/frameworks/ml/nn/runtime/test/specs/V1_2/ |
D | quantized_lstm.mod.py | 23 n_output = n_cell variable 32 [n_output, n_input], weights_scale, weights_zero_point) 39 [n_output, n_output], weights_scale, weights_zero_point) 45 BiasType = ("TENSOR_INT32", [n_output], weights_scale / 128., 0) 52 OutputType = ("TENSOR_QUANT8_ASYMM", (n_batch, n_output), 1 / 128, 128) 110 n_output = n_cell variable 119 [n_output, n_input], weights_scale, weights_zero_point) 130 [n_output, n_output], weights_scale, weights_zero_point) 140 BiasType = ("TENSOR_INT32", [n_output], weights_scale / 128., 0) 151 OutputType = ("TENSOR_QUANT8_ASYMM", (n_batch, n_output), 1 / 128, 128)
|
D | layer_norm_lstm.mod.py | 25 n_output = 3 variable 40 "{%d, %d}" % (n_cell, n_output)) 43 "{%d, %d}" % (n_cell, n_output)) 45 "{%d, %d}" % (n_cell, n_output)) 48 "{%d, %d}" % (n_cell, n_output)) 65 "{%d,%d}" % (n_output, n_cell)) 69 "{%d, %d}" % (n_batch, n_output)) 89 "{%d, %d}" % (n_batch, n_output)) 92 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_output)) 197 n_output = 3 variable [all …]
|
D | lstm3_float16.mod.py | 25 n_output = 16 variable 34 …t_weights = Input("recurrent_to_intput_weights", "TENSOR_FLOAT16", "{%d, %d}" % (n_cell, n_output)) 35 …t_weights = Input("recurrent_to_forget_weights", "TENSOR_FLOAT16", "{%d, %d}" % (n_cell, n_output)) 36 …ell_weights = Input("recurrent_to_cell_weights", "TENSOR_FLOAT16", "{%d, %d}" % (n_cell, n_output)) 37 …t_weights = Input("recurrent_to_output_weights", "TENSOR_FLOAT16", "{%d, %d}" % (n_cell, n_output)) 48 projection_weights = Input("projection_weights", "TENSOR_FLOAT16", "{%d,%d}" % (n_output, n_cell)) 51 output_state_in = Input("output_state_in", "TENSOR_FLOAT16", "{%d, %d}" % (n_batch, n_output)) 59 output_state_out = Output("output_state_out", "TENSOR_FLOAT16", "{%d, %d}" % (n_batch, n_output)) 61 output = Output("output", "TENSOR_FLOAT16", "{%d, %d}" % (n_batch, n_output)) 621 input0[output_state_in] = [ 0 for _ in range(n_batch * n_output) ]
|
D | unidirectional_sequence_lstm_batch_major_peephole_projection_bias.mod.py | 28 n_output = 16 variable 43 "{%d, %d}" % (n_cell, n_output)) 46 "{%d, %d}" % (n_cell, n_output)) 48 "{%d, %d}" % (n_cell, n_output)) 51 "{%d, %d}" % (n_cell, n_output)) 68 "{%d,%d}" % (n_output, n_cell)) 69 projection_bias = Input("projection_bias", "TENSOR_FLOAT32", "{%d}" % n_output) 72 "{%d, %d}" % (n_batch, n_output)) 86 output = Output("output", "TENSOR_FLOAT32", "{%d, %d, %d}" % (n_batch, max_time, n_output)) 702 input0[output_state_in] = [0 for _ in range(n_batch * n_output)]
|
D | lstm3_state3_float16.mod.py | 25 n_output = 16 variable 34 …t_weights = Input("recurrent_to_intput_weights", "TENSOR_FLOAT16", "{%d, %d}" % (n_cell, n_output)) 35 …t_weights = Input("recurrent_to_forget_weights", "TENSOR_FLOAT16", "{%d, %d}" % (n_cell, n_output)) 36 …ell_weights = Input("recurrent_to_cell_weights", "TENSOR_FLOAT16", "{%d, %d}" % (n_cell, n_output)) 37 …t_weights = Input("recurrent_to_output_weights", "TENSOR_FLOAT16", "{%d, %d}" % (n_cell, n_output)) 48 projection_weights = Input("projection_weights", "TENSOR_FLOAT16", "{%d,%d}" % (n_output, n_cell)) 51 output_state_in = Input("output_state_in", "TENSOR_FLOAT16", "{%d, %d}" % (n_batch, n_output)) 59 …t_state_out = IgnoredOutput("output_state_out", "TENSOR_FLOAT16", "{%d, %d}" % (n_batch, n_output)) 61 output = Output("output", "TENSOR_FLOAT16", "{%d, %d}" % (n_batch, n_output)) 645 output_state_out: [ 0 for x in range(n_batch * n_output) ],
|
D | lstm2_state2_float16.mod.py | 25 n_output = 4 variable 34 …t_weights = Input("recurrent_to_intput_weights", "TENSOR_FLOAT16", "{%d, %d}" % (n_cell, n_output)) 35 …t_weights = Input("recurrent_to_forget_weights", "TENSOR_FLOAT16", "{%d, %d}" % (n_cell, n_output)) 36 …ell_weights = Input("recurrent_to_cell_weights", "TENSOR_FLOAT16", "{%d, %d}" % (n_cell, n_output)) 37 …t_weights = Input("recurrent_to_output_weights", "TENSOR_FLOAT16", "{%d, %d}" % (n_cell, n_output)) 51 output_state_in = Input("output_state_in", "TENSOR_FLOAT16", "{%d, %d}" % (n_batch, n_output)) 59 …t_state_out = IgnoredOutput("output_state_out", "TENSOR_FLOAT16", "{%d, %d}" % (n_batch, n_output)) 61 output = Output("output", "TENSOR_FLOAT16", "{%d, %d}" % (n_batch, n_output)) 134 output_state_out: [ 0 for x in range(n_batch * n_output) ],
|
D | lstm2_float16.mod.py | 25 n_output = 4 variable 34 …t_weights = Input("recurrent_to_intput_weights", "TENSOR_FLOAT16", "{%d, %d}" % (n_cell, n_output)) 35 …t_weights = Input("recurrent_to_forget_weights", "TENSOR_FLOAT16", "{%d, %d}" % (n_cell, n_output)) 36 …ell_weights = Input("recurrent_to_cell_weights", "TENSOR_FLOAT16", "{%d, %d}" % (n_cell, n_output)) 37 …t_weights = Input("recurrent_to_output_weights", "TENSOR_FLOAT16", "{%d, %d}" % (n_cell, n_output)) 51 output_state_in = Input("output_state_in", "TENSOR_FLOAT16", "{%d, %d}" % (n_batch, n_output)) 59 output_state_out = Output("output_state_out", "TENSOR_FLOAT16", "{%d, %d}" % (n_batch, n_output)) 61 output = Output("output", "TENSOR_FLOAT16", "{%d, %d}" % (n_batch, n_output)) 138 input0[output_state_in] = [ 0 for _ in range(n_batch * n_output) ]
|
D | lstm3_state2_float16.mod.py | 25 n_output = 16 variable 34 …t_weights = Input("recurrent_to_intput_weights", "TENSOR_FLOAT16", "{%d, %d}" % (n_cell, n_output)) 35 …t_weights = Input("recurrent_to_forget_weights", "TENSOR_FLOAT16", "{%d, %d}" % (n_cell, n_output)) 36 …ell_weights = Input("recurrent_to_cell_weights", "TENSOR_FLOAT16", "{%d, %d}" % (n_cell, n_output)) 37 …t_weights = Input("recurrent_to_output_weights", "TENSOR_FLOAT16", "{%d, %d}" % (n_cell, n_output)) 48 projection_weights = Input("projection_weights", "TENSOR_FLOAT16", "{%d,%d}" % (n_output, n_cell)) 51 output_state_in = Input("output_state_in", "TENSOR_FLOAT16", "{%d, %d}" % (n_batch, n_output)) 59 output_state_out = Output("output_state_out", "TENSOR_FLOAT16", "{%d, %d}" % (n_batch, n_output)) 61 output = Output("output", "TENSOR_FLOAT16", "{%d, %d}" % (n_batch, n_output))
|
D | lstm_state2_float16.mod.py | 25 n_output = 4 variable 34 …t_weights = Input("recurrent_to_intput_weights", "TENSOR_FLOAT16", "{%d, %d}" % (n_cell, n_output)) 35 …t_weights = Input("recurrent_to_forget_weights", "TENSOR_FLOAT16", "{%d, %d}" % (n_cell, n_output)) 36 …ell_weights = Input("recurrent_to_cell_weights", "TENSOR_FLOAT16", "{%d, %d}" % (n_cell, n_output)) 37 …t_weights = Input("recurrent_to_output_weights", "TENSOR_FLOAT16", "{%d, %d}" % (n_cell, n_output)) 51 output_state_in = Input("output_state_in", "TENSOR_FLOAT16", "{%d, %d}" % (n_batch, n_output)) 59 …t_state_out = IgnoredOutput("output_state_out", "TENSOR_FLOAT16", "{%d, %d}" % (n_batch, n_output)) 61 output = Output("output", "TENSOR_FLOAT16", "{%d, %d}" % (n_batch, n_output)) 142 output_state_out: [ 0 for x in range(n_batch * n_output) ],
|
/frameworks/ml/nn/runtime/test/specs/V1_0/ |
D | lstm3.mod.py | 25 n_output = 16 variable 34 …t_weights = Input("recurrent_to_intput_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, n_output)) 35 …t_weights = Input("recurrent_to_forget_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, n_output)) 36 …ell_weights = Input("recurrent_to_cell_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, n_output)) 37 …t_weights = Input("recurrent_to_output_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, n_output)) 48 projection_weights = Input("projection_weights", "TENSOR_FLOAT32", "{%d,%d}" % (n_output, n_cell)) 51 output_state_in = Input("output_state_in", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_output)) 59 output_state_out = Output("output_state_out", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_output)) 61 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_output)) 621 input0[output_state_in] = [ 0 for _ in range(n_batch * n_output) ]
|
D | lstm3_state3.mod.py | 25 n_output = 16 variable 34 …t_weights = Input("recurrent_to_intput_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, n_output)) 35 …t_weights = Input("recurrent_to_forget_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, n_output)) 36 …ell_weights = Input("recurrent_to_cell_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, n_output)) 37 …t_weights = Input("recurrent_to_output_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, n_output)) 48 projection_weights = Input("projection_weights", "TENSOR_FLOAT32", "{%d,%d}" % (n_output, n_cell)) 51 output_state_in = Input("output_state_in", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_output)) 59 …t_state_out = IgnoredOutput("output_state_out", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_output)) 61 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_output)) 645 output_state_out: [ 0 for x in range(n_batch * n_output) ],
|
D | lstm_state2.mod.py | 25 n_output = 4 variable 34 …t_weights = Input("recurrent_to_intput_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, n_output)) 35 …t_weights = Input("recurrent_to_forget_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, n_output)) 36 …ell_weights = Input("recurrent_to_cell_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, n_output)) 37 …t_weights = Input("recurrent_to_output_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, n_output)) 51 output_state_in = Input("output_state_in", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_output)) 59 …t_state_out = IgnoredOutput("output_state_out", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_output)) 61 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_output)) 142 output_state_out: [ 0 for x in range(n_batch * n_output) ],
|
D | lstm3_state.mod.py | 25 n_output = 16 variable 34 …t_weights = Input("recurrent_to_intput_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, n_output)) 35 …t_weights = Input("recurrent_to_forget_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, n_output)) 36 …ell_weights = Input("recurrent_to_cell_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, n_output)) 37 …t_weights = Input("recurrent_to_output_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, n_output)) 48 projection_weights = Input("projection_weights", "TENSOR_FLOAT32", "{%d,%d}" % (n_output, n_cell)) 51 output_state_in = Input("output_state_in", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_output)) 59 output_state_out = Output("output_state_out", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_output)) 61 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_output))
|
D | lstm2.mod.py | 25 n_output = 4 variable 34 …t_weights = Input("recurrent_to_intput_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, n_output)) 35 …t_weights = Input("recurrent_to_forget_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, n_output)) 36 …ell_weights = Input("recurrent_to_cell_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, n_output)) 37 …t_weights = Input("recurrent_to_output_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, n_output)) 51 output_state_in = Input("output_state_in", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_output)) 59 output_state_out = Output("output_state_out", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_output)) 61 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_output)) 138 input0[output_state_in] = [ 0 for _ in range(n_batch * n_output) ]
|
D | lstm2_state2.mod.py | 25 n_output = 4 variable 34 …t_weights = Input("recurrent_to_intput_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, n_output)) 35 …t_weights = Input("recurrent_to_forget_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, n_output)) 36 …ell_weights = Input("recurrent_to_cell_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, n_output)) 37 …t_weights = Input("recurrent_to_output_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, n_output)) 51 output_state_in = Input("output_state_in", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_output)) 59 …t_state_out = IgnoredOutput("output_state_out", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_output)) 61 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_output)) 134 output_state_out: [ 0 for x in range(n_batch * n_output) ],
|
D | lstm3_state2.mod.py | 25 n_output = 16 variable 34 …t_weights = Input("recurrent_to_intput_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, n_output)) 35 …t_weights = Input("recurrent_to_forget_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, n_output)) 36 …ell_weights = Input("recurrent_to_cell_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, n_output)) 37 …t_weights = Input("recurrent_to_output_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, n_output)) 48 projection_weights = Input("projection_weights", "TENSOR_FLOAT32", "{%d,%d}" % (n_output, n_cell)) 51 output_state_in = Input("output_state_in", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_output)) 59 output_state_out = Output("output_state_out", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_output)) 61 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_output))
|
/frameworks/ml/nn/runtime/test/specs/V1_3/ |
D | bidirectional_sequence_lstm.mod.py | 26 n_output, argument 104 "{{{}, {}}}".format(n_cell, n_output)) 107 "{{{}, {}}}".format(n_cell, n_output)) 110 "{{{}, {}}}".format(n_cell, n_output)) 113 "{{{}, {}}}".format(n_cell, n_output)) 149 "{{{}, {}}}".format(n_cell, n_output)) 152 "{{{}, {}}}".format(n_cell, n_output)) 155 "{{{}, {}}}".format(n_cell, n_output)) 158 "{{{}, {}}}".format(n_cell, n_output)) 181 "{{{}, {}}}".format(n_batch, n_output)) [all …]
|
D | unidirectional_sequence_lstm_layer_norm_cifg_peephole_state_output.mod.py | 28 n_output = 3 variable 46 "{%d, %d}" % (n_cell, n_output)) 48 "{%d, %d}" % (n_cell, n_output)) 51 "{%d, %d}" % (n_cell, n_output)) 67 "{%d,%d}" % (n_output, n_cell)) 71 "{%d, %d}" % (n_batch, n_output)) 90 "{%d, %d, %d}" % (max_time, n_batch, n_output)) 92 "{%d, %d}" % (n_batch, n_output)) 181 golden_output[(max_time - 1) * (n_batch * n_output):], 189 input0[output_state_in] = [0 for _ in range(n_batch * n_output)]
|
D | bidirectional_sequence_lstm_state_output.mod.py | 23 n_output = 4 variable 38 "fw_recurrent_to_input_weights", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_cell, n_output)) 40 "fw_recurrent_to_forget_weights", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_cell, n_output)) 42 "fw_recurrent_to_cell_weights", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_cell, n_output)) 44 "fw_recurrent_to_output_weights", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_cell, n_output)) 63 "fw_projection_weights", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_output, n_cell)) 65 "fw_projection_bias", "TENSOR_FLOAT32", "{{{}}}".format(n_output)) 77 "bw_recurrent_to_input_weights", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_cell, n_output)) 79 "bw_recurrent_to_forget_weights", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_cell, n_output)) 81 "bw_recurrent_to_cell_weights", "TENSOR_FLOAT32", "{{{}, {}}}".format(n_cell, n_output)) [all …]
|
/frameworks/ml/nn/runtime/test/specs/V1_1/ |
D | lstm3_state3_relaxed.mod.py | 25 n_output = 16 variable 34 …t_weights = Input("recurrent_to_intput_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, n_output)) 35 …t_weights = Input("recurrent_to_forget_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, n_output)) 36 …ell_weights = Input("recurrent_to_cell_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, n_output)) 37 …t_weights = Input("recurrent_to_output_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, n_output)) 48 projection_weights = Input("projection_weights", "TENSOR_FLOAT32", "{%d,%d}" % (n_output, n_cell)) 51 output_state_in = Input("output_state_in", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_output)) 59 …t_state_out = IgnoredOutput("output_state_out", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_output)) 61 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_output)) 646 output_state_out: [ 0 for x in range(n_batch * n_output) ],
|
D | lstm3_relaxed.mod.py | 25 n_output = 16 variable 34 …t_weights = Input("recurrent_to_intput_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, n_output)) 35 …t_weights = Input("recurrent_to_forget_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, n_output)) 36 …ell_weights = Input("recurrent_to_cell_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, n_output)) 37 …t_weights = Input("recurrent_to_output_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, n_output)) 48 projection_weights = Input("projection_weights", "TENSOR_FLOAT32", "{%d,%d}" % (n_output, n_cell)) 51 output_state_in = Input("output_state_in", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_output)) 59 output_state_out = Output("output_state_out", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_output)) 61 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_output)) 622 input0[output_state_in] = [ 0 for _ in range(n_batch * n_output) ]
|
D | lstm2_state2_relaxed.mod.py | 25 n_output = 4 variable 34 …t_weights = Input("recurrent_to_intput_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, n_output)) 35 …t_weights = Input("recurrent_to_forget_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, n_output)) 36 …ell_weights = Input("recurrent_to_cell_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, n_output)) 37 …t_weights = Input("recurrent_to_output_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, n_output)) 51 output_state_in = Input("output_state_in", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_output)) 59 …t_state_out = IgnoredOutput("output_state_out", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_output)) 61 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_output)) 135 output_state_out: [ 0 for x in range(n_batch * n_output) ],
|
D | lstm_state2_relaxed.mod.py | 25 n_output = 4 variable 34 …t_weights = Input("recurrent_to_intput_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, n_output)) 35 …t_weights = Input("recurrent_to_forget_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, n_output)) 36 …ell_weights = Input("recurrent_to_cell_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, n_output)) 37 …t_weights = Input("recurrent_to_output_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, n_output)) 51 output_state_in = Input("output_state_in", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_output)) 59 …t_state_out = IgnoredOutput("output_state_out", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_output)) 61 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_output)) 143 output_state_out: [ 0 for x in range(n_batch * n_output) ],
|
D | lstm2_relaxed.mod.py | 25 n_output = 4 variable 34 …t_weights = Input("recurrent_to_intput_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, n_output)) 35 …t_weights = Input("recurrent_to_forget_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, n_output)) 36 …ell_weights = Input("recurrent_to_cell_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, n_output)) 37 …t_weights = Input("recurrent_to_output_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, n_output)) 51 output_state_in = Input("output_state_in", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_output)) 59 output_state_out = Output("output_state_out", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_output)) 61 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_output)) 139 input0[output_state_in] = [ 0 for _ in range(n_batch * n_output) ]
|
D | lstm3_state_relaxed.mod.py | 25 n_output = 16 variable 34 …t_weights = Input("recurrent_to_intput_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, n_output)) 35 …t_weights = Input("recurrent_to_forget_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, n_output)) 36 …ell_weights = Input("recurrent_to_cell_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, n_output)) 37 …t_weights = Input("recurrent_to_output_weights", "TENSOR_FLOAT32", "{%d, %d}" % (n_cell, n_output)) 48 projection_weights = Input("projection_weights", "TENSOR_FLOAT32", "{%d,%d}" % (n_output, n_cell)) 51 output_state_in = Input("output_state_in", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_output)) 59 output_state_out = Output("output_state_out", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_output)) 61 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (n_batch, n_output))
|