetInAt(0, Location::RequiresRegister());
7580   if (type_check_kind == TypeCheckKind::kBitstringCheck) {
7581     locations->SetInAt(1, Location::ConstantLocation(instruction->InputAt(1)->AsConstant()));
7582     locations->SetInAt(2, Location::ConstantLocation(instruction->InputAt(2)->AsConstant()));
7583     locations->SetInAt(3, Location::ConstantLocation(instruction->InputAt(3)->AsConstant()));
7584   } else {
7585     locations->SetInAt(1, Location::RequiresRegister());
7586   }
7587   // The "out" register is used as a temporary, so it overlaps with the inputs.
7588   // Note that TypeCheckSlowPathARM uses this register too.
7589   locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
7590   locations->AddRegisterTemps(NumberOfInstanceOfTemps(type_check_kind));
7591 }
7592 
VisitInstanceOf(HInstanceOf * instruction)7593 void InstructionCodeGeneratorARMVIXL::VisitInstanceOf(HInstanceOf* instruction) {
7594   TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
7595   LocationSummary* locations = instruction->GetLocations();
7596   Location obj_loc = locations->InAt(0);
7597   vixl32::Register obj = InputRegisterAt(instruction, 0);
7598   vixl32::Register cls = (type_check_kind == TypeCheckKind::kBitstringCheck)
7599       ? vixl32::Register()
7600       : InputRegisterAt(instruction, 1);
7601   Location out_loc = locations->Out();
7602   vixl32::Register out = OutputRegister(instruction);
7603   const size_t num_temps = NumberOfInstanceOfTemps(type_check_kind);
7604   DCHECK_LE(num_temps, 1u);
7605   Location maybe_temp_loc = (num_temps >= 1) ? locations->GetTemp(0) : Location::NoLocation();
7606   uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
7607   uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
7608   uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
7609   uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
7610   vixl32::Label done;
7611   vixl32::Label* const final_label = codegen_->GetFinalLabel(instruction, &done);
7612   SlowPathCodeARMVIXL* slow_path = nullptr;
7613 
7614   // Return 0 if `obj` is null.
7615   // avoid null check if we know obj is not null.
7616   if (instruction->MustDoNullCheck()) {
7617     DCHECK(!out.Is(obj));
7618     __ Mov(out, 0);
7619     __ CompareAndBranchIfZero(obj, final_label, /* is_far_target= */ false);
7620   }
7621 
7622   switch (type_check_kind) {
7623     case TypeCheckKind::kExactCheck: {
7624       ReadBarrierOption read_barrier_option =
7625           CodeGenerator::ReadBarrierOptionForInstanceOf(instruction);
7626       // /* HeapReference<Class> */ out = obj->klass_
7627       GenerateReferenceLoadTwoRegisters(instruction,
7628                                         out_loc,
7629                                         obj_loc,
7630                                         class_offset,
7631                                         maybe_temp_loc,
7632                                         read_barrier_option);
7633       // Classes must be equal for the instanceof to succeed.
7634       __ Cmp(out, cls);
7635       // We speculatively set the result to false without changing the condition
7636       // flags, which allows us to avoid some branching later.
7637       __ Mov(LeaveFlags, out, 0);
7638 
7639       // Since IT blocks longer than a 16-bit instruction are deprecated by ARMv8,
7640       // we check that the output is in a low register, so that a 16-bit MOV
7641       // encoding can be used.
7642       if (out.IsLow()) {
7643         // We use the scope because of the IT block that follows.
7644         ExactAssemblyScope guard(GetVIXLAssembler(),
7645                                  2 * vixl32::k16BitT32InstructionSizeInBytes,
7646                                  CodeBufferCheckScope::kExactSize);
7647 
7648         __ it(eq);
7649         __ mov(eq, out, 1);
7650       } else {
7651         __ B(ne, final_label, /* is_far_target= */ false);
7652         __ Mov(out, 1);
7653       }
7654 
7655       break;
7656     }
7657 
7658     case TypeCheckKind::kAbstractClassCheck: {
7659       ReadBarrierOption read_barrier_option =
7660           CodeGenerator::ReadBarrierOptionForInstanceOf(instruction);
7661       // /* HeapReference<Class> */ out = obj->klass_
7662       GenerateReferenceLoadTwoRegisters(instruction,
7663                                         out_loc,
7664                                         obj_loc,
7665                                         class_offset,
7666                                         maybe_temp_loc,
7667                                         read_barrier_option);
7668       // If the class is abstract, we eagerly fetch the super class of the
7669       // object to avoid doing a comparison we know will fail.
7670       vixl32::Label loop;
7671       __ Bind(&loop);
7672       // /* HeapReference<Class> */ out = out->super_class_
7673       GenerateReferenceLoadOneRegister(instruction,
7674                                        out_loc,
7675                                        super_offset,
7676                                        maybe_temp_loc,
7677                                        read_barrier_option);
7678       // If `out` is null, we use it for the result, and jump to the final label.
7679       __ CompareAndBranchIfZero(out, final_label, /* is_far_target= */ false);
7680       __ Cmp(out, cls);
7681       __ B(ne, &loop, /* is_far_target= */ false);
7682       __ Mov(out, 1);
7683       break;
7684     }
7685 
7686     case TypeCheckKind::kClassHierarchyCheck: {
7687       ReadBarrierOption read_barrier_option =
7688           CodeGenerator::ReadBarrierOptionForInstanceOf(instruction);
7689       // /* HeapReference<Class> */ out = obj->klass_
7690       GenerateReferenceLoadTwoRegisters(instruction,
7691                                         out_loc,
7692                                         obj_loc,
7693                                         class_offset,
7694                                         maybe_temp_loc,
7695                                         read_barrier_option);
7696       // Walk over the class hierarchy to find a match.
7697       vixl32::Label loop, success;
7698       __ Bind(&loop);
7699       __ Cmp(out, cls);
7700       __ B(eq, &success, /* is_far_target= */ false);
7701       // /* HeapReference<Class> */ out = out->super_class_
7702       GenerateReferenceLoadOneRegister(instruction,
7703                                        out_loc,
7704                                        super_offset,
7705                                        maybe_temp_loc,
7706                                        read_barrier_option);
7707       // This is essentially a null check, but it sets the condition flags to the
7708       // proper value for the code that follows the loop, i.e. not `eq`.
7709       __ Cmp(out, 1);
7710       __ B(hs, &loop, /* is_far_target= */ false);
7711 
7712       // Since IT blocks longer than a 16-bit instruction are deprecated by ARMv8,
7713       // we check that the output is in a low register, so that a 16-bit MOV
7714       // encoding can be used.
7715       if (out.IsLow()) {
7716         // If `out` is null, we use it for the result, and the condition flags
7717         // have already been set to `ne`, so the IT block that comes afterwards
7718         // (and which handles the successful case) turns into a NOP (instead of
7719         // overwriting `out`).
7720         __ Bind(&success);
7721 
7722         // We use the scope because of the IT block that follows.
7723         ExactAssemblyScope guard(GetVIXLAssembler(),
7724                                  2 * vixl32::k16BitT32InstructionSizeInBytes,
7725                                  CodeBufferCheckScope::kExactSize);
7726 
7727         // There is only one branch to the `success` label (which is bound to this
7728         // IT block), and it has the same condition, `eq`, so in that case the MOV
7729         // is executed.
7730         __ it(eq);
7731         __ mov(eq, out, 1);
7732       } else {
7733         // If `out` is null, we use it for the result, and jump to the final label.
7734         __ B(final_label);
7735         __ Bind(&success);
7736         __ Mov(out, 1);
7737       }
7738 
7739       break;
7740     }
7741 
7742     case TypeCheckKind::kArrayObjectCheck: {
7743       ReadBarrierOption read_barrier_option =
7744           CodeGenerator::ReadBarrierOptionForInstanceOf(instruction);
7745       // /* HeapReference<Class> */ out = obj->klass_
7746       GenerateReferenceLoadTwoRegisters(instruction,
7747                                         out_loc,
7748                                         obj_loc,
7749                                         class_offset,
7750                                         maybe_temp_loc,
7751                                         read_barrier_option);
7752       // Do an exact check.
7753       vixl32::Label exact_check;
7754       __ Cmp(out, cls);
7755       __ B(eq, &exact_check, /* is_far_target= */ false);
7756       // Otherwise, we need to check that the object's class is a non-primitive array.
7757       // /* HeapReference<Class> */ out = out->component_type_
7758       GenerateReferenceLoadOneRegister(instruction,
7759                                        out_loc,
7760                                        component_offset,
7761                                        maybe_temp_loc,
7762                                        read_barrier_option);
7763       // If `out` is null, we use it for the result, and jump to the final label.
7764       __ CompareAndBranchIfZero(out, final_label, /* is_far_target= */ false);
7765       GetAssembler()->LoadFromOffset(kLoadUnsignedHalfword, out, out, primitive_offset);
7766       static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
7767       __ Cmp(out, 0);
7768       // We speculatively set the result to false without changing the condition
7769       // flags, which allows us to avoid some branching later.
7770       __ Mov(LeaveFlags, out, 0);
7771 
7772       // Since IT blocks longer than a 16-bit instruction are deprecated by ARMv8,
7773       // we check that the output is in a low register, so that a 16-bit MOV
7774       // encoding can be used.
7775       if (out.IsLow()) {
7776         __ Bind(&exact_check);
7777 
7778         // We use the scope because of the IT block that follows.
7779         ExactAssemblyScope guard(GetVIXLAssembler(),
7780                                  2 * vixl32::k16BitT32InstructionSizeInBytes,
7781                                  CodeBufferCheckScope::kExactSize);
7782 
7783         __ it(eq);
7784         __ mov(eq, out, 1);
7785       } else {
7786         __ B(ne, final_label, /* is_far_target= */ false);
7787         __ Bind(&exact_check);
7788         __ Mov(out, 1);
7789       }
7790 
7791       break;
7792     }
7793 
7794     case TypeCheckKind::kArrayCheck: {
7795       // No read barrier since the slow path will retry upon failure.
7796       // /* HeapReference<Class> */ out = obj->klass_
7797       GenerateReferenceLoadTwoRegisters(instruction,
7798                                         out_loc,
7799                                         obj_loc,
7800                                         class_offset,
7801                                         maybe_temp_loc,
7802                                         kWithoutReadBarrier);
7803       __ Cmp(out, cls);
7804       DCHECK(locations->OnlyCallsOnSlowPath());
7805       slow_path = new (codegen_->GetScopedAllocator()) TypeCheckSlowPathARMVIXL(
7806           instruction, /* is_fatal= */ false);
7807       codegen_->AddSlowPath(slow_path);
7808       __ B(ne, slow_path->GetEntryLabel());
7809       __ Mov(out, 1);
7810       break;
7811     }
7812 
7813     case TypeCheckKind::kUnresolvedCheck:
7814     case TypeCheckKind::kInterfaceCheck: {
7815       // Note that we indeed only call on slow path, but we always go
7816       // into the slow path for the unresolved and interface check
7817       // cases.
7818       //
7819       // We cannot directly call the InstanceofNonTrivial runtime
7820       // entry point without resorting to a type checking slow path
7821       // here (i.e. by calling InvokeRuntime directly), as it would
7822       // require to assign fixed registers for the inputs of this
7823       // HInstanceOf instruction (following the runtime calling
7824       // convention), which might be cluttered by the potential first
7825       // read barrier emission at the beginning of this method.
7826       //
7827       // TODO: Introduce a new runtime entry point taking the object
7828       // to test (instead of its class) as argument, and let it deal
7829       // with the read barrier issues. This will let us refactor this
7830       // case of the `switch` code as it was previously (with a direct
7831       // call to the runtime not using a type checking slow path).
7832       // This should also be beneficial for the other cases above.
7833       DCHECK(locations->OnlyCallsOnSlowPath());
7834       slow_path = new (codegen_->GetScopedAllocator()) TypeCheckSlowPathARMVIXL(
7835           instruction, /* is_fatal= */ false);
7836       codegen_->AddSlowPath(slow_path);
7837       __ B(slow_path->GetEntryLabel());
7838       break;
7839     }
7840 
7841     case TypeCheckKind::kBitstringCheck: {
7842       // /* HeapReference<Class> */ temp = obj->klass_
7843       GenerateReferenceLoadTwoRegisters(instruction,
7844                                         out_loc,
7845                                         obj_loc,
7846                                         class_offset,
7847                                         maybe_temp_loc,
7848                                         kWithoutReadBarrier);
7849 
7850       GenerateBitstringTypeCheckCompare(instruction, out, DontCare);
7851       // If `out` is a low reg and we would have another low reg temp, we could
7852       // optimize this as RSBS+ADC, see GenerateConditionWithZero().
7853       //
7854       // Also, in some cases when `out` is a low reg and we're loading a constant to IP
7855       // it would make sense to use CMP+MOV+IT+MOV instead of SUB+CLZ+LSR as the code size
7856       // would be the same and we would have fewer direct data dependencies.
7857       codegen_->GenerateConditionWithZero(kCondEQ, out, out);  // CLZ+LSR
7858       break;
7859     }
7860   }
7861 
7862   if (done.IsReferenced()) {
7863     __ Bind(&done);
7864   }
7865 
7866   if (slow_path != nullptr) {
7867     __ Bind(slow_path->GetExitLabel());
7868   }
7869 }
7870 
VisitCheckCast(HCheckCast * instruction)7871 void LocationsBuilderARMVIXL::VisitCheckCast(HCheckCast* instruction) {
7872   TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
7873   LocationSummary::CallKind call_kind = CodeGenerator::GetCheckCastCallKind(instruction);
7874   LocationSummary* locations =
7875       new (GetGraph()->GetAllocator()) LocationSummary(instruction, call_kind);
7876   locations->SetInAt(0, Location::RequiresRegister());
7877   if (type_check_kind == TypeCheckKind::kBitstringCheck) {
7878     locations->SetInAt(1, Location::ConstantLocation(instruction->InputAt(1)->AsConstant()));
7879     locations->SetInAt(2, Location::ConstantLocation(instruction->InputAt(2)->AsConstant()));
7880     locations->SetInAt(3, Location::ConstantLocation(instruction->InputAt(3)->AsConstant()));
7881   } else {
7882     locations->SetInAt(1, Location::RequiresRegister());
7883   }
7884   locations->AddRegisterTemps(NumberOfCheckCastTemps(type_check_kind));
7885 }
7886 
VisitCheckCast(HCheckCast * instruction)7887 void InstructionCodeGeneratorARMVIXL::VisitCheckCast(HCheckCast* instruction) {
7888   TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
7889   LocationSummary* locations = instruction->GetLocations();
7890   Location obj_loc = locations->InAt(0);
7891   vixl32::Register obj = InputRegisterAt(instruction, 0);
7892   vixl32::Register cls = (type_check_kind == TypeCheckKind::kBitstringCheck)
7893       ? vixl32::Register()
7894       : InputRegisterAt(instruction, 1);
7895   Location temp_loc = locations->GetTemp(0);
7896   vixl32::Register temp = RegisterFrom(temp_loc);
7897   const size_t num_temps = NumberOfCheckCastTemps(type_check_kind);
7898   DCHECK_LE(num_temps, 3u);
7899   Location maybe_temp2_loc = (num_temps >= 2) ? locations->GetTemp(1) : Location::NoLocation();
7900   Location maybe_temp3_loc = (num_temps >= 3) ? locations->GetTemp(2) : Location::NoLocation();
7901   const uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
7902   const uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
7903   const uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
7904   const uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
7905   const uint32_t iftable_offset = mirror::Class::IfTableOffset().Uint32Value();
7906   const uint32_t array_length_offset = mirror::Array::LengthOffset().Uint32Value();
7907   const uint32_t object_array_data_offset =
7908       mirror::Array::DataOffset(kHeapReferenceSize).Uint32Value();
7909 
7910   bool is_type_check_slow_path_fatal = CodeGenerator::IsTypeCheckSlowPathFatal(instruction);
7911   SlowPathCodeARMVIXL* type_check_slow_path =
7912       new (codegen_->GetScopedAllocator()) TypeCheckSlowPathARMVIXL(
7913           instruction, is_type_check_slow_path_fatal);
7914   codegen_->AddSlowPath(type_check_slow_path);
7915 
7916   vixl32::Label done;
7917   vixl32::Label* final_label = codegen_->GetFinalLabel(instruction, &done);
7918   // Avoid null check if we know obj is not null.
7919   if (instruction->MustDoNullCheck()) {
7920     __ CompareAndBranchIfZero(obj, final_label, /* is_far_target= */ false);
7921   }
7922 
7923   switch (type_check_kind) {
7924     case TypeCheckKind::kExactCheck:
7925     case TypeCheckKind::kArrayCheck: {
7926       // /* HeapReference<Class> */ temp = obj->klass_
7927       GenerateReferenceLoadTwoRegisters(instruction,
7928                                         temp_loc,
7929                                         obj_loc,
7930                                         class_offset,
7931                                         maybe_temp2_loc,
7932                                         kWithoutReadBarrier);
7933 
7934       __ Cmp(temp, cls);
7935       // Jump to slow path for throwing the exception or doing a
7936       // more involved array check.
7937       __ B(ne, type_check_slow_path->GetEntryLabel());
7938       break;
7939     }
7940 
7941     case TypeCheckKind::kAbstractClassCheck: {
7942       // /* HeapReference<Class> */ temp = obj->klass_
7943       GenerateReferenceLoadTwoRegisters(instruction,
7944                                         temp_loc,
7945                                         obj_loc,
7946                                         class_offset,
7947                                         maybe_temp2_loc,
7948                                         kWithoutReadBarrier);
7949 
7950       // If the class is abstract, we eagerly fetch the super class of the
7951       // object to avoid doing a comparison we know will fail.
7952       vixl32::Label loop;
7953       __ Bind(&loop);
7954       // /* HeapReference<Class> */ temp = temp->super_class_
7955       GenerateReferenceLoadOneRegister(instruction,
7956                                        temp_loc,
7957                                        super_offset,
7958                                        maybe_temp2_loc,
7959                                        kWithoutReadBarrier);
7960 
7961       // If the class reference currently in `temp` is null, jump to the slow path to throw the
7962       // exception.
7963       __ CompareAndBranchIfZero(temp, type_check_slow_path->GetEntryLabel());
7964 
7965       // Otherwise, compare the classes.
7966       __ Cmp(temp, cls);
7967       __ B(ne, &loop, /* is_far_target= */ false);
7968       break;
7969     }
7970 
7971     case TypeCheckKind::kClassHierarchyCheck: {
7972       // /* HeapReference<Class> */ temp = obj->klass_
7973       GenerateReferenceLoadTwoRegisters(instruction,
7974                                         temp_loc,
7975                                         obj_loc,
7976                                         class_offset,
7977                                         maybe_temp2_loc,
7978                                         kWithoutReadBarrier);
7979 
7980       // Walk over the class hierarchy to find a match.
7981       vixl32::Label loop;
7982       __ Bind(&loop);
7983       __ Cmp(temp, cls);
7984       __ B(eq, final_label, /* is_far_target= */ false);
7985 
7986       // /* HeapReference<Class> */ temp = temp->super_class_
7987       GenerateReferenceLoadOneRegister(instruction,
7988                                        temp_loc,
7989                                        super_offset,
7990                                        maybe_temp2_loc,
7991                                        kWithoutReadBarrier);
7992 
7993       // If the class reference currently in `temp` is null, jump to the slow path to throw the
7994       // exception.
7995       __ CompareAndBranchIfZero(temp, type_check_slow_path->GetEntryLabel());
7996       // Otherwise, jump to the beginning of the loop.
7997       __ B(&loop);
7998       break;
7999     }
8000 
8001     case TypeCheckKind::kArrayObjectCheck:  {
8002       // /* HeapReference<Class> */ temp = obj->klass_
8003       GenerateReferenceLoadTwoRegisters(instruction,
8004                                         temp_loc,
8005                                         obj_loc,
8006                                         class_offset,
8007                                         maybe_temp2_loc,
8008                                         kWithoutReadBarrier);
8009 
8010       // Do an exact check.
8011       __ Cmp(temp, cls);
8012       __ B(eq, final_label, /* is_far_target= */ false);
8013 
8014       // Otherwise, we need to check that the object's class is a non-primitive array.
8015       // /* HeapReference<Class> */ temp = temp->component_type_
8016       GenerateReferenceLoadOneRegister(instruction,
8017                                        temp_loc,
8018                                        component_offset,
8019                                        maybe_temp2_loc,
8020                                        kWithoutReadBarrier);
8021       // If the component type is null, jump to the slow path to throw the exception.
8022       __ CompareAndBranchIfZero(temp, type_check_slow_path->GetEntryLabel());
8023       // Otherwise,the object is indeed an array, jump to label `check_non_primitive_component_type`
8024       // to further check that this component type is not a primitive type.
8025       GetAssembler()->LoadFromOffset(kLoadUnsignedHalfword, temp, temp, primitive_offset);
8026       static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
8027       __ CompareAndBranchIfNonZero(temp, type_check_slow_path->GetEntryLabel());
8028       break;
8029     }
8030 
8031     case TypeCheckKind::kUnresolvedCheck:
8032       // We always go into the type check slow path for the unresolved check case.
8033       // We cannot directly call the CheckCast runtime entry point
8034       // without resorting to a type checking slow path here (i.e. by
8035       // calling InvokeRuntime directly), as it would require to
8036       // assign fixed registers for the inputs of this HInstanceOf
8037       // instruction (following the runtime calling convention), which
8038       // might be cluttered by the potential first read barrier
8039       // emission at the beginning of this method.
8040 
8041       __ B(type_check_slow_path->GetEntryLabel());
8042       break;
8043 
8044     case TypeCheckKind::kInterfaceCheck: {
8045       // Avoid read barriers to improve performance of the fast path. We can not get false
8046       // positives by doing this.
8047       // /* HeapReference<Class> */ temp = obj->klass_
8048       GenerateReferenceLoadTwoRegisters(instruction,
8049                                         temp_loc,
8050                                         obj_loc,
8051                                         class_offset,
8052                                         maybe_temp2_loc,
8053                                         kWithoutReadBarrier);
8054 
8055       // /* HeapReference<Class> */ temp = temp->iftable_
8056       GenerateReferenceLoadTwoRegisters(instruction,
8057                                         temp_loc,
8058                                         temp_loc,
8059                                         iftable_offset,
8060                                         maybe_temp2_loc,
8061                                         kWithoutReadBarrier);
8062       // Iftable is never null.
8063       __ Ldr(RegisterFrom(maybe_temp2_loc), MemOperand(temp, array_length_offset));
8064       // Loop through the iftable and check if any class matches.
8065       vixl32::Label start_loop;
8066       __ Bind(&start_loop);
8067       __ CompareAndBranchIfZero(RegisterFrom(maybe_temp2_loc),
8068                                 type_check_slow_path->GetEntryLabel());
8069       __ Ldr(RegisterFrom(maybe_temp3_loc), MemOperand(temp, object_array_data_offset));
8070       GetAssembler()->MaybeUnpoisonHeapReference(RegisterFrom(maybe_temp3_loc));
8071       // Go to next interface.
8072       __ Add(temp, temp, Operand::From(2 * kHeapReferenceSize));
8073       __ Sub(RegisterFrom(maybe_temp2_loc), RegisterFrom(maybe_temp2_loc), 2);
8074       // Compare the classes and continue the loop if they do not match.
8075       __ Cmp(cls, RegisterFrom(maybe_temp3_loc));
8076       __ B(ne, &start_loop, /* is_far_target= */ false);
8077       break;
8078     }
8079 
8080     case TypeCheckKind::kBitstringCheck: {
8081       // /* HeapReference<Class> */ temp = obj->klass_
8082       GenerateReferenceLoadTwoRegisters(instruction,
8083                                         temp_loc,
8084                                         obj_loc,
8085                                         class_offset,
8086                                         maybe_temp2_loc,
8087                                         kWithoutReadBarrier);
8088 
8089       GenerateBitstringTypeCheckCompare(instruction, temp, SetFlags);
8090       __ B(ne, type_check_slow_path->GetEntryLabel());
8091       break;
8092     }
8093   }
8094   if (done.IsReferenced()) {
8095     __ Bind(&done);
8096   }
8097 
8098   __ Bind(type_check_slow_path->GetExitLabel());
8099 }
8100 
VisitMonitorOperation(HMonitorOperation * instruction)8101 void LocationsBuilderARMVIXL::VisitMonitorOperation(HMonitorOperation* instruction) {
8102   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
8103       instruction, LocationSummary::kCallOnMainOnly);
8104   InvokeRuntimeCallingConventionARMVIXL calling_convention;
8105   locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
8106 }
8107 
VisitMonitorOperation(HMonitorOperation * instruction)8108 void InstructionCodeGeneratorARMVIXL::VisitMonitorOperation(HMonitorOperation* instruction) {
8109   codegen_->InvokeRuntime(instruction->IsEnter() ? kQuickLockObject : kQuickUnlockObject,
8110                           instruction,
8111                           instruction->GetDexPc());
8112   if (instruction->IsEnter()) {
8113     CheckEntrypointTypes<kQuickLockObject, void, mirror::Object*>();
8114   } else {
8115     CheckEntrypointTypes<kQuickUnlockObject, void, mirror::Object*>();
8116   }
8117   codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ 18);
8118 }
8119 
VisitAnd(HAnd * instruction)8120 void LocationsBuilderARMVIXL::VisitAnd(HAnd* instruction) {
8121   HandleBitwiseOperation(instruction, AND);
8122 }
8123 
VisitOr(HOr * instruction)8124 void LocationsBuilderARMVIXL::VisitOr(HOr* instruction) {
8125   HandleBitwiseOperation(instruction, ORR);
8126 }
8127 
VisitXor(HXor * instruction)8128 void LocationsBuilderARMVIXL::VisitXor(HXor* instruction) {
8129   HandleBitwiseOperation(instruction, EOR);
8130 }
8131 
HandleBitwiseOperation(HBinaryOperation * instruction,Opcode opcode)8132 void LocationsBuilderARMVIXL::HandleBitwiseOperation(HBinaryOperation* instruction, Opcode opcode) {
8133   LocationSummary* locations =
8134       new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
8135   DCHECK(instruction->GetResultType() == DataType::Type::kInt32
8136          || instruction->GetResultType() == DataType::Type::kInt64);
8137   // Note: GVN reorders commutative operations to have the constant on the right hand side.
8138   locations->SetInAt(0, Location::RequiresRegister());
8139   locations->SetInAt(1, ArmEncodableConstantOrRegister(instruction->InputAt(1), opcode));
8140   locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
8141 }
8142 
VisitAnd(HAnd * instruction)8143 void InstructionCodeGeneratorARMVIXL::VisitAnd(HAnd* instruction) {
8144   HandleBitwiseOperation(instruction);
8145 }
8146 
VisitOr(HOr * instruction)8147 void InstructionCodeGeneratorARMVIXL::VisitOr(HOr* instruction) {
8148   HandleBitwiseOperation(instruction);
8149 }
8150 
VisitXor(HXor * instruction)8151 void InstructionCodeGeneratorARMVIXL::VisitXor(HXor* instruction) {
8152   HandleBitwiseOperation(instruction);
8153 }
8154 
VisitBitwiseNegatedRight(HBitwiseNegatedRight * instruction)8155 void LocationsBuilderARMVIXL::VisitBitwiseNegatedRight(HBitwiseNegatedRight* instruction) {
8156   LocationSummary* locations =
8157       new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
8158   DCHECK(instruction->GetResultType() == DataType::Type::kInt32
8159          || instruction->GetResultType() == DataType::Type::kInt64);
8160 
8161   locations->SetInAt(0, Location::RequiresRegister());
8162   locations->SetInAt(1, Location::RequiresRegister());
8163   locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
8164 }
8165 
VisitBitwiseNegatedRight(HBitwiseNegatedRight * instruction)8166 void InstructionCodeGeneratorARMVIXL::VisitBitwiseNegatedRight(HBitwiseNegatedRight* instruction) {
8167   LocationSummary* locations = instruction->GetLocations();
8168   Location first = locations->InAt(0);
8169   Location second = locations->InAt(1);
8170   Location out = locations->Out();
8171 
8172   if (instruction->GetResultType() == DataType::Type::kInt32) {
8173     vixl32::Register first_reg = RegisterFrom(first);
8174     vixl32::Register second_reg = RegisterFrom(second);
8175     vixl32::Register out_reg = RegisterFrom(out);
8176 
8177     switch (instruction->GetOpKind()) {
8178       case HInstruction::kAnd:
8179         __ Bic(out_reg, first_reg, second_reg);
8180         break;
8181       case HInstruction::kOr:
8182         __ Orn(out_reg, first_reg, second_reg);
8183         break;
8184       // There is no EON on arm.
8185       case HInstruction::kXor:
8186       default:
8187         LOG(FATAL) << "Unexpected instruction " << instruction->DebugName();
8188         UNREACHABLE();
8189     }
8190     return;
8191 
8192   } else {
8193     DCHECK_EQ(instruction->GetResultType(), DataType::Type::kInt64);
8194     vixl32::Register first_low = LowRegisterFrom(first);
8195     vixl32::Register first_high = HighRegisterFrom(first);
8196     vixl32::Register second_low = LowRegisterFrom(second);
8197     vixl32::Register second_high = HighRegisterFrom(second);
8198     vixl32::Register out_low = LowRegisterFrom(out);
8199     vixl32::Register out_high = HighRegisterFrom(out);
8200 
8201     switch (instruction->GetOpKind()) {
8202       case HInstruction::kAnd:
8203         __ Bic(out_low, first_low, second_low);
8204         __ Bic(out_high, first_high, second_high);
8205         break;
8206       case HInstruction::kOr:
8207         __ Orn(out_low, first_low, second_low);
8208         __ Orn(out_high, first_high, second_high);
8209         break;
8210       // There is no EON on arm.
8211       case HInstruction::kXor:
8212       default:
8213         LOG(FATAL) << "Unexpected instruction " << instruction->DebugName();
8214         UNREACHABLE();
8215     }
8216   }
8217 }
8218 
VisitDataProcWithShifterOp(HDataProcWithShifterOp * instruction)8219 void LocationsBuilderARMVIXL::VisitDataProcWithShifterOp(
8220     HDataProcWithShifterOp* instruction) {
8221   DCHECK(instruction->GetType() == DataType::Type::kInt32 ||
8222          instruction->GetType() == DataType::Type::kInt64);
8223   LocationSummary* locations =
8224       new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
8225   const bool overlap = instruction->GetType() == DataType::Type::kInt64 &&
8226                        HDataProcWithShifterOp::IsExtensionOp(instruction->GetOpKind());
8227 
8228   locations->SetInAt(0, Location::RequiresRegister());
8229   locations->SetInAt(1, Location::RequiresRegister());
8230   locations->SetOut(Location::RequiresRegister(),
8231                     overlap ? Location::kOutputOverlap : Location::kNoOutputOverlap);
8232 }
8233 
VisitDataProcWithShifterOp(HDataProcWithShifterOp * instruction)8234 void InstructionCodeGeneratorARMVIXL::VisitDataProcWithShifterOp(
8235     HDataProcWithShifterOp* instruction) {
8236   const LocationSummary* const locations = instruction->GetLocations();
8237   const HInstruction::InstructionKind kind = instruction->GetInstrKind();
8238   const HDataProcWithShifterOp::OpKind op_kind = instruction->GetOpKind();
8239 
8240   if (instruction->GetType() == DataType::Type::kInt32) {
8241     const vixl32::Register first = InputRegisterAt(instruction, 0);
8242     const vixl32::Register output = OutputRegister(instruction);
8243     const vixl32::Register second = instruction->InputAt(1)->GetType() == DataType::Type::kInt64
8244         ? LowRegisterFrom(locations->InAt(1))
8245         : InputRegisterAt(instruction, 1);
8246 
8247     if (HDataProcWithShifterOp::IsExtensionOp(op_kind)) {
8248       DCHECK_EQ(kind, HInstruction::kAdd);
8249 
8250       switch (op_kind) {
8251         case HDataProcWithShifterOp::kUXTB:
8252           __ Uxtab(output, first, second);
8253           break;
8254         case HDataProcWithShifterOp::kUXTH:
8255           __ Uxtah(output, first, second);
8256           break;
8257         case HDataProcWithShifterOp::kSXTB:
8258           __ Sxtab(output, first, second);
8259           break;
8260         case HDataProcWithShifterOp::kSXTH:
8261           __ Sxtah(output, first, second);
8262           break;
8263         default:
8264           LOG(FATAL) << "Unexpected operation kind: " << op_kind;
8265           UNREACHABLE();
8266       }
8267     } else {
8268       GenerateDataProcInstruction(kind,
8269                                   output,
8270                                   first,
8271                                   Operand(second,
8272                                           ShiftFromOpKind(op_kind),
8273                                           instruction->GetShiftAmount()),
8274                                   codegen_);
8275     }
8276   } else {
8277     DCHECK_EQ(instruction->GetType(), DataType::Type::kInt64);
8278 
8279     if (HDataProcWithShifterOp::IsExtensionOp(op_kind)) {
8280       const vixl32::Register second = InputRegisterAt(instruction, 1);
8281 
8282       DCHECK(!LowRegisterFrom(locations->Out()).Is(second));
8283       GenerateDataProc(kind,
8284                        locations->Out(),
8285                        locations->InAt(0),
8286                        second,
8287                        Operand(second, ShiftType::ASR, 31),
8288                        codegen_);
8289     } else {
8290       GenerateLongDataProc(instruction, codegen_);
8291     }
8292   }
8293 }
8294 
8295 // TODO(VIXL): Remove optimizations in the helper when they are implemented in vixl.
GenerateAndConst(vixl32::Register out,vixl32::Register first,uint32_t value)8296 void InstructionCodeGeneratorARMVIXL::GenerateAndConst(vixl32::Register out,
8297                                                        vixl32::Register first,
8298                                                        uint32_t value) {
8299   // Optimize special cases for individual halfs of `and-long` (`and` is simplified earlier).
8300   if (value == 0xffffffffu) {
8301     if (!out.Is(first)) {
8302       __ Mov(out, first);
8303     }
8304     return;
8305   }
8306   if (value == 0u) {
8307     __ Mov(out, 0);
8308     return;
8309   }
8310   if (GetAssembler()->ShifterOperandCanHold(AND, value)) {
8311     __ And(out, first, value);
8312   } else if (GetAssembler()->ShifterOperandCanHold(BIC, ~value)) {
8313     __ Bic(out, first, ~value);
8314   } else {
8315     DCHECK(IsPowerOfTwo(value + 1));
8316     __ Ubfx(out, first, 0, WhichPowerOf2(value + 1));
8317   }
8318 }
8319 
8320 // TODO(VIXL): Remove optimizations in the helper when they are implemented in vixl.
GenerateOrrConst(vixl32::Register out,vixl32::Register first,uint32_t value)8321 void InstructionCodeGeneratorARMVIXL::GenerateOrrConst(vixl32::Register out,
8322                                                        vixl32::Register first,
8323                                                        uint32_t value) {
8324   // Optimize special cases for individual halfs of `or-long` (`or` is simplified earlier).
8325   if (value == 0u) {
8326     if (!out.Is(first)) {
8327       __ Mov(out, first);
8328     }
8329     return;
8330   }
8331   if (value == 0xffffffffu) {
8332     __ Mvn(out, 0);
8333     return;
8334   }
8335   if (GetAssembler()->ShifterOperandCanHold(ORR, value)) {
8336     __ Orr(out, first, value);
8337   } else {
8338     DCHECK(GetAssembler()->ShifterOperandCanHold(ORN, ~value));
8339     __ Orn(out, first, ~value);
8340   }
8341 }
8342 
8343 // TODO(VIXL): Remove optimizations in the helper when they are implemented in vixl.
GenerateEorConst(vixl32::Register out,vixl32::Register first,uint32_t value)8344 void InstructionCodeGeneratorARMVIXL::GenerateEorConst(vixl32::Register out,
8345                                                        vixl32::Register first,
8346                                                        uint32_t value) {
8347   // Optimize special case for individual halfs of `xor-long` (`xor` is simplified earlier).
8348   if (value == 0u) {
8349     if (!out.Is(first)) {
8350       __ Mov(out, first);
8351     }
8352     return;
8353   }
8354   __ Eor(out, first, value);
8355 }
8356 
GenerateAddLongConst(Location out,Location first,uint64_t value)8357 void InstructionCodeGeneratorARMVIXL::GenerateAddLongConst(Location out,
8358                                                            Location first,
8359                                                            uint64_t value) {
8360   vixl32::Register out_low = LowRegisterFrom(out);
8361   vixl32::Register out_high = HighRegisterFrom(out);
8362   vixl32::Register first_low = LowRegisterFrom(first);
8363   vixl32::Register first_high = HighRegisterFrom(first);
8364   uint32_t value_low = Low32Bits(value);
8365   uint32_t value_high = High32Bits(value);
8366   if (value_low == 0u) {
8367     if (!out_low.Is(first_low)) {
8368       __ Mov(out_low, first_low);
8369     }
8370     __ Add(out_high, first_high, value_high);
8371     return;
8372   }
8373   __ Adds(out_low, first_low, value_low);
8374   if (GetAssembler()->ShifterOperandCanHold(ADC, value_high)) {
8375     __ Adc(out_high, first_high, value_high);
8376   } else {
8377     DCHECK(GetAssembler()->ShifterOperandCanHold(SBC, ~value_high));
8378     __ Sbc(out_high, first_high, ~value_high);
8379   }
8380 }
8381 
HandleBitwiseOperation(HBinaryOperation * instruction)8382 void InstructionCodeGeneratorARMVIXL::HandleBitwiseOperation(HBinaryOperation* instruction) {
8383   LocationSummary* locations = instruction->GetLocations();
8384   Location first = locations->InAt(0);
8385   Location second = locations->InAt(1);
8386   Location out = locations->Out();
8387 
8388   if (second.IsConstant()) {
8389     uint64_t value = static_cast<uint64_t>(Int64FromConstant(second.GetConstant()));
8390     uint32_t value_low = Low32Bits(value);
8391     if (instruction->GetResultType() == DataType::Type::kInt32) {
8392       vixl32::Register first_reg = InputRegisterAt(instruction, 0);
8393       vixl32::Register out_reg = OutputRegister(instruction);
8394       if (instruction->IsAnd()) {
8395         GenerateAndConst(out_reg, first_reg, value_low);
8396       } else if (instruction->IsOr()) {
8397         GenerateOrrConst(out_reg, first_reg, value_low);
8398       } else {
8399         DCHECK(instruction->IsXor());
8400         GenerateEorConst(out_reg, first_reg, value_low);
8401       }
8402     } else {
8403       DCHECK_EQ(instruction->GetResultType(), DataType::Type::kInt64);
8404       uint32_t value_high = High32Bits(value);
8405       vixl32::Register first_low = LowRegisterFrom(first);
8406       vixl32::Register first_high = HighRegisterFrom(first);
8407       vixl32::Register out_low = LowRegisterFrom(out);
8408       vixl32::Register out_high = HighRegisterFrom(out);
8409       if (instruction->IsAnd()) {
8410         GenerateAndConst(out_low, first_low, value_low);
8411         GenerateAndConst(out_high, first_high, value_high);
8412       } else if (instruction->IsOr()) {
8413         GenerateOrrConst(out_low, first_low, value_low);
8414         GenerateOrrConst(out_high, first_high, value_high);
8415       } else {
8416         DCHECK(instruction->IsXor());
8417         GenerateEorConst(out_low, first_low, value_low);
8418         GenerateEorConst(out_high, first_high, value_high);
8419       }
8420     }
8421     return;
8422   }
8423 
8424   if (instruction->GetResultType() == DataType::Type::kInt32) {
8425     vixl32::Register first_reg = InputRegisterAt(instruction, 0);
8426     vixl32::Register second_reg = InputRegisterAt(instruction, 1);
8427     vixl32::Register out_reg = OutputRegister(instruction);
8428     if (instruction->IsAnd()) {
8429       __ And(out_reg, first_reg, second_reg);
8430     } else if (instruction->IsOr()) {
8431       __ Orr(out_reg, first_reg, second_reg);
8432     } else {
8433       DCHECK(instruction->IsXor());
8434       __ Eor(out_reg, first_reg, second_reg);
8435     }
8436   } else {
8437     DCHECK_EQ(instruction->GetResultType(), DataType::Type::kInt64);
8438     vixl32::Register first_low = LowRegisterFrom(first);
8439     vixl32::Register first_high = HighRegisterFrom(first);
8440     vixl32::Register second_low = LowRegisterFrom(second);
8441     vixl32::Register second_high = HighRegisterFrom(second);
8442     vixl32::Register out_low = LowRegisterFrom(out);
8443     vixl32::Register out_high = HighRegisterFrom(out);
8444     if (instruction->IsAnd()) {
8445       __ And(out_low, first_low, second_low);
8446       __ And(out_high, first_high, second_high);
8447     } else if (instruction->IsOr()) {
8448       __ Orr(out_low, first_low, second_low);
8449       __ Orr(out_high, first_high, second_high);
8450     } else {
8451       DCHECK(instruction->IsXor());
8452       __ Eor(out_low, first_low, second_low);
8453       __ Eor(out_high, first_high, second_high);
8454     }
8455   }
8456 }
8457 
GenerateReferenceLoadOneRegister(HInstruction * instruction,Location out,uint32_t offset,Location maybe_temp,ReadBarrierOption read_barrier_option)8458 void InstructionCodeGeneratorARMVIXL::GenerateReferenceLoadOneRegister(
8459     HInstruction* instruction,
8460     Location out,
8461     uint32_t offset,
8462     Location maybe_temp,
8463     ReadBarrierOption read_barrier_option) {
8464   vixl32::Register out_reg = RegisterFrom(out);
8465   if (read_barrier_option == kWithReadBarrier) {
8466     CHECK(kEmitCompilerReadBarrier);
8467     DCHECK(maybe_temp.IsRegister()) << maybe_temp;
8468     if (kUseBakerReadBarrier) {
8469       // Load with fast path based Baker's read barrier.
8470       // /* HeapReference<Object> */ out = *(out + offset)
8471       codegen_->GenerateFieldLoadWithBakerReadBarrier(
8472           instruction, out, out_reg, offset, maybe_temp, /* needs_null_check= */ false);
8473     } else {
8474       // Load with slow path based read barrier.
8475       // Save the value of `out` into `maybe_temp` before overwriting it
8476       // in the following move operation, as we will need it for the
8477       // read barrier below.
8478       __ Mov(RegisterFrom(maybe_temp), out_reg);
8479       // /* HeapReference<Object> */ out = *(out + offset)
8480       GetAssembler()->LoadFromOffset(kLoadWord, out_reg, out_reg, offset);
8481       codegen_->GenerateReadBarrierSlow(instruction, out, out, maybe_temp, offset);
8482     }
8483   } else {
8484     // Plain load with no read barrier.
8485     // /* HeapReference<Object> */ out = *(out + offset)
8486     GetAssembler()->LoadFromOffset(kLoadWord, out_reg, out_reg, offset);
8487     GetAssembler()->MaybeUnpoisonHeapReference(out_reg);
8488   }
8489 }
8490 
GenerateReferenceLoadTwoRegisters(HInstruction * instruction,Location out,Location obj,uint32_t offset,Location maybe_temp,ReadBarrierOption read_barrier_option)8491 void InstructionCodeGeneratorARMVIXL::GenerateReferenceLoadTwoRegisters(
8492     HInstruction* instruction,
8493     Location out,
8494     Location obj,
8495     uint32_t offset,
8496     Location maybe_temp,
8497     ReadBarrierOption read_barrier_option) {
8498   vixl32::Register out_reg = RegisterFrom(out);
8499   vixl32::Register obj_reg = RegisterFrom(obj);
8500   if (read_barrier_option == kWithReadBarrier) {
8501     CHECK(kEmitCompilerReadBarrier);
8502     if (kUseBakerReadBarrier) {
8503       DCHECK(maybe_temp.IsRegister()) << maybe_temp;
8504       // Load with fast path based Baker's read barrier.
8505       // /* HeapReference<Object> */ out = *(obj + offset)
8506       codegen_->GenerateFieldLoadWithBakerReadBarrier(
8507           instruction, out, obj_reg, offset, maybe_temp, /* needs_null_check= */ false);
8508     } else {
8509       // Load with slow path based read barrier.
8510       // /* HeapReference<Object> */ out = *(obj + offset)
8511       GetAssembler()->LoadFromOffset(kLoadWord, out_reg, obj_reg, offset);
8512       codegen_->GenerateReadBarrierSlow(instruction, out, out, obj, offset);
8513     }
8514   } else {
8515     // Plain load with no read barrier.
8516     // /* HeapReference<Object> */ out = *(obj + offset)
8517     GetAssembler()->LoadFromOffset(kLoadWord, out_reg, obj_reg, offset);
8518     GetAssembler()->MaybeUnpoisonHeapReference(out_reg);
8519   }
8520 }
8521 
GenerateGcRootFieldLoad(HInstruction * instruction,Location root,vixl32::Register obj,uint32_t offset,ReadBarrierOption read_barrier_option)8522 void CodeGeneratorARMVIXL::GenerateGcRootFieldLoad(
8523     HInstruction* instruction,
8524     Location root,
8525     vixl32::Register obj,
8526     uint32_t offset,
8527     ReadBarrierOption read_barrier_option) {
8528   vixl32::Register root_reg = RegisterFrom(root);
8529   if (read_barrier_option == kWithReadBarrier) {
8530     DCHECK(kEmitCompilerReadBarrier);
8531     if (kUseBakerReadBarrier) {
8532       // Fast path implementation of art::ReadBarrier::BarrierForRoot when
8533       // Baker's read barrier are used.
8534 
8535       // Query `art::Thread::Current()->GetIsGcMarking()` (stored in
8536       // the Marking Register) to decide whether we need to enter
8537       // the slow path to mark the GC root.
8538       //
8539       // We use shared thunks for the slow path; shared within the method
8540       // for JIT, across methods for AOT. That thunk checks the reference
8541       // and jumps to the entrypoint if needed.
8542       //
8543       //     lr = &return_address;
8544       //     GcRoot<mirror::Object> root = *(obj+offset);  // Original reference load.
8545       //     if (mr) {  // Thread::Current()->GetIsGcMarking()
8546       //       goto gc_root_thunk<root_reg>(lr)
8547       //     }
8548       //   return_address:
8549 
8550       UseScratchRegisterScope temps(GetVIXLAssembler());
8551       temps.Exclude(ip);
8552       bool narrow = CanEmitNarrowLdr(root_reg, obj, offset);
8553       uint32_t custom_data = EncodeBakerReadBarrierGcRootData(root_reg.GetCode(), narrow);
8554 
8555       size_t narrow_instructions = /* CMP */ (mr.IsLow() ? 1u : 0u) + /* LDR */ (narrow ? 1u : 0u);
8556       size_t wide_instructions = /* ADR+CMP+LDR+BNE */ 4u - narrow_instructions;
8557       size_t exact_size = wide_instructions * vixl32::k32BitT32InstructionSizeInBytes +
8558                           narrow_instructions * vixl32::k16BitT32InstructionSizeInBytes;
8559       ExactAssemblyScope guard(GetVIXLAssembler(), exact_size);
8560       vixl32::Label return_address;
8561       EmitAdrCode adr(GetVIXLAssembler(), lr, &return_address);
8562       __ cmp(mr, Operand(0));
8563       // Currently the offset is always within range. If that changes,
8564       // we shall have to split the load the same way as for fields.
8565       DCHECK_LT(offset, kReferenceLoadMinFarOffset);
8566       ptrdiff_t old_offset = GetVIXLAssembler()->GetBuffer()->GetCursorOffset();
8567       __ ldr(EncodingSize(narrow ? Narrow : Wide), root_reg, MemOperand(obj, offset));
8568       EmitBakerReadBarrierBne(custom_data);
8569       __ bind(&return_address);
8570       DCHECK_EQ(old_offset - GetVIXLAssembler()->GetBuffer()->GetCursorOffset(),
8571                 narrow ? BAKER_MARK_INTROSPECTION_GC_ROOT_LDR_NARROW_OFFSET
8572                        : BAKER_MARK_INTROSPECTION_GC_ROOT_LDR_WIDE_OFFSET);
8573     } else {
8574       // GC root loaded through a slow path for read barriers other
8575       // than Baker's.
8576       // /* GcRoot<mirror::Object>* */ root = obj + offset
8577       __ Add(root_reg, obj, offset);
8578       // /* mirror::Object* */ root = root->Read()
8579       GenerateReadBarrierForRootSlow(instruction, root, root);
8580     }
8581   } else {
8582     // Plain GC root load with no read barrier.
8583     // /* GcRoot<mirror::Object> */ root = *(obj + offset)
8584     GetAssembler()->LoadFromOffset(kLoadWord, root_reg, obj, offset);
8585     // Note that GC roots are not affected by heap poisoning, thus we
8586     // do not have to unpoison `root_reg` here.
8587   }
8588   MaybeGenerateMarkingRegisterCheck(/* code= */ 19);
8589 }
8590 
GenerateUnsafeCasOldValueAddWithBakerReadBarrier(vixl::aarch32::Register old_value,vixl::aarch32::Register adjusted_old_value,vixl::aarch32::Register expected)8591 void CodeGeneratorARMVIXL::GenerateUnsafeCasOldValueAddWithBakerReadBarrier(
8592     vixl::aarch32::Register old_value,
8593     vixl::aarch32::Register adjusted_old_value,
8594     vixl::aarch32::Register expected) {
8595   DCHECK(kEmitCompilerReadBarrier);
8596   DCHECK(kUseBakerReadBarrier);
8597 
8598   // Similar to the Baker RB path in GenerateGcRootFieldLoad(), with an ADD instead of LDR.
8599   uint32_t custom_data = EncodeBakerReadBarrierUnsafeCasData(old_value.GetCode());
8600 
8601   size_t narrow_instructions = /* CMP */ (mr.IsLow() ? 1u : 0u);
8602   size_t wide_instructions = /* ADR+CMP+ADD+BNE */ 4u - narrow_instructions;
8603   size_t exact_size = wide_instructions * vixl32::k32BitT32InstructionSizeInBytes +
8604                       narrow_instructions * vixl32::k16BitT32InstructionSizeInBytes;
8605   ExactAssemblyScope guard(GetVIXLAssembler(), exact_size);
8606   vixl32::Label return_address;
8607   EmitAdrCode adr(GetVIXLAssembler(), lr, &return_address);
8608   __ cmp(mr, Operand(0));
8609   ptrdiff_t old_offset = GetVIXLAssembler()->GetBuffer()->GetCursorOffset();
8610   __ add(EncodingSize(Wide), old_value, adjusted_old_value, Operand(expected));  // Preserves flags.
8611   EmitBakerReadBarrierBne(custom_data);
8612   __ bind(&return_address);
8613   DCHECK_EQ(old_offset - GetVIXLAssembler()->GetBuffer()->GetCursorOffset(),
8614             BAKER_MARK_INTROSPECTION_UNSAFE_CAS_ADD_OFFSET);
8615 }
8616 
GenerateFieldLoadWithBakerReadBarrier(HInstruction * instruction,Location ref,vixl32::Register obj,const vixl32::MemOperand & src,bool needs_null_check)8617 void CodeGeneratorARMVIXL::GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction,
8618                                                                  Location ref,
8619                                                                  vixl32::Register obj,
8620                                                                  const vixl32::MemOperand& src,
8621                                                                  bool needs_null_check) {
8622   DCHECK(kEmitCompilerReadBarrier);
8623   DCHECK(kUseBakerReadBarrier);
8624 
8625   // Query `art::Thread::Current()->GetIsGcMarking()` (stored in the
8626   // Marking Register) to decide whether we need to enter the slow
8627   // path to mark the reference. Then, in the slow path, check the
8628   // gray bit in the lock word of the reference's holder (`obj`) to
8629   // decide whether to mark `ref` or not.
8630   //
8631   // We use shared thunks for the slow path; shared within the method
8632   // for JIT, across methods for AOT. That thunk checks the holder
8633   // and jumps to the entrypoint if needed. If the holder is not gray,
8634   // it creates a fake dependency and returns to the LDR instruction.
8635   //
8636   //     lr = &gray_return_address;
8637   //     if (mr) {  // Thread::Current()->GetIsGcMarking()
8638   //       goto field_thunk<holder_reg, base_reg>(lr)
8639   //     }
8640   //   not_gray_return_address:
8641   //     // Original reference load. If the offset is too large to fit
8642   //     // into LDR, we use an adjusted base register here.
8643   //     HeapReference<mirror::Object> reference = *(obj+offset);
8644   //   gray_return_address:
8645 
8646   DCHECK(src.GetAddrMode() == vixl32::Offset);
8647   DCHECK_ALIGNED(src.GetOffsetImmediate(), sizeof(mirror::HeapReference<mirror::Object>));
8648   vixl32::Register ref_reg = RegisterFrom(ref, DataType::Type::kReference);
8649   bool narrow = CanEmitNarrowLdr(ref_reg, src.GetBaseRegister(), src.GetOffsetImmediate());
8650 
8651   UseScratchRegisterScope temps(GetVIXLAssembler());
8652   temps.Exclude(ip);
8653   uint32_t custom_data =
8654       EncodeBakerReadBarrierFieldData(src.GetBaseRegister().GetCode(), obj.GetCode(), narrow);
8655 
8656   {
8657     size_t narrow_instructions =
8658         /* CMP */ (mr.IsLow() ? 1u : 0u) +
8659         /* LDR+unpoison? */ (narrow ? (kPoisonHeapReferences ? 2u : 1u) : 0u);
8660     size_t wide_instructions =
8661         /* ADR+CMP+LDR+BNE+unpoison? */ (kPoisonHeapReferences ? 5u : 4u) - narrow_instructions;
8662     size_t exact_size = wide_instructions * vixl32::k32BitT32InstructionSizeInBytes +
8663                         narrow_instructions * vixl32::k16BitT32InstructionSizeInBytes;
8664     ExactAssemblyScope guard(GetVIXLAssembler(), exact_size);
8665     vixl32::Label return_address;
8666     EmitAdrCode adr(GetVIXLAssembler(), lr, &return_address);
8667     __ cmp(mr, Operand(0));
8668     EmitBakerReadBarrierBne(custom_data);
8669     ptrdiff_t old_offset = GetVIXLAssembler()->GetBuffer()->GetCursorOffset();
8670     __ ldr(EncodingSize(narrow ? Narrow : Wide), ref_reg, src);
8671     if (needs_null_check) {
8672       MaybeRecordImplicitNullCheck(instruction);
8673     }
8674     // Note: We need a specific width for the unpoisoning NEG.
8675     if (kPoisonHeapReferences) {
8676       if (narrow) {
8677         // The only 16-bit encoding is T1 which sets flags outside IT block (i.e. RSBS, not RSB).
8678         __ rsbs(EncodingSize(Narrow), ref_reg, ref_reg, Operand(0));
8679       } else {
8680         __ rsb(EncodingSize(Wide), ref_reg, ref_reg, Operand(0));
8681       }
8682     }
8683     __ bind(&return_address);
8684     DCHECK_EQ(old_offset - GetVIXLAssembler()->GetBuffer()->GetCursorOffset(),
8685               narrow ? BAKER_MARK_INTROSPECTION_FIELD_LDR_NARROW_OFFSET
8686                      : BAKER_MARK_INTROSPECTION_FIELD_LDR_WIDE_OFFSET);
8687   }
8688   MaybeGenerateMarkingRegisterCheck(/* code= */ 20, /* temp_loc= */ LocationFrom(ip));
8689 }
8690 
GenerateFieldLoadWithBakerReadBarrier(HInstruction * instruction,Location ref,vixl32::Register obj,uint32_t offset,Location temp,bool needs_null_check)8691 void CodeGeneratorARMVIXL::GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction,
8692                                                                  Location ref,
8693                                                                  vixl32::Register obj,
8694                                                                  uint32_t offset,
8695                                                                  Location temp,
8696                                                                  bool needs_null_check) {
8697   DCHECK_ALIGNED(offset, sizeof(mirror::HeapReference<mirror::Object>));
8698   vixl32::Register base = obj;
8699   if (offset >= kReferenceLoadMinFarOffset) {
8700     base = RegisterFrom(temp);
8701     static_assert(IsPowerOfTwo(kReferenceLoadMinFarOffset), "Expecting a power of 2.");
8702     __ Add(base, obj, Operand(offset & ~(kReferenceLoadMinFarOffset - 1u)));
8703     offset &= (kReferenceLoadMinFarOffset - 1u);
8704   }
8705   GenerateFieldLoadWithBakerReadBarrier(
8706       instruction, ref, obj, MemOperand(base, offset), needs_null_check);
8707 }
8708 
GenerateArrayLoadWithBakerReadBarrier(Location ref,vixl32::Register obj,uint32_t data_offset,Location index,Location temp,bool needs_null_check)8709 void CodeGeneratorARMVIXL::GenerateArrayLoadWithBakerReadBarrier(Location ref,
8710                                                                  vixl32::Register obj,
8711                                                                  uint32_t data_offset,
8712                                                                  Location index,
8713                                                                  Location temp,
8714                                                                  bool needs_null_check) {
8715   DCHECK(kEmitCompilerReadBarrier);
8716   DCHECK(kUseBakerReadBarrier);
8717 
8718   static_assert(
8719       sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
8720       "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
8721   ScaleFactor scale_factor = TIMES_4;
8722 
8723   // Query `art::Thread::Current()->GetIsGcMarking()` (stored in the
8724   // Marking Register) to decide whether we need to enter the slow
8725   // path to mark the reference. Then, in the slow path, check the
8726   // gray bit in the lock word of the reference's holder (`obj`) to
8727   // decide whether to mark `ref` or not.
8728   //
8729   // We use shared thunks for the slow path; shared within the method
8730   // for JIT, across methods for AOT. That thunk checks the holder
8731   // and jumps to the entrypoint if needed. If the holder is not gray,
8732   // it creates a fake dependency and returns to the LDR instruction.
8733   //
8734   //     lr = &gray_return_address;
8735   //     if (mr) {  // Thread::Current()->GetIsGcMarking()
8736   //       goto array_thunk<base_reg>(lr)
8737   //     }
8738   //   not_gray_return_address:
8739   //     // Original reference load. If the offset is too large to fit
8740   //     // into LDR, we use an adjusted base register here.
8741   //     HeapReference<mirror::Object> reference = data[index];
8742   //   gray_return_address:
8743 
8744   DCHECK(index.IsValid());
8745   vixl32::Register index_reg = RegisterFrom(index, DataType::Type::kInt32);
8746   vixl32::Register ref_reg = RegisterFrom(ref, DataType::Type::kReference);
8747   vixl32::Register data_reg = RegisterFrom(temp, DataType::Type::kInt32);  // Raw pointer.
8748 
8749   UseScratchRegisterScope temps(GetVIXLAssembler());
8750   temps.Exclude(ip);
8751   uint32_t custom_data = EncodeBakerReadBarrierArrayData(data_reg.GetCode());
8752 
8753   __ Add(data_reg, obj, Operand(data_offset));
8754   {
8755     size_t narrow_instructions = /* CMP */ (mr.IsLow() ? 1u : 0u);
8756     size_t wide_instructions =
8757         /* ADR+CMP+BNE+LDR+unpoison? */ (kPoisonHeapReferences ? 5u : 4u) - narrow_instructions;
8758     size_t exact_size = wide_instructions * vixl32::k32BitT32InstructionSizeInBytes +
8759                         narrow_instructions * vixl32::k16BitT32InstructionSizeInBytes;
8760     ExactAssemblyScope guard(GetVIXLAssembler(), exact_size);
8761     vixl32::Label return_address;
8762     EmitAdrCode adr(GetVIXLAssembler(), lr, &return_address);
8763     __ cmp(mr, Operand(0));
8764     EmitBakerReadBarrierBne(custom_data);
8765     ptrdiff_t old_offset = GetVIXLAssembler()->GetBuffer()->GetCursorOffset();
8766     __ ldr(ref_reg, MemOperand(data_reg, index_reg, vixl32::LSL, scale_factor));
8767     DCHECK(!needs_null_check);  // The thunk cannot handle the null check.
8768     // Note: We need a Wide NEG for the unpoisoning.
8769     if (kPoisonHeapReferences) {
8770       __ rsb(EncodingSize(Wide), ref_reg, ref_reg, Operand(0));
8771     }
8772     __ bind(&return_address);
8773     DCHECK_EQ(old_offset - GetVIXLAssembler()->GetBuffer()->GetCursorOffset(),
8774               BAKER_MARK_INTROSPECTION_ARRAY_LDR_OFFSET);
8775   }
8776   MaybeGenerateMarkingRegisterCheck(/* code= */ 21, /* temp_loc= */ LocationFrom(ip));
8777 }
8778 
MaybeGenerateMarkingRegisterCheck(int code,Location temp_loc)8779 void CodeGeneratorARMVIXL::MaybeGenerateMarkingRegisterCheck(int code, Location temp_loc) {
8780   // The following condition is a compile-time one, so it does not have a run-time cost.
8781   if (kEmitCompilerReadBarrier && kUseBakerReadBarrier && kIsDebugBuild) {
8782     // The following condition is a run-time one; it is executed after the
8783     // previous compile-time test, to avoid penalizing non-debug builds.
8784     if (GetCompilerOptions().EmitRunTimeChecksInDebugMode()) {
8785       UseScratchRegisterScope temps(GetVIXLAssembler());
8786       vixl32::Register temp = temp_loc.IsValid() ? RegisterFrom(temp_loc) : temps.Acquire();
8787       GetAssembler()->GenerateMarkingRegisterCheck(temp,
8788                                                    kMarkingRegisterCheckBreakCodeBaseCode + code);
8789     }
8790   }
8791 }
8792 
GenerateReadBarrierSlow(HInstruction * instruction,Location out,Location ref,Location obj,uint32_t offset,Location index)8793 void CodeGeneratorARMVIXL::GenerateReadBarrierSlow(HInstruction* instruction,
8794                                                    Location out,
8795                                                    Location ref,
8796                                                    Location obj,
8797                                                    uint32_t offset,
8798                                                    Location index) {
8799   DCHECK(kEmitCompilerReadBarrier);
8800 
8801   // Insert a slow path based read barrier *after* the reference load.
8802   //
8803   // If heap poisoning is enabled, the unpoisoning of the loaded
8804   // reference will be carried out by the runtime within the slow
8805   // path.
8806   //
8807   // Note that `ref` currently does not get unpoisoned (when heap
8808   // poisoning is enabled), which is alright as the `ref` argument is
8809   // not used by the artReadBarrierSlow entry point.
8810   //
8811   // TODO: Unpoison `ref` when it is used by artReadBarrierSlow.
8812   SlowPathCodeARMVIXL* slow_path = new (GetScopedAllocator())
8813       ReadBarrierForHeapReferenceSlowPathARMVIXL(instruction, out, ref, obj, offset, index);
8814   AddSlowPath(slow_path);
8815 
8816   __ B(slow_path->GetEntryLabel());
8817   __ Bind(slow_path->GetExitLabel());
8818 }
8819 
MaybeGenerateReadBarrierSlow(HInstruction * instruction,Location out,Location ref,Location obj,uint32_t offset,Location index)8820 void CodeGeneratorARMVIXL::MaybeGenerateReadBarrierSlow(HInstruction* instruction,
8821                                                         Location out,
8822                                                         Location ref,
8823                                                         Location obj,
8824                                                         uint32_t offset,
8825                                                         Location index) {
8826   if (kEmitCompilerReadBarrier) {
8827     // Baker's read barriers shall be handled by the fast path
8828     // (CodeGeneratorARMVIXL::GenerateReferenceLoadWithBakerReadBarrier).
8829     DCHECK(!kUseBakerReadBarrier);
8830     // If heap poisoning is enabled, unpoisoning will be taken care of
8831     // by the runtime within the slow path.
8832     GenerateReadBarrierSlow(instruction, out, ref, obj, offset, index);
8833   } else if (kPoisonHeapReferences) {
8834     GetAssembler()->UnpoisonHeapReference(RegisterFrom(out));
8835   }
8836 }
8837 
GenerateReadBarrierForRootSlow(HInstruction * instruction,Location out,Location root)8838 void CodeGeneratorARMVIXL::GenerateReadBarrierForRootSlow(HInstruction* instruction,
8839                                                           Location out,
8840                                                           Location root) {
8841   DCHECK(kEmitCompilerReadBarrier);
8842 
8843   // Insert a slow path based read barrier *after* the GC root load.
8844   //
8845   // Note that GC roots are not affected by heap poisoning, so we do
8846   // not need to do anything special for this here.
8847   SlowPathCodeARMVIXL* slow_path =
8848       new (GetScopedAllocator()) ReadBarrierForRootSlowPathARMVIXL(instruction, out, root);
8849   AddSlowPath(slow_path);
8850 
8851   __ B(slow_path->GetEntryLabel());
8852   __ Bind(slow_path->GetExitLabel());
8853 }
8854 
8855 // Check if the desired_dispatch_info is supported. If it is, return it,
8856 // otherwise return a fall-back info that should be used instead.
GetSupportedInvokeStaticOrDirectDispatch(const HInvokeStaticOrDirect::DispatchInfo & desired_dispatch_info,ArtMethod * method ATTRIBUTE_UNUSED)8857 HInvokeStaticOrDirect::DispatchInfo CodeGeneratorARMVIXL::GetSupportedInvokeStaticOrDirectDispatch(
8858     const HInvokeStaticOrDirect::DispatchInfo& desired_dispatch_info,
8859     ArtMethod* method ATTRIBUTE_UNUSED) {
8860   return desired_dispatch_info;
8861 }
8862 
GetInvokeStaticOrDirectExtraParameter(HInvokeStaticOrDirect * invoke,vixl32::Register temp)8863 vixl32::Register CodeGeneratorARMVIXL::GetInvokeStaticOrDirectExtraParameter(
8864     HInvokeStaticOrDirect* invoke, vixl32::Register temp) {
8865   DCHECK_EQ(invoke->InputCount(), invoke->GetNumberOfArguments() + 1u);
8866   Location location = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex());
8867   if (!invoke->GetLocations()->Intrinsified()) {
8868     return RegisterFrom(location);
8869   }
8870   // For intrinsics we allow any location, so it may be on the stack.
8871   if (!location.IsRegister()) {
8872     GetAssembler()->LoadFromOffset(kLoadWord, temp, sp, location.GetStackIndex());
8873     return temp;
8874   }
8875   // For register locations, check if the register was saved. If so, get it from the stack.
8876   // Note: There is a chance that the register was saved but not overwritten, so we could
8877   // save one load. However, since this is just an intrinsic slow path we prefer this
8878   // simple and more robust approach rather that trying to determine if that's the case.
8879   SlowPathCode* slow_path = GetCurrentSlowPath();
8880   if (slow_path != nullptr && slow_path->IsCoreRegisterSaved(RegisterFrom(location).GetCode())) {
8881     int stack_offset = slow_path->GetStackOffsetOfCoreRegister(RegisterFrom(location).GetCode());
8882     GetAssembler()->LoadFromOffset(kLoadWord, temp, sp, stack_offset);
8883     return temp;
8884   }
8885   return RegisterFrom(location);
8886 }
8887 
GenerateStaticOrDirectCall(HInvokeStaticOrDirect * invoke,Location temp,SlowPathCode * slow_path)8888 void CodeGeneratorARMVIXL::GenerateStaticOrDirectCall(
8889     HInvokeStaticOrDirect* invoke, Location temp, SlowPathCode* slow_path) {
8890   Location callee_method = temp;  // For all kinds except kRecursive, callee will be in temp.
8891   switch (invoke->GetMethodLoadKind()) {
8892     case HInvokeStaticOrDirect::MethodLoadKind::kStringInit: {
8893       uint32_t offset =
8894           GetThreadOffset<kArmPointerSize>(invoke->GetStringInitEntryPoint()).Int32Value();
8895       // temp = thread->string_init_entrypoint
8896       GetAssembler()->LoadFromOffset(kLoadWord, RegisterFrom(temp), tr, offset);
8897       break;
8898     }
8899     case HInvokeStaticOrDirect::MethodLoadKind::kRecursive:
8900       callee_method = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex());
8901       break;
8902     case HInvokeStaticOrDirect::MethodLoadKind::kBootImageLinkTimePcRelative: {
8903       DCHECK(GetCompilerOptions().IsBootImage() || GetCompilerOptions().IsBootImageExtension());
8904       PcRelativePatchInfo* labels = NewBootImageMethodPatch(invoke->GetTargetMethod());
8905       vixl32::Register temp_reg = RegisterFrom(temp);
8906       EmitMovwMovtPlaceholder(labels, temp_reg);
8907       break;
8908     }
8909     case HInvokeStaticOrDirect::MethodLoadKind::kBootImageRelRo: {
8910       uint32_t boot_image_offset = GetBootImageOffset(invoke);
8911       PcRelativePatchInfo* labels = NewBootImageRelRoPatch(boot_image_offset);
8912       vixl32::Register temp_reg = RegisterFrom(temp);
8913       EmitMovwMovtPlaceholder(labels, temp_reg);
8914       GetAssembler()->LoadFromOffset(kLoadWord, temp_reg, temp_reg, /* offset*/ 0);
8915       break;
8916     }
8917     case HInvokeStaticOrDirect::MethodLoadKind::kBssEntry: {
8918       PcRelativePatchInfo* labels = NewMethodBssEntryPatch(
8919           MethodReference(&GetGraph()->GetDexFile(), invoke->GetDexMethodIndex()));
8920       vixl32::Register temp_reg = RegisterFrom(temp);
8921       EmitMovwMovtPlaceholder(labels, temp_reg);
8922       // All aligned loads are implicitly atomic consume operations on ARM.
8923       GetAssembler()->LoadFromOffset(kLoadWord, temp_reg, temp_reg, /* offset*/ 0);
8924       break;
8925     }
8926     case HInvokeStaticOrDirect::MethodLoadKind::kJitDirectAddress:
8927       __ Mov(RegisterFrom(temp), Operand::From(invoke->GetMethodAddress()));
8928       break;
8929     case HInvokeStaticOrDirect::MethodLoadKind::kRuntimeCall: {
8930       GenerateInvokeStaticOrDirectRuntimeCall(invoke, temp, slow_path);
8931       return;  // No code pointer retrieval; the runtime performs the call directly.
8932     }
8933   }
8934 
8935   switch (invoke->GetCodePtrLocation()) {
8936     case HInvokeStaticOrDirect::CodePtrLocation::kCallSelf:
8937       {
8938         // Use a scope to help guarantee that `RecordPcInfo()` records the correct pc.
8939         ExactAssemblyScope aas(GetVIXLAssembler(),
8940                                vixl32::k32BitT32InstructionSizeInBytes,
8941                                CodeBufferCheckScope::kMaximumSize);
8942         __ bl(GetFrameEntryLabel());
8943         RecordPcInfo(invoke, invoke->GetDexPc(), slow_path);
8944       }
8945       break;
8946     case HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod:
8947       // LR = callee_method->entry_point_from_quick_compiled_code_
8948       GetAssembler()->LoadFromOffset(
8949             kLoadWord,
8950             lr,
8951             RegisterFrom(callee_method),
8952             ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArmPointerSize).Int32Value());
8953       {
8954         // Use a scope to help guarantee that `RecordPcInfo()` records the correct pc.
8955         // blx in T32 has only 16bit encoding that's why a stricter check for the scope is used.
8956         ExactAssemblyScope aas(GetVIXLAssembler(),
8957                                vixl32::k16BitT32InstructionSizeInBytes,
8958                                CodeBufferCheckScope::kExactSize);
8959         // LR()
8960         __ blx(lr);
8961         RecordPcInfo(invoke, invoke->GetDexPc(), slow_path);
8962       }
8963       break;
8964   }
8965 
8966   DCHECK(!IsLeafMethod());
8967 }
8968 
GenerateVirtualCall(HInvokeVirtual * invoke,Location temp_location,SlowPathCode * slow_path)8969 void CodeGeneratorARMVIXL::GenerateVirtualCall(
8970     HInvokeVirtual* invoke, Location temp_location, SlowPathCode* slow_path) {
8971   vixl32::Register temp = RegisterFrom(temp_location);
8972   uint32_t method_offset = mirror::Class::EmbeddedVTableEntryOffset(
8973       invoke->GetVTableIndex(), kArmPointerSize).Uint32Value();
8974 
8975   // Use the calling convention instead of the location of the receiver, as
8976   // intrinsics may have put the receiver in a different register. In the intrinsics
8977   // slow path, the arguments have been moved to the right place, so here we are
8978   // guaranteed that the receiver is the first register of the calling convention.
8979   InvokeDexCallingConventionARMVIXL calling_convention;
8980   vixl32::Register receiver = calling_convention.GetRegisterAt(0);
8981   uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
8982   {
8983     // Make sure the pc is recorded immediately after the `ldr` instruction.
8984     ExactAssemblyScope aas(GetVIXLAssembler(),
8985                            vixl32::kMaxInstructionSizeInBytes,
8986                            CodeBufferCheckScope::kMaximumSize);
8987     // /* HeapReference<Class> */ temp = receiver->klass_
8988     __ ldr(temp, MemOperand(receiver, class_offset));
8989     MaybeRecordImplicitNullCheck(invoke);
8990   }
8991   // Instead of simply (possibly) unpoisoning `temp` here, we should
8992   // emit a read barrier for the previous class reference load.
8993   // However this is not required in practice, as this is an
8994   // intermediate/temporary reference and because the current
8995   // concurrent copying collector keeps the from-space memory
8996   // intact/accessible until the end of the marking phase (the
8997   // concurrent copying collector may not in the future).
8998   GetAssembler()->MaybeUnpoisonHeapReference(temp);
8999 
9000   // If we're compiling baseline, update the inline cache.
9001   MaybeGenerateInlineCacheCheck(invoke, temp);
9002 
9003   // temp = temp->GetMethodAt(method_offset);
9004   uint32_t entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset(
9005       kArmPointerSize).Int32Value();
9006   GetAssembler()->LoadFromOffset(kLoadWord, temp, temp, method_offset);
9007   // LR = temp->GetEntryPoint();
9008   GetAssembler()->LoadFromOffset(kLoadWord, lr, temp, entry_point);
9009   {
9010     // Use a scope to help guarantee that `RecordPcInfo()` records the correct pc.
9011     // blx in T32 has only 16bit encoding that's why a stricter check for the scope is used.
9012     ExactAssemblyScope aas(GetVIXLAssembler(),
9013                            vixl32::k16BitT32InstructionSizeInBytes,
9014                            CodeBufferCheckScope::kExactSize);
9015     // LR();
9016     __ blx(lr);
9017     RecordPcInfo(invoke, invoke->GetDexPc(), slow_path);
9018   }
9019 }
9020 
NewBootImageIntrinsicPatch(uint32_t intrinsic_data)9021 CodeGeneratorARMVIXL::PcRelativePatchInfo* CodeGeneratorARMVIXL::NewBootImageIntrinsicPatch(
9022     uint32_t intrinsic_data) {
9023   return NewPcRelativePatch(/* dex_file= */ nullptr, intrinsic_data, &boot_image_other_patches_);
9024 }
9025 
NewBootImageRelRoPatch(uint32_t boot_image_offset)9026 CodeGeneratorARMVIXL::PcRelativePatchInfo* CodeGeneratorARMVIXL::NewBootImageRelRoPatch(
9027     uint32_t boot_image_offset) {
9028   return NewPcRelativePatch(/* dex_file= */ nullptr,
9029                             boot_image_offset,
9030                             &boot_image_other_patches_);
9031 }
9032 
NewBootImageMethodPatch(MethodReference target_method)9033 CodeGeneratorARMVIXL::PcRelativePatchInfo* CodeGeneratorARMVIXL::NewBootImageMethodPatch(
9034     MethodReference target_method) {
9035   return NewPcRelativePatch(
9036       target_method.dex_file, target_method.index, &boot_image_method_patches_);
9037 }
9038 
NewMethodBssEntryPatch(MethodReference target_method)9039 CodeGeneratorARMVIXL::PcRelativePatchInfo* CodeGeneratorARMVIXL::NewMethodBssEntryPatch(
9040     MethodReference target_method) {
9041   return NewPcRelativePatch(
9042       target_method.dex_file, target_method.index, &method_bss_entry_patches_);
9043 }
9044 
NewBootImageTypePatch(const DexFile & dex_file,dex::TypeIndex type_index)9045 CodeGeneratorARMVIXL::PcRelativePatchInfo* CodeGeneratorARMVIXL::NewBootImageTypePatch(
9046     const DexFile& dex_file, dex::TypeIndex type_index) {
9047   return NewPcRelativePatch(&dex_file, type_index.index_, &boot_image_type_patches_);
9048 }
9049 
NewTypeBssEntryPatch(const DexFile & dex_file,dex::TypeIndex type_index)9050 CodeGeneratorARMVIXL::PcRelativePatchInfo* CodeGeneratorARMVIXL::NewTypeBssEntryPatch(
9051     const DexFile& dex_file, dex::TypeIndex type_index) {
9052   return NewPcRelativePatch(&dex_file, type_index.index_, &type_bss_entry_patches_);
9053 }
9054 
NewBootImageStringPatch(const DexFile & dex_file,dex::StringIndex string_index)9055 CodeGeneratorARMVIXL::PcRelativePatchInfo* CodeGeneratorARMVIXL::NewBootImageStringPatch(
9056     const DexFile& dex_file, dex::StringIndex string_index) {
9057   return NewPcRelativePatch(&dex_file, string_index.index_, &boot_image_string_patches_);
9058 }
9059 
NewStringBssEntryPatch(const DexFile & dex_file,dex::StringIndex string_index)9060 CodeGeneratorARMVIXL::PcRelativePatchInfo* CodeGeneratorARMVIXL::NewStringBssEntryPatch(
9061     const DexFile& dex_file, dex::StringIndex string_index) {
9062   return NewPcRelativePatch(&dex_file, string_index.index_, &string_bss_entry_patches_);
9063 }
9064 
NewPcRelativePatch(const DexFile * dex_file,uint32_t offset_or_index,ArenaDeque<PcRelativePatchInfo> * patches)9065 CodeGeneratorARMVIXL::PcRelativePatchInfo* CodeGeneratorARMVIXL::NewPcRelativePatch(
9066     const DexFile* dex_file, uint32_t offset_or_index, ArenaDeque<PcRelativePatchInfo>* patches) {
9067   patches->emplace_back(dex_file, offset_or_index);
9068   return &patches->back();
9069 }
9070 
EmitEntrypointThunkCall(ThreadOffset32 entrypoint_offset)9071 void CodeGeneratorARMVIXL::EmitEntrypointThunkCall(ThreadOffset32 entrypoint_offset) {
9072   DCHECK(!__ AllowMacroInstructions());  // In ExactAssemblyScope.
9073   DCHECK(!Runtime::Current()->UseJitCompilation());
9074   call_entrypoint_patches_.emplace_back(/*dex_file*/ nullptr, entrypoint_offset.Uint32Value());
9075   vixl::aarch32::Label* bl_label = &call_entrypoint_patches_.back().label;
9076   __ bind(bl_label);
9077   vixl32::Label placeholder_label;
9078   __ bl(&placeholder_label);  // Placeholder, patched at link-time.
9079   __ bind(&placeholder_label);
9080 }
9081 
EmitBakerReadBarrierBne(uint32_t custom_data)9082 void CodeGeneratorARMVIXL::EmitBakerReadBarrierBne(uint32_t custom_data) {
9083   DCHECK(!__ AllowMacroInstructions());  // In ExactAssemblyScope.
9084   if (Runtime::Current()->UseJitCompilation()) {
9085     auto it = jit_baker_read_barrier_slow_paths_.FindOrAdd(custom_data);
9086     vixl::aarch32::Label* slow_path_entry = &it->second.label;
9087     __ b(ne, EncodingSize(Wide), slow_path_entry);
9088   } else {
9089     baker_read_barrier_patches_.emplace_back(custom_data);
9090     vixl::aarch32::Label* patch_label = &baker_read_barrier_patches_.back().label;
9091     __ bind(patch_label);
9092     vixl32::Label placeholder_label;
9093     __ b(ne, EncodingSize(Wide), &placeholder_label);  // Placeholder, patched at link-time.
9094     __ bind(&placeholder_label);
9095   }
9096 }
9097 
DeduplicateBootImageAddressLiteral(uint32_t address)9098 VIXLUInt32Literal* CodeGeneratorARMVIXL::DeduplicateBootImageAddressLiteral(uint32_t address) {
9099   return DeduplicateUint32Literal(address, &uint32_literals_);
9100 }
9101 
DeduplicateJitStringLiteral(const DexFile & dex_file,dex::StringIndex string_index,Handle<mirror::String> handle)9102 VIXLUInt32Literal* CodeGeneratorARMVIXL::DeduplicateJitStringLiteral(
9103     const DexFile& dex_file,
9104     dex::StringIndex string_index,
9105     Handle<mirror::String> handle) {
9106   ReserveJitStringRoot(StringReference(&dex_file, string_index), handle);
9107   return jit_string_patches_.GetOrCreate(
9108       StringReference(&dex_file, string_index),
9109       [this]() {
9110         return GetAssembler()->CreateLiteralDestroyedWithPool<uint32_t>(/* value= */ 0u);
9111       });
9112 }
9113 
DeduplicateJitClassLiteral(const DexFile & dex_file,dex::TypeIndex type_index,Handle<mirror::Class> handle)9114 VIXLUInt32Literal* CodeGeneratorARMVIXL::DeduplicateJitClassLiteral(const DexFile& dex_file,
9115                                                       dex::TypeIndex type_index,
9116                                                       Handle<mirror::Class> handle) {
9117   ReserveJitClassRoot(TypeReference(&dex_file, type_index), handle);
9118   return jit_class_patches_.GetOrCreate(
9119       TypeReference(&dex_file, type_index),
9120       [this]() {
9121         return GetAssembler()->CreateLiteralDestroyedWithPool<uint32_t>(/* value= */ 0u);
9122       });
9123 }
9124 
LoadBootImageAddress(vixl32::Register reg,uint32_t boot_image_reference)9125 void CodeGeneratorARMVIXL::LoadBootImageAddress(vixl32::Register reg,
9126                                                 uint32_t boot_image_reference) {
9127   if (GetCompilerOptions().IsBootImage()) {
9128     CodeGeneratorARMVIXL::PcRelativePatchInfo* labels =
9129         NewBootImageIntrinsicPatch(boot_image_reference);
9130     EmitMovwMovtPlaceholder(labels, reg);
9131   } else if (GetCompilerOptions().GetCompilePic()) {
9132     CodeGeneratorARMVIXL::PcRelativePatchInfo* labels =
9133         NewBootImageRelRoPatch(boot_image_reference);
9134     EmitMovwMovtPlaceholder(labels, reg);
9135     __ Ldr(reg, MemOperand(reg, /* offset= */ 0));
9136   } else {
9137     DCHECK(Runtime::Current()->UseJitCompilation());
9138     gc::Heap* heap = Runtime::Current()->GetHeap();
9139     DCHECK(!heap->GetBootImageSpaces().empty());
9140     uintptr_t address =
9141         reinterpret_cast<uintptr_t>(heap->GetBootImageSpaces()[0]->Begin() + boot_image_reference);
9142     __ Ldr(reg, DeduplicateBootImageAddressLiteral(dchecked_integral_cast<uint32_t>(address)));
9143   }
9144 }
9145 
AllocateInstanceForIntrinsic(HInvokeStaticOrDirect * invoke,uint32_t boot_image_offset)9146 void CodeGeneratorARMVIXL::AllocateInstanceForIntrinsic(HInvokeStaticOrDirect* invoke,
9147                                                         uint32_t boot_image_offset) {
9148   DCHECK(invoke->IsStatic());
9149   InvokeRuntimeCallingConventionARMVIXL calling_convention;
9150   vixl32::Register argument = calling_convention.GetRegisterAt(0);
9151   if (GetCompilerOptions().IsBootImage()) {
9152     DCHECK_EQ(boot_image_offset, IntrinsicVisitor::IntegerValueOfInfo::kInvalidReference);
9153     // Load the class the same way as for HLoadClass::LoadKind::kBootImageLinkTimePcRelative.
9154     MethodReference target_method = invoke->GetTargetMethod();
9155     dex::TypeIndex type_idx = target_method.dex_file->GetMethodId(target_method.index).class_idx_;
9156     PcRelativePatchInfo* labels = NewBootImageTypePatch(*target_method.dex_file, type_idx);
9157     EmitMovwMovtPlaceholder(labels, argument);
9158   } else {
9159     LoadBootImageAddress(argument, boot_image_offset);
9160   }
9161   InvokeRuntime(kQuickAllocObjectInitialized, invoke, invoke->GetDexPc());
9162   CheckEntrypointTypes<kQuickAllocObjectWithChecks, void*, mirror::Class*>();
9163 }
9164 
9165 template <linker::LinkerPatch (*Factory)(size_t, const DexFile*, uint32_t, uint32_t)>
EmitPcRelativeLinkerPatches(const ArenaDeque<PcRelativePatchInfo> & infos,ArenaVector<linker::LinkerPatch> * linker_patches)9166 inline void CodeGeneratorARMVIXL::EmitPcRelativeLinkerPatches(
9167     const ArenaDeque<PcRelativePatchInfo>& infos,
9168     ArenaVector<linker::LinkerPatch>* linker_patches) {
9169   for (const PcRelativePatchInfo& info : infos) {
9170     const DexFile* dex_file = info.target_dex_file;
9171     size_t offset_or_index = info.offset_or_index;
9172     DCHECK(info.add_pc_label.IsBound());
9173     uint32_t add_pc_offset = dchecked_integral_cast<uint32_t>(info.add_pc_label.GetLocation());
9174     // Add MOVW patch.
9175     DCHECK(info.movw_label.IsBound());
9176     uint32_t movw_offset = dchecked_integral_cast<uint32_t>(info.movw_label.GetLocation());
9177     linker_patches->push_back(Factory(movw_offset, dex_file, add_pc_offset, offset_or_index));
9178     // Add MOVT patch.
9179     DCHECK(info.movt_label.IsBound());
9180     uint32_t movt_offset = dchecked_integral_cast<uint32_t>(info.movt_label.GetLocation());
9181     linker_patches->push_back(Factory(movt_offset, dex_file, add_pc_offset, offset_or_index));
9182   }
9183 }
9184 
9185 template <linker::LinkerPatch (*Factory)(size_t, uint32_t, uint32_t)>
NoDexFileAdapter(size_t literal_offset,const DexFile * target_dex_file,uint32_t pc_insn_offset,uint32_t boot_image_offset)9186 linker::LinkerPatch NoDexFileAdapter(size_t literal_offset,
9187                                      const DexFile* target_dex_file,
9188                                      uint32_t pc_insn_offset,
9189                                      uint32_t boot_image_offset) {
9190   DCHECK(target_dex_file == nullptr);  // Unused for these patches, should be null.
9191   return Factory(literal_offset, pc_insn_offset, boot_image_offset);
9192 }
9193 
EmitLinkerPatches(ArenaVector<linker::LinkerPatch> * linker_patches)9194 void CodeGeneratorARMVIXL::EmitLinkerPatches(ArenaVector<linker::LinkerPatch>* linker_patches) {
9195   DCHECK(linker_patches->empty());
9196   size_t size =
9197       /* MOVW+MOVT for each entry */ 2u * boot_image_method_patches_.size() +
9198       /* MOVW+MOVT for each entry */ 2u * method_bss_entry_patches_.size() +
9199       /* MOVW+MOVT for each entry */ 2u * boot_image_type_patches_.size() +
9200       /* MOVW+MOVT for each entry */ 2u * type_bss_entry_patches_.size() +
9201       /* MOVW+MOVT for each entry */ 2u * boot_image_string_patches_.size() +
9202       /* MOVW+MOVT for each entry */ 2u * string_bss_entry_patches_.size() +
9203       /* MOVW+MOVT for each entry */ 2u * boot_image_other_patches_.size() +
9204       call_entrypoint_patches_.size() +
9205       baker_read_barrier_patches_.size();
9206   linker_patches->reserve(size);
9207   if (GetCompilerOptions().IsBootImage() || GetCompilerOptions().IsBootImageExtension()) {
9208     EmitPcRelativeLinkerPatches<linker::LinkerPatch::RelativeMethodPatch>(
9209         boot_image_method_patches_, linker_patches);
9210     EmitPcRelativeLinkerPatches<linker::LinkerPatch::RelativeTypePatch>(
9211         boot_image_type_patches_, linker_patches);
9212     EmitPcRelativeLinkerPatches<linker::LinkerPatch::RelativeStringPatch>(
9213         boot_image_string_patches_, linker_patches);
9214   } else {
9215     DCHECK(boot_image_method_patches_.empty());
9216     DCHECK(boot_image_type_patches_.empty());
9217     DCHECK(boot_image_string_patches_.empty());
9218   }
9219   if (GetCompilerOptions().IsBootImage()) {
9220     EmitPcRelativeLinkerPatches<NoDexFileAdapter<linker::LinkerPatch::IntrinsicReferencePatch>>(
9221         boot_image_other_patches_, linker_patches);
9222   } else {
9223     EmitPcRelativeLinkerPatches<NoDexFileAdapter<linker::LinkerPatch::DataBimgRelRoPatch>>(
9224         boot_image_other_patches_, linker_patches);
9225   }
9226   EmitPcRelativeLinkerPatches<linker::LinkerPatch::MethodBssEntryPatch>(
9227       method_bss_entry_patches_, linker_patches);
9228   EmitPcRelativeLinkerPatches<linker::LinkerPatch::TypeBssEntryPatch>(
9229       type_bss_entry_patches_, linker_patches);
9230   EmitPcRelativeLinkerPatches<linker::LinkerPatch::StringBssEntryPatch>(
9231       string_bss_entry_patches_, linker_patches);
9232   for (const PatchInfo<vixl32::Label>& info : call_entrypoint_patches_) {
9233     DCHECK(info.target_dex_file == nullptr);
9234     linker_patches->push_back(linker::LinkerPatch::CallEntrypointPatch(
9235         info.label.GetLocation(), info.offset_or_index));
9236   }
9237   for (const BakerReadBarrierPatchInfo& info : baker_read_barrier_patches_) {
9238     linker_patches->push_back(linker::LinkerPatch::BakerReadBarrierBranchPatch(
9239         info.label.GetLocation(), info.custom_data));
9240   }
9241   DCHECK_EQ(size, linker_patches->size());
9242 }
9243 
NeedsThunkCode(const linker::LinkerPatch & patch) const9244 bool CodeGeneratorARMVIXL::NeedsThunkCode(const linker::LinkerPatch& patch) const {
9245   return patch.GetType() == linker::LinkerPatch::Type::kCallEntrypoint ||
9246          patch.GetType() == linker::LinkerPatch::Type::kBakerReadBarrierBranch ||
9247          patch.GetType() == linker::LinkerPatch::Type::kCallRelative;
9248 }
9249 
EmitThunkCode(const linker::LinkerPatch & patch,ArenaVector<uint8_t> * code,std::string * debug_name)9250 void CodeGeneratorARMVIXL::EmitThunkCode(const linker::LinkerPatch& patch,
9251                                          /*out*/ ArenaVector<uint8_t>* code,
9252                                          /*out*/ std::string* debug_name) {
9253   arm::ArmVIXLAssembler assembler(GetGraph()->GetAllocator());
9254   switch (patch.GetType()) {
9255     case linker::LinkerPatch::Type::kCallRelative: {
9256       // The thunk just uses the entry point in the ArtMethod. This works even for calls
9257       // to the generic JNI and interpreter trampolines.
9258       MemberOffset offset = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArmPointerSize);
9259       assembler.LoadFromOffset(arm::kLoadWord, vixl32::pc, vixl32::r0, offset.Int32Value());
9260       assembler.GetVIXLAssembler()->Bkpt(0);
9261       if (GetCompilerOptions().GenerateAnyDebugInfo()) {
9262         *debug_name = "MethodCallThunk";
9263       }
9264       break;
9265     }
9266     case linker::LinkerPatch::Type::kCallEntrypoint: {
9267       assembler.LoadFromOffset(arm::kLoadWord, vixl32::pc, tr, patch.EntrypointOffset());
9268       assembler.GetVIXLAssembler()->Bkpt(0);
9269       if (GetCompilerOptions().GenerateAnyDebugInfo()) {
9270         *debug_name = "EntrypointCallThunk_" + std::to_string(patch.EntrypointOffset());
9271       }
9272       break;
9273     }
9274     case linker::LinkerPatch::Type::kBakerReadBarrierBranch: {
9275       DCHECK_EQ(patch.GetBakerCustomValue2(), 0u);
9276       CompileBakerReadBarrierThunk(assembler, patch.GetBakerCustomValue1(), debug_name);
9277       break;
9278     }
9279     default:
9280       LOG(FATAL) << "Unexpected patch type " << patch.GetType();
9281       UNREACHABLE();
9282   }
9283 
9284   // Ensure we emit the literal pool if any.
9285   assembler.FinalizeCode();
9286   code->resize(assembler.CodeSize());
9287   MemoryRegion code_region(code->data(), code->size());
9288   assembler.FinalizeInstructions(code_region);
9289 }
9290 
DeduplicateUint32Literal(uint32_t value,Uint32ToLiteralMap * map)9291 VIXLUInt32Literal* CodeGeneratorARMVIXL::DeduplicateUint32Literal(
9292     uint32_t value,
9293     Uint32ToLiteralMap* map) {
9294   return map->GetOrCreate(
9295       value,
9296       [this, value]() {
9297         return GetAssembler()->CreateLiteralDestroyedWithPool<uint32_t>(/* value= */ value);
9298       });
9299 }
9300 
VisitMultiplyAccumulate(HMultiplyAccumulate * instr)9301 void LocationsBuilderARMVIXL::VisitMultiplyAccumulate(HMultiplyAccumulate* instr) {
9302   LocationSummary* locations =
9303       new (GetGraph()->GetAllocator()) LocationSummary(instr, LocationSummary::kNoCall);
9304   locations->SetInAt(HMultiplyAccumulate::kInputAccumulatorIndex,
9305                      Location::RequiresRegister());
9306   locations->SetInAt(HMultiplyAccumulate::kInputMulLeftIndex, Location::RequiresRegister());
9307   locations->SetInAt(HMultiplyAccumulate::kInputMulRightIndex, Location::RequiresRegister());
9308   locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
9309 }
9310 
VisitMultiplyAccumulate(HMultiplyAccumulate * instr)9311 void InstructionCodeGeneratorARMVIXL::VisitMultiplyAccumulate(HMultiplyAccumulate* instr) {
9312   vixl32::Register res = OutputRegister(instr);
9313   vixl32::Register accumulator =
9314       InputRegisterAt(instr, HMultiplyAccumulate::kInputAccumulatorIndex);
9315   vixl32::Register mul_left =
9316       InputRegisterAt(instr, HMultiplyAccumulate::kInputMulLeftIndex);
9317   vixl32::Register mul_right =
9318       InputRegisterAt(instr, HMultiplyAccumulate::kInputMulRightIndex);
9319 
9320   if (instr->GetOpKind() == HInstruction::kAdd) {
9321     __ Mla(res, mul_left, mul_right, accumulator);
9322   } else {
9323     __ Mls(res, mul_left, mul_right, accumulator);
9324   }
9325 }
9326 
VisitBoundType(HBoundType * instruction ATTRIBUTE_UNUSED)9327 void LocationsBuilderARMVIXL::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) {
9328   // Nothing to do, this should be removed during prepare for register allocator.
9329   LOG(FATAL) << "Unreachable";
9330 }
9331 
VisitBoundType(HBoundType * instruction ATTRIBUTE_UNUSED)9332 void InstructionCodeGeneratorARMVIXL::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) {
9333   // Nothing to do, this should be removed during prepare for register allocator.
9334   LOG(FATAL) << "Unreachable";
9335 }
9336 
9337 // Simple implementation of packed switch - generate cascaded compare/jumps.
VisitPackedSwitch(HPackedSwitch * switch_instr)9338 void LocationsBuilderARMVIXL::VisitPackedSwitch(HPackedSwitch* switch_instr) {
9339   LocationSummary* locations =
9340       new (GetGraph()->GetAllocator()) LocationSummary(switch_instr, LocationSummary::kNoCall);
9341   locations->SetInAt(0, Location::RequiresRegister());
9342   if (switch_instr->GetNumEntries() > kPackedSwitchCompareJumpThreshold &&
9343       codegen_->GetAssembler()->GetVIXLAssembler()->IsUsingT32()) {
9344     locations->AddTemp(Location::RequiresRegister());  // We need a temp for the table base.
9345     if (switch_instr->GetStartValue() != 0) {
9346       locations->AddTemp(Location::RequiresRegister());  // We need a temp for the bias.
9347     }
9348   }
9349 }
9350 
9351 // TODO(VIXL): Investigate and reach the parity with old arm codegen.
VisitPackedSwitch(HPackedSwitch * switch_instr)9352 void InstructionCodeGeneratorARMVIXL::VisitPackedSwitch(HPackedSwitch* switch_instr) {
9353   int32_t lower_bound = switch_instr->GetStartValue();
9354   uint32_t num_entries = switch_instr->GetNumEntries();
9355   LocationSummary* locations = switch_instr->GetLocations();
9356   vixl32::Register value_reg = InputRegisterAt(switch_instr, 0);
9357   HBasicBlock* default_block = switch_instr->GetDefaultBlock();
9358 
9359   if (num_entries <= kPackedSwitchCompareJumpThreshold ||
9360       !codegen_->GetAssembler()->GetVIXLAssembler()->IsUsingT32()) {
9361     // Create a series of compare/jumps.
9362     UseScratchRegisterScope temps(GetVIXLAssembler());
9363     vixl32::Register temp_reg = temps.Acquire();
9364     // Note: It is fine for the below AddConstantSetFlags() using IP register to temporarily store
9365     // the immediate, because IP is used as the destination register. For the other
9366     // AddConstantSetFlags() and GenerateCompareWithImmediate(), the immediate values are constant,
9367     // and they can be encoded in the instruction without making use of IP register.
9368     __ Adds(temp_reg, value_reg, -lower_bound);
9369 
9370     const ArenaVector<HBasicBlock*>& successors = switch_instr->GetBlock()->GetSuccessors();
9371     // Jump to successors[0] if value == lower_bound.
9372     __ B(eq, codegen_->GetLabelOf(successors[0]));
9373     int32_t last_index = 0;
9374     for (; num_entries - last_index > 2; last_index += 2) {
9375       __ Adds(temp_reg, temp_reg, -2);
9376       // Jump to successors[last_index + 1] if value < case_value[last_index + 2].
9377       __ B(lo, codegen_->GetLabelOf(successors[last_index + 1]));
9378       // Jump to successors[last_index + 2] if value == case_value[last_index + 2].
9379       __ B(eq, codegen_->GetLabelOf(successors[last_index + 2]));
9380     }
9381     if (num_entries - last_index == 2) {
9382       // The last missing case_value.
9383       __ Cmp(temp_reg, 1);
9384       __ B(eq, codegen_->GetLabelOf(successors[last_index + 1]));
9385     }
9386 
9387     // And the default for any other value.
9388     if (!codegen_->GoesToNextBlock(switch_instr->GetBlock(), default_block)) {
9389       __ B(codegen_->GetLabelOf(default_block));
9390     }
9391   } else {
9392     // Create a table lookup.
9393     vixl32::Register table_base = RegisterFrom(locations->GetTemp(0));
9394 
9395     JumpTableARMVIXL* jump_table = codegen_->CreateJumpTable(switch_instr);
9396 
9397     // Remove the bias.
9398     vixl32::Register key_reg;
9399     if (lower_bound != 0) {
9400       key_reg = RegisterFrom(locations->GetTemp(1));
9401       __ Sub(key_reg, value_reg, lower_bound);
9402     } else {
9403       key_reg = value_reg;
9404     }
9405 
9406     // Check whether the value is in the table, jump to default block if not.
9407     __ Cmp(key_reg, num_entries - 1);
9408     __ B(hi, codegen_->GetLabelOf(default_block));
9409 
9410     UseScratchRegisterScope temps(GetVIXLAssembler());
9411     vixl32::Register jump_offset = temps.Acquire();
9412 
9413     // Load jump offset from the table.
9414     {
9415       const size_t jump_size = switch_instr->GetNumEntries() * sizeof(int32_t);
9416       ExactAssemblyScope aas(GetVIXLAssembler(),
9417                              (vixl32::kMaxInstructionSizeInBytes * 4) + jump_size,
9418                              CodeBufferCheckScope::kMaximumSize);
9419       __ adr(table_base, jump_table->GetTableStartLabel());
9420       __ ldr(jump_offset, MemOperand(table_base, key_reg, vixl32::LSL, 2));
9421 
9422       // Jump to target block by branching to table_base(pc related) + offset.
9423       vixl32::Register target_address = table_base;
9424       __ add(target_address, table_base, jump_offset);
9425       __ bx(target_address);
9426 
9427       jump_table->EmitTable(codegen_);
9428     }
9429   }
9430 }
9431 
9432 // Copy the result of a call into the given target.
MoveFromReturnRegister(Location trg,DataType::Type type)9433 void CodeGeneratorARMVIXL::MoveFromReturnRegister(Location trg, DataType::Type type) {
9434   if (!trg.IsValid()) {
9435     DCHECK_EQ(type, DataType::Type::kVoid);
9436     return;
9437   }
9438 
9439   DCHECK_NE(type, DataType::Type::kVoid);
9440 
9441   Location return_loc = InvokeDexCallingConventionVisitorARMVIXL().GetReturnLocation(type);
9442   if (return_loc.Equals(trg)) {
9443     return;
9444   }
9445 
9446   // TODO: Consider pairs in the parallel move resolver, then this could be nicely merged
9447   //       with the last branch.
9448   if (type == DataType::Type::kInt64) {
9449     TODO_VIXL32(FATAL);
9450   } else if (type == DataType::Type::kFloat64) {
9451     TODO_VIXL32(FATAL);
9452   } else {
9453     // Let the parallel move resolver take care of all of this.
9454     HParallelMove parallel_move(GetGraph()->GetAllocator());
9455     parallel_move.AddMove(return_loc, trg, type, nullptr);
9456     GetMoveResolver()->EmitNativeCode(&parallel_move);
9457   }
9458 }
9459 
VisitClassTableGet(HClassTableGet * instruction)9460 void LocationsBuilderARMVIXL::VisitClassTableGet(HClassTableGet* instruction) {
9461   LocationSummary* locations =
9462       new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
9463   locations->SetInAt(0, Location::RequiresRegister());
9464   locations->SetOut(Location::RequiresRegister());
9465 }
9466 
VisitClassTableGet(HClassTableGet * instruction)9467 void InstructionCodeGeneratorARMVIXL::VisitClassTableGet(HClassTableGet* instruction) {
9468   if (instruction->GetTableKind() == HClassTableGet::TableKind::kVTable) {
9469     uint32_t method_offset = mirror::Class::EmbeddedVTableEntryOffset(
9470         instruction->GetIndex(), kArmPointerSize).SizeValue();
9471     GetAssembler()->LoadFromOffset(kLoadWord,
9472                                    OutputRegister(instruction),
9473                                    InputRegisterAt(instruction, 0),
9474                                    method_offset);
9475   } else {
9476     uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement(
9477         instruction->GetIndex(), kArmPointerSize));
9478     GetAssembler()->LoadFromOffset(kLoadWord,
9479                                    OutputRegister(instruction),
9480                                    InputRegisterAt(instruction, 0),
9481                                    mirror::Class::ImtPtrOffset(kArmPointerSize).Uint32Value());
9482     GetAssembler()->LoadFromOffset(kLoadWord,
9483                                    OutputRegister(instruction),
9484                                    OutputRegister(instruction),
9485                                    method_offset);
9486   }
9487 }
9488 
PatchJitRootUse(uint8_t * code,const uint8_t * roots_data,VIXLUInt32Literal * literal,uint64_t index_in_table)9489 static void PatchJitRootUse(uint8_t* code,
9490                             const uint8_t* roots_data,
9491                             VIXLUInt32Literal* literal,
9492                             uint64_t index_in_table) {
9493   DCHECK(literal->IsBound());
9494   uint32_t literal_offset = literal->GetLocation();
9495   uintptr_t address =
9496       reinterpret_cast<uintptr_t>(roots_data) + index_in_table * sizeof(GcRoot<mirror::Object>);
9497   uint8_t* data = code + literal_offset;
9498   reinterpret_cast<uint32_t*>(data)[0] = dchecked_integral_cast<uint32_t>(address);
9499 }
9500 
EmitJitRootPatches(uint8_t * code,const uint8_t * roots_data)9501 void CodeGeneratorARMVIXL::EmitJitRootPatches(uint8_t* code, const uint8_t* roots_data) {
9502   for (const auto& entry : jit_string_patches_) {
9503     const StringReference& string_reference = entry.first;
9504     VIXLUInt32Literal* table_entry_literal = entry.second;
9505     uint64_t index_in_table = GetJitStringRootIndex(string_reference);
9506     PatchJitRootUse(code, roots_data, table_entry_literal, index_in_table);
9507   }
9508   for (const auto& entry : jit_class_patches_) {
9509     const TypeReference& type_reference = entry.first;
9510     VIXLUInt32Literal* table_entry_literal = entry.second;
9511     uint64_t index_in_table = GetJitClassRootIndex(type_reference);
9512     PatchJitRootUse(code, roots_data, table_entry_literal, index_in_table);
9513   }
9514 }
9515 
EmitMovwMovtPlaceholder(CodeGeneratorARMVIXL::PcRelativePatchInfo * labels,vixl32::Register out)9516 void CodeGeneratorARMVIXL::EmitMovwMovtPlaceholder(
9517     CodeGeneratorARMVIXL::PcRelativePatchInfo* labels,
9518     vixl32::Register out) {
9519   ExactAssemblyScope aas(GetVIXLAssembler(),
9520                          3 * vixl32::kMaxInstructionSizeInBytes,
9521                          CodeBufferCheckScope::kMaximumSize);
9522   // TODO(VIXL): Think about using mov instead of movw.
9523   __ bind(&labels->movw_label);
9524   __ movw(out, /* operand= */ 0u);
9525   __ bind(&labels->movt_label);
9526   __ movt(out, /* operand= */ 0u);
9527   __ bind(&labels->add_pc_label);
9528   __ add(out, out, pc);
9529 }
9530 
9531 #undef __
9532 #undef QUICK_ENTRY_POINT
9533 #undef TODO_VIXL32
9534 
9535 #define __ assembler.GetVIXLAssembler()->
9536 
EmitGrayCheckAndFastPath(ArmVIXLAssembler & assembler,vixl32::Register base_reg,vixl32::MemOperand & lock_word,vixl32::Label * slow_path,int32_t raw_ldr_offset,vixl32::Label * throw_npe=nullptr)9537 static void EmitGrayCheckAndFastPath(ArmVIXLAssembler& assembler,
9538                                      vixl32::Register base_reg,
9539                                      vixl32::MemOperand& lock_word,
9540                                      vixl32::Label* slow_path,
9541                                      int32_t raw_ldr_offset,
9542                                      vixl32::Label* throw_npe = nullptr) {
9543   // Load the lock word containing the rb_state.
9544   __ Ldr(ip, lock_word);
9545   // Given the numeric representation, it's enough to check the low bit of the rb_state.
9546   static_assert(ReadBarrier::NonGrayState() == 0, "Expecting non-gray to have value 0");
9547   static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1");
9548   __ Tst(ip, Operand(LockWord::kReadBarrierStateMaskShifted));
9549   __ B(ne, slow_path, /* is_far_target= */ false);
9550   // To throw NPE, we return to the fast path; the artificial dependence below does not matter.
9551   if (throw_npe != nullptr) {
9552     __ Bind(throw_npe);
9553   }
9554   __ Add(lr, lr, raw_ldr_offset);
9555   // Introduce a dependency on the lock_word including rb_state,
9556   // to prevent load-load reordering, and without using
9557   // a memory barrier (which would be more expensive).
9558   __ Add(base_reg, base_reg, Operand(ip, LSR, 32));
9559   __ Bx(lr);          // And return back to the function.
9560   // Note: The fake dependency is unnecessary for the slow path.
9561 }
9562 
9563 // Load the read barrier introspection entrypoint in register `entrypoint`
LoadReadBarrierMarkIntrospectionEntrypoint(ArmVIXLAssembler & assembler)9564 static vixl32::Register LoadReadBarrierMarkIntrospectionEntrypoint(ArmVIXLAssembler& assembler) {
9565   // The register where the read barrier introspection entrypoint is loaded
9566   // is the marking register. We clobber it here and the entrypoint restores it to 1.
9567   vixl32::Register entrypoint = mr;
9568   // entrypoint = Thread::Current()->pReadBarrierMarkReg12, i.e. pReadBarrierMarkIntrospection.
9569   DCHECK_EQ(ip.GetCode(), 12u);
9570   const int32_t entry_point_offset =
9571       Thread::ReadBarrierMarkEntryPointsOffset<kArmPointerSize>(ip.GetCode());
9572   __ Ldr(entrypoint, MemOperand(tr, entry_point_offset));
9573   return entrypoint;
9574 }
9575 
CompileBakerReadBarrierThunk(ArmVIXLAssembler & assembler,uint32_t encoded_data,std::string * debug_name)9576 void CodeGeneratorARMVIXL::CompileBakerReadBarrierThunk(ArmVIXLAssembler& assembler,
9577                                                         uint32_t encoded_data,
9578                                                         /*out*/ std::string* debug_name) {
9579   BakerReadBarrierKind kind = BakerReadBarrierKindField::Decode(encoded_data);
9580   switch (kind) {
9581     case BakerReadBarrierKind::kField: {
9582       vixl32::Register base_reg(BakerReadBarrierFirstRegField::Decode(encoded_data));
9583       CheckValidReg(base_reg.GetCode());
9584       vixl32::Register holder_reg(BakerReadBarrierSecondRegField::Decode(encoded_data));
9585       CheckValidReg(holder_reg.GetCode());
9586       BakerReadBarrierWidth width = BakerReadBarrierWidthField::Decode(encoded_data);
9587       UseScratchRegisterScope temps(assembler.GetVIXLAssembler());
9588       temps.Exclude(ip);
9589       // In the case of a field load, if `base_reg` differs from
9590       // `holder_reg`, the offset was too large and we must have emitted (during the construction
9591       // of the HIR graph, see `art::HInstructionBuilder::BuildInstanceFieldAccess`) and preserved
9592       // (see `art::PrepareForRegisterAllocation::VisitNullCheck`) an explicit null check before
9593       // the load. Otherwise, for implicit null checks, we need to null-check the holder as we do
9594       // not necessarily do that check before going to the thunk.
9595       vixl32::Label throw_npe_label;
9596       vixl32::Label* throw_npe = nullptr;
9597       if (GetCompilerOptions().GetImplicitNullChecks() && holder_reg.Is(base_reg)) {
9598         throw_npe = &throw_npe_label;
9599         __ CompareAndBranchIfZero(holder_reg, throw_npe, /* is_far_target= */ false);
9600       }
9601       // Check if the holder is gray and, if not, add fake dependency to the base register
9602       // and return to the LDR instruction to load the reference. Otherwise, use introspection
9603       // to load the reference and call the entrypoint that performs further checks on the
9604       // reference and marks it if needed.
9605       vixl32::Label slow_path;
9606       MemOperand lock_word(holder_reg, mirror::Object::MonitorOffset().Int32Value());
9607       const int32_t raw_ldr_offset = (width == BakerReadBarrierWidth::kWide)
9608           ? BAKER_MARK_INTROSPECTION_FIELD_LDR_WIDE_OFFSET
9609           : BAKER_MARK_INTROSPECTION_FIELD_LDR_NARROW_OFFSET;
9610       EmitGrayCheckAndFastPath(
9611           assembler, base_reg, lock_word, &slow_path, raw_ldr_offset, throw_npe);
9612       __ Bind(&slow_path);
9613       const int32_t ldr_offset = /* Thumb state adjustment (LR contains Thumb state). */ -1 +
9614                                  raw_ldr_offset;
9615       vixl32::Register ep_reg = LoadReadBarrierMarkIntrospectionEntrypoint(assembler);
9616       if (width == BakerReadBarrierWidth::kWide) {
9617         MemOperand ldr_half_address(lr, ldr_offset + 2);
9618         __ Ldrh(ip, ldr_half_address);        // Load the LDR immediate half-word with "Rt | imm12".
9619         __ Ubfx(ip, ip, 0, 12);               // Extract the offset imm12.
9620         __ Ldr(ip, MemOperand(base_reg, ip));   // Load the reference.
9621       } else {
9622         MemOperand ldr_address(lr, ldr_offset);
9623         __ Ldrh(ip, ldr_address);             // Load the LDR immediate, encoding T1.
9624         __ Add(ep_reg,                        // Adjust the entrypoint address to the entrypoint
9625                ep_reg,                        // for narrow LDR.
9626                Operand(BAKER_MARK_INTROSPECTION_FIELD_LDR_NARROW_ENTRYPOINT_OFFSET));
9627         __ Ubfx(ip, ip, 6, 5);                // Extract the imm5, i.e. offset / 4.
9628         __ Ldr(ip, MemOperand(base_reg, ip, LSL, 2));   // Load the reference.
9629       }
9630       // Do not unpoison. With heap poisoning enabled, the entrypoint expects a poisoned reference.
9631       __ Bx(ep_reg);                          // Jump to the entrypoint.
9632       break;
9633     }
9634     case BakerReadBarrierKind::kArray: {
9635       vixl32::Register base_reg(BakerReadBarrierFirstRegField::Decode(encoded_data));
9636       CheckValidReg(base_reg.GetCode());
9637       DCHECK_EQ(kBakerReadBarrierInvalidEncodedReg,
9638                 BakerReadBarrierSecondRegField::Decode(encoded_data));
9639       DCHECK(BakerReadBarrierWidthField::Decode(encoded_data) == BakerReadBarrierWidth::kWide);
9640       UseScratchRegisterScope temps(assembler.GetVIXLAssembler());
9641       temps.Exclude(ip);
9642       vixl32::Label slow_path;
9643       int32_t data_offset =
9644           mirror::Array::DataOffset(Primitive::ComponentSize(Primitive::kPrimNot)).Int32Value();
9645       MemOperand lock_word(base_reg, mirror::Object::MonitorOffset().Int32Value() - data_offset);
9646       DCHECK_LT(lock_word.GetOffsetImmediate(), 0);
9647       const int32_t raw_ldr_offset = BAKER_MARK_INTROSPECTION_ARRAY_LDR_OFFSET;
9648       EmitGrayCheckAndFastPath(assembler, base_reg, lock_word, &slow_path, raw_ldr_offset);
9649       __ Bind(&slow_path);
9650       const int32_t ldr_offset = /* Thumb state adjustment (LR contains Thumb state). */ -1 +
9651                                  raw_ldr_offset;
9652       MemOperand ldr_address(lr, ldr_offset + 2);
9653       __ Ldrb(ip, ldr_address);               // Load the LDR (register) byte with "00 | imm2 | Rm",
9654                                               // i.e. Rm+32 because the scale in imm2 is 2.
9655       vixl32::Register ep_reg = LoadReadBarrierMarkIntrospectionEntrypoint(assembler);
9656       __ Bfi(ep_reg, ip, 3, 6);               // Insert ip to the entrypoint address to create
9657                                               // a switch case target based on the index register.
9658       __ Mov(ip, base_reg);                   // Move the base register to ip0.
9659       __ Bx(ep_reg);                          // Jump to the entrypoint's array switch case.
9660       break;
9661     }
9662     case BakerReadBarrierKind::kGcRoot:
9663     case BakerReadBarrierKind::kUnsafeCas: {
9664       // Check if the reference needs to be marked and if so (i.e. not null, not marked yet
9665       // and it does not have a forwarding address), call the correct introspection entrypoint;
9666       // otherwise return the reference (or the extracted forwarding address).
9667       // There is no gray bit check for GC roots.
9668       vixl32::Register root_reg(BakerReadBarrierFirstRegField::Decode(encoded_data));
9669       CheckValidReg(root_reg.GetCode());
9670       DCHECK_EQ(kBakerReadBarrierInvalidEncodedReg,
9671                 BakerReadBarrierSecondRegField::Decode(encoded_data));
9672       BakerReadBarrierWidth width = BakerReadBarrierWidthField::Decode(encoded_data);
9673       UseScratchRegisterScope temps(assembler.GetVIXLAssembler());
9674       temps.Exclude(ip);
9675       vixl32::Label return_label, not_marked, forwarding_address;
9676       __ CompareAndBranchIfZero(root_reg, &return_label, /* is_far_target= */ false);
9677       MemOperand lock_word(root_reg, mirror::Object::MonitorOffset().Int32Value());
9678       __ Ldr(ip, lock_word);
9679       __ Tst(ip, LockWord::kMarkBitStateMaskShifted);
9680       __ B(eq, &not_marked);
9681       __ Bind(&return_label);
9682       __ Bx(lr);
9683       __ Bind(&not_marked);
9684       static_assert(LockWord::kStateShift == 30 && LockWord::kStateForwardingAddress == 3,
9685                     "To use 'CMP ip, #modified-immediate; BHS', we need the lock word state in "
9686                     " the highest bits and the 'forwarding address' state to have all bits set");
9687       __ Cmp(ip, Operand(0xc0000000));
9688       __ B(hs, &forwarding_address);
9689       vixl32::Register ep_reg = LoadReadBarrierMarkIntrospectionEntrypoint(assembler);
9690       // Adjust the art_quick_read_barrier_mark_introspection address in kBakerCcEntrypointRegister
9691       // to one of art_quick_read_barrier_mark_introspection_{gc_roots_{wide,narrow},unsafe_cas}.
9692       DCHECK(kind != BakerReadBarrierKind::kUnsafeCas || width == BakerReadBarrierWidth::kWide);
9693       int32_t entrypoint_offset =
9694           (kind == BakerReadBarrierKind::kGcRoot)
9695               ? (width == BakerReadBarrierWidth::kWide)
9696                   ? BAKER_MARK_INTROSPECTION_GC_ROOT_LDR_WIDE_ENTRYPOINT_OFFSET
9697                   : BAKER_MARK_INTROSPECTION_GC_ROOT_LDR_NARROW_ENTRYPOINT_OFFSET
9698               : BAKER_MARK_INTROSPECTION_UNSAFE_CAS_ENTRYPOINT_OFFSET;
9699       __ Add(ep_reg, ep_reg, Operand(entrypoint_offset));
9700       __ Mov(ip, root_reg);
9701       __ Bx(ep_reg);
9702       __ Bind(&forwarding_address);
9703       __ Lsl(root_reg, ip, LockWord::kForwardingAddressShift);
9704       __ Bx(lr);
9705       break;
9706     }
9707     default:
9708       LOG(FATAL) << "Unexpected kind: " << static_cast<uint32_t>(kind);
9709       UNREACHABLE();
9710   }
9711 
9712   // For JIT, the slow path is considered part of the compiled method,
9713   // so JIT should pass null as `debug_name`. Tests may not have a runtime.
9714   DCHECK(Runtime::Current() == nullptr ||
9715          !Runtime::Current()->UseJitCompilation() ||
9716          debug_name == nullptr);
9717   if (debug_name != nullptr && GetCompilerOptions().GenerateAnyDebugInfo()) {
9718     std::ostringstream oss;
9719     oss << "BakerReadBarrierThunk";
9720     switch (kind) {
9721       case BakerReadBarrierKind::kField:
9722         oss << "Field";
9723         if (BakerReadBarrierWidthField::Decode(encoded_data) == BakerReadBarrierWidth::kWide) {
9724           oss << "Wide";
9725         }
9726         oss << "_r" << BakerReadBarrierFirstRegField::Decode(encoded_data)
9727             << "_r" << BakerReadBarrierSecondRegField::Decode(encoded_data);
9728         break;
9729       case BakerReadBarrierKind::kArray:
9730         oss << "Array_r" << BakerReadBarrierFirstRegField::Decode(encoded_data);
9731         DCHECK_EQ(kBakerReadBarrierInvalidEncodedReg,
9732                   BakerReadBarrierSecondRegField::Decode(encoded_data));
9733         DCHECK(BakerReadBarrierWidthField::Decode(encoded_data) == BakerReadBarrierWidth::kWide);
9734         break;
9735       case BakerReadBarrierKind::kGcRoot:
9736         oss << "GcRoot";
9737         if (BakerReadBarrierWidthField::Decode(encoded_data) == BakerReadBarrierWidth::kWide) {
9738           oss << "Wide";
9739         }
9740         oss << "_r" << BakerReadBarrierFirstRegField::Decode(encoded_data);
9741         DCHECK_EQ(kBakerReadBarrierInvalidEncodedReg,
9742                   BakerReadBarrierSecondRegField::Decode(encoded_data));
9743         break;
9744       case BakerReadBarrierKind::kUnsafeCas:
9745         oss << "UnsafeCas_r" << BakerReadBarrierFirstRegField::Decode(encoded_data);
9746         DCHECK_EQ(kBakerReadBarrierInvalidEncodedReg,
9747                   BakerReadBarrierSecondRegField::Decode(encoded_data));
9748         DCHECK(BakerReadBarrierWidthField::Decode(encoded_data) == BakerReadBarrierWidth::kWide);
9749         break;
9750     }
9751     *debug_name = oss.str();
9752   }
9753 }
9754 
9755 #undef __
9756 
9757 }  // namespace arm
9758 }  // namespace art
9759