Searched refs:timeMajor (Results 1 – 6 of 6) sorted by relevance
/frameworks/ml/nn/common/operations/ |
D | UnidirectionalSequenceRNN.cpp | 80 int32_t timeMajor = context->getInputValue<int32_t>(kTimeMajorParam); in executeTyped() local 86 if (!timeMajor) { in executeTyped() 116 if (!timeMajor) { in executeTyped() 160 int32_t timeMajor = context->getInputValue<int32_t>(kTimeMajorParam); in prepare() local 161 NN_RET_CHECK(timeMajor == 0 || timeMajor == 1); in prepare() 163 timeMajor ? getSizeOfDimension(input, 1) : getSizeOfDimension(input, 0); in prepare() 165 timeMajor ? getSizeOfDimension(input, 0) : getSizeOfDimension(input, 1); in prepare() 184 output.dimensions[0] = timeMajor ? maxTime : batchSize; in prepare() 185 output.dimensions[1] = timeMajor ? batchSize : maxTime; in prepare()
|
D | BidirectionalSequenceRNN.cpp | 161 const bool timeMajor = context->getInputValue<bool>(kTimeMajorParam); in executeTyped() local 180 if (!timeMajor) { in executeTyped() 306 if (!timeMajor) { in executeTyped() 385 bool timeMajor = context->getInputValue<bool>(kTimeMajorParam); in prepare() local 387 timeMajor ? getSizeOfDimension(input, 1) : getSizeOfDimension(input, 0); in prepare() 389 timeMajor ? getSizeOfDimension(input, 0) : getSizeOfDimension(input, 1); in prepare() 441 fwOutput.dimensions[0] = timeMajor ? maxTime : batchSize; in prepare() 442 fwOutput.dimensions[1] = timeMajor ? batchSize : maxTime; in prepare() 448 bwOutput.dimensions[0] = timeMajor ? maxTime : batchSize; in prepare() 449 bwOutput.dimensions[1] = timeMajor ? batchSize : maxTime; in prepare()
|
D | LSTM.cpp | 426 bool timeMajor, bool forwardSequence) { in LSTMEvalFloat32() argument 433 (inputRank == 3) ? getSizeOfDimension(input_shape, timeMajor ? 0 : 1) : 1; in LSTMEvalFloat32() 434 const uint32_t batchSize = (inputRank == 3) ? getSizeOfDimension(input_shape, timeMajor ? 1 : 0) in LSTMEvalFloat32() 451 if (!timeMajor) { in LSTMEvalFloat32() 464 const float* inputData = timeMajor ? input_buffer : transposedInput.data(); in LSTMEvalFloat32() 466 hasAuxInput ? (timeMajor ? aux_input_buffer : transposedAuxInput.data()) : nullptr; in LSTMEvalFloat32() 467 float* outputData = timeMajor ? output_buffer : transposedOutput.data(); in LSTMEvalFloat32() 512 if (!timeMajor) { in LSTMEvalFloat32() 546 bool timeMajor, bool forwardSequence) { in LSTMEvalFloat16() 553 (inputRank == 3) ? getSizeOfDimension(input_shape, timeMajor ? 0 : 1) : 1; in LSTMEvalFloat16() [all …]
|
D | LSTM.h | 130 bool timeMajor = true, bool forwardSequence = true); 158 _Float16* scratch_buffer_buffer, bool timeMajor = true, bool forwardSequence = true);
|
/frameworks/ml/nn/runtime/test/ |
D | TestValidateOperations.cpp | 2871 ANeuralNetworksOperandType timeMajor = boolScalar; in lstmBidirectionalSequence() local 2938 timeMajor, in lstmBidirectionalSequence() 3981 ANeuralNetworksOperandType timeMajor = boolScalar; in bidirectionlSequenceRNNTest() local 3987 fwWeights, bwWeights, activation, timeMajor, mergeOutputs}, in bidirectionlSequenceRNNTest() 4049 ANeuralNetworksOperandType timeMajor = intScalar; in unidirectionlSequenceRNNTest() local 4053 {input, weights, recurrentWeights, bias, hiddenState, activation, timeMajor}, {output}); in unidirectionlSequenceRNNTest() 4164 ANeuralNetworksOperandType timeMajor = boolScalar; in unidirectionalSequenceLSTMTest() local 4204 timeMajor, in unidirectionalSequenceLSTMTest()
|
/frameworks/ml/nn/tools/api/ |
D | types.spec | 3492 * A 3-D tensor. The shape is defined by the input 6 (timeMajor). If 3516 * A 3-D tensor. The shape is defined by the input 6 (timeMajor). If 3538 * * 13:timeMajor 3548 * the input 6 (timeMajor) and the third dimension is defined by the 3549 * input 14 (mergeOutputs). If timeMajor is set to true, then the first 3557 * (timeMajor). If it is set to true, then the shape is set to
|