1 /*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "concurrent_copying.h"
18
19 #include "art_field-inl.h"
20 #include "barrier.h"
21 #include "base/enums.h"
22 #include "base/file_utils.h"
23 #include "base/histogram-inl.h"
24 #include "base/quasi_atomic.h"
25 #include "base/stl_util.h"
26 #include "base/systrace.h"
27 #include "class_root.h"
28 #include "debugger.h"
29 #include "gc/accounting/atomic_stack.h"
30 #include "gc/accounting/heap_bitmap-inl.h"
31 #include "gc/accounting/mod_union_table-inl.h"
32 #include "gc/accounting/read_barrier_table.h"
33 #include "gc/accounting/space_bitmap-inl.h"
34 #include "gc/gc_pause_listener.h"
35 #include "gc/reference_processor.h"
36 #include "gc/space/image_space.h"
37 #include "gc/space/space-inl.h"
38 #include "gc/verification.h"
39 #include "image-inl.h"
40 #include "intern_table.h"
41 #include "mirror/class-inl.h"
42 #include "mirror/object-inl.h"
43 #include "mirror/object-refvisitor-inl.h"
44 #include "mirror/object_reference.h"
45 #include "scoped_thread_state_change-inl.h"
46 #include "thread-inl.h"
47 #include "thread_list.h"
48 #include "well_known_classes.h"
49
50 namespace art {
51 namespace gc {
52 namespace collector {
53
54 static constexpr size_t kDefaultGcMarkStackSize = 2 * MB;
55 // If kFilterModUnionCards then we attempt to filter cards that don't need to be dirty in the mod
56 // union table. Disabled since it does not seem to help the pause much.
57 static constexpr bool kFilterModUnionCards = kIsDebugBuild;
58 // If kDisallowReadBarrierDuringScan is true then the GC aborts if there are any read barrier that
59 // occur during ConcurrentCopying::Scan in GC thread. May be used to diagnose possibly unnecessary
60 // read barriers. Only enabled for kIsDebugBuild to avoid performance hit.
61 static constexpr bool kDisallowReadBarrierDuringScan = kIsDebugBuild;
62 // Slow path mark stack size, increase this if the stack is getting full and it is causing
63 // performance problems.
64 static constexpr size_t kReadBarrierMarkStackSize = 512 * KB;
65 // Size (in the number of objects) of the sweep array free buffer.
66 static constexpr size_t kSweepArrayChunkFreeSize = 1024;
67 // Verify that there are no missing card marks.
68 static constexpr bool kVerifyNoMissingCardMarks = kIsDebugBuild;
69
ConcurrentCopying(Heap * heap,bool young_gen,bool use_generational_cc,const std::string & name_prefix,bool measure_read_barrier_slow_path)70 ConcurrentCopying::ConcurrentCopying(Heap* heap,
71 bool young_gen,
72 bool use_generational_cc,
73 const std::string& name_prefix,
74 bool measure_read_barrier_slow_path)
75 : GarbageCollector(heap,
76 name_prefix + (name_prefix.empty() ? "" : " ") +
77 "concurrent copying"),
78 region_space_(nullptr),
79 gc_barrier_(new Barrier(0)),
80 gc_mark_stack_(accounting::ObjectStack::Create("concurrent copying gc mark stack",
81 kDefaultGcMarkStackSize,
82 kDefaultGcMarkStackSize)),
83 use_generational_cc_(use_generational_cc),
84 young_gen_(young_gen),
85 rb_mark_bit_stack_(accounting::ObjectStack::Create("rb copying gc mark stack",
86 kReadBarrierMarkStackSize,
87 kReadBarrierMarkStackSize)),
88 rb_mark_bit_stack_full_(false),
89 mark_stack_lock_("concurrent copying mark stack lock", kMarkSweepMarkStackLock),
90 thread_running_gc_(nullptr),
91 is_marking_(false),
92 is_using_read_barrier_entrypoints_(false),
93 is_active_(false),
94 is_asserting_to_space_invariant_(false),
95 region_space_bitmap_(nullptr),
96 heap_mark_bitmap_(nullptr),
97 live_stack_freeze_size_(0),
98 from_space_num_objects_at_first_pause_(0),
99 from_space_num_bytes_at_first_pause_(0),
100 mark_stack_mode_(kMarkStackModeOff),
101 weak_ref_access_enabled_(true),
102 copied_live_bytes_ratio_sum_(0.f),
103 gc_count_(0),
104 reclaimed_bytes_ratio_sum_(0.f),
105 skipped_blocks_lock_("concurrent copying bytes blocks lock", kMarkSweepMarkStackLock),
106 measure_read_barrier_slow_path_(measure_read_barrier_slow_path),
107 mark_from_read_barrier_measurements_(false),
108 rb_slow_path_ns_(0),
109 rb_slow_path_count_(0),
110 rb_slow_path_count_gc_(0),
111 rb_slow_path_histogram_lock_("Read barrier histogram lock"),
112 rb_slow_path_time_histogram_("Mutator time in read barrier slow path", 500, 32),
113 rb_slow_path_count_total_(0),
114 rb_slow_path_count_gc_total_(0),
115 rb_table_(heap_->GetReadBarrierTable()),
116 force_evacuate_all_(false),
117 gc_grays_immune_objects_(false),
118 immune_gray_stack_lock_("concurrent copying immune gray stack lock",
119 kMarkSweepMarkStackLock),
120 num_bytes_allocated_before_gc_(0) {
121 static_assert(space::RegionSpace::kRegionSize == accounting::ReadBarrierTable::kRegionSize,
122 "The region space size and the read barrier table region size must match");
123 CHECK(use_generational_cc_ || !young_gen_);
124 Thread* self = Thread::Current();
125 {
126 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
127 // Cache this so that we won't have to lock heap_bitmap_lock_ in
128 // Mark() which could cause a nested lock on heap_bitmap_lock_
129 // when GC causes a RB while doing GC or a lock order violation
130 // (class_linker_lock_ and heap_bitmap_lock_).
131 heap_mark_bitmap_ = heap->GetMarkBitmap();
132 }
133 {
134 MutexLock mu(self, mark_stack_lock_);
135 for (size_t i = 0; i < kMarkStackPoolSize; ++i) {
136 accounting::AtomicStack<mirror::Object>* mark_stack =
137 accounting::AtomicStack<mirror::Object>::Create(
138 "thread local mark stack", kMarkStackSize, kMarkStackSize);
139 pooled_mark_stacks_.push_back(mark_stack);
140 }
141 }
142 if (use_generational_cc_) {
143 // Allocate sweep array free buffer.
144 std::string error_msg;
145 sweep_array_free_buffer_mem_map_ = MemMap::MapAnonymous(
146 "concurrent copying sweep array free buffer",
147 RoundUp(kSweepArrayChunkFreeSize * sizeof(mirror::Object*), kPageSize),
148 PROT_READ | PROT_WRITE,
149 /*low_4gb=*/ false,
150 &error_msg);
151 CHECK(sweep_array_free_buffer_mem_map_.IsValid())
152 << "Couldn't allocate sweep array free buffer: " << error_msg;
153 }
154 }
155
MarkHeapReference(mirror::HeapReference<mirror::Object> * field,bool do_atomic_update)156 void ConcurrentCopying::MarkHeapReference(mirror::HeapReference<mirror::Object>* field,
157 bool do_atomic_update) {
158 Thread* const self = Thread::Current();
159 if (UNLIKELY(do_atomic_update)) {
160 // Used to mark the referent in DelayReferenceReferent in transaction mode.
161 mirror::Object* from_ref = field->AsMirrorPtr();
162 if (from_ref == nullptr) {
163 return;
164 }
165 mirror::Object* to_ref = Mark(self, from_ref);
166 if (from_ref != to_ref) {
167 do {
168 if (field->AsMirrorPtr() != from_ref) {
169 // Concurrently overwritten by a mutator.
170 break;
171 }
172 } while (!field->CasWeakRelaxed(from_ref, to_ref));
173 }
174 } else {
175 // Used for preserving soft references, should be OK to not have a CAS here since there should be
176 // no other threads which can trigger read barriers on the same referent during reference
177 // processing.
178 field->Assign(Mark(self, field->AsMirrorPtr()));
179 }
180 }
181
~ConcurrentCopying()182 ConcurrentCopying::~ConcurrentCopying() {
183 STLDeleteElements(&pooled_mark_stacks_);
184 }
185
RunPhases()186 void ConcurrentCopying::RunPhases() {
187 CHECK(kUseBakerReadBarrier || kUseTableLookupReadBarrier);
188 CHECK(!is_active_);
189 is_active_ = true;
190 Thread* self = Thread::Current();
191 thread_running_gc_ = self;
192 Locks::mutator_lock_->AssertNotHeld(self);
193 {
194 ReaderMutexLock mu(self, *Locks::mutator_lock_);
195 InitializePhase();
196 // In case of forced evacuation, all regions are evacuated and hence no
197 // need to compute live_bytes.
198 if (use_generational_cc_ && !young_gen_ && !force_evacuate_all_) {
199 MarkingPhase();
200 }
201 }
202 if (kUseBakerReadBarrier && kGrayDirtyImmuneObjects) {
203 // Switch to read barrier mark entrypoints before we gray the objects. This is required in case
204 // a mutator sees a gray bit and dispatches on the entrypoint. (b/37876887).
205 ActivateReadBarrierEntrypoints();
206 // Gray dirty immune objects concurrently to reduce GC pause times. We re-process gray cards in
207 // the pause.
208 ReaderMutexLock mu(self, *Locks::mutator_lock_);
209 GrayAllDirtyImmuneObjects();
210 }
211 FlipThreadRoots();
212 {
213 ReaderMutexLock mu(self, *Locks::mutator_lock_);
214 CopyingPhase();
215 }
216 // Verify no from space refs. This causes a pause.
217 if (kEnableNoFromSpaceRefsVerification) {
218 TimingLogger::ScopedTiming split("(Paused)VerifyNoFromSpaceReferences", GetTimings());
219 ScopedPause pause(this, false);
220 CheckEmptyMarkStack();
221 if (kVerboseMode) {
222 LOG(INFO) << "Verifying no from-space refs";
223 }
224 VerifyNoFromSpaceReferences();
225 if (kVerboseMode) {
226 LOG(INFO) << "Done verifying no from-space refs";
227 }
228 CheckEmptyMarkStack();
229 }
230 {
231 ReaderMutexLock mu(self, *Locks::mutator_lock_);
232 ReclaimPhase();
233 }
234 FinishPhase();
235 CHECK(is_active_);
236 is_active_ = false;
237 thread_running_gc_ = nullptr;
238 }
239
240 class ConcurrentCopying::ActivateReadBarrierEntrypointsCheckpoint : public Closure {
241 public:
ActivateReadBarrierEntrypointsCheckpoint(ConcurrentCopying * concurrent_copying)242 explicit ActivateReadBarrierEntrypointsCheckpoint(ConcurrentCopying* concurrent_copying)
243 : concurrent_copying_(concurrent_copying) {}
244
Run(Thread * thread)245 void Run(Thread* thread) override NO_THREAD_SAFETY_ANALYSIS {
246 // Note: self is not necessarily equal to thread since thread may be suspended.
247 Thread* self = Thread::Current();
248 DCHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
249 << thread->GetState() << " thread " << thread << " self " << self;
250 // Switch to the read barrier entrypoints.
251 thread->SetReadBarrierEntrypoints();
252 // If thread is a running mutator, then act on behalf of the garbage collector.
253 // See the code in ThreadList::RunCheckpoint.
254 concurrent_copying_->GetBarrier().Pass(self);
255 }
256
257 private:
258 ConcurrentCopying* const concurrent_copying_;
259 };
260
261 class ConcurrentCopying::ActivateReadBarrierEntrypointsCallback : public Closure {
262 public:
ActivateReadBarrierEntrypointsCallback(ConcurrentCopying * concurrent_copying)263 explicit ActivateReadBarrierEntrypointsCallback(ConcurrentCopying* concurrent_copying)
264 : concurrent_copying_(concurrent_copying) {}
265
Run(Thread * self ATTRIBUTE_UNUSED)266 void Run(Thread* self ATTRIBUTE_UNUSED) override REQUIRES(Locks::thread_list_lock_) {
267 // This needs to run under the thread_list_lock_ critical section in ThreadList::RunCheckpoint()
268 // to avoid a race with ThreadList::Register().
269 CHECK(!concurrent_copying_->is_using_read_barrier_entrypoints_);
270 concurrent_copying_->is_using_read_barrier_entrypoints_ = true;
271 }
272
273 private:
274 ConcurrentCopying* const concurrent_copying_;
275 };
276
ActivateReadBarrierEntrypoints()277 void ConcurrentCopying::ActivateReadBarrierEntrypoints() {
278 Thread* const self = Thread::Current();
279 ActivateReadBarrierEntrypointsCheckpoint checkpoint(this);
280 ThreadList* thread_list = Runtime::Current()->GetThreadList();
281 gc_barrier_->Init(self, 0);
282 ActivateReadBarrierEntrypointsCallback callback(this);
283 const size_t barrier_count = thread_list->RunCheckpoint(&checkpoint, &callback);
284 // If there are no threads to wait which implies that all the checkpoint functions are finished,
285 // then no need to release the mutator lock.
286 if (barrier_count == 0) {
287 return;
288 }
289 ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
290 gc_barrier_->Increment(self, barrier_count);
291 }
292
CreateInterRegionRefBitmaps()293 void ConcurrentCopying::CreateInterRegionRefBitmaps() {
294 DCHECK(use_generational_cc_);
295 DCHECK(!region_space_inter_region_bitmap_.IsValid());
296 DCHECK(!non_moving_space_inter_region_bitmap_.IsValid());
297 DCHECK(region_space_ != nullptr);
298 DCHECK(heap_->non_moving_space_ != nullptr);
299 // Region-space
300 region_space_inter_region_bitmap_ = accounting::ContinuousSpaceBitmap::Create(
301 "region-space inter region ref bitmap",
302 reinterpret_cast<uint8_t*>(region_space_->Begin()),
303 region_space_->Limit() - region_space_->Begin());
304 CHECK(region_space_inter_region_bitmap_.IsValid())
305 << "Couldn't allocate region-space inter region ref bitmap";
306
307 // non-moving-space
308 non_moving_space_inter_region_bitmap_ = accounting::ContinuousSpaceBitmap::Create(
309 "non-moving-space inter region ref bitmap",
310 reinterpret_cast<uint8_t*>(heap_->non_moving_space_->Begin()),
311 heap_->non_moving_space_->Limit() - heap_->non_moving_space_->Begin());
312 CHECK(non_moving_space_inter_region_bitmap_.IsValid())
313 << "Couldn't allocate non-moving-space inter region ref bitmap";
314 }
315
BindBitmaps()316 void ConcurrentCopying::BindBitmaps() {
317 Thread* self = Thread::Current();
318 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
319 // Mark all of the spaces we never collect as immune.
320 for (const auto& space : heap_->GetContinuousSpaces()) {
321 if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect ||
322 space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect) {
323 CHECK(space->IsZygoteSpace() || space->IsImageSpace());
324 immune_spaces_.AddSpace(space);
325 } else {
326 CHECK(!space->IsZygoteSpace());
327 CHECK(!space->IsImageSpace());
328 CHECK(space == region_space_ || space == heap_->non_moving_space_);
329 if (use_generational_cc_) {
330 if (space == region_space_) {
331 region_space_bitmap_ = region_space_->GetMarkBitmap();
332 } else if (young_gen_ && space->IsContinuousMemMapAllocSpace()) {
333 DCHECK_EQ(space->GetGcRetentionPolicy(), space::kGcRetentionPolicyAlwaysCollect);
334 space->AsContinuousMemMapAllocSpace()->BindLiveToMarkBitmap();
335 }
336 if (young_gen_) {
337 // Age all of the cards for the region space so that we know which evac regions to scan.
338 heap_->GetCardTable()->ModifyCardsAtomic(space->Begin(),
339 space->End(),
340 AgeCardVisitor(),
341 VoidFunctor());
342 } else {
343 // In a full-heap GC cycle, the card-table corresponding to region-space and
344 // non-moving space can be cleared, because this cycle only needs to
345 // capture writes during the marking phase of this cycle to catch
346 // objects that skipped marking due to heap mutation. Furthermore,
347 // if the next GC is a young-gen cycle, then it only needs writes to
348 // be captured after the thread-flip of this GC cycle, as that is when
349 // the young-gen for the next GC cycle starts getting populated.
350 heap_->GetCardTable()->ClearCardRange(space->Begin(), space->Limit());
351 }
352 } else {
353 if (space == region_space_) {
354 // It is OK to clear the bitmap with mutators running since the only place it is read is
355 // VisitObjects which has exclusion with CC.
356 region_space_bitmap_ = region_space_->GetMarkBitmap();
357 region_space_bitmap_->Clear();
358 }
359 }
360 }
361 }
362 if (use_generational_cc_ && young_gen_) {
363 for (const auto& space : GetHeap()->GetDiscontinuousSpaces()) {
364 CHECK(space->IsLargeObjectSpace());
365 space->AsLargeObjectSpace()->CopyLiveToMarked();
366 }
367 }
368 }
369
InitializePhase()370 void ConcurrentCopying::InitializePhase() {
371 TimingLogger::ScopedTiming split("InitializePhase", GetTimings());
372 num_bytes_allocated_before_gc_ = static_cast<int64_t>(heap_->GetBytesAllocated());
373 if (kVerboseMode) {
374 LOG(INFO) << "GC InitializePhase";
375 LOG(INFO) << "Region-space : " << reinterpret_cast<void*>(region_space_->Begin()) << "-"
376 << reinterpret_cast<void*>(region_space_->Limit());
377 }
378 CheckEmptyMarkStack();
379 rb_mark_bit_stack_full_ = false;
380 mark_from_read_barrier_measurements_ = measure_read_barrier_slow_path_;
381 if (measure_read_barrier_slow_path_) {
382 rb_slow_path_ns_.store(0, std::memory_order_relaxed);
383 rb_slow_path_count_.store(0, std::memory_order_relaxed);
384 rb_slow_path_count_gc_.store(0, std::memory_order_relaxed);
385 }
386
387 immune_spaces_.Reset();
388 bytes_moved_.store(0, std::memory_order_relaxed);
389 objects_moved_.store(0, std::memory_order_relaxed);
390 bytes_moved_gc_thread_ = 0;
391 objects_moved_gc_thread_ = 0;
392 GcCause gc_cause = GetCurrentIteration()->GetGcCause();
393
394 force_evacuate_all_ = false;
395 if (!use_generational_cc_ || !young_gen_) {
396 if (gc_cause == kGcCauseExplicit ||
397 gc_cause == kGcCauseCollectorTransition ||
398 GetCurrentIteration()->GetClearSoftReferences()) {
399 force_evacuate_all_ = true;
400 }
401 }
402 if (kUseBakerReadBarrier) {
403 updated_all_immune_objects_.store(false, std::memory_order_relaxed);
404 // GC may gray immune objects in the thread flip.
405 gc_grays_immune_objects_ = true;
406 if (kIsDebugBuild) {
407 MutexLock mu(Thread::Current(), immune_gray_stack_lock_);
408 DCHECK(immune_gray_stack_.empty());
409 }
410 }
411 if (use_generational_cc_) {
412 done_scanning_.store(false, std::memory_order_release);
413 }
414 BindBitmaps();
415 if (kVerboseMode) {
416 LOG(INFO) << "young_gen=" << std::boolalpha << young_gen_ << std::noboolalpha;
417 LOG(INFO) << "force_evacuate_all=" << std::boolalpha << force_evacuate_all_ << std::noboolalpha;
418 LOG(INFO) << "Largest immune region: " << immune_spaces_.GetLargestImmuneRegion().Begin()
419 << "-" << immune_spaces_.GetLargestImmuneRegion().End();
420 for (space::ContinuousSpace* space : immune_spaces_.GetSpaces()) {
421 LOG(INFO) << "Immune space: " << *space;
422 }
423 LOG(INFO) << "GC end of InitializePhase";
424 }
425 if (use_generational_cc_ && !young_gen_) {
426 region_space_bitmap_->Clear();
427 }
428 mark_stack_mode_.store(ConcurrentCopying::kMarkStackModeThreadLocal, std::memory_order_relaxed);
429 // Mark all of the zygote large objects without graying them.
430 MarkZygoteLargeObjects();
431 }
432
433 // Used to switch the thread roots of a thread from from-space refs to to-space refs.
434 class ConcurrentCopying::ThreadFlipVisitor : public Closure, public RootVisitor {
435 public:
ThreadFlipVisitor(ConcurrentCopying * concurrent_copying,bool use_tlab)436 ThreadFlipVisitor(ConcurrentCopying* concurrent_copying, bool use_tlab)
437 : concurrent_copying_(concurrent_copying), use_tlab_(use_tlab) {
438 }
439
Run(Thread * thread)440 void Run(Thread* thread) override REQUIRES_SHARED(Locks::mutator_lock_) {
441 // Note: self is not necessarily equal to thread since thread may be suspended.
442 Thread* self = Thread::Current();
443 CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
444 << thread->GetState() << " thread " << thread << " self " << self;
445 thread->SetIsGcMarkingAndUpdateEntrypoints(true);
446 if (use_tlab_ && thread->HasTlab()) {
447 // We should not reuse the partially utilized TLABs revoked here as they
448 // are going to be part of from-space.
449 if (ConcurrentCopying::kEnableFromSpaceAccountingCheck) {
450 // This must come before the revoke.
451 size_t thread_local_objects = thread->GetThreadLocalObjectsAllocated();
452 concurrent_copying_->region_space_->RevokeThreadLocalBuffers(thread, /*reuse=*/ false);
453 reinterpret_cast<Atomic<size_t>*>(
454 &concurrent_copying_->from_space_num_objects_at_first_pause_)->
455 fetch_add(thread_local_objects, std::memory_order_relaxed);
456 } else {
457 concurrent_copying_->region_space_->RevokeThreadLocalBuffers(thread, /*reuse=*/ false);
458 }
459 }
460 if (kUseThreadLocalAllocationStack) {
461 thread->RevokeThreadLocalAllocationStack();
462 }
463 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
464 // We can use the non-CAS VisitRoots functions below because we update thread-local GC roots
465 // only.
466 thread->VisitRoots(this, kVisitRootFlagAllRoots);
467 concurrent_copying_->GetBarrier().Pass(self);
468 }
469
VisitRoots(mirror::Object *** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)470 void VisitRoots(mirror::Object*** roots,
471 size_t count,
472 const RootInfo& info ATTRIBUTE_UNUSED) override
473 REQUIRES_SHARED(Locks::mutator_lock_) {
474 Thread* self = Thread::Current();
475 for (size_t i = 0; i < count; ++i) {
476 mirror::Object** root = roots[i];
477 mirror::Object* ref = *root;
478 if (ref != nullptr) {
479 mirror::Object* to_ref = concurrent_copying_->Mark(self, ref);
480 if (to_ref != ref) {
481 *root = to_ref;
482 }
483 }
484 }
485 }
486
VisitRoots(mirror::CompressedReference<mirror::Object> ** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)487 void VisitRoots(mirror::CompressedReference<mirror::Object>** roots,
488 size_t count,
489 const RootInfo& info ATTRIBUTE_UNUSED) override
490 REQUIRES_SHARED(Locks::mutator_lock_) {
491 Thread* self = Thread::Current();
492 for (size_t i = 0; i < count; ++i) {
493 mirror::CompressedReference<mirror::Object>* const root = roots[i];
494 if (!root->IsNull()) {
495 mirror::Object* ref = root->AsMirrorPtr();
496 mirror::Object* to_ref = concurrent_copying_->Mark(self, ref);
497 if (to_ref != ref) {
498 root->Assign(to_ref);
499 }
500 }
501 }
502 }
503
504 private:
505 ConcurrentCopying* const concurrent_copying_;
506 const bool use_tlab_;
507 };
508
509 // Called back from Runtime::FlipThreadRoots() during a pause.
510 class ConcurrentCopying::FlipCallback : public Closure {
511 public:
FlipCallback(ConcurrentCopying * concurrent_copying)512 explicit FlipCallback(ConcurrentCopying* concurrent_copying)
513 : concurrent_copying_(concurrent_copying) {
514 }
515
Run(Thread * thread)516 void Run(Thread* thread) override REQUIRES(Locks::mutator_lock_) {
517 ConcurrentCopying* cc = concurrent_copying_;
518 TimingLogger::ScopedTiming split("(Paused)FlipCallback", cc->GetTimings());
519 // Note: self is not necessarily equal to thread since thread may be suspended.
520 Thread* self = Thread::Current();
521 if (kVerifyNoMissingCardMarks && cc->young_gen_) {
522 cc->VerifyNoMissingCardMarks();
523 }
524 CHECK_EQ(thread, self);
525 Locks::mutator_lock_->AssertExclusiveHeld(self);
526 space::RegionSpace::EvacMode evac_mode = space::RegionSpace::kEvacModeLivePercentNewlyAllocated;
527 if (cc->young_gen_) {
528 CHECK(!cc->force_evacuate_all_);
529 evac_mode = space::RegionSpace::kEvacModeNewlyAllocated;
530 } else if (cc->force_evacuate_all_) {
531 evac_mode = space::RegionSpace::kEvacModeForceAll;
532 }
533 {
534 TimingLogger::ScopedTiming split2("(Paused)SetFromSpace", cc->GetTimings());
535 // Only change live bytes for 1-phase full heap CC.
536 cc->region_space_->SetFromSpace(
537 cc->rb_table_,
538 evac_mode,
539 /*clear_live_bytes=*/ !cc->use_generational_cc_);
540 }
541 cc->SwapStacks();
542 if (ConcurrentCopying::kEnableFromSpaceAccountingCheck) {
543 cc->RecordLiveStackFreezeSize(self);
544 cc->from_space_num_objects_at_first_pause_ = cc->region_space_->GetObjectsAllocated();
545 cc->from_space_num_bytes_at_first_pause_ = cc->region_space_->GetBytesAllocated();
546 }
547 cc->is_marking_ = true;
548 if (kIsDebugBuild && !cc->use_generational_cc_) {
549 cc->region_space_->AssertAllRegionLiveBytesZeroOrCleared();
550 }
551 if (UNLIKELY(Runtime::Current()->IsActiveTransaction())) {
552 CHECK(Runtime::Current()->IsAotCompiler());
553 TimingLogger::ScopedTiming split3("(Paused)VisitTransactionRoots", cc->GetTimings());
554 Runtime::Current()->VisitTransactionRoots(cc);
555 }
556 if (kUseBakerReadBarrier && kGrayDirtyImmuneObjects) {
557 cc->GrayAllNewlyDirtyImmuneObjects();
558 if (kIsDebugBuild) {
559 // Check that all non-gray immune objects only reference immune objects.
560 cc->VerifyGrayImmuneObjects();
561 }
562 }
563 // May be null during runtime creation, in this case leave java_lang_Object null.
564 // This is safe since single threaded behavior should mean FillDummyObject does not
565 // happen when java_lang_Object_ is null.
566 if (WellKnownClasses::java_lang_Object != nullptr) {
567 cc->java_lang_Object_ = down_cast<mirror::Class*>(cc->Mark(thread,
568 WellKnownClasses::ToClass(WellKnownClasses::java_lang_Object).Ptr()));
569 } else {
570 cc->java_lang_Object_ = nullptr;
571 }
572 }
573
574 private:
575 ConcurrentCopying* const concurrent_copying_;
576 };
577
578 class ConcurrentCopying::VerifyGrayImmuneObjectsVisitor {
579 public:
VerifyGrayImmuneObjectsVisitor(ConcurrentCopying * collector)580 explicit VerifyGrayImmuneObjectsVisitor(ConcurrentCopying* collector)
581 : collector_(collector) {}
582
operator ()(ObjPtr<mirror::Object> obj,MemberOffset offset,bool) const583 void operator()(ObjPtr<mirror::Object> obj, MemberOffset offset, bool /* is_static */)
584 const ALWAYS_INLINE REQUIRES_SHARED(Locks::mutator_lock_)
585 REQUIRES_SHARED(Locks::heap_bitmap_lock_) {
586 CheckReference(obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(offset),
587 obj, offset);
588 }
589
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const590 void operator()(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref) const
591 REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
592 CHECK(klass->IsTypeOfReferenceClass());
593 CheckReference(ref->GetReferent<kWithoutReadBarrier>(),
594 ref,
595 mirror::Reference::ReferentOffset());
596 }
597
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const598 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
599 ALWAYS_INLINE
600 REQUIRES_SHARED(Locks::mutator_lock_) {
601 if (!root->IsNull()) {
602 VisitRoot(root);
603 }
604 }
605
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const606 void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
607 ALWAYS_INLINE
608 REQUIRES_SHARED(Locks::mutator_lock_) {
609 CheckReference(root->AsMirrorPtr(), nullptr, MemberOffset(0));
610 }
611
612 private:
613 ConcurrentCopying* const collector_;
614
CheckReference(ObjPtr<mirror::Object> ref,ObjPtr<mirror::Object> holder,MemberOffset offset) const615 void CheckReference(ObjPtr<mirror::Object> ref,
616 ObjPtr<mirror::Object> holder,
617 MemberOffset offset) const
618 REQUIRES_SHARED(Locks::mutator_lock_) {
619 if (ref != nullptr) {
620 if (!collector_->immune_spaces_.ContainsObject(ref.Ptr())) {
621 // Not immune, must be a zygote large object.
622 space::LargeObjectSpace* large_object_space =
623 Runtime::Current()->GetHeap()->GetLargeObjectsSpace();
624 CHECK(large_object_space->Contains(ref.Ptr()) &&
625 large_object_space->IsZygoteLargeObject(Thread::Current(), ref.Ptr()))
626 << "Non gray object references non immune, non zygote large object "<< ref << " "
627 << mirror::Object::PrettyTypeOf(ref) << " in holder " << holder << " "
628 << mirror::Object::PrettyTypeOf(holder) << " offset=" << offset.Uint32Value();
629 } else {
630 // Make sure the large object class is immune since we will never scan the large object.
631 CHECK(collector_->immune_spaces_.ContainsObject(
632 ref->GetClass<kVerifyNone, kWithoutReadBarrier>()));
633 }
634 }
635 }
636 };
637
VerifyGrayImmuneObjects()638 void ConcurrentCopying::VerifyGrayImmuneObjects() {
639 TimingLogger::ScopedTiming split(__FUNCTION__, GetTimings());
640 for (auto& space : immune_spaces_.GetSpaces()) {
641 DCHECK(space->IsImageSpace() || space->IsZygoteSpace());
642 accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
643 VerifyGrayImmuneObjectsVisitor visitor(this);
644 live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()),
645 reinterpret_cast<uintptr_t>(space->Limit()),
646 [&visitor](mirror::Object* obj)
647 REQUIRES_SHARED(Locks::mutator_lock_) {
648 // If an object is not gray, it should only have references to things in the immune spaces.
649 if (obj->GetReadBarrierState() != ReadBarrier::GrayState()) {
650 obj->VisitReferences</*kVisitNativeRoots=*/true,
651 kDefaultVerifyFlags,
652 kWithoutReadBarrier>(visitor, visitor);
653 }
654 });
655 }
656 }
657
658 class ConcurrentCopying::VerifyNoMissingCardMarkVisitor {
659 public:
VerifyNoMissingCardMarkVisitor(ConcurrentCopying * cc,ObjPtr<mirror::Object> holder)660 VerifyNoMissingCardMarkVisitor(ConcurrentCopying* cc, ObjPtr<mirror::Object> holder)
661 : cc_(cc),
662 holder_(holder) {}
663
operator ()(ObjPtr<mirror::Object> obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const664 void operator()(ObjPtr<mirror::Object> obj,
665 MemberOffset offset,
666 bool is_static ATTRIBUTE_UNUSED) const
667 REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
668 if (offset.Uint32Value() != mirror::Object::ClassOffset().Uint32Value()) {
669 CheckReference(obj->GetFieldObject<mirror::Object, kDefaultVerifyFlags, kWithoutReadBarrier>(
670 offset), offset.Uint32Value());
671 }
672 }
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const673 void operator()(ObjPtr<mirror::Class> klass,
674 ObjPtr<mirror::Reference> ref) const
675 REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
676 CHECK(klass->IsTypeOfReferenceClass());
677 this->operator()(ref, mirror::Reference::ReferentOffset(), false);
678 }
679
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const680 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
681 REQUIRES_SHARED(Locks::mutator_lock_) {
682 if (!root->IsNull()) {
683 VisitRoot(root);
684 }
685 }
686
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const687 void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
688 REQUIRES_SHARED(Locks::mutator_lock_) {
689 CheckReference(root->AsMirrorPtr());
690 }
691
CheckReference(mirror::Object * ref,int32_t offset=-1) const692 void CheckReference(mirror::Object* ref, int32_t offset = -1) const
693 REQUIRES_SHARED(Locks::mutator_lock_) {
694 if (ref != nullptr && cc_->region_space_->IsInNewlyAllocatedRegion(ref)) {
695 LOG(FATAL_WITHOUT_ABORT)
696 << holder_->PrettyTypeOf() << "(" << holder_.Ptr() << ") references object "
697 << ref->PrettyTypeOf() << "(" << ref << ") in newly allocated region at offset=" << offset;
698 LOG(FATAL_WITHOUT_ABORT) << "time=" << cc_->region_space_->Time();
699 constexpr const char* kIndent = " ";
700 LOG(FATAL_WITHOUT_ABORT) << cc_->DumpReferenceInfo(holder_.Ptr(), "holder_", kIndent);
701 LOG(FATAL_WITHOUT_ABORT) << cc_->DumpReferenceInfo(ref, "ref", kIndent);
702 LOG(FATAL) << "Unexpected reference to newly allocated region.";
703 }
704 }
705
706 private:
707 ConcurrentCopying* const cc_;
708 const ObjPtr<mirror::Object> holder_;
709 };
710
VerifyNoMissingCardMarks()711 void ConcurrentCopying::VerifyNoMissingCardMarks() {
712 auto visitor = [&](mirror::Object* obj)
713 REQUIRES(Locks::mutator_lock_)
714 REQUIRES(!mark_stack_lock_) {
715 // Objects on clean cards should never have references to newly allocated regions. Note
716 // that aged cards are also not clean.
717 if (heap_->GetCardTable()->GetCard(obj) == gc::accounting::CardTable::kCardClean) {
718 VerifyNoMissingCardMarkVisitor internal_visitor(this, /*holder=*/ obj);
719 obj->VisitReferences</*kVisitNativeRoots=*/true, kVerifyNone, kWithoutReadBarrier>(
720 internal_visitor, internal_visitor);
721 }
722 };
723 TimingLogger::ScopedTiming split(__FUNCTION__, GetTimings());
724 region_space_->Walk(visitor);
725 {
726 ReaderMutexLock rmu(Thread::Current(), *Locks::heap_bitmap_lock_);
727 heap_->GetLiveBitmap()->Visit(visitor);
728 }
729 }
730
731 // Switch threads that from from-space to to-space refs. Forward/mark the thread roots.
FlipThreadRoots()732 void ConcurrentCopying::FlipThreadRoots() {
733 TimingLogger::ScopedTiming split("FlipThreadRoots", GetTimings());
734 if (kVerboseMode || heap_->dump_region_info_before_gc_) {
735 LOG(INFO) << "time=" << region_space_->Time();
736 region_space_->DumpNonFreeRegions(LOG_STREAM(INFO));
737 }
738 Thread* self = Thread::Current();
739 Locks::mutator_lock_->AssertNotHeld(self);
740 gc_barrier_->Init(self, 0);
741 ThreadFlipVisitor thread_flip_visitor(this, heap_->use_tlab_);
742 FlipCallback flip_callback(this);
743
744 size_t barrier_count = Runtime::Current()->GetThreadList()->FlipThreadRoots(
745 &thread_flip_visitor, &flip_callback, this, GetHeap()->GetGcPauseListener());
746
747 {
748 ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
749 gc_barrier_->Increment(self, barrier_count);
750 }
751 is_asserting_to_space_invariant_ = true;
752 QuasiAtomic::ThreadFenceForConstructor();
753 if (kVerboseMode) {
754 LOG(INFO) << "time=" << region_space_->Time();
755 region_space_->DumpNonFreeRegions(LOG_STREAM(INFO));
756 LOG(INFO) << "GC end of FlipThreadRoots";
757 }
758 }
759
760 template <bool kConcurrent>
761 class ConcurrentCopying::GrayImmuneObjectVisitor {
762 public:
GrayImmuneObjectVisitor(Thread * self)763 explicit GrayImmuneObjectVisitor(Thread* self) : self_(self) {}
764
operator ()(mirror::Object * obj) const765 ALWAYS_INLINE void operator()(mirror::Object* obj) const REQUIRES_SHARED(Locks::mutator_lock_) {
766 if (kUseBakerReadBarrier && obj->GetReadBarrierState() == ReadBarrier::NonGrayState()) {
767 if (kConcurrent) {
768 Locks::mutator_lock_->AssertSharedHeld(self_);
769 obj->AtomicSetReadBarrierState(ReadBarrier::NonGrayState(), ReadBarrier::GrayState());
770 // Mod union table VisitObjects may visit the same object multiple times so we can't check
771 // the result of the atomic set.
772 } else {
773 Locks::mutator_lock_->AssertExclusiveHeld(self_);
774 obj->SetReadBarrierState(ReadBarrier::GrayState());
775 }
776 }
777 }
778
Callback(mirror::Object * obj,void * arg)779 static void Callback(mirror::Object* obj, void* arg) REQUIRES_SHARED(Locks::mutator_lock_) {
780 reinterpret_cast<GrayImmuneObjectVisitor<kConcurrent>*>(arg)->operator()(obj);
781 }
782
783 private:
784 Thread* const self_;
785 };
786
GrayAllDirtyImmuneObjects()787 void ConcurrentCopying::GrayAllDirtyImmuneObjects() {
788 TimingLogger::ScopedTiming split("GrayAllDirtyImmuneObjects", GetTimings());
789 accounting::CardTable* const card_table = heap_->GetCardTable();
790 Thread* const self = Thread::Current();
791 using VisitorType = GrayImmuneObjectVisitor</* kIsConcurrent= */ true>;
792 VisitorType visitor(self);
793 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
794 for (space::ContinuousSpace* space : immune_spaces_.GetSpaces()) {
795 DCHECK(space->IsImageSpace() || space->IsZygoteSpace());
796 accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space);
797 // Mark all the objects on dirty cards since these may point to objects in other space.
798 // Once these are marked, the GC will eventually clear them later.
799 // Table is non null for boot image and zygote spaces. It is only null for application image
800 // spaces.
801 if (table != nullptr) {
802 table->ProcessCards();
803 table->VisitObjects(&VisitorType::Callback, &visitor);
804 // Don't clear cards here since we need to rescan in the pause. If we cleared the cards here,
805 // there would be races with the mutator marking new cards.
806 } else {
807 // Keep cards aged if we don't have a mod-union table since we may need to scan them in future
808 // GCs. This case is for app images.
809 card_table->ModifyCardsAtomic(
810 space->Begin(),
811 space->End(),
812 [](uint8_t card) {
813 return (card != gc::accounting::CardTable::kCardClean)
814 ? gc::accounting::CardTable::kCardAged
815 : card;
816 },
817 /* card modified visitor */ VoidFunctor());
818 card_table->Scan</*kClearCard=*/ false>(space->GetMarkBitmap(),
819 space->Begin(),
820 space->End(),
821 visitor,
822 gc::accounting::CardTable::kCardAged);
823 }
824 }
825 }
826
GrayAllNewlyDirtyImmuneObjects()827 void ConcurrentCopying::GrayAllNewlyDirtyImmuneObjects() {
828 TimingLogger::ScopedTiming split("(Paused)GrayAllNewlyDirtyImmuneObjects", GetTimings());
829 accounting::CardTable* const card_table = heap_->GetCardTable();
830 using VisitorType = GrayImmuneObjectVisitor</* kIsConcurrent= */ false>;
831 Thread* const self = Thread::Current();
832 VisitorType visitor(self);
833 WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
834 for (space::ContinuousSpace* space : immune_spaces_.GetSpaces()) {
835 DCHECK(space->IsImageSpace() || space->IsZygoteSpace());
836 accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space);
837
838 // Don't need to scan aged cards since we did these before the pause. Note that scanning cards
839 // also handles the mod-union table cards.
840 card_table->Scan</*kClearCard=*/ false>(space->GetMarkBitmap(),
841 space->Begin(),
842 space->End(),
843 visitor,
844 gc::accounting::CardTable::kCardDirty);
845 if (table != nullptr) {
846 // Add the cards to the mod-union table so that we can clear cards to save RAM.
847 table->ProcessCards();
848 TimingLogger::ScopedTiming split2("(Paused)ClearCards", GetTimings());
849 card_table->ClearCardRange(space->Begin(),
850 AlignDown(space->End(), accounting::CardTable::kCardSize));
851 }
852 }
853 // Since all of the objects that may point to other spaces are gray, we can avoid all the read
854 // barriers in the immune spaces.
855 updated_all_immune_objects_.store(true, std::memory_order_relaxed);
856 }
857
SwapStacks()858 void ConcurrentCopying::SwapStacks() {
859 heap_->SwapStacks();
860 }
861
RecordLiveStackFreezeSize(Thread * self)862 void ConcurrentCopying::RecordLiveStackFreezeSize(Thread* self) {
863 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
864 live_stack_freeze_size_ = heap_->GetLiveStack()->Size();
865 }
866
867 // Used to visit objects in the immune spaces.
ScanImmuneObject(mirror::Object * obj)868 inline void ConcurrentCopying::ScanImmuneObject(mirror::Object* obj) {
869 DCHECK(obj != nullptr);
870 DCHECK(immune_spaces_.ContainsObject(obj));
871 // Update the fields without graying it or pushing it onto the mark stack.
872 if (use_generational_cc_ && young_gen_) {
873 // Young GC does not care about references to unevac space. It is safe to not gray these as
874 // long as scan immune objects happens after scanning the dirty cards.
875 Scan<true>(obj);
876 } else {
877 Scan<false>(obj);
878 }
879 }
880
881 class ConcurrentCopying::ImmuneSpaceScanObjVisitor {
882 public:
ImmuneSpaceScanObjVisitor(ConcurrentCopying * cc)883 explicit ImmuneSpaceScanObjVisitor(ConcurrentCopying* cc)
884 : collector_(cc) {}
885
operator ()(mirror::Object * obj) const886 ALWAYS_INLINE void operator()(mirror::Object* obj) const REQUIRES_SHARED(Locks::mutator_lock_) {
887 if (kUseBakerReadBarrier && kGrayDirtyImmuneObjects) {
888 // Only need to scan gray objects.
889 if (obj->GetReadBarrierState() == ReadBarrier::GrayState()) {
890 collector_->ScanImmuneObject(obj);
891 // Done scanning the object, go back to black (non-gray).
892 bool success = obj->AtomicSetReadBarrierState(ReadBarrier::GrayState(),
893 ReadBarrier::NonGrayState());
894 CHECK(success)
895 << Runtime::Current()->GetHeap()->GetVerification()->DumpObjectInfo(obj, "failed CAS");
896 }
897 } else {
898 collector_->ScanImmuneObject(obj);
899 }
900 }
901
Callback(mirror::Object * obj,void * arg)902 static void Callback(mirror::Object* obj, void* arg) REQUIRES_SHARED(Locks::mutator_lock_) {
903 reinterpret_cast<ImmuneSpaceScanObjVisitor*>(arg)->operator()(obj);
904 }
905
906 private:
907 ConcurrentCopying* const collector_;
908 };
909
910 template <bool kAtomicTestAndSet>
911 class ConcurrentCopying::CaptureRootsForMarkingVisitor : public RootVisitor {
912 public:
CaptureRootsForMarkingVisitor(ConcurrentCopying * cc,Thread * self)913 explicit CaptureRootsForMarkingVisitor(ConcurrentCopying* cc, Thread* self)
914 : collector_(cc), self_(self) {}
915
VisitRoots(mirror::Object *** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)916 void VisitRoots(mirror::Object*** roots,
917 size_t count,
918 const RootInfo& info ATTRIBUTE_UNUSED) override
919 REQUIRES_SHARED(Locks::mutator_lock_) {
920 for (size_t i = 0; i < count; ++i) {
921 mirror::Object** root = roots[i];
922 mirror::Object* ref = *root;
923 if (ref != nullptr && !collector_->TestAndSetMarkBitForRef<kAtomicTestAndSet>(ref)) {
924 collector_->PushOntoMarkStack(self_, ref);
925 }
926 }
927 }
928
VisitRoots(mirror::CompressedReference<mirror::Object> ** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)929 void VisitRoots(mirror::CompressedReference<mirror::Object>** roots,
930 size_t count,
931 const RootInfo& info ATTRIBUTE_UNUSED) override
932 REQUIRES_SHARED(Locks::mutator_lock_) {
933 for (size_t i = 0; i < count; ++i) {
934 mirror::CompressedReference<mirror::Object>* const root = roots[i];
935 if (!root->IsNull()) {
936 mirror::Object* ref = root->AsMirrorPtr();
937 if (!collector_->TestAndSetMarkBitForRef<kAtomicTestAndSet>(ref)) {
938 collector_->PushOntoMarkStack(self_, ref);
939 }
940 }
941 }
942 }
943
944 private:
945 ConcurrentCopying* const collector_;
946 Thread* const self_;
947 };
948
RemoveThreadMarkStackMapping(Thread * thread,accounting::ObjectStack * tl_mark_stack)949 void ConcurrentCopying::RemoveThreadMarkStackMapping(Thread* thread,
950 accounting::ObjectStack* tl_mark_stack) {
951 CHECK(tl_mark_stack != nullptr);
952 auto it = thread_mark_stack_map_.find(thread);
953 CHECK(it != thread_mark_stack_map_.end());
954 CHECK(it->second == tl_mark_stack);
955 thread_mark_stack_map_.erase(it);
956 }
957
AssertEmptyThreadMarkStackMap()958 void ConcurrentCopying::AssertEmptyThreadMarkStackMap() {
959 std::ostringstream oss;
960 auto capture_mappings = [this, &oss] () REQUIRES(mark_stack_lock_) {
961 for (const auto & iter : thread_mark_stack_map_) {
962 oss << "thread:" << iter.first << " mark-stack:" << iter.second << "\n";
963 }
964 return oss.str();
965 };
966 CHECK(thread_mark_stack_map_.empty()) << "thread_mark_stack_map not empty. size:"
967 << thread_mark_stack_map_.size()
968 << "Mappings:\n"
969 << capture_mappings()
970 << "pooled_mark_stacks size:"
971 << pooled_mark_stacks_.size();
972 }
973
AssertNoThreadMarkStackMapping(Thread * thread)974 void ConcurrentCopying::AssertNoThreadMarkStackMapping(Thread* thread) {
975 MutexLock mu(Thread::Current(), mark_stack_lock_);
976 CHECK(thread_mark_stack_map_.find(thread) == thread_mark_stack_map_.end());
977 }
978
AddThreadMarkStackMapping(Thread * thread,accounting::ObjectStack * tl_mark_stack)979 void ConcurrentCopying::AddThreadMarkStackMapping(Thread* thread,
980 accounting::ObjectStack* tl_mark_stack) {
981 CHECK(tl_mark_stack != nullptr);
982 CHECK(thread_mark_stack_map_.find(thread) == thread_mark_stack_map_.end());
983 thread_mark_stack_map_.insert({thread, tl_mark_stack});
984 }
985
986 class ConcurrentCopying::RevokeThreadLocalMarkStackCheckpoint : public Closure {
987 public:
RevokeThreadLocalMarkStackCheckpoint(ConcurrentCopying * concurrent_copying,bool disable_weak_ref_access)988 RevokeThreadLocalMarkStackCheckpoint(ConcurrentCopying* concurrent_copying,
989 bool disable_weak_ref_access)
990 : concurrent_copying_(concurrent_copying),
991 disable_weak_ref_access_(disable_weak_ref_access) {
992 }
993
Run(Thread * thread)994 void Run(Thread* thread) override NO_THREAD_SAFETY_ANALYSIS {
995 // Note: self is not necessarily equal to thread since thread may be suspended.
996 Thread* const self = Thread::Current();
997 CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
998 << thread->GetState() << " thread " << thread << " self " << self;
999 // Revoke thread local mark stacks.
1000 {
1001 MutexLock mu(self, concurrent_copying_->mark_stack_lock_);
1002 accounting::AtomicStack<mirror::Object>* tl_mark_stack = thread->GetThreadLocalMarkStack();
1003 if (tl_mark_stack != nullptr) {
1004 concurrent_copying_->revoked_mark_stacks_.push_back(tl_mark_stack);
1005 thread->SetThreadLocalMarkStack(nullptr);
1006 concurrent_copying_->RemoveThreadMarkStackMapping(thread, tl_mark_stack);
1007 }
1008 }
1009 // Disable weak ref access.
1010 if (disable_weak_ref_access_) {
1011 thread->SetWeakRefAccessEnabled(false);
1012 }
1013 // If thread is a running mutator, then act on behalf of the garbage collector.
1014 // See the code in ThreadList::RunCheckpoint.
1015 concurrent_copying_->GetBarrier().Pass(self);
1016 }
1017
1018 protected:
1019 ConcurrentCopying* const concurrent_copying_;
1020
1021 private:
1022 const bool disable_weak_ref_access_;
1023 };
1024
1025 class ConcurrentCopying::CaptureThreadRootsForMarkingAndCheckpoint :
1026 public RevokeThreadLocalMarkStackCheckpoint {
1027 public:
CaptureThreadRootsForMarkingAndCheckpoint(ConcurrentCopying * cc)1028 explicit CaptureThreadRootsForMarkingAndCheckpoint(ConcurrentCopying* cc) :
1029 RevokeThreadLocalMarkStackCheckpoint(cc, /* disable_weak_ref_access */ false) {}
1030
Run(Thread * thread)1031 void Run(Thread* thread) override
1032 REQUIRES_SHARED(Locks::mutator_lock_) {
1033 Thread* const self = Thread::Current();
1034 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
1035 // We can use the non-CAS VisitRoots functions below because we update thread-local GC roots
1036 // only.
1037 CaptureRootsForMarkingVisitor</*kAtomicTestAndSet*/ true> visitor(concurrent_copying_, self);
1038 thread->VisitRoots(&visitor, kVisitRootFlagAllRoots);
1039 // If thread_running_gc_ performed the root visit then its thread-local
1040 // mark-stack should be null as we directly push to gc_mark_stack_.
1041 CHECK(self == thread || self->GetThreadLocalMarkStack() == nullptr);
1042 // Barrier handling is done in the base class' Run() below.
1043 RevokeThreadLocalMarkStackCheckpoint::Run(thread);
1044 }
1045 };
1046
CaptureThreadRootsForMarking()1047 void ConcurrentCopying::CaptureThreadRootsForMarking() {
1048 TimingLogger::ScopedTiming split("CaptureThreadRootsForMarking", GetTimings());
1049 if (kVerboseMode) {
1050 LOG(INFO) << "time=" << region_space_->Time();
1051 region_space_->DumpNonFreeRegions(LOG_STREAM(INFO));
1052 }
1053 Thread* const self = Thread::Current();
1054 CaptureThreadRootsForMarkingAndCheckpoint check_point(this);
1055 ThreadList* thread_list = Runtime::Current()->GetThreadList();
1056 gc_barrier_->Init(self, 0);
1057 size_t barrier_count = thread_list->RunCheckpoint(&check_point, /* callback */ nullptr);
1058 // If there are no threads to wait which implys that all the checkpoint functions are finished,
1059 // then no need to release the mutator lock.
1060 if (barrier_count == 0) {
1061 return;
1062 }
1063 Locks::mutator_lock_->SharedUnlock(self);
1064 {
1065 ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
1066 gc_barrier_->Increment(self, barrier_count);
1067 }
1068 Locks::mutator_lock_->SharedLock(self);
1069 if (kVerboseMode) {
1070 LOG(INFO) << "time=" << region_space_->Time();
1071 region_space_->DumpNonFreeRegions(LOG_STREAM(INFO));
1072 LOG(INFO) << "GC end of CaptureThreadRootsForMarking";
1073 }
1074 }
1075
1076 // Used to scan ref fields of an object.
1077 template <bool kHandleInterRegionRefs>
1078 class ConcurrentCopying::ComputeLiveBytesAndMarkRefFieldsVisitor {
1079 public:
ComputeLiveBytesAndMarkRefFieldsVisitor(ConcurrentCopying * collector,size_t obj_region_idx)1080 explicit ComputeLiveBytesAndMarkRefFieldsVisitor(ConcurrentCopying* collector,
1081 size_t obj_region_idx)
1082 : collector_(collector),
1083 obj_region_idx_(obj_region_idx),
1084 contains_inter_region_idx_(false) {}
1085
operator ()(mirror::Object * obj,MemberOffset offset,bool) const1086 void operator()(mirror::Object* obj, MemberOffset offset, bool /* is_static */) const
1087 ALWAYS_INLINE
1088 REQUIRES_SHARED(Locks::mutator_lock_)
1089 REQUIRES_SHARED(Locks::heap_bitmap_lock_) {
1090 DCHECK_EQ(collector_->RegionSpace()->RegionIdxForRef(obj), obj_region_idx_);
1091 DCHECK(kHandleInterRegionRefs || collector_->immune_spaces_.ContainsObject(obj));
1092 CheckReference(obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(offset));
1093 }
1094
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const1095 void operator()(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref) const
1096 REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
1097 DCHECK(klass->IsTypeOfReferenceClass());
1098 // If the referent is not null, then we must re-visit the object during
1099 // copying phase to enqueue it for delayed processing and setting
1100 // read-barrier state to gray to ensure that call to GetReferent() triggers
1101 // the read-barrier. We use same data structure that is used to remember
1102 // objects with inter-region refs for this purpose too.
1103 if (kHandleInterRegionRefs
1104 && !contains_inter_region_idx_
1105 && ref->AsReference()->GetReferent<kWithoutReadBarrier>() != nullptr) {
1106 contains_inter_region_idx_ = true;
1107 }
1108 }
1109
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const1110 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
1111 ALWAYS_INLINE
1112 REQUIRES_SHARED(Locks::mutator_lock_) {
1113 if (!root->IsNull()) {
1114 VisitRoot(root);
1115 }
1116 }
1117
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const1118 void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
1119 ALWAYS_INLINE
1120 REQUIRES_SHARED(Locks::mutator_lock_) {
1121 CheckReference(root->AsMirrorPtr());
1122 }
1123
ContainsInterRegionRefs() const1124 bool ContainsInterRegionRefs() const ALWAYS_INLINE REQUIRES_SHARED(Locks::mutator_lock_) {
1125 return contains_inter_region_idx_;
1126 }
1127
1128 private:
CheckReference(mirror::Object * ref) const1129 void CheckReference(mirror::Object* ref) const
1130 REQUIRES_SHARED(Locks::mutator_lock_) {
1131 if (ref == nullptr) {
1132 // Nothing to do.
1133 return;
1134 }
1135 if (!collector_->TestAndSetMarkBitForRef(ref)) {
1136 collector_->PushOntoLocalMarkStack(ref);
1137 }
1138 if (kHandleInterRegionRefs && !contains_inter_region_idx_) {
1139 size_t ref_region_idx = collector_->RegionSpace()->RegionIdxForRef(ref);
1140 // If a region-space object refers to an outside object, we will have a
1141 // mismatch of region idx, but the object need not be re-visited in
1142 // copying phase.
1143 if (ref_region_idx != static_cast<size_t>(-1) && obj_region_idx_ != ref_region_idx) {
1144 contains_inter_region_idx_ = true;
1145 }
1146 }
1147 }
1148
1149 ConcurrentCopying* const collector_;
1150 const size_t obj_region_idx_;
1151 mutable bool contains_inter_region_idx_;
1152 };
1153
AddLiveBytesAndScanRef(mirror::Object * ref)1154 void ConcurrentCopying::AddLiveBytesAndScanRef(mirror::Object* ref) {
1155 DCHECK(ref != nullptr);
1156 DCHECK(!immune_spaces_.ContainsObject(ref));
1157 DCHECK(TestMarkBitmapForRef(ref));
1158 size_t obj_region_idx = static_cast<size_t>(-1);
1159 if (LIKELY(region_space_->HasAddress(ref))) {
1160 obj_region_idx = region_space_->RegionIdxForRefUnchecked(ref);
1161 // Add live bytes to the corresponding region
1162 if (!region_space_->IsRegionNewlyAllocated(obj_region_idx)) {
1163 // Newly Allocated regions are always chosen for evacuation. So no need
1164 // to update live_bytes_.
1165 size_t obj_size = ref->SizeOf<kDefaultVerifyFlags>();
1166 size_t alloc_size = RoundUp(obj_size, space::RegionSpace::kAlignment);
1167 region_space_->AddLiveBytes(ref, alloc_size);
1168 }
1169 }
1170 ComputeLiveBytesAndMarkRefFieldsVisitor</*kHandleInterRegionRefs*/ true>
1171 visitor(this, obj_region_idx);
1172 ref->VisitReferences</*kVisitNativeRoots=*/ true, kDefaultVerifyFlags, kWithoutReadBarrier>(
1173 visitor, visitor);
1174 // Mark the corresponding card dirty if the object contains any
1175 // inter-region reference.
1176 if (visitor.ContainsInterRegionRefs()) {
1177 if (obj_region_idx == static_cast<size_t>(-1)) {
1178 // If an inter-region ref has been found in a non-region-space, then it
1179 // must be non-moving-space. This is because this function cannot be
1180 // called on a immune-space object, and a large-object-space object has
1181 // only class object reference, which is either in some immune-space, or
1182 // in non-moving-space.
1183 DCHECK(heap_->non_moving_space_->HasAddress(ref));
1184 non_moving_space_inter_region_bitmap_.Set(ref);
1185 } else {
1186 region_space_inter_region_bitmap_.Set(ref);
1187 }
1188 }
1189 }
1190
1191 template <bool kAtomic>
TestAndSetMarkBitForRef(mirror::Object * ref)1192 bool ConcurrentCopying::TestAndSetMarkBitForRef(mirror::Object* ref) {
1193 accounting::ContinuousSpaceBitmap* bitmap = nullptr;
1194 accounting::LargeObjectBitmap* los_bitmap = nullptr;
1195 if (LIKELY(region_space_->HasAddress(ref))) {
1196 bitmap = region_space_bitmap_;
1197 } else if (heap_->GetNonMovingSpace()->HasAddress(ref)) {
1198 bitmap = heap_->GetNonMovingSpace()->GetMarkBitmap();
1199 } else if (immune_spaces_.ContainsObject(ref)) {
1200 // References to immune space objects are always live.
1201 DCHECK(heap_mark_bitmap_->GetContinuousSpaceBitmap(ref)->Test(ref));
1202 return true;
1203 } else {
1204 // Should be a large object. Must be page aligned and the LOS must exist.
1205 if (kIsDebugBuild
1206 && (!IsAligned<kPageSize>(ref) || heap_->GetLargeObjectsSpace() == nullptr)) {
1207 // It must be heap corruption. Remove memory protection and dump data.
1208 region_space_->Unprotect();
1209 heap_->GetVerification()->LogHeapCorruption(/* obj */ nullptr,
1210 MemberOffset(0),
1211 ref,
1212 /* fatal */ true);
1213 }
1214 los_bitmap = heap_->GetLargeObjectsSpace()->GetMarkBitmap();
1215 }
1216 if (kAtomic) {
1217 return (bitmap != nullptr) ? bitmap->AtomicTestAndSet(ref) : los_bitmap->AtomicTestAndSet(ref);
1218 } else {
1219 return (bitmap != nullptr) ? bitmap->Set(ref) : los_bitmap->Set(ref);
1220 }
1221 }
1222
TestMarkBitmapForRef(mirror::Object * ref)1223 bool ConcurrentCopying::TestMarkBitmapForRef(mirror::Object* ref) {
1224 if (LIKELY(region_space_->HasAddress(ref))) {
1225 return region_space_bitmap_->Test(ref);
1226 } else if (heap_->GetNonMovingSpace()->HasAddress(ref)) {
1227 return heap_->GetNonMovingSpace()->GetMarkBitmap()->Test(ref);
1228 } else if (immune_spaces_.ContainsObject(ref)) {
1229 // References to immune space objects are always live.
1230 DCHECK(heap_mark_bitmap_->GetContinuousSpaceBitmap(ref)->Test(ref));
1231 return true;
1232 } else {
1233 // Should be a large object. Must be page aligned and the LOS must exist.
1234 if (kIsDebugBuild
1235 && (!IsAligned<kPageSize>(ref) || heap_->GetLargeObjectsSpace() == nullptr)) {
1236 // It must be heap corruption. Remove memory protection and dump data.
1237 region_space_->Unprotect();
1238 heap_->GetVerification()->LogHeapCorruption(/* obj */ nullptr,
1239 MemberOffset(0),
1240 ref,
1241 /* fatal */ true);
1242 }
1243 return heap_->GetLargeObjectsSpace()->GetMarkBitmap()->Test(ref);
1244 }
1245 }
1246
PushOntoLocalMarkStack(mirror::Object * ref)1247 void ConcurrentCopying::PushOntoLocalMarkStack(mirror::Object* ref) {
1248 if (kIsDebugBuild) {
1249 Thread *self = Thread::Current();
1250 DCHECK_EQ(thread_running_gc_, self);
1251 DCHECK(self->GetThreadLocalMarkStack() == nullptr);
1252 }
1253 DCHECK_EQ(mark_stack_mode_.load(std::memory_order_relaxed), kMarkStackModeThreadLocal);
1254 if (UNLIKELY(gc_mark_stack_->IsFull())) {
1255 ExpandGcMarkStack();
1256 }
1257 gc_mark_stack_->PushBack(ref);
1258 }
1259
ProcessMarkStackForMarkingAndComputeLiveBytes()1260 void ConcurrentCopying::ProcessMarkStackForMarkingAndComputeLiveBytes() {
1261 // Process thread-local mark stack containing thread roots
1262 ProcessThreadLocalMarkStacks(/* disable_weak_ref_access */ false,
1263 /* checkpoint_callback */ nullptr,
1264 [this] (mirror::Object* ref)
1265 REQUIRES_SHARED(Locks::mutator_lock_) {
1266 AddLiveBytesAndScanRef(ref);
1267 });
1268 {
1269 MutexLock mu(thread_running_gc_, mark_stack_lock_);
1270 CHECK(revoked_mark_stacks_.empty());
1271 AssertEmptyThreadMarkStackMap();
1272 CHECK_EQ(pooled_mark_stacks_.size(), kMarkStackPoolSize);
1273 }
1274
1275 while (!gc_mark_stack_->IsEmpty()) {
1276 mirror::Object* ref = gc_mark_stack_->PopBack();
1277 AddLiveBytesAndScanRef(ref);
1278 }
1279 }
1280
1281 class ConcurrentCopying::ImmuneSpaceCaptureRefsVisitor {
1282 public:
ImmuneSpaceCaptureRefsVisitor(ConcurrentCopying * cc)1283 explicit ImmuneSpaceCaptureRefsVisitor(ConcurrentCopying* cc) : collector_(cc) {}
1284
operator ()(mirror::Object * obj) const1285 ALWAYS_INLINE void operator()(mirror::Object* obj) const REQUIRES_SHARED(Locks::mutator_lock_) {
1286 ComputeLiveBytesAndMarkRefFieldsVisitor</*kHandleInterRegionRefs*/ false>
1287 visitor(collector_, /*obj_region_idx*/ static_cast<size_t>(-1));
1288 obj->VisitReferences</*kVisitNativeRoots=*/true, kDefaultVerifyFlags, kWithoutReadBarrier>(
1289 visitor, visitor);
1290 }
1291
Callback(mirror::Object * obj,void * arg)1292 static void Callback(mirror::Object* obj, void* arg) REQUIRES_SHARED(Locks::mutator_lock_) {
1293 reinterpret_cast<ImmuneSpaceCaptureRefsVisitor*>(arg)->operator()(obj);
1294 }
1295
1296 private:
1297 ConcurrentCopying* const collector_;
1298 };
1299
1300 /* Invariants for two-phase CC
1301 * ===========================
1302 * A) Definitions
1303 * ---------------
1304 * 1) Black: marked in bitmap, rb_state is non-gray, and not in mark stack
1305 * 2) Black-clean: marked in bitmap, and corresponding card is clean/aged
1306 * 3) Black-dirty: marked in bitmap, and corresponding card is dirty
1307 * 4) Gray: marked in bitmap, and exists in mark stack
1308 * 5) Gray-dirty: marked in bitmap, rb_state is gray, corresponding card is
1309 * dirty, and exists in mark stack
1310 * 6) White: unmarked in bitmap, rb_state is non-gray, and not in mark stack
1311 *
1312 * B) Before marking phase
1313 * -----------------------
1314 * 1) All objects are white
1315 * 2) Cards are either clean or aged (cannot be asserted without a STW pause)
1316 * 3) Mark bitmap is cleared
1317 * 4) Mark stack is empty
1318 *
1319 * C) During marking phase
1320 * ------------------------
1321 * 1) If a black object holds an inter-region or white reference, then its
1322 * corresponding card is dirty. In other words, it changes from being
1323 * black-clean to black-dirty
1324 * 2) No black-clean object points to a white object
1325 *
1326 * D) After marking phase
1327 * -----------------------
1328 * 1) There are no gray objects
1329 * 2) All newly allocated objects are in from space
1330 * 3) No white object can be reachable, directly or otherwise, from a
1331 * black-clean object
1332 *
1333 * E) During copying phase
1334 * ------------------------
1335 * 1) Mutators cannot observe white and black-dirty objects
1336 * 2) New allocations are in to-space (newly allocated regions are part of to-space)
1337 * 3) An object in mark stack must have its rb_state = Gray
1338 *
1339 * F) During card table scan
1340 * --------------------------
1341 * 1) Referents corresponding to root references are gray or in to-space
1342 * 2) Every path from an object that is read or written by a mutator during
1343 * this period to a dirty black object goes through some gray object.
1344 * Mutators preserve this by graying black objects as needed during this
1345 * period. Ensures that a mutator never encounters a black dirty object.
1346 *
1347 * G) After card table scan
1348 * ------------------------
1349 * 1) There are no black-dirty objects
1350 * 2) Referents corresponding to root references are gray, black-clean or in
1351 * to-space
1352 *
1353 * H) After copying phase
1354 * -----------------------
1355 * 1) Mark stack is empty
1356 * 2) No references into evacuated from-space
1357 * 3) No reference to an object which is unmarked and is also not in newly
1358 * allocated region. In other words, no reference to white objects.
1359 */
1360
MarkingPhase()1361 void ConcurrentCopying::MarkingPhase() {
1362 TimingLogger::ScopedTiming split("MarkingPhase", GetTimings());
1363 if (kVerboseMode) {
1364 LOG(INFO) << "GC MarkingPhase";
1365 }
1366 accounting::CardTable* const card_table = heap_->GetCardTable();
1367 Thread* const self = Thread::Current();
1368 CHECK_EQ(self, thread_running_gc_);
1369 // Clear live_bytes_ of every non-free region, except the ones that are newly
1370 // allocated.
1371 region_space_->SetAllRegionLiveBytesZero();
1372 if (kIsDebugBuild) {
1373 region_space_->AssertAllRegionLiveBytesZeroOrCleared();
1374 }
1375 // Scan immune spaces
1376 {
1377 TimingLogger::ScopedTiming split2("ScanImmuneSpaces", GetTimings());
1378 for (auto& space : immune_spaces_.GetSpaces()) {
1379 DCHECK(space->IsImageSpace() || space->IsZygoteSpace());
1380 accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
1381 accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space);
1382 ImmuneSpaceCaptureRefsVisitor visitor(this);
1383 if (table != nullptr) {
1384 table->VisitObjects(ImmuneSpaceCaptureRefsVisitor::Callback, &visitor);
1385 } else {
1386 WriterMutexLock rmu(Thread::Current(), *Locks::heap_bitmap_lock_);
1387 card_table->Scan<false>(
1388 live_bitmap,
1389 space->Begin(),
1390 space->Limit(),
1391 visitor,
1392 accounting::CardTable::kCardDirty - 1);
1393 }
1394 }
1395 }
1396 // Scan runtime roots
1397 {
1398 TimingLogger::ScopedTiming split2("VisitConcurrentRoots", GetTimings());
1399 CaptureRootsForMarkingVisitor visitor(this, self);
1400 Runtime::Current()->VisitConcurrentRoots(&visitor, kVisitRootFlagAllRoots);
1401 }
1402 {
1403 // TODO: don't visit the transaction roots if it's not active.
1404 TimingLogger::ScopedTiming split2("VisitNonThreadRoots", GetTimings());
1405 CaptureRootsForMarkingVisitor visitor(this, self);
1406 Runtime::Current()->VisitNonThreadRoots(&visitor);
1407 }
1408 // Capture thread roots
1409 CaptureThreadRootsForMarking();
1410 // Process mark stack
1411 ProcessMarkStackForMarkingAndComputeLiveBytes();
1412
1413 if (kVerboseMode) {
1414 LOG(INFO) << "GC end of MarkingPhase";
1415 }
1416 }
1417
1418 template <bool kNoUnEvac>
ScanDirtyObject(mirror::Object * obj)1419 void ConcurrentCopying::ScanDirtyObject(mirror::Object* obj) {
1420 Scan<kNoUnEvac>(obj);
1421 // Set the read-barrier state of a reference-type object to gray if its
1422 // referent is not marked yet. This is to ensure that if GetReferent() is
1423 // called, it triggers the read-barrier to process the referent before use.
1424 if (UNLIKELY((obj->GetClass<kVerifyNone, kWithoutReadBarrier>()->IsTypeOfReferenceClass()))) {
1425 mirror::Object* referent =
1426 obj->AsReference<kVerifyNone, kWithoutReadBarrier>()->GetReferent<kWithoutReadBarrier>();
1427 if (referent != nullptr && !IsInToSpace(referent)) {
1428 obj->AtomicSetReadBarrierState(ReadBarrier::NonGrayState(), ReadBarrier::GrayState());
1429 }
1430 }
1431 }
1432
1433 // Concurrently mark roots that are guarded by read barriers and process the mark stack.
CopyingPhase()1434 void ConcurrentCopying::CopyingPhase() {
1435 TimingLogger::ScopedTiming split("CopyingPhase", GetTimings());
1436 if (kVerboseMode) {
1437 LOG(INFO) << "GC CopyingPhase";
1438 }
1439 Thread* self = Thread::Current();
1440 accounting::CardTable* const card_table = heap_->GetCardTable();
1441 if (kIsDebugBuild) {
1442 MutexLock mu(self, *Locks::thread_list_lock_);
1443 CHECK(weak_ref_access_enabled_);
1444 }
1445
1446 // Scan immune spaces.
1447 // Update all the fields in the immune spaces first without graying the objects so that we
1448 // minimize dirty pages in the immune spaces. Note mutators can concurrently access and gray some
1449 // of the objects.
1450 if (kUseBakerReadBarrier) {
1451 gc_grays_immune_objects_ = false;
1452 }
1453 if (use_generational_cc_) {
1454 if (kVerboseMode) {
1455 LOG(INFO) << "GC ScanCardsForSpace";
1456 }
1457 TimingLogger::ScopedTiming split2("ScanCardsForSpace", GetTimings());
1458 WriterMutexLock rmu(Thread::Current(), *Locks::heap_bitmap_lock_);
1459 CHECK(!done_scanning_.load(std::memory_order_relaxed));
1460 if (kIsDebugBuild) {
1461 // Leave some time for mutators to race ahead to try and find races between the GC card
1462 // scanning and mutators reading references.
1463 usleep(10 * 1000);
1464 }
1465 for (space::ContinuousSpace* space : GetHeap()->GetContinuousSpaces()) {
1466 if (space->IsImageSpace() || space->IsZygoteSpace()) {
1467 // Image and zygote spaces are already handled since we gray the objects in the pause.
1468 continue;
1469 }
1470 // Scan all of the objects on dirty cards in unevac from space, and non moving space. These
1471 // are from previous GCs (or from marking phase of 2-phase full GC) and may reference things
1472 // in the from space.
1473 //
1474 // Note that we do not need to process the large-object space (the only discontinuous space)
1475 // as it contains only large string objects and large primitive array objects, that have no
1476 // reference to other objects, except their class. There is no need to scan these large
1477 // objects, as the String class and the primitive array classes are expected to never move
1478 // during a collection:
1479 // - In the case where we run with a boot image, these classes are part of the image space,
1480 // which is an immune space.
1481 // - In the case where we run without a boot image, these classes are allocated in the
1482 // non-moving space (see art::ClassLinker::InitWithoutImage).
1483 card_table->Scan<false>(
1484 space->GetMarkBitmap(),
1485 space->Begin(),
1486 space->End(),
1487 [this, space](mirror::Object* obj)
1488 REQUIRES(Locks::heap_bitmap_lock_)
1489 REQUIRES_SHARED(Locks::mutator_lock_) {
1490 // TODO: This code may be refactored to avoid scanning object while
1491 // done_scanning_ is false by setting rb_state to gray, and pushing the
1492 // object on mark stack. However, it will also require clearing the
1493 // corresponding mark-bit and, for region space objects,
1494 // decrementing the object's size from the corresponding region's
1495 // live_bytes.
1496 if (young_gen_) {
1497 // Don't push or gray unevac refs.
1498 if (kIsDebugBuild && space == region_space_) {
1499 // We may get unevac large objects.
1500 if (!region_space_->IsInUnevacFromSpace(obj)) {
1501 CHECK(region_space_bitmap_->Test(obj));
1502 region_space_->DumpRegionForObject(LOG_STREAM(FATAL_WITHOUT_ABORT), obj);
1503 LOG(FATAL) << "Scanning " << obj << " not in unevac space";
1504 }
1505 }
1506 ScanDirtyObject</*kNoUnEvac*/ true>(obj);
1507 } else if (space != region_space_) {
1508 DCHECK(space == heap_->non_moving_space_);
1509 // We need to process un-evac references as they may be unprocessed,
1510 // if they skipped the marking phase due to heap mutation.
1511 ScanDirtyObject</*kNoUnEvac*/ false>(obj);
1512 non_moving_space_inter_region_bitmap_.Clear(obj);
1513 } else if (region_space_->IsInUnevacFromSpace(obj)) {
1514 ScanDirtyObject</*kNoUnEvac*/ false>(obj);
1515 region_space_inter_region_bitmap_.Clear(obj);
1516 }
1517 },
1518 accounting::CardTable::kCardAged);
1519
1520 if (!young_gen_) {
1521 auto visitor = [this](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
1522 // We don't need to process un-evac references as any unprocessed
1523 // ones will be taken care of in the card-table scan above.
1524 ScanDirtyObject</*kNoUnEvac*/ true>(obj);
1525 };
1526 if (space == region_space_) {
1527 region_space_->ScanUnevacFromSpace(®ion_space_inter_region_bitmap_, visitor);
1528 } else {
1529 DCHECK(space == heap_->non_moving_space_);
1530 non_moving_space_inter_region_bitmap_.VisitMarkedRange(
1531 reinterpret_cast<uintptr_t>(space->Begin()),
1532 reinterpret_cast<uintptr_t>(space->End()),
1533 visitor);
1534 }
1535 }
1536 }
1537 // Done scanning unevac space.
1538 done_scanning_.store(true, std::memory_order_release);
1539 // NOTE: inter-region-ref bitmaps can be cleared here to release memory, if needed.
1540 // Currently we do it in ReclaimPhase().
1541 if (kVerboseMode) {
1542 LOG(INFO) << "GC end of ScanCardsForSpace";
1543 }
1544 }
1545 {
1546 // For a sticky-bit collection, this phase needs to be after the card scanning since the
1547 // mutator may read an unevac space object out of an image object. If the image object is no
1548 // longer gray it will trigger a read barrier for the unevac space object.
1549 TimingLogger::ScopedTiming split2("ScanImmuneSpaces", GetTimings());
1550 for (auto& space : immune_spaces_.GetSpaces()) {
1551 DCHECK(space->IsImageSpace() || space->IsZygoteSpace());
1552 accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
1553 accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space);
1554 ImmuneSpaceScanObjVisitor visitor(this);
1555 if (kUseBakerReadBarrier && kGrayDirtyImmuneObjects && table != nullptr) {
1556 table->VisitObjects(ImmuneSpaceScanObjVisitor::Callback, &visitor);
1557 } else {
1558 WriterMutexLock rmu(Thread::Current(), *Locks::heap_bitmap_lock_);
1559 card_table->Scan<false>(
1560 live_bitmap,
1561 space->Begin(),
1562 space->Limit(),
1563 visitor,
1564 accounting::CardTable::kCardDirty - 1);
1565 }
1566 }
1567 }
1568 if (kUseBakerReadBarrier) {
1569 // This release fence makes the field updates in the above loop visible before allowing mutator
1570 // getting access to immune objects without graying it first.
1571 updated_all_immune_objects_.store(true, std::memory_order_release);
1572 // Now "un-gray" (conceptually blacken) immune objects concurrently accessed and grayed by
1573 // mutators. We can't do this in the above loop because we would incorrectly disable the read
1574 // barrier by un-graying (conceptually blackening) an object which may point to an unscanned,
1575 // white object, breaking the to-space invariant (a mutator shall never observe a from-space
1576 // (white) object).
1577 //
1578 // Make sure no mutators are in the middle of marking an immune object before un-graying
1579 // (blackening) immune objects.
1580 IssueEmptyCheckpoint();
1581 MutexLock mu(Thread::Current(), immune_gray_stack_lock_);
1582 if (kVerboseMode) {
1583 LOG(INFO) << "immune gray stack size=" << immune_gray_stack_.size();
1584 }
1585 for (mirror::Object* obj : immune_gray_stack_) {
1586 DCHECK_EQ(obj->GetReadBarrierState(), ReadBarrier::GrayState());
1587 bool success = obj->AtomicSetReadBarrierState(ReadBarrier::GrayState(),
1588 ReadBarrier::NonGrayState());
1589 DCHECK(success);
1590 }
1591 immune_gray_stack_.clear();
1592 }
1593
1594 {
1595 TimingLogger::ScopedTiming split2("VisitConcurrentRoots", GetTimings());
1596 Runtime::Current()->VisitConcurrentRoots(this, kVisitRootFlagAllRoots);
1597 }
1598 {
1599 // TODO: don't visit the transaction roots if it's not active.
1600 TimingLogger::ScopedTiming split5("VisitNonThreadRoots", GetTimings());
1601 Runtime::Current()->VisitNonThreadRoots(this);
1602 }
1603
1604 {
1605 TimingLogger::ScopedTiming split7("ProcessMarkStack", GetTimings());
1606 // We transition through three mark stack modes (thread-local, shared, GC-exclusive). The
1607 // primary reasons are the fact that we need to use a checkpoint to process thread-local mark
1608 // stacks, but after we disable weak refs accesses, we can't use a checkpoint due to a deadlock
1609 // issue because running threads potentially blocking at WaitHoldingLocks, and that once we
1610 // reach the point where we process weak references, we can avoid using a lock when accessing
1611 // the GC mark stack, which makes mark stack processing more efficient.
1612
1613 // Process the mark stack once in the thread local stack mode. This marks most of the live
1614 // objects, aside from weak ref accesses with read barriers (Reference::GetReferent() and system
1615 // weaks) that may happen concurrently while we processing the mark stack and newly mark/gray
1616 // objects and push refs on the mark stack.
1617 ProcessMarkStack();
1618 // Switch to the shared mark stack mode. That is, revoke and process thread-local mark stacks
1619 // for the last time before transitioning to the shared mark stack mode, which would process new
1620 // refs that may have been concurrently pushed onto the mark stack during the ProcessMarkStack()
1621 // call above. At the same time, disable weak ref accesses using a per-thread flag. It's
1622 // important to do these together in a single checkpoint so that we can ensure that mutators
1623 // won't newly gray objects and push new refs onto the mark stack due to weak ref accesses and
1624 // mutators safely transition to the shared mark stack mode (without leaving unprocessed refs on
1625 // the thread-local mark stacks), without a race. This is why we use a thread-local weak ref
1626 // access flag Thread::tls32_.weak_ref_access_enabled_ instead of the global ones.
1627 SwitchToSharedMarkStackMode();
1628 CHECK(!self->GetWeakRefAccessEnabled());
1629 // Now that weak refs accesses are disabled, once we exhaust the shared mark stack again here
1630 // (which may be non-empty if there were refs found on thread-local mark stacks during the above
1631 // SwitchToSharedMarkStackMode() call), we won't have new refs to process, that is, mutators
1632 // (via read barriers) have no way to produce any more refs to process. Marking converges once
1633 // before we process weak refs below.
1634 ProcessMarkStack();
1635 CheckEmptyMarkStack();
1636 // Switch to the GC exclusive mark stack mode so that we can process the mark stack without a
1637 // lock from this point on.
1638 SwitchToGcExclusiveMarkStackMode();
1639 CheckEmptyMarkStack();
1640 if (kVerboseMode) {
1641 LOG(INFO) << "ProcessReferences";
1642 }
1643 // Process weak references. This may produce new refs to process and have them processed via
1644 // ProcessMarkStack (in the GC exclusive mark stack mode).
1645 ProcessReferences(self);
1646 CheckEmptyMarkStack();
1647 if (kVerboseMode) {
1648 LOG(INFO) << "SweepSystemWeaks";
1649 }
1650 SweepSystemWeaks(self);
1651 if (kVerboseMode) {
1652 LOG(INFO) << "SweepSystemWeaks done";
1653 }
1654 // Process the mark stack here one last time because the above SweepSystemWeaks() call may have
1655 // marked some objects (strings alive) as hash_set::Erase() can call the hash function for
1656 // arbitrary elements in the weak intern table in InternTable::Table::SweepWeaks().
1657 ProcessMarkStack();
1658 CheckEmptyMarkStack();
1659 // Re-enable weak ref accesses.
1660 ReenableWeakRefAccess(self);
1661 // Free data for class loaders that we unloaded.
1662 Runtime::Current()->GetClassLinker()->CleanupClassLoaders();
1663 // Marking is done. Disable marking.
1664 DisableMarking();
1665 CheckEmptyMarkStack();
1666 }
1667
1668 if (kIsDebugBuild) {
1669 MutexLock mu(self, *Locks::thread_list_lock_);
1670 CHECK(weak_ref_access_enabled_);
1671 }
1672 if (kVerboseMode) {
1673 LOG(INFO) << "GC end of CopyingPhase";
1674 }
1675 }
1676
ReenableWeakRefAccess(Thread * self)1677 void ConcurrentCopying::ReenableWeakRefAccess(Thread* self) {
1678 if (kVerboseMode) {
1679 LOG(INFO) << "ReenableWeakRefAccess";
1680 }
1681 // Iterate all threads (don't need to or can't use a checkpoint) and re-enable weak ref access.
1682 {
1683 MutexLock mu(self, *Locks::thread_list_lock_);
1684 weak_ref_access_enabled_ = true; // This is for new threads.
1685 std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
1686 for (Thread* thread : thread_list) {
1687 thread->SetWeakRefAccessEnabled(true);
1688 }
1689 }
1690 // Unblock blocking threads.
1691 GetHeap()->GetReferenceProcessor()->BroadcastForSlowPath(self);
1692 Runtime::Current()->BroadcastForNewSystemWeaks();
1693 }
1694
1695 class ConcurrentCopying::DisableMarkingCheckpoint : public Closure {
1696 public:
DisableMarkingCheckpoint(ConcurrentCopying * concurrent_copying)1697 explicit DisableMarkingCheckpoint(ConcurrentCopying* concurrent_copying)
1698 : concurrent_copying_(concurrent_copying) {
1699 }
1700
Run(Thread * thread)1701 void Run(Thread* thread) override NO_THREAD_SAFETY_ANALYSIS {
1702 // Note: self is not necessarily equal to thread since thread may be suspended.
1703 Thread* self = Thread::Current();
1704 DCHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
1705 << thread->GetState() << " thread " << thread << " self " << self;
1706 // Disable the thread-local is_gc_marking flag.
1707 // Note a thread that has just started right before this checkpoint may have already this flag
1708 // set to false, which is ok.
1709 thread->SetIsGcMarkingAndUpdateEntrypoints(false);
1710 // If thread is a running mutator, then act on behalf of the garbage collector.
1711 // See the code in ThreadList::RunCheckpoint.
1712 concurrent_copying_->GetBarrier().Pass(self);
1713 }
1714
1715 private:
1716 ConcurrentCopying* const concurrent_copying_;
1717 };
1718
1719 class ConcurrentCopying::DisableMarkingCallback : public Closure {
1720 public:
DisableMarkingCallback(ConcurrentCopying * concurrent_copying)1721 explicit DisableMarkingCallback(ConcurrentCopying* concurrent_copying)
1722 : concurrent_copying_(concurrent_copying) {
1723 }
1724
Run(Thread * self ATTRIBUTE_UNUSED)1725 void Run(Thread* self ATTRIBUTE_UNUSED) override REQUIRES(Locks::thread_list_lock_) {
1726 // This needs to run under the thread_list_lock_ critical section in ThreadList::RunCheckpoint()
1727 // to avoid a race with ThreadList::Register().
1728 CHECK(concurrent_copying_->is_marking_);
1729 concurrent_copying_->is_marking_ = false;
1730 if (kUseBakerReadBarrier && kGrayDirtyImmuneObjects) {
1731 CHECK(concurrent_copying_->is_using_read_barrier_entrypoints_);
1732 concurrent_copying_->is_using_read_barrier_entrypoints_ = false;
1733 } else {
1734 CHECK(!concurrent_copying_->is_using_read_barrier_entrypoints_);
1735 }
1736 }
1737
1738 private:
1739 ConcurrentCopying* const concurrent_copying_;
1740 };
1741
IssueDisableMarkingCheckpoint()1742 void ConcurrentCopying::IssueDisableMarkingCheckpoint() {
1743 Thread* self = Thread::Current();
1744 DisableMarkingCheckpoint check_point(this);
1745 ThreadList* thread_list = Runtime::Current()->GetThreadList();
1746 gc_barrier_->Init(self, 0);
1747 DisableMarkingCallback dmc(this);
1748 size_t barrier_count = thread_list->RunCheckpoint(&check_point, &dmc);
1749 // If there are no threads to wait which implies that all the checkpoint functions are finished,
1750 // then no need to release the mutator lock.
1751 if (barrier_count == 0) {
1752 return;
1753 }
1754 // Release locks then wait for all mutator threads to pass the barrier.
1755 Locks::mutator_lock_->SharedUnlock(self);
1756 {
1757 ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
1758 gc_barrier_->Increment(self, barrier_count);
1759 }
1760 Locks::mutator_lock_->SharedLock(self);
1761 }
1762
DisableMarking()1763 void ConcurrentCopying::DisableMarking() {
1764 // Use a checkpoint to turn off the global is_marking and the thread-local is_gc_marking flags and
1765 // to ensure no threads are still in the middle of a read barrier which may have a from-space ref
1766 // cached in a local variable.
1767 IssueDisableMarkingCheckpoint();
1768 if (kUseTableLookupReadBarrier) {
1769 heap_->rb_table_->ClearAll();
1770 DCHECK(heap_->rb_table_->IsAllCleared());
1771 }
1772 is_mark_stack_push_disallowed_.store(1, std::memory_order_seq_cst);
1773 mark_stack_mode_.store(kMarkStackModeOff, std::memory_order_seq_cst);
1774 }
1775
IssueEmptyCheckpoint()1776 void ConcurrentCopying::IssueEmptyCheckpoint() {
1777 Thread* self = Thread::Current();
1778 ThreadList* thread_list = Runtime::Current()->GetThreadList();
1779 // Release locks then wait for all mutator threads to pass the barrier.
1780 Locks::mutator_lock_->SharedUnlock(self);
1781 thread_list->RunEmptyCheckpoint();
1782 Locks::mutator_lock_->SharedLock(self);
1783 }
1784
ExpandGcMarkStack()1785 void ConcurrentCopying::ExpandGcMarkStack() {
1786 DCHECK(gc_mark_stack_->IsFull());
1787 const size_t new_size = gc_mark_stack_->Capacity() * 2;
1788 std::vector<StackReference<mirror::Object>> temp(gc_mark_stack_->Begin(),
1789 gc_mark_stack_->End());
1790 gc_mark_stack_->Resize(new_size);
1791 for (auto& ref : temp) {
1792 gc_mark_stack_->PushBack(ref.AsMirrorPtr());
1793 }
1794 DCHECK(!gc_mark_stack_->IsFull());
1795 }
1796
PushOntoMarkStack(Thread * const self,mirror::Object * to_ref)1797 void ConcurrentCopying::PushOntoMarkStack(Thread* const self, mirror::Object* to_ref) {
1798 CHECK_EQ(is_mark_stack_push_disallowed_.load(std::memory_order_relaxed), 0)
1799 << " " << to_ref << " " << mirror::Object::PrettyTypeOf(to_ref);
1800 CHECK(thread_running_gc_ != nullptr);
1801 MarkStackMode mark_stack_mode = mark_stack_mode_.load(std::memory_order_relaxed);
1802 if (LIKELY(mark_stack_mode == kMarkStackModeThreadLocal)) {
1803 if (LIKELY(self == thread_running_gc_)) {
1804 // If GC-running thread, use the GC mark stack instead of a thread-local mark stack.
1805 CHECK(self->GetThreadLocalMarkStack() == nullptr);
1806 if (UNLIKELY(gc_mark_stack_->IsFull())) {
1807 ExpandGcMarkStack();
1808 }
1809 gc_mark_stack_->PushBack(to_ref);
1810 } else {
1811 // Otherwise, use a thread-local mark stack.
1812 accounting::AtomicStack<mirror::Object>* tl_mark_stack = self->GetThreadLocalMarkStack();
1813 if (UNLIKELY(tl_mark_stack == nullptr || tl_mark_stack->IsFull())) {
1814 MutexLock mu(self, mark_stack_lock_);
1815 // Get a new thread local mark stack.
1816 accounting::AtomicStack<mirror::Object>* new_tl_mark_stack;
1817 if (!pooled_mark_stacks_.empty()) {
1818 // Use a pooled mark stack.
1819 new_tl_mark_stack = pooled_mark_stacks_.back();
1820 pooled_mark_stacks_.pop_back();
1821 } else {
1822 // None pooled. Create a new one.
1823 new_tl_mark_stack =
1824 accounting::AtomicStack<mirror::Object>::Create(
1825 "thread local mark stack", 4 * KB, 4 * KB);
1826 }
1827 DCHECK(new_tl_mark_stack != nullptr);
1828 DCHECK(new_tl_mark_stack->IsEmpty());
1829 new_tl_mark_stack->PushBack(to_ref);
1830 self->SetThreadLocalMarkStack(new_tl_mark_stack);
1831 if (tl_mark_stack != nullptr) {
1832 // Store the old full stack into a vector.
1833 revoked_mark_stacks_.push_back(tl_mark_stack);
1834 RemoveThreadMarkStackMapping(self, tl_mark_stack);
1835 }
1836 AddThreadMarkStackMapping(self, new_tl_mark_stack);
1837 } else {
1838 tl_mark_stack->PushBack(to_ref);
1839 }
1840 }
1841 } else if (mark_stack_mode == kMarkStackModeShared) {
1842 // Access the shared GC mark stack with a lock.
1843 MutexLock mu(self, mark_stack_lock_);
1844 if (UNLIKELY(gc_mark_stack_->IsFull())) {
1845 ExpandGcMarkStack();
1846 }
1847 gc_mark_stack_->PushBack(to_ref);
1848 } else {
1849 CHECK_EQ(static_cast<uint32_t>(mark_stack_mode),
1850 static_cast<uint32_t>(kMarkStackModeGcExclusive))
1851 << "ref=" << to_ref
1852 << " self->gc_marking=" << self->GetIsGcMarking()
1853 << " cc->is_marking=" << is_marking_;
1854 CHECK(self == thread_running_gc_)
1855 << "Only GC-running thread should access the mark stack "
1856 << "in the GC exclusive mark stack mode";
1857 // Access the GC mark stack without a lock.
1858 if (UNLIKELY(gc_mark_stack_->IsFull())) {
1859 ExpandGcMarkStack();
1860 }
1861 gc_mark_stack_->PushBack(to_ref);
1862 }
1863 }
1864
GetAllocationStack()1865 accounting::ObjectStack* ConcurrentCopying::GetAllocationStack() {
1866 return heap_->allocation_stack_.get();
1867 }
1868
GetLiveStack()1869 accounting::ObjectStack* ConcurrentCopying::GetLiveStack() {
1870 return heap_->live_stack_.get();
1871 }
1872
1873 // The following visitors are used to verify that there's no references to the from-space left after
1874 // marking.
1875 class ConcurrentCopying::VerifyNoFromSpaceRefsVisitor : public SingleRootVisitor {
1876 public:
VerifyNoFromSpaceRefsVisitor(ConcurrentCopying * collector)1877 explicit VerifyNoFromSpaceRefsVisitor(ConcurrentCopying* collector)
1878 : collector_(collector) {}
1879
operator ()(mirror::Object * ref,MemberOffset offset=MemberOffset (0),mirror::Object * holder=nullptr) const1880 void operator()(mirror::Object* ref,
1881 MemberOffset offset = MemberOffset(0),
1882 mirror::Object* holder = nullptr) const
1883 REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
1884 if (ref == nullptr) {
1885 // OK.
1886 return;
1887 }
1888 collector_->AssertToSpaceInvariant(holder, offset, ref);
1889 if (kUseBakerReadBarrier) {
1890 CHECK_EQ(ref->GetReadBarrierState(), ReadBarrier::NonGrayState())
1891 << "Ref " << ref << " " << ref->PrettyTypeOf() << " has gray rb_state";
1892 }
1893 }
1894
VisitRoot(mirror::Object * root,const RootInfo & info ATTRIBUTE_UNUSED)1895 void VisitRoot(mirror::Object* root, const RootInfo& info ATTRIBUTE_UNUSED)
1896 override REQUIRES_SHARED(Locks::mutator_lock_) {
1897 DCHECK(root != nullptr);
1898 operator()(root);
1899 }
1900
1901 private:
1902 ConcurrentCopying* const collector_;
1903 };
1904
1905 class ConcurrentCopying::VerifyNoFromSpaceRefsFieldVisitor {
1906 public:
VerifyNoFromSpaceRefsFieldVisitor(ConcurrentCopying * collector)1907 explicit VerifyNoFromSpaceRefsFieldVisitor(ConcurrentCopying* collector)
1908 : collector_(collector) {}
1909
operator ()(ObjPtr<mirror::Object> obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const1910 void operator()(ObjPtr<mirror::Object> obj,
1911 MemberOffset offset,
1912 bool is_static ATTRIBUTE_UNUSED) const
1913 REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
1914 mirror::Object* ref =
1915 obj->GetFieldObject<mirror::Object, kDefaultVerifyFlags, kWithoutReadBarrier>(offset);
1916 VerifyNoFromSpaceRefsVisitor visitor(collector_);
1917 visitor(ref, offset, obj.Ptr());
1918 }
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const1919 void operator()(ObjPtr<mirror::Class> klass,
1920 ObjPtr<mirror::Reference> ref) const
1921 REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
1922 CHECK(klass->IsTypeOfReferenceClass());
1923 this->operator()(ref, mirror::Reference::ReferentOffset(), false);
1924 }
1925
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const1926 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
1927 REQUIRES_SHARED(Locks::mutator_lock_) {
1928 if (!root->IsNull()) {
1929 VisitRoot(root);
1930 }
1931 }
1932
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const1933 void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
1934 REQUIRES_SHARED(Locks::mutator_lock_) {
1935 VerifyNoFromSpaceRefsVisitor visitor(collector_);
1936 visitor(root->AsMirrorPtr());
1937 }
1938
1939 private:
1940 ConcurrentCopying* const collector_;
1941 };
1942
1943 // Verify there's no from-space references left after the marking phase.
VerifyNoFromSpaceReferences()1944 void ConcurrentCopying::VerifyNoFromSpaceReferences() {
1945 Thread* self = Thread::Current();
1946 DCHECK(Locks::mutator_lock_->IsExclusiveHeld(self));
1947 // Verify all threads have is_gc_marking to be false
1948 {
1949 MutexLock mu(self, *Locks::thread_list_lock_);
1950 std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
1951 for (Thread* thread : thread_list) {
1952 CHECK(!thread->GetIsGcMarking());
1953 }
1954 }
1955
1956 auto verify_no_from_space_refs_visitor = [&](mirror::Object* obj)
1957 REQUIRES_SHARED(Locks::mutator_lock_) {
1958 CHECK(obj != nullptr);
1959 space::RegionSpace* region_space = RegionSpace();
1960 CHECK(!region_space->IsInFromSpace(obj)) << "Scanning object " << obj << " in from space";
1961 VerifyNoFromSpaceRefsFieldVisitor visitor(this);
1962 obj->VisitReferences</*kVisitNativeRoots=*/true, kDefaultVerifyFlags, kWithoutReadBarrier>(
1963 visitor,
1964 visitor);
1965 if (kUseBakerReadBarrier) {
1966 CHECK_EQ(obj->GetReadBarrierState(), ReadBarrier::NonGrayState())
1967 << "obj=" << obj << " has gray rb_state " << obj->GetReadBarrierState();
1968 }
1969 };
1970 // Roots.
1971 {
1972 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
1973 VerifyNoFromSpaceRefsVisitor ref_visitor(this);
1974 Runtime::Current()->VisitRoots(&ref_visitor);
1975 }
1976 // The to-space.
1977 region_space_->WalkToSpace(verify_no_from_space_refs_visitor);
1978 // Non-moving spaces.
1979 {
1980 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
1981 heap_->GetMarkBitmap()->Visit(verify_no_from_space_refs_visitor);
1982 }
1983 // The alloc stack.
1984 {
1985 VerifyNoFromSpaceRefsVisitor ref_visitor(this);
1986 for (auto* it = heap_->allocation_stack_->Begin(), *end = heap_->allocation_stack_->End();
1987 it < end; ++it) {
1988 mirror::Object* const obj = it->AsMirrorPtr();
1989 if (obj != nullptr && obj->GetClass() != nullptr) {
1990 // TODO: need to call this only if obj is alive?
1991 ref_visitor(obj);
1992 verify_no_from_space_refs_visitor(obj);
1993 }
1994 }
1995 }
1996 // TODO: LOS. But only refs in LOS are classes.
1997 }
1998
1999 // The following visitors are used to assert the to-space invariant.
2000 class ConcurrentCopying::AssertToSpaceInvariantFieldVisitor {
2001 public:
AssertToSpaceInvariantFieldVisitor(ConcurrentCopying * collector)2002 explicit AssertToSpaceInvariantFieldVisitor(ConcurrentCopying* collector)
2003 : collector_(collector) {}
2004
operator ()(ObjPtr<mirror::Object> obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const2005 void operator()(ObjPtr<mirror::Object> obj,
2006 MemberOffset offset,
2007 bool is_static ATTRIBUTE_UNUSED) const
2008 REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
2009 mirror::Object* ref =
2010 obj->GetFieldObject<mirror::Object, kDefaultVerifyFlags, kWithoutReadBarrier>(offset);
2011 collector_->AssertToSpaceInvariant(obj.Ptr(), offset, ref);
2012 }
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref ATTRIBUTE_UNUSED) const2013 void operator()(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref ATTRIBUTE_UNUSED) const
2014 REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
2015 CHECK(klass->IsTypeOfReferenceClass());
2016 }
2017
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const2018 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
2019 REQUIRES_SHARED(Locks::mutator_lock_) {
2020 if (!root->IsNull()) {
2021 VisitRoot(root);
2022 }
2023 }
2024
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const2025 void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
2026 REQUIRES_SHARED(Locks::mutator_lock_) {
2027 mirror::Object* ref = root->AsMirrorPtr();
2028 collector_->AssertToSpaceInvariant(/* obj */ nullptr, MemberOffset(0), ref);
2029 }
2030
2031 private:
2032 ConcurrentCopying* const collector_;
2033 };
2034
RevokeThreadLocalMarkStacks(bool disable_weak_ref_access,Closure * checkpoint_callback)2035 void ConcurrentCopying::RevokeThreadLocalMarkStacks(bool disable_weak_ref_access,
2036 Closure* checkpoint_callback) {
2037 Thread* self = Thread::Current();
2038 RevokeThreadLocalMarkStackCheckpoint check_point(this, disable_weak_ref_access);
2039 ThreadList* thread_list = Runtime::Current()->GetThreadList();
2040 gc_barrier_->Init(self, 0);
2041 size_t barrier_count = thread_list->RunCheckpoint(&check_point, checkpoint_callback);
2042 // If there are no threads to wait which implys that all the checkpoint functions are finished,
2043 // then no need to release the mutator lock.
2044 if (barrier_count == 0) {
2045 return;
2046 }
2047 Locks::mutator_lock_->SharedUnlock(self);
2048 {
2049 ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
2050 gc_barrier_->Increment(self, barrier_count);
2051 }
2052 Locks::mutator_lock_->SharedLock(self);
2053 }
2054
RevokeThreadLocalMarkStack(Thread * thread)2055 void ConcurrentCopying::RevokeThreadLocalMarkStack(Thread* thread) {
2056 Thread* self = Thread::Current();
2057 CHECK_EQ(self, thread);
2058 MutexLock mu(self, mark_stack_lock_);
2059 accounting::AtomicStack<mirror::Object>* tl_mark_stack = thread->GetThreadLocalMarkStack();
2060 if (tl_mark_stack != nullptr) {
2061 CHECK(is_marking_);
2062 revoked_mark_stacks_.push_back(tl_mark_stack);
2063 RemoveThreadMarkStackMapping(thread, tl_mark_stack);
2064 thread->SetThreadLocalMarkStack(nullptr);
2065 }
2066 }
2067
ProcessMarkStack()2068 void ConcurrentCopying::ProcessMarkStack() {
2069 if (kVerboseMode) {
2070 LOG(INFO) << "ProcessMarkStack. ";
2071 }
2072 bool empty_prev = false;
2073 while (true) {
2074 bool empty = ProcessMarkStackOnce();
2075 if (empty_prev && empty) {
2076 // Saw empty mark stack for a second time, done.
2077 break;
2078 }
2079 empty_prev = empty;
2080 }
2081 }
2082
ProcessMarkStackOnce()2083 bool ConcurrentCopying::ProcessMarkStackOnce() {
2084 DCHECK(thread_running_gc_ != nullptr);
2085 Thread* const self = Thread::Current();
2086 DCHECK(self == thread_running_gc_);
2087 DCHECK(thread_running_gc_->GetThreadLocalMarkStack() == nullptr);
2088 size_t count = 0;
2089 MarkStackMode mark_stack_mode = mark_stack_mode_.load(std::memory_order_relaxed);
2090 if (mark_stack_mode == kMarkStackModeThreadLocal) {
2091 // Process the thread-local mark stacks and the GC mark stack.
2092 count += ProcessThreadLocalMarkStacks(/* disable_weak_ref_access= */ false,
2093 /* checkpoint_callback= */ nullptr,
2094 [this] (mirror::Object* ref)
2095 REQUIRES_SHARED(Locks::mutator_lock_) {
2096 ProcessMarkStackRef(ref);
2097 });
2098 while (!gc_mark_stack_->IsEmpty()) {
2099 mirror::Object* to_ref = gc_mark_stack_->PopBack();
2100 ProcessMarkStackRef(to_ref);
2101 ++count;
2102 }
2103 gc_mark_stack_->Reset();
2104 } else if (mark_stack_mode == kMarkStackModeShared) {
2105 // Do an empty checkpoint to avoid a race with a mutator preempted in the middle of a read
2106 // barrier but before pushing onto the mark stack. b/32508093. Note the weak ref access is
2107 // disabled at this point.
2108 IssueEmptyCheckpoint();
2109 // Process the shared GC mark stack with a lock.
2110 {
2111 MutexLock mu(thread_running_gc_, mark_stack_lock_);
2112 CHECK(revoked_mark_stacks_.empty());
2113 AssertEmptyThreadMarkStackMap();
2114 CHECK_EQ(pooled_mark_stacks_.size(), kMarkStackPoolSize);
2115 }
2116 while (true) {
2117 std::vector<mirror::Object*> refs;
2118 {
2119 // Copy refs with lock. Note the number of refs should be small.
2120 MutexLock mu(thread_running_gc_, mark_stack_lock_);
2121 if (gc_mark_stack_->IsEmpty()) {
2122 break;
2123 }
2124 for (StackReference<mirror::Object>* p = gc_mark_stack_->Begin();
2125 p != gc_mark_stack_->End(); ++p) {
2126 refs.push_back(p->AsMirrorPtr());
2127 }
2128 gc_mark_stack_->Reset();
2129 }
2130 for (mirror::Object* ref : refs) {
2131 ProcessMarkStackRef(ref);
2132 ++count;
2133 }
2134 }
2135 } else {
2136 CHECK_EQ(static_cast<uint32_t>(mark_stack_mode),
2137 static_cast<uint32_t>(kMarkStackModeGcExclusive));
2138 {
2139 MutexLock mu(thread_running_gc_, mark_stack_lock_);
2140 CHECK(revoked_mark_stacks_.empty());
2141 AssertEmptyThreadMarkStackMap();
2142 CHECK_EQ(pooled_mark_stacks_.size(), kMarkStackPoolSize);
2143 }
2144 // Process the GC mark stack in the exclusive mode. No need to take the lock.
2145 while (!gc_mark_stack_->IsEmpty()) {
2146 mirror::Object* to_ref = gc_mark_stack_->PopBack();
2147 ProcessMarkStackRef(to_ref);
2148 ++count;
2149 }
2150 gc_mark_stack_->Reset();
2151 }
2152
2153 // Return true if the stack was empty.
2154 return count == 0;
2155 }
2156
2157 template <typename Processor>
ProcessThreadLocalMarkStacks(bool disable_weak_ref_access,Closure * checkpoint_callback,const Processor & processor)2158 size_t ConcurrentCopying::ProcessThreadLocalMarkStacks(bool disable_weak_ref_access,
2159 Closure* checkpoint_callback,
2160 const Processor& processor) {
2161 // Run a checkpoint to collect all thread local mark stacks and iterate over them all.
2162 RevokeThreadLocalMarkStacks(disable_weak_ref_access, checkpoint_callback);
2163 if (disable_weak_ref_access) {
2164 CHECK_EQ(static_cast<uint32_t>(mark_stack_mode_.load(std::memory_order_relaxed)),
2165 static_cast<uint32_t>(kMarkStackModeShared));
2166 // From this point onwards no mutator should require a thread-local mark
2167 // stack.
2168 MutexLock mu(thread_running_gc_, mark_stack_lock_);
2169 AssertEmptyThreadMarkStackMap();
2170 }
2171 size_t count = 0;
2172 std::vector<accounting::AtomicStack<mirror::Object>*> mark_stacks;
2173 {
2174 MutexLock mu(thread_running_gc_, mark_stack_lock_);
2175 // Make a copy of the mark stack vector.
2176 mark_stacks = revoked_mark_stacks_;
2177 revoked_mark_stacks_.clear();
2178 }
2179 for (accounting::AtomicStack<mirror::Object>* mark_stack : mark_stacks) {
2180 for (StackReference<mirror::Object>* p = mark_stack->Begin(); p != mark_stack->End(); ++p) {
2181 mirror::Object* to_ref = p->AsMirrorPtr();
2182 processor(to_ref);
2183 ++count;
2184 }
2185 {
2186 MutexLock mu(thread_running_gc_, mark_stack_lock_);
2187 if (pooled_mark_stacks_.size() >= kMarkStackPoolSize) {
2188 // The pool has enough. Delete it.
2189 delete mark_stack;
2190 } else {
2191 // Otherwise, put it into the pool for later reuse.
2192 mark_stack->Reset();
2193 pooled_mark_stacks_.push_back(mark_stack);
2194 }
2195 }
2196 }
2197 if (disable_weak_ref_access) {
2198 MutexLock mu(thread_running_gc_, mark_stack_lock_);
2199 CHECK(revoked_mark_stacks_.empty());
2200 CHECK_EQ(pooled_mark_stacks_.size(), kMarkStackPoolSize);
2201 }
2202 return count;
2203 }
2204
ProcessMarkStackRef(mirror::Object * to_ref)2205 inline void ConcurrentCopying::ProcessMarkStackRef(mirror::Object* to_ref) {
2206 DCHECK(!region_space_->IsInFromSpace(to_ref));
2207 space::RegionSpace::RegionType rtype = region_space_->GetRegionType(to_ref);
2208 if (kUseBakerReadBarrier) {
2209 DCHECK(to_ref->GetReadBarrierState() == ReadBarrier::GrayState())
2210 << " to_ref=" << to_ref
2211 << " rb_state=" << to_ref->GetReadBarrierState()
2212 << " is_marked=" << IsMarked(to_ref)
2213 << " type=" << to_ref->PrettyTypeOf()
2214 << " young_gen=" << std::boolalpha << young_gen_ << std::noboolalpha
2215 << " space=" << heap_->DumpSpaceNameFromAddress(to_ref)
2216 << " region_type=" << rtype
2217 // TODO: Temporary; remove this when this is no longer needed (b/116087961).
2218 << " runtime->sentinel=" << Runtime::Current()->GetSentinel().Read<kWithoutReadBarrier>();
2219 }
2220 bool add_to_live_bytes = false;
2221 // Invariant: There should be no object from a newly-allocated
2222 // region (either large or non-large) on the mark stack.
2223 DCHECK(!region_space_->IsInNewlyAllocatedRegion(to_ref)) << to_ref;
2224 bool perform_scan = false;
2225 switch (rtype) {
2226 case space::RegionSpace::RegionType::kRegionTypeUnevacFromSpace:
2227 // Mark the bitmap only in the GC thread here so that we don't need a CAS.
2228 if (!kUseBakerReadBarrier || !region_space_bitmap_->Set(to_ref)) {
2229 // It may be already marked if we accidentally pushed the same object twice due to the racy
2230 // bitmap read in MarkUnevacFromSpaceRegion.
2231 if (use_generational_cc_ && young_gen_) {
2232 CHECK(region_space_->IsLargeObject(to_ref));
2233 region_space_->ZeroLiveBytesForLargeObject(to_ref);
2234 }
2235 perform_scan = true;
2236 // Only add to the live bytes if the object was not already marked and we are not the young
2237 // GC.
2238 // Why add live bytes even after 2-phase GC?
2239 // We need to ensure that if there is a unevac region with any live
2240 // objects, then its live_bytes must be non-zero. Otherwise,
2241 // ClearFromSpace() will clear the region. Considering, that we may skip
2242 // live objects during marking phase of 2-phase GC, we have to take care
2243 // of such objects here.
2244 add_to_live_bytes = true;
2245 }
2246 break;
2247 case space::RegionSpace::RegionType::kRegionTypeToSpace:
2248 if (use_generational_cc_) {
2249 // Copied to to-space, set the bit so that the next GC can scan objects.
2250 region_space_bitmap_->Set(to_ref);
2251 }
2252 perform_scan = true;
2253 break;
2254 default:
2255 DCHECK(!region_space_->HasAddress(to_ref)) << to_ref;
2256 DCHECK(!immune_spaces_.ContainsObject(to_ref));
2257 // Non-moving or large-object space.
2258 if (kUseBakerReadBarrier) {
2259 accounting::ContinuousSpaceBitmap* mark_bitmap =
2260 heap_->GetNonMovingSpace()->GetMarkBitmap();
2261 const bool is_los = !mark_bitmap->HasAddress(to_ref);
2262 if (is_los) {
2263 if (!IsAligned<kPageSize>(to_ref)) {
2264 // Ref is a large object that is not aligned, it must be heap
2265 // corruption. Remove memory protection and dump data before
2266 // AtomicSetReadBarrierState since it will fault if the address is not
2267 // valid.
2268 region_space_->Unprotect();
2269 heap_->GetVerification()->LogHeapCorruption(/* obj */ nullptr,
2270 MemberOffset(0),
2271 to_ref,
2272 /* fatal */ true);
2273 }
2274 DCHECK(heap_->GetLargeObjectsSpace())
2275 << "ref=" << to_ref
2276 << " doesn't belong to non-moving space and large object space doesn't exist";
2277 accounting::LargeObjectBitmap* los_bitmap =
2278 heap_->GetLargeObjectsSpace()->GetMarkBitmap();
2279 DCHECK(los_bitmap->HasAddress(to_ref));
2280 // Only the GC thread could be setting the LOS bit map hence doesn't
2281 // need to be atomically done.
2282 perform_scan = !los_bitmap->Set(to_ref);
2283 } else {
2284 // Only the GC thread could be setting the non-moving space bit map
2285 // hence doesn't need to be atomically done.
2286 perform_scan = !mark_bitmap->Set(to_ref);
2287 }
2288 } else {
2289 perform_scan = true;
2290 }
2291 }
2292 if (perform_scan) {
2293 if (use_generational_cc_ && young_gen_) {
2294 Scan<true>(to_ref);
2295 } else {
2296 Scan<false>(to_ref);
2297 }
2298 }
2299 if (kUseBakerReadBarrier) {
2300 DCHECK(to_ref->GetReadBarrierState() == ReadBarrier::GrayState())
2301 << " to_ref=" << to_ref
2302 << " rb_state=" << to_ref->GetReadBarrierState()
2303 << " is_marked=" << IsMarked(to_ref)
2304 << " type=" << to_ref->PrettyTypeOf()
2305 << " young_gen=" << std::boolalpha << young_gen_ << std::noboolalpha
2306 << " space=" << heap_->DumpSpaceNameFromAddress(to_ref)
2307 << " region_type=" << rtype
2308 // TODO: Temporary; remove this when this is no longer needed (b/116087961).
2309 << " runtime->sentinel=" << Runtime::Current()->GetSentinel().Read<kWithoutReadBarrier>();
2310 }
2311 #ifdef USE_BAKER_OR_BROOKS_READ_BARRIER
2312 mirror::Object* referent = nullptr;
2313 if (UNLIKELY((to_ref->GetClass<kVerifyNone, kWithoutReadBarrier>()->IsTypeOfReferenceClass() &&
2314 (referent = to_ref->AsReference()->GetReferent<kWithoutReadBarrier>()) != nullptr &&
2315 !IsInToSpace(referent)))) {
2316 // Leave this reference gray in the queue so that GetReferent() will trigger a read barrier. We
2317 // will change it to non-gray later in ReferenceQueue::DisableReadBarrierForReference.
2318 DCHECK(to_ref->AsReference()->GetPendingNext() != nullptr)
2319 << "Left unenqueued ref gray " << to_ref;
2320 } else {
2321 // We may occasionally leave a reference non-gray in the queue if its referent happens to be
2322 // concurrently marked after the Scan() call above has enqueued the Reference, in which case the
2323 // above IsInToSpace() evaluates to true and we change the color from gray to non-gray here in
2324 // this else block.
2325 if (kUseBakerReadBarrier) {
2326 bool success = to_ref->AtomicSetReadBarrierState<std::memory_order_release>(
2327 ReadBarrier::GrayState(),
2328 ReadBarrier::NonGrayState());
2329 DCHECK(success) << "Must succeed as we won the race.";
2330 }
2331 }
2332 #else
2333 DCHECK(!kUseBakerReadBarrier);
2334 #endif
2335
2336 if (add_to_live_bytes) {
2337 // Add to the live bytes per unevacuated from-space. Note this code is always run by the
2338 // GC-running thread (no synchronization required).
2339 DCHECK(region_space_bitmap_->Test(to_ref));
2340 size_t obj_size = to_ref->SizeOf<kDefaultVerifyFlags>();
2341 size_t alloc_size = RoundUp(obj_size, space::RegionSpace::kAlignment);
2342 region_space_->AddLiveBytes(to_ref, alloc_size);
2343 }
2344 if (ReadBarrier::kEnableToSpaceInvariantChecks) {
2345 CHECK(to_ref != nullptr);
2346 space::RegionSpace* region_space = RegionSpace();
2347 CHECK(!region_space->IsInFromSpace(to_ref)) << "Scanning object " << to_ref << " in from space";
2348 AssertToSpaceInvariant(nullptr, MemberOffset(0), to_ref);
2349 AssertToSpaceInvariantFieldVisitor visitor(this);
2350 to_ref->VisitReferences</*kVisitNativeRoots=*/true, kDefaultVerifyFlags, kWithoutReadBarrier>(
2351 visitor,
2352 visitor);
2353 }
2354 }
2355
2356 class ConcurrentCopying::DisableWeakRefAccessCallback : public Closure {
2357 public:
DisableWeakRefAccessCallback(ConcurrentCopying * concurrent_copying)2358 explicit DisableWeakRefAccessCallback(ConcurrentCopying* concurrent_copying)
2359 : concurrent_copying_(concurrent_copying) {
2360 }
2361
Run(Thread * self ATTRIBUTE_UNUSED)2362 void Run(Thread* self ATTRIBUTE_UNUSED) override REQUIRES(Locks::thread_list_lock_) {
2363 // This needs to run under the thread_list_lock_ critical section in ThreadList::RunCheckpoint()
2364 // to avoid a deadlock b/31500969.
2365 CHECK(concurrent_copying_->weak_ref_access_enabled_);
2366 concurrent_copying_->weak_ref_access_enabled_ = false;
2367 }
2368
2369 private:
2370 ConcurrentCopying* const concurrent_copying_;
2371 };
2372
SwitchToSharedMarkStackMode()2373 void ConcurrentCopying::SwitchToSharedMarkStackMode() {
2374 Thread* self = Thread::Current();
2375 DCHECK(thread_running_gc_ != nullptr);
2376 DCHECK(self == thread_running_gc_);
2377 DCHECK(thread_running_gc_->GetThreadLocalMarkStack() == nullptr);
2378 MarkStackMode before_mark_stack_mode = mark_stack_mode_.load(std::memory_order_relaxed);
2379 CHECK_EQ(static_cast<uint32_t>(before_mark_stack_mode),
2380 static_cast<uint32_t>(kMarkStackModeThreadLocal));
2381 mark_stack_mode_.store(kMarkStackModeShared, std::memory_order_relaxed);
2382 DisableWeakRefAccessCallback dwrac(this);
2383 // Process the thread local mark stacks one last time after switching to the shared mark stack
2384 // mode and disable weak ref accesses.
2385 ProcessThreadLocalMarkStacks(/* disable_weak_ref_access= */ true,
2386 &dwrac,
2387 [this] (mirror::Object* ref)
2388 REQUIRES_SHARED(Locks::mutator_lock_) {
2389 ProcessMarkStackRef(ref);
2390 });
2391 if (kVerboseMode) {
2392 LOG(INFO) << "Switched to shared mark stack mode and disabled weak ref access";
2393 }
2394 }
2395
SwitchToGcExclusiveMarkStackMode()2396 void ConcurrentCopying::SwitchToGcExclusiveMarkStackMode() {
2397 Thread* self = Thread::Current();
2398 DCHECK(thread_running_gc_ != nullptr);
2399 DCHECK(self == thread_running_gc_);
2400 DCHECK(thread_running_gc_->GetThreadLocalMarkStack() == nullptr);
2401 MarkStackMode before_mark_stack_mode = mark_stack_mode_.load(std::memory_order_relaxed);
2402 CHECK_EQ(static_cast<uint32_t>(before_mark_stack_mode),
2403 static_cast<uint32_t>(kMarkStackModeShared));
2404 mark_stack_mode_.store(kMarkStackModeGcExclusive, std::memory_order_relaxed);
2405 QuasiAtomic::ThreadFenceForConstructor();
2406 if (kVerboseMode) {
2407 LOG(INFO) << "Switched to GC exclusive mark stack mode";
2408 }
2409 }
2410
CheckEmptyMarkStack()2411 void ConcurrentCopying::CheckEmptyMarkStack() {
2412 Thread* self = Thread::Current();
2413 DCHECK(thread_running_gc_ != nullptr);
2414 DCHECK(self == thread_running_gc_);
2415 DCHECK(thread_running_gc_->GetThreadLocalMarkStack() == nullptr);
2416 MarkStackMode mark_stack_mode = mark_stack_mode_.load(std::memory_order_relaxed);
2417 if (mark_stack_mode == kMarkStackModeThreadLocal) {
2418 // Thread-local mark stack mode.
2419 RevokeThreadLocalMarkStacks(false, nullptr);
2420 MutexLock mu(thread_running_gc_, mark_stack_lock_);
2421 if (!revoked_mark_stacks_.empty()) {
2422 for (accounting::AtomicStack<mirror::Object>* mark_stack : revoked_mark_stacks_) {
2423 while (!mark_stack->IsEmpty()) {
2424 mirror::Object* obj = mark_stack->PopBack();
2425 if (kUseBakerReadBarrier) {
2426 uint32_t rb_state = obj->GetReadBarrierState();
2427 LOG(INFO) << "On mark queue : " << obj << " " << obj->PrettyTypeOf() << " rb_state="
2428 << rb_state << " is_marked=" << IsMarked(obj);
2429 } else {
2430 LOG(INFO) << "On mark queue : " << obj << " " << obj->PrettyTypeOf()
2431 << " is_marked=" << IsMarked(obj);
2432 }
2433 }
2434 }
2435 LOG(FATAL) << "mark stack is not empty";
2436 }
2437 } else {
2438 // Shared, GC-exclusive, or off.
2439 MutexLock mu(thread_running_gc_, mark_stack_lock_);
2440 CHECK(gc_mark_stack_->IsEmpty());
2441 CHECK(revoked_mark_stacks_.empty());
2442 AssertEmptyThreadMarkStackMap();
2443 CHECK_EQ(pooled_mark_stacks_.size(), kMarkStackPoolSize);
2444 }
2445 }
2446
SweepSystemWeaks(Thread * self)2447 void ConcurrentCopying::SweepSystemWeaks(Thread* self) {
2448 TimingLogger::ScopedTiming split("SweepSystemWeaks", GetTimings());
2449 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
2450 Runtime::Current()->SweepSystemWeaks(this);
2451 }
2452
Sweep(bool swap_bitmaps)2453 void ConcurrentCopying::Sweep(bool swap_bitmaps) {
2454 if (use_generational_cc_ && young_gen_) {
2455 // Only sweep objects on the live stack.
2456 SweepArray(heap_->GetLiveStack(), /* swap_bitmaps= */ false);
2457 } else {
2458 {
2459 TimingLogger::ScopedTiming t("MarkStackAsLive", GetTimings());
2460 accounting::ObjectStack* live_stack = heap_->GetLiveStack();
2461 if (kEnableFromSpaceAccountingCheck) {
2462 // Ensure that nobody inserted items in the live stack after we swapped the stacks.
2463 CHECK_GE(live_stack_freeze_size_, live_stack->Size());
2464 }
2465 heap_->MarkAllocStackAsLive(live_stack);
2466 live_stack->Reset();
2467 }
2468 CheckEmptyMarkStack();
2469 TimingLogger::ScopedTiming split("Sweep", GetTimings());
2470 for (const auto& space : GetHeap()->GetContinuousSpaces()) {
2471 if (space->IsContinuousMemMapAllocSpace() && space != region_space_
2472 && !immune_spaces_.ContainsSpace(space)) {
2473 space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
2474 TimingLogger::ScopedTiming split2(
2475 alloc_space->IsZygoteSpace() ? "SweepZygoteSpace" : "SweepAllocSpace", GetTimings());
2476 RecordFree(alloc_space->Sweep(swap_bitmaps));
2477 }
2478 }
2479 SweepLargeObjects(swap_bitmaps);
2480 }
2481 }
2482
2483 // Copied and adapted from MarkSweep::SweepArray.
SweepArray(accounting::ObjectStack * allocations,bool swap_bitmaps)2484 void ConcurrentCopying::SweepArray(accounting::ObjectStack* allocations, bool swap_bitmaps) {
2485 // This method is only used when Generational CC collection is enabled.
2486 DCHECK(use_generational_cc_);
2487 CheckEmptyMarkStack();
2488 TimingLogger::ScopedTiming t("SweepArray", GetTimings());
2489 Thread* self = Thread::Current();
2490 mirror::Object** chunk_free_buffer = reinterpret_cast<mirror::Object**>(
2491 sweep_array_free_buffer_mem_map_.BaseBegin());
2492 size_t chunk_free_pos = 0;
2493 ObjectBytePair freed;
2494 ObjectBytePair freed_los;
2495 // How many objects are left in the array, modified after each space is swept.
2496 StackReference<mirror::Object>* objects = allocations->Begin();
2497 size_t count = allocations->Size();
2498 // Start by sweeping the continuous spaces.
2499 for (space::ContinuousSpace* space : heap_->GetContinuousSpaces()) {
2500 if (!space->IsAllocSpace() ||
2501 space == region_space_ ||
2502 immune_spaces_.ContainsSpace(space) ||
2503 space->GetLiveBitmap() == nullptr) {
2504 continue;
2505 }
2506 space::AllocSpace* alloc_space = space->AsAllocSpace();
2507 accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
2508 accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
2509 if (swap_bitmaps) {
2510 std::swap(live_bitmap, mark_bitmap);
2511 }
2512 StackReference<mirror::Object>* out = objects;
2513 for (size_t i = 0; i < count; ++i) {
2514 mirror::Object* const obj = objects[i].AsMirrorPtr();
2515 if (kUseThreadLocalAllocationStack && obj == nullptr) {
2516 continue;
2517 }
2518 if (space->HasAddress(obj)) {
2519 // This object is in the space, remove it from the array and add it to the sweep buffer
2520 // if needed.
2521 if (!mark_bitmap->Test(obj)) {
2522 if (chunk_free_pos >= kSweepArrayChunkFreeSize) {
2523 TimingLogger::ScopedTiming t2("FreeList", GetTimings());
2524 freed.objects += chunk_free_pos;
2525 freed.bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer);
2526 chunk_free_pos = 0;
2527 }
2528 chunk_free_buffer[chunk_free_pos++] = obj;
2529 }
2530 } else {
2531 (out++)->Assign(obj);
2532 }
2533 }
2534 if (chunk_free_pos > 0) {
2535 TimingLogger::ScopedTiming t2("FreeList", GetTimings());
2536 freed.objects += chunk_free_pos;
2537 freed.bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer);
2538 chunk_free_pos = 0;
2539 }
2540 // All of the references which space contained are no longer in the allocation stack, update
2541 // the count.
2542 count = out - objects;
2543 }
2544 // Handle the large object space.
2545 space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
2546 if (large_object_space != nullptr) {
2547 accounting::LargeObjectBitmap* large_live_objects = large_object_space->GetLiveBitmap();
2548 accounting::LargeObjectBitmap* large_mark_objects = large_object_space->GetMarkBitmap();
2549 if (swap_bitmaps) {
2550 std::swap(large_live_objects, large_mark_objects);
2551 }
2552 for (size_t i = 0; i < count; ++i) {
2553 mirror::Object* const obj = objects[i].AsMirrorPtr();
2554 // Handle large objects.
2555 if (kUseThreadLocalAllocationStack && obj == nullptr) {
2556 continue;
2557 }
2558 if (!large_mark_objects->Test(obj)) {
2559 ++freed_los.objects;
2560 freed_los.bytes += large_object_space->Free(self, obj);
2561 }
2562 }
2563 }
2564 {
2565 TimingLogger::ScopedTiming t2("RecordFree", GetTimings());
2566 RecordFree(freed);
2567 RecordFreeLOS(freed_los);
2568 t2.NewTiming("ResetStack");
2569 allocations->Reset();
2570 }
2571 sweep_array_free_buffer_mem_map_.MadviseDontNeedAndZero();
2572 }
2573
MarkZygoteLargeObjects()2574 void ConcurrentCopying::MarkZygoteLargeObjects() {
2575 TimingLogger::ScopedTiming split(__FUNCTION__, GetTimings());
2576 Thread* const self = Thread::Current();
2577 WriterMutexLock rmu(self, *Locks::heap_bitmap_lock_);
2578 space::LargeObjectSpace* const los = heap_->GetLargeObjectsSpace();
2579 if (los != nullptr) {
2580 // Pick the current live bitmap (mark bitmap if swapped).
2581 accounting::LargeObjectBitmap* const live_bitmap = los->GetLiveBitmap();
2582 accounting::LargeObjectBitmap* const mark_bitmap = los->GetMarkBitmap();
2583 // Walk through all of the objects and explicitly mark the zygote ones so they don't get swept.
2584 std::pair<uint8_t*, uint8_t*> range = los->GetBeginEndAtomic();
2585 live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(range.first),
2586 reinterpret_cast<uintptr_t>(range.second),
2587 [mark_bitmap, los, self](mirror::Object* obj)
2588 REQUIRES(Locks::heap_bitmap_lock_)
2589 REQUIRES_SHARED(Locks::mutator_lock_) {
2590 if (los->IsZygoteLargeObject(self, obj)) {
2591 mark_bitmap->Set(obj);
2592 }
2593 });
2594 }
2595 }
2596
SweepLargeObjects(bool swap_bitmaps)2597 void ConcurrentCopying::SweepLargeObjects(bool swap_bitmaps) {
2598 TimingLogger::ScopedTiming split("SweepLargeObjects", GetTimings());
2599 if (heap_->GetLargeObjectsSpace() != nullptr) {
2600 RecordFreeLOS(heap_->GetLargeObjectsSpace()->Sweep(swap_bitmaps));
2601 }
2602 }
2603
CaptureRssAtPeak()2604 void ConcurrentCopying::CaptureRssAtPeak() {
2605 using range_t = std::pair<void*, void*>;
2606 // This operation is expensive as several calls to mincore() are performed.
2607 // Also, this must be called before clearing regions in ReclaimPhase().
2608 // Therefore, we make it conditional on the flag that enables dumping GC
2609 // performance info on shutdown.
2610 if (Runtime::Current()->GetDumpGCPerformanceOnShutdown()) {
2611 std::list<range_t> gc_ranges;
2612 auto add_gc_range = [&gc_ranges](void* start, size_t size) {
2613 void* end = static_cast<char*>(start) + RoundUp(size, kPageSize);
2614 gc_ranges.emplace_back(range_t(start, end));
2615 };
2616
2617 // region space
2618 DCHECK(IsAligned<kPageSize>(region_space_->Limit()));
2619 gc_ranges.emplace_back(range_t(region_space_->Begin(), region_space_->Limit()));
2620 // mark bitmap
2621 add_gc_range(region_space_bitmap_->Begin(), region_space_bitmap_->Size());
2622
2623 // non-moving space
2624 {
2625 DCHECK(IsAligned<kPageSize>(heap_->non_moving_space_->Limit()));
2626 gc_ranges.emplace_back(range_t(heap_->non_moving_space_->Begin(),
2627 heap_->non_moving_space_->Limit()));
2628 // mark bitmap
2629 accounting::ContinuousSpaceBitmap *bitmap = heap_->non_moving_space_->GetMarkBitmap();
2630 add_gc_range(bitmap->Begin(), bitmap->Size());
2631 // live bitmap. Deal with bound bitmaps.
2632 ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
2633 if (heap_->non_moving_space_->HasBoundBitmaps()) {
2634 DCHECK_EQ(bitmap, heap_->non_moving_space_->GetLiveBitmap());
2635 bitmap = heap_->non_moving_space_->GetTempBitmap();
2636 } else {
2637 bitmap = heap_->non_moving_space_->GetLiveBitmap();
2638 }
2639 add_gc_range(bitmap->Begin(), bitmap->Size());
2640 }
2641 // large-object space
2642 if (heap_->GetLargeObjectsSpace()) {
2643 heap_->GetLargeObjectsSpace()->ForEachMemMap([&add_gc_range](const MemMap& map) {
2644 DCHECK(IsAligned<kPageSize>(map.BaseSize()));
2645 add_gc_range(map.BaseBegin(), map.BaseSize());
2646 });
2647 // mark bitmap
2648 accounting::LargeObjectBitmap* bitmap = heap_->GetLargeObjectsSpace()->GetMarkBitmap();
2649 add_gc_range(bitmap->Begin(), bitmap->Size());
2650 // live bitmap
2651 bitmap = heap_->GetLargeObjectsSpace()->GetLiveBitmap();
2652 add_gc_range(bitmap->Begin(), bitmap->Size());
2653 }
2654 // card table
2655 add_gc_range(heap_->GetCardTable()->MemMapBegin(), heap_->GetCardTable()->MemMapSize());
2656 // inter-region refs
2657 if (use_generational_cc_ && !young_gen_) {
2658 // region space
2659 add_gc_range(region_space_inter_region_bitmap_.Begin(),
2660 region_space_inter_region_bitmap_.Size());
2661 // non-moving space
2662 add_gc_range(non_moving_space_inter_region_bitmap_.Begin(),
2663 non_moving_space_inter_region_bitmap_.Size());
2664 }
2665 // Extract RSS using mincore(). Updates the cummulative RSS counter.
2666 ExtractRssFromMincore(&gc_ranges);
2667 }
2668 }
2669
ReclaimPhase()2670 void ConcurrentCopying::ReclaimPhase() {
2671 TimingLogger::ScopedTiming split("ReclaimPhase", GetTimings());
2672 if (kVerboseMode) {
2673 LOG(INFO) << "GC ReclaimPhase";
2674 }
2675 Thread* self = Thread::Current();
2676
2677 {
2678 // Double-check that the mark stack is empty.
2679 // Note: need to set this after VerifyNoFromSpaceRef().
2680 is_asserting_to_space_invariant_ = false;
2681 QuasiAtomic::ThreadFenceForConstructor();
2682 if (kVerboseMode) {
2683 LOG(INFO) << "Issue an empty check point. ";
2684 }
2685 IssueEmptyCheckpoint();
2686 // Disable the check.
2687 is_mark_stack_push_disallowed_.store(0, std::memory_order_seq_cst);
2688 if (kUseBakerReadBarrier) {
2689 updated_all_immune_objects_.store(false, std::memory_order_seq_cst);
2690 }
2691 CheckEmptyMarkStack();
2692 }
2693
2694 // Capture RSS at the time when memory usage is at its peak. All GC related
2695 // memory ranges like java heap, card table, bitmap etc. are taken into
2696 // account.
2697 // TODO: We can fetch resident memory for region space directly by going
2698 // through list of allocated regions. This way we can avoid calling mincore on
2699 // the biggest memory range, thereby reducing the cost of this function.
2700 CaptureRssAtPeak();
2701
2702 // Sweep the malloc spaces before clearing the from space since the memory tool mode might
2703 // access the object classes in the from space for dead objects.
2704 {
2705 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
2706 Sweep(/* swap_bitmaps= */ false);
2707 SwapBitmaps();
2708 heap_->UnBindBitmaps();
2709
2710 // The bitmap was cleared at the start of the GC, there is nothing we need to do here.
2711 DCHECK(region_space_bitmap_ != nullptr);
2712 region_space_bitmap_ = nullptr;
2713 }
2714
2715
2716 {
2717 // Record freed objects.
2718 TimingLogger::ScopedTiming split2("RecordFree", GetTimings());
2719 // Don't include thread-locals that are in the to-space.
2720 const uint64_t from_bytes = region_space_->GetBytesAllocatedInFromSpace();
2721 const uint64_t from_objects = region_space_->GetObjectsAllocatedInFromSpace();
2722 const uint64_t unevac_from_bytes = region_space_->GetBytesAllocatedInUnevacFromSpace();
2723 const uint64_t unevac_from_objects = region_space_->GetObjectsAllocatedInUnevacFromSpace();
2724 uint64_t to_bytes = bytes_moved_.load(std::memory_order_relaxed) + bytes_moved_gc_thread_;
2725 cumulative_bytes_moved_.fetch_add(to_bytes, std::memory_order_relaxed);
2726 uint64_t to_objects = objects_moved_.load(std::memory_order_relaxed) + objects_moved_gc_thread_;
2727 cumulative_objects_moved_.fetch_add(to_objects, std::memory_order_relaxed);
2728 if (kEnableFromSpaceAccountingCheck) {
2729 CHECK_EQ(from_space_num_objects_at_first_pause_, from_objects + unevac_from_objects);
2730 CHECK_EQ(from_space_num_bytes_at_first_pause_, from_bytes + unevac_from_bytes);
2731 }
2732 CHECK_LE(to_objects, from_objects);
2733 // to_bytes <= from_bytes is only approximately true, because objects expand a little when
2734 // copying to non-moving space in near-OOM situations.
2735 if (from_bytes > 0) {
2736 copied_live_bytes_ratio_sum_ += static_cast<float>(to_bytes) / from_bytes;
2737 gc_count_++;
2738 }
2739
2740 // Cleared bytes and objects, populated by the call to RegionSpace::ClearFromSpace below.
2741 uint64_t cleared_bytes;
2742 uint64_t cleared_objects;
2743 {
2744 TimingLogger::ScopedTiming split4("ClearFromSpace", GetTimings());
2745 region_space_->ClearFromSpace(&cleared_bytes, &cleared_objects, /*clear_bitmap*/ !young_gen_);
2746 // `cleared_bytes` and `cleared_objects` may be greater than the from space equivalents since
2747 // RegionSpace::ClearFromSpace may clear empty unevac regions.
2748 CHECK_GE(cleared_bytes, from_bytes);
2749 CHECK_GE(cleared_objects, from_objects);
2750 }
2751 // freed_bytes could conceivably be negative if we fall back to nonmoving space and have to
2752 // pad to a larger size.
2753 int64_t freed_bytes = (int64_t)cleared_bytes - (int64_t)to_bytes;
2754 uint64_t freed_objects = cleared_objects - to_objects;
2755 if (kVerboseMode) {
2756 LOG(INFO) << "RecordFree:"
2757 << " from_bytes=" << from_bytes << " from_objects=" << from_objects
2758 << " unevac_from_bytes=" << unevac_from_bytes
2759 << " unevac_from_objects=" << unevac_from_objects
2760 << " to_bytes=" << to_bytes << " to_objects=" << to_objects
2761 << " freed_bytes=" << freed_bytes << " freed_objects=" << freed_objects
2762 << " from_space size=" << region_space_->FromSpaceSize()
2763 << " unevac_from_space size=" << region_space_->UnevacFromSpaceSize()
2764 << " to_space size=" << region_space_->ToSpaceSize();
2765 LOG(INFO) << "(before) num_bytes_allocated="
2766 << heap_->num_bytes_allocated_.load();
2767 }
2768 RecordFree(ObjectBytePair(freed_objects, freed_bytes));
2769 if (kVerboseMode) {
2770 LOG(INFO) << "(after) num_bytes_allocated="
2771 << heap_->num_bytes_allocated_.load();
2772 }
2773
2774 float reclaimed_bytes_ratio = static_cast<float>(freed_bytes) / num_bytes_allocated_before_gc_;
2775 reclaimed_bytes_ratio_sum_ += reclaimed_bytes_ratio;
2776 }
2777
2778 CheckEmptyMarkStack();
2779
2780 if (heap_->dump_region_info_after_gc_) {
2781 LOG(INFO) << "time=" << region_space_->Time();
2782 region_space_->DumpNonFreeRegions(LOG_STREAM(INFO));
2783 }
2784
2785 if (kVerboseMode) {
2786 LOG(INFO) << "GC end of ReclaimPhase";
2787 }
2788 }
2789
DumpReferenceInfo(mirror::Object * ref,const char * ref_name,const char * indent)2790 std::string ConcurrentCopying::DumpReferenceInfo(mirror::Object* ref,
2791 const char* ref_name,
2792 const char* indent) {
2793 std::ostringstream oss;
2794 oss << indent << heap_->GetVerification()->DumpObjectInfo(ref, ref_name) << '\n';
2795 if (ref != nullptr) {
2796 if (kUseBakerReadBarrier) {
2797 oss << indent << ref_name << "->GetMarkBit()=" << ref->GetMarkBit() << '\n';
2798 oss << indent << ref_name << "->GetReadBarrierState()=" << ref->GetReadBarrierState() << '\n';
2799 }
2800 }
2801 if (region_space_->HasAddress(ref)) {
2802 oss << indent << "Region containing " << ref_name << ":" << '\n';
2803 region_space_->DumpRegionForObject(oss, ref);
2804 if (region_space_bitmap_ != nullptr) {
2805 oss << indent << "region_space_bitmap_->Test(" << ref_name << ")="
2806 << std::boolalpha << region_space_bitmap_->Test(ref) << std::noboolalpha;
2807 }
2808 }
2809 return oss.str();
2810 }
2811
DumpHeapReference(mirror::Object * obj,MemberOffset offset,mirror::Object * ref)2812 std::string ConcurrentCopying::DumpHeapReference(mirror::Object* obj,
2813 MemberOffset offset,
2814 mirror::Object* ref) {
2815 std::ostringstream oss;
2816 constexpr const char* kIndent = " ";
2817 oss << kIndent << "Invalid reference: ref=" << ref
2818 << " referenced from: object=" << obj << " offset= " << offset << '\n';
2819 // Information about `obj`.
2820 oss << DumpReferenceInfo(obj, "obj", kIndent) << '\n';
2821 // Information about `ref`.
2822 oss << DumpReferenceInfo(ref, "ref", kIndent);
2823 return oss.str();
2824 }
2825
AssertToSpaceInvariant(mirror::Object * obj,MemberOffset offset,mirror::Object * ref)2826 void ConcurrentCopying::AssertToSpaceInvariant(mirror::Object* obj,
2827 MemberOffset offset,
2828 mirror::Object* ref) {
2829 CHECK_EQ(heap_->collector_type_, kCollectorTypeCC) << static_cast<size_t>(heap_->collector_type_);
2830 if (is_asserting_to_space_invariant_) {
2831 if (ref == nullptr) {
2832 // OK.
2833 return;
2834 } else if (region_space_->HasAddress(ref)) {
2835 // Check to-space invariant in region space (moving space).
2836 using RegionType = space::RegionSpace::RegionType;
2837 space::RegionSpace::RegionType type = region_space_->GetRegionTypeUnsafe(ref);
2838 if (type == RegionType::kRegionTypeToSpace) {
2839 // OK.
2840 return;
2841 } else if (type == RegionType::kRegionTypeUnevacFromSpace) {
2842 if (!IsMarkedInUnevacFromSpace(ref)) {
2843 LOG(FATAL_WITHOUT_ABORT) << "Found unmarked reference in unevac from-space:";
2844 // Remove memory protection from the region space and log debugging information.
2845 region_space_->Unprotect();
2846 LOG(FATAL_WITHOUT_ABORT) << DumpHeapReference(obj, offset, ref);
2847 Thread::Current()->DumpJavaStack(LOG_STREAM(FATAL_WITHOUT_ABORT));
2848 }
2849 CHECK(IsMarkedInUnevacFromSpace(ref)) << ref;
2850 } else {
2851 // Not OK: either a from-space ref or a reference in an unused region.
2852 if (type == RegionType::kRegionTypeFromSpace) {
2853 LOG(FATAL_WITHOUT_ABORT) << "Found from-space reference:";
2854 } else {
2855 LOG(FATAL_WITHOUT_ABORT) << "Found reference in region with type " << type << ":";
2856 }
2857 // Remove memory protection from the region space and log debugging information.
2858 region_space_->Unprotect();
2859 LOG(FATAL_WITHOUT_ABORT) << DumpHeapReference(obj, offset, ref);
2860 if (obj != nullptr) {
2861 LogFromSpaceRefHolder(obj, offset);
2862 LOG(FATAL_WITHOUT_ABORT) << "UNEVAC " << region_space_->IsInUnevacFromSpace(obj) << " "
2863 << obj << " " << obj->GetMarkBit();
2864 if (region_space_->HasAddress(obj)) {
2865 region_space_->DumpRegionForObject(LOG_STREAM(FATAL_WITHOUT_ABORT), obj);
2866 }
2867 LOG(FATAL_WITHOUT_ABORT) << "CARD " << static_cast<size_t>(
2868 *Runtime::Current()->GetHeap()->GetCardTable()->CardFromAddr(
2869 reinterpret_cast<uint8_t*>(obj)));
2870 if (region_space_->HasAddress(obj)) {
2871 LOG(FATAL_WITHOUT_ABORT) << "BITMAP " << region_space_bitmap_->Test(obj);
2872 } else {
2873 accounting::ContinuousSpaceBitmap* mark_bitmap =
2874 heap_mark_bitmap_->GetContinuousSpaceBitmap(obj);
2875 if (mark_bitmap != nullptr) {
2876 LOG(FATAL_WITHOUT_ABORT) << "BITMAP " << mark_bitmap->Test(obj);
2877 } else {
2878 accounting::LargeObjectBitmap* los_bitmap =
2879 heap_mark_bitmap_->GetLargeObjectBitmap(obj);
2880 LOG(FATAL_WITHOUT_ABORT) << "BITMAP " << los_bitmap->Test(obj);
2881 }
2882 }
2883 }
2884 ref->GetLockWord(false).Dump(LOG_STREAM(FATAL_WITHOUT_ABORT));
2885 LOG(FATAL_WITHOUT_ABORT) << "Non-free regions:";
2886 region_space_->DumpNonFreeRegions(LOG_STREAM(FATAL_WITHOUT_ABORT));
2887 PrintFileToLog("/proc/self/maps", LogSeverity::FATAL_WITHOUT_ABORT);
2888 MemMap::DumpMaps(LOG_STREAM(FATAL_WITHOUT_ABORT), /* terse= */ true);
2889 LOG(FATAL) << "Invalid reference " << ref
2890 << " referenced from object " << obj << " at offset " << offset;
2891 }
2892 } else {
2893 // Check to-space invariant in non-moving space.
2894 AssertToSpaceInvariantInNonMovingSpace(obj, ref);
2895 }
2896 }
2897 }
2898
2899 class RootPrinter {
2900 public:
RootPrinter()2901 RootPrinter() { }
2902
2903 template <class MirrorType>
VisitRootIfNonNull(mirror::CompressedReference<MirrorType> * root)2904 ALWAYS_INLINE void VisitRootIfNonNull(mirror::CompressedReference<MirrorType>* root)
2905 REQUIRES_SHARED(Locks::mutator_lock_) {
2906 if (!root->IsNull()) {
2907 VisitRoot(root);
2908 }
2909 }
2910
2911 template <class MirrorType>
VisitRoot(mirror::Object ** root)2912 void VisitRoot(mirror::Object** root)
2913 REQUIRES_SHARED(Locks::mutator_lock_) {
2914 LOG(FATAL_WITHOUT_ABORT) << "root=" << root << " ref=" << *root;
2915 }
2916
2917 template <class MirrorType>
VisitRoot(mirror::CompressedReference<MirrorType> * root)2918 void VisitRoot(mirror::CompressedReference<MirrorType>* root)
2919 REQUIRES_SHARED(Locks::mutator_lock_) {
2920 LOG(FATAL_WITHOUT_ABORT) << "root=" << root << " ref=" << root->AsMirrorPtr();
2921 }
2922 };
2923
DumpGcRoot(mirror::Object * ref)2924 std::string ConcurrentCopying::DumpGcRoot(mirror::Object* ref) {
2925 std::ostringstream oss;
2926 constexpr const char* kIndent = " ";
2927 oss << kIndent << "Invalid GC root: ref=" << ref << '\n';
2928 // Information about `ref`.
2929 oss << DumpReferenceInfo(ref, "ref", kIndent);
2930 return oss.str();
2931 }
2932
AssertToSpaceInvariant(GcRootSource * gc_root_source,mirror::Object * ref)2933 void ConcurrentCopying::AssertToSpaceInvariant(GcRootSource* gc_root_source,
2934 mirror::Object* ref) {
2935 CHECK_EQ(heap_->collector_type_, kCollectorTypeCC) << static_cast<size_t>(heap_->collector_type_);
2936 if (is_asserting_to_space_invariant_) {
2937 if (ref == nullptr) {
2938 // OK.
2939 return;
2940 } else if (region_space_->HasAddress(ref)) {
2941 // Check to-space invariant in region space (moving space).
2942 using RegionType = space::RegionSpace::RegionType;
2943 space::RegionSpace::RegionType type = region_space_->GetRegionTypeUnsafe(ref);
2944 if (type == RegionType::kRegionTypeToSpace) {
2945 // OK.
2946 return;
2947 } else if (type == RegionType::kRegionTypeUnevacFromSpace) {
2948 if (!IsMarkedInUnevacFromSpace(ref)) {
2949 LOG(FATAL_WITHOUT_ABORT) << "Found unmarked reference in unevac from-space:";
2950 // Remove memory protection from the region space and log debugging information.
2951 region_space_->Unprotect();
2952 LOG(FATAL_WITHOUT_ABORT) << DumpGcRoot(ref);
2953 }
2954 CHECK(IsMarkedInUnevacFromSpace(ref)) << ref;
2955 } else {
2956 // Not OK: either a from-space ref or a reference in an unused region.
2957 if (type == RegionType::kRegionTypeFromSpace) {
2958 LOG(FATAL_WITHOUT_ABORT) << "Found from-space reference:";
2959 } else {
2960 LOG(FATAL_WITHOUT_ABORT) << "Found reference in region with type " << type << ":";
2961 }
2962 // Remove memory protection from the region space and log debugging information.
2963 region_space_->Unprotect();
2964 LOG(FATAL_WITHOUT_ABORT) << DumpGcRoot(ref);
2965 if (gc_root_source == nullptr) {
2966 // No info.
2967 } else if (gc_root_source->HasArtField()) {
2968 ArtField* field = gc_root_source->GetArtField();
2969 LOG(FATAL_WITHOUT_ABORT) << "gc root in field " << field << " "
2970 << ArtField::PrettyField(field);
2971 RootPrinter root_printer;
2972 field->VisitRoots(root_printer);
2973 } else if (gc_root_source->HasArtMethod()) {
2974 ArtMethod* method = gc_root_source->GetArtMethod();
2975 LOG(FATAL_WITHOUT_ABORT) << "gc root in method " << method << " "
2976 << ArtMethod::PrettyMethod(method);
2977 RootPrinter root_printer;
2978 method->VisitRoots(root_printer, kRuntimePointerSize);
2979 }
2980 ref->GetLockWord(false).Dump(LOG_STREAM(FATAL_WITHOUT_ABORT));
2981 LOG(FATAL_WITHOUT_ABORT) << "Non-free regions:";
2982 region_space_->DumpNonFreeRegions(LOG_STREAM(FATAL_WITHOUT_ABORT));
2983 PrintFileToLog("/proc/self/maps", LogSeverity::FATAL_WITHOUT_ABORT);
2984 MemMap::DumpMaps(LOG_STREAM(FATAL_WITHOUT_ABORT), /* terse= */ true);
2985 LOG(FATAL) << "Invalid reference " << ref;
2986 }
2987 } else {
2988 // Check to-space invariant in non-moving space.
2989 AssertToSpaceInvariantInNonMovingSpace(/* obj= */ nullptr, ref);
2990 }
2991 }
2992 }
2993
LogFromSpaceRefHolder(mirror::Object * obj,MemberOffset offset)2994 void ConcurrentCopying::LogFromSpaceRefHolder(mirror::Object* obj, MemberOffset offset) {
2995 if (kUseBakerReadBarrier) {
2996 LOG(INFO) << "holder=" << obj << " " << obj->PrettyTypeOf()
2997 << " holder rb_state=" << obj->GetReadBarrierState();
2998 } else {
2999 LOG(INFO) << "holder=" << obj << " " << obj->PrettyTypeOf();
3000 }
3001 if (region_space_->IsInFromSpace(obj)) {
3002 LOG(INFO) << "holder is in the from-space.";
3003 } else if (region_space_->IsInToSpace(obj)) {
3004 LOG(INFO) << "holder is in the to-space.";
3005 } else if (region_space_->IsInUnevacFromSpace(obj)) {
3006 LOG(INFO) << "holder is in the unevac from-space.";
3007 if (IsMarkedInUnevacFromSpace(obj)) {
3008 LOG(INFO) << "holder is marked in the region space bitmap.";
3009 } else {
3010 LOG(INFO) << "holder is not marked in the region space bitmap.";
3011 }
3012 } else {
3013 // In a non-moving space.
3014 if (immune_spaces_.ContainsObject(obj)) {
3015 LOG(INFO) << "holder is in an immune image or the zygote space.";
3016 } else {
3017 LOG(INFO) << "holder is in a non-immune, non-moving (or main) space.";
3018 accounting::ContinuousSpaceBitmap* mark_bitmap = heap_->GetNonMovingSpace()->GetMarkBitmap();
3019 accounting::LargeObjectBitmap* los_bitmap = nullptr;
3020 const bool is_los = !mark_bitmap->HasAddress(obj);
3021 if (is_los) {
3022 DCHECK(heap_->GetLargeObjectsSpace() && heap_->GetLargeObjectsSpace()->Contains(obj))
3023 << "obj=" << obj
3024 << " LOS bit map covers the entire lower 4GB address range";
3025 los_bitmap = heap_->GetLargeObjectsSpace()->GetMarkBitmap();
3026 }
3027 if (!is_los && mark_bitmap->Test(obj)) {
3028 LOG(INFO) << "holder is marked in the non-moving space mark bit map.";
3029 } else if (is_los && los_bitmap->Test(obj)) {
3030 LOG(INFO) << "holder is marked in the los bit map.";
3031 } else {
3032 // If ref is on the allocation stack, then it is considered
3033 // mark/alive (but not necessarily on the live stack.)
3034 if (IsOnAllocStack(obj)) {
3035 LOG(INFO) << "holder is on the alloc stack.";
3036 } else {
3037 LOG(INFO) << "holder is not marked or on the alloc stack.";
3038 }
3039 }
3040 }
3041 }
3042 LOG(INFO) << "offset=" << offset.SizeValue();
3043 }
3044
IsMarkedInNonMovingSpace(mirror::Object * from_ref)3045 bool ConcurrentCopying::IsMarkedInNonMovingSpace(mirror::Object* from_ref) {
3046 DCHECK(!region_space_->HasAddress(from_ref)) << "ref=" << from_ref;
3047 DCHECK(!immune_spaces_.ContainsObject(from_ref)) << "ref=" << from_ref;
3048 if (kUseBakerReadBarrier && from_ref->GetReadBarrierStateAcquire() == ReadBarrier::GrayState()) {
3049 return true;
3050 } else if (!use_generational_cc_ || done_scanning_.load(std::memory_order_acquire)) {
3051 // Read the comment in IsMarkedInUnevacFromSpace()
3052 accounting::ContinuousSpaceBitmap* mark_bitmap = heap_->GetNonMovingSpace()->GetMarkBitmap();
3053 accounting::LargeObjectBitmap* los_bitmap = nullptr;
3054 const bool is_los = !mark_bitmap->HasAddress(from_ref);
3055 if (is_los) {
3056 DCHECK(heap_->GetLargeObjectsSpace() && heap_->GetLargeObjectsSpace()->Contains(from_ref))
3057 << "ref=" << from_ref
3058 << " doesn't belong to non-moving space and large object space doesn't exist";
3059 los_bitmap = heap_->GetLargeObjectsSpace()->GetMarkBitmap();
3060 }
3061 if (is_los ? los_bitmap->Test(from_ref) : mark_bitmap->Test(from_ref)) {
3062 return true;
3063 }
3064 }
3065 return IsOnAllocStack(from_ref);
3066 }
3067
AssertToSpaceInvariantInNonMovingSpace(mirror::Object * obj,mirror::Object * ref)3068 void ConcurrentCopying::AssertToSpaceInvariantInNonMovingSpace(mirror::Object* obj,
3069 mirror::Object* ref) {
3070 CHECK(ref != nullptr);
3071 CHECK(!region_space_->HasAddress(ref)) << "obj=" << obj << " ref=" << ref;
3072 // In a non-moving space. Check that the ref is marked.
3073 if (immune_spaces_.ContainsObject(ref)) {
3074 // Immune space case.
3075 if (kUseBakerReadBarrier) {
3076 // Immune object may not be gray if called from the GC.
3077 if (Thread::Current() == thread_running_gc_ && !gc_grays_immune_objects_) {
3078 return;
3079 }
3080 bool updated_all_immune_objects = updated_all_immune_objects_.load(std::memory_order_seq_cst);
3081 CHECK(updated_all_immune_objects || ref->GetReadBarrierState() == ReadBarrier::GrayState())
3082 << "Unmarked immune space ref. obj=" << obj << " rb_state="
3083 << (obj != nullptr ? obj->GetReadBarrierState() : 0U)
3084 << " ref=" << ref << " ref rb_state=" << ref->GetReadBarrierState()
3085 << " updated_all_immune_objects=" << updated_all_immune_objects;
3086 }
3087 } else {
3088 // Non-moving space and large-object space (LOS) cases.
3089 // If `ref` is on the allocation stack, then it may not be
3090 // marked live, but considered marked/alive (but not
3091 // necessarily on the live stack).
3092 CHECK(IsMarkedInNonMovingSpace(ref))
3093 << "Unmarked ref that's not on the allocation stack."
3094 << " obj=" << obj
3095 << " ref=" << ref
3096 << " rb_state=" << ref->GetReadBarrierState()
3097 << " is_marking=" << std::boolalpha << is_marking_ << std::noboolalpha
3098 << " young_gen=" << std::boolalpha << young_gen_ << std::noboolalpha
3099 << " done_scanning="
3100 << std::boolalpha << done_scanning_.load(std::memory_order_acquire) << std::noboolalpha
3101 << " self=" << Thread::Current();
3102 }
3103 }
3104
3105 // Used to scan ref fields of an object.
3106 template <bool kNoUnEvac>
3107 class ConcurrentCopying::RefFieldsVisitor {
3108 public:
RefFieldsVisitor(ConcurrentCopying * collector,Thread * const thread)3109 explicit RefFieldsVisitor(ConcurrentCopying* collector, Thread* const thread)
3110 : collector_(collector), thread_(thread) {
3111 // Cannot have `kNoUnEvac` when Generational CC collection is disabled.
3112 DCHECK(!kNoUnEvac || collector_->use_generational_cc_);
3113 }
3114
operator ()(mirror::Object * obj,MemberOffset offset,bool) const3115 void operator()(mirror::Object* obj, MemberOffset offset, bool /* is_static */)
3116 const ALWAYS_INLINE REQUIRES_SHARED(Locks::mutator_lock_)
3117 REQUIRES_SHARED(Locks::heap_bitmap_lock_) {
3118 collector_->Process<kNoUnEvac>(obj, offset);
3119 }
3120
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const3121 void operator()(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref) const
3122 REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
3123 CHECK(klass->IsTypeOfReferenceClass());
3124 collector_->DelayReferenceReferent(klass, ref);
3125 }
3126
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const3127 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
3128 ALWAYS_INLINE
3129 REQUIRES_SHARED(Locks::mutator_lock_) {
3130 if (!root->IsNull()) {
3131 VisitRoot(root);
3132 }
3133 }
3134
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const3135 void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
3136 ALWAYS_INLINE
3137 REQUIRES_SHARED(Locks::mutator_lock_) {
3138 collector_->MarkRoot</*kGrayImmuneObject=*/false>(thread_, root);
3139 }
3140
3141 private:
3142 ConcurrentCopying* const collector_;
3143 Thread* const thread_;
3144 };
3145
3146 template <bool kNoUnEvac>
Scan(mirror::Object * to_ref)3147 inline void ConcurrentCopying::Scan(mirror::Object* to_ref) {
3148 // Cannot have `kNoUnEvac` when Generational CC collection is disabled.
3149 DCHECK(!kNoUnEvac || use_generational_cc_);
3150 if (kDisallowReadBarrierDuringScan && !Runtime::Current()->IsActiveTransaction()) {
3151 // Avoid all read barriers during visit references to help performance.
3152 // Don't do this in transaction mode because we may read the old value of an field which may
3153 // trigger read barriers.
3154 Thread::Current()->ModifyDebugDisallowReadBarrier(1);
3155 }
3156 DCHECK(!region_space_->IsInFromSpace(to_ref));
3157 DCHECK_EQ(Thread::Current(), thread_running_gc_);
3158 RefFieldsVisitor<kNoUnEvac> visitor(this, thread_running_gc_);
3159 // Disable the read barrier for a performance reason.
3160 to_ref->VisitReferences</*kVisitNativeRoots=*/true, kDefaultVerifyFlags, kWithoutReadBarrier>(
3161 visitor, visitor);
3162 if (kDisallowReadBarrierDuringScan && !Runtime::Current()->IsActiveTransaction()) {
3163 thread_running_gc_->ModifyDebugDisallowReadBarrier(-1);
3164 }
3165 }
3166
3167 template <bool kNoUnEvac>
Process(mirror::Object * obj,MemberOffset offset)3168 inline void ConcurrentCopying::Process(mirror::Object* obj, MemberOffset offset) {
3169 // Cannot have `kNoUnEvac` when Generational CC collection is disabled.
3170 DCHECK(!kNoUnEvac || use_generational_cc_);
3171 DCHECK_EQ(Thread::Current(), thread_running_gc_);
3172 mirror::Object* ref = obj->GetFieldObject<
3173 mirror::Object, kVerifyNone, kWithoutReadBarrier, false>(offset);
3174 mirror::Object* to_ref = Mark</*kGrayImmuneObject=*/false, kNoUnEvac, /*kFromGCThread=*/true>(
3175 thread_running_gc_,
3176 ref,
3177 /*holder=*/ obj,
3178 offset);
3179 if (to_ref == ref) {
3180 return;
3181 }
3182 // This may fail if the mutator writes to the field at the same time. But it's ok.
3183 mirror::Object* expected_ref = ref;
3184 mirror::Object* new_ref = to_ref;
3185 do {
3186 if (expected_ref !=
3187 obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier, false>(offset)) {
3188 // It was updated by the mutator.
3189 break;
3190 }
3191 // Use release CAS to make sure threads reading the reference see contents of copied objects.
3192 } while (!obj->CasFieldObjectWithoutWriteBarrier<false, false, kVerifyNone>(
3193 offset,
3194 expected_ref,
3195 new_ref,
3196 CASMode::kWeak,
3197 std::memory_order_release));
3198 }
3199
3200 // Process some roots.
VisitRoots(mirror::Object *** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)3201 inline void ConcurrentCopying::VisitRoots(
3202 mirror::Object*** roots, size_t count, const RootInfo& info ATTRIBUTE_UNUSED) {
3203 Thread* const self = Thread::Current();
3204 for (size_t i = 0; i < count; ++i) {
3205 mirror::Object** root = roots[i];
3206 mirror::Object* ref = *root;
3207 mirror::Object* to_ref = Mark(self, ref);
3208 if (to_ref == ref) {
3209 continue;
3210 }
3211 Atomic<mirror::Object*>* addr = reinterpret_cast<Atomic<mirror::Object*>*>(root);
3212 mirror::Object* expected_ref = ref;
3213 mirror::Object* new_ref = to_ref;
3214 do {
3215 if (expected_ref != addr->load(std::memory_order_relaxed)) {
3216 // It was updated by the mutator.
3217 break;
3218 }
3219 } while (!addr->CompareAndSetWeakRelaxed(expected_ref, new_ref));
3220 }
3221 }
3222
3223 template<bool kGrayImmuneObject>
MarkRoot(Thread * const self,mirror::CompressedReference<mirror::Object> * root)3224 inline void ConcurrentCopying::MarkRoot(Thread* const self,
3225 mirror::CompressedReference<mirror::Object>* root) {
3226 DCHECK(!root->IsNull());
3227 mirror::Object* const ref = root->AsMirrorPtr();
3228 mirror::Object* to_ref = Mark<kGrayImmuneObject>(self, ref);
3229 if (to_ref != ref) {
3230 auto* addr = reinterpret_cast<Atomic<mirror::CompressedReference<mirror::Object>>*>(root);
3231 auto expected_ref = mirror::CompressedReference<mirror::Object>::FromMirrorPtr(ref);
3232 auto new_ref = mirror::CompressedReference<mirror::Object>::FromMirrorPtr(to_ref);
3233 // If the cas fails, then it was updated by the mutator.
3234 do {
3235 if (ref != addr->load(std::memory_order_relaxed).AsMirrorPtr()) {
3236 // It was updated by the mutator.
3237 break;
3238 }
3239 } while (!addr->CompareAndSetWeakRelaxed(expected_ref, new_ref));
3240 }
3241 }
3242
VisitRoots(mirror::CompressedReference<mirror::Object> ** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)3243 inline void ConcurrentCopying::VisitRoots(
3244 mirror::CompressedReference<mirror::Object>** roots, size_t count,
3245 const RootInfo& info ATTRIBUTE_UNUSED) {
3246 Thread* const self = Thread::Current();
3247 for (size_t i = 0; i < count; ++i) {
3248 mirror::CompressedReference<mirror::Object>* const root = roots[i];
3249 if (!root->IsNull()) {
3250 // kGrayImmuneObject is true because this is used for the thread flip.
3251 MarkRoot</*kGrayImmuneObject=*/true>(self, root);
3252 }
3253 }
3254 }
3255
3256 // Temporary set gc_grays_immune_objects_ to true in a scope if the current thread is GC.
3257 class ConcurrentCopying::ScopedGcGraysImmuneObjects {
3258 public:
ScopedGcGraysImmuneObjects(ConcurrentCopying * collector)3259 explicit ScopedGcGraysImmuneObjects(ConcurrentCopying* collector)
3260 : collector_(collector), enabled_(false) {
3261 if (kUseBakerReadBarrier &&
3262 collector_->thread_running_gc_ == Thread::Current() &&
3263 !collector_->gc_grays_immune_objects_) {
3264 collector_->gc_grays_immune_objects_ = true;
3265 enabled_ = true;
3266 }
3267 }
3268
~ScopedGcGraysImmuneObjects()3269 ~ScopedGcGraysImmuneObjects() {
3270 if (kUseBakerReadBarrier &&
3271 collector_->thread_running_gc_ == Thread::Current() &&
3272 enabled_) {
3273 DCHECK(collector_->gc_grays_immune_objects_);
3274 collector_->gc_grays_immune_objects_ = false;
3275 }
3276 }
3277
3278 private:
3279 ConcurrentCopying* const collector_;
3280 bool enabled_;
3281 };
3282
3283 // Fill the given memory block with a dummy object. Used to fill in a
3284 // copy of objects that was lost in race.
FillWithDummyObject(Thread * const self,mirror::Object * dummy_obj,size_t byte_size)3285 void ConcurrentCopying::FillWithDummyObject(Thread* const self,
3286 mirror::Object* dummy_obj,
3287 size_t byte_size) {
3288 // GC doesn't gray immune objects while scanning immune objects. But we need to trigger the read
3289 // barriers here because we need the updated reference to the int array class, etc. Temporary set
3290 // gc_grays_immune_objects_ to true so that we won't cause a DCHECK failure in MarkImmuneSpace().
3291 ScopedGcGraysImmuneObjects scoped_gc_gray_immune_objects(this);
3292 CHECK_ALIGNED(byte_size, kObjectAlignment);
3293 memset(dummy_obj, 0, byte_size);
3294 // Avoid going through read barrier for since kDisallowReadBarrierDuringScan may be enabled.
3295 // Explicitly mark to make sure to get an object in the to-space.
3296 mirror::Class* int_array_class = down_cast<mirror::Class*>(
3297 Mark(self, GetClassRoot<mirror::IntArray, kWithoutReadBarrier>().Ptr()));
3298 CHECK(int_array_class != nullptr);
3299 if (ReadBarrier::kEnableToSpaceInvariantChecks) {
3300 AssertToSpaceInvariant(nullptr, MemberOffset(0), int_array_class);
3301 }
3302 size_t component_size = int_array_class->GetComponentSize();
3303 CHECK_EQ(component_size, sizeof(int32_t));
3304 size_t data_offset = mirror::Array::DataOffset(component_size).SizeValue();
3305 if (data_offset > byte_size) {
3306 // An int array is too big. Use java.lang.Object.
3307 CHECK(java_lang_Object_ != nullptr);
3308 if (ReadBarrier::kEnableToSpaceInvariantChecks) {
3309 AssertToSpaceInvariant(nullptr, MemberOffset(0), java_lang_Object_);
3310 }
3311 CHECK_EQ(byte_size, java_lang_Object_->GetObjectSize<kVerifyNone>());
3312 dummy_obj->SetClass(java_lang_Object_);
3313 CHECK_EQ(byte_size, (dummy_obj->SizeOf<kVerifyNone>()));
3314 } else {
3315 // Use an int array.
3316 dummy_obj->SetClass(int_array_class);
3317 CHECK(dummy_obj->IsArrayInstance<kVerifyNone>());
3318 int32_t length = (byte_size - data_offset) / component_size;
3319 ObjPtr<mirror::Array> dummy_arr = dummy_obj->AsArray<kVerifyNone>();
3320 dummy_arr->SetLength(length);
3321 CHECK_EQ(dummy_arr->GetLength(), length)
3322 << "byte_size=" << byte_size << " length=" << length
3323 << " component_size=" << component_size << " data_offset=" << data_offset;
3324 CHECK_EQ(byte_size, (dummy_obj->SizeOf<kVerifyNone>()))
3325 << "byte_size=" << byte_size << " length=" << length
3326 << " component_size=" << component_size << " data_offset=" << data_offset;
3327 }
3328 }
3329
3330 // Reuse the memory blocks that were copy of objects that were lost in race.
AllocateInSkippedBlock(Thread * const self,size_t alloc_size)3331 mirror::Object* ConcurrentCopying::AllocateInSkippedBlock(Thread* const self, size_t alloc_size) {
3332 // Try to reuse the blocks that were unused due to CAS failures.
3333 CHECK_ALIGNED(alloc_size, space::RegionSpace::kAlignment);
3334 size_t min_object_size = RoundUp(sizeof(mirror::Object), space::RegionSpace::kAlignment);
3335 size_t byte_size;
3336 uint8_t* addr;
3337 {
3338 MutexLock mu(self, skipped_blocks_lock_);
3339 auto it = skipped_blocks_map_.lower_bound(alloc_size);
3340 if (it == skipped_blocks_map_.end()) {
3341 // Not found.
3342 return nullptr;
3343 }
3344 byte_size = it->first;
3345 CHECK_GE(byte_size, alloc_size);
3346 if (byte_size > alloc_size && byte_size - alloc_size < min_object_size) {
3347 // If remainder would be too small for a dummy object, retry with a larger request size.
3348 it = skipped_blocks_map_.lower_bound(alloc_size + min_object_size);
3349 if (it == skipped_blocks_map_.end()) {
3350 // Not found.
3351 return nullptr;
3352 }
3353 CHECK_ALIGNED(it->first - alloc_size, space::RegionSpace::kAlignment);
3354 CHECK_GE(it->first - alloc_size, min_object_size)
3355 << "byte_size=" << byte_size << " it->first=" << it->first << " alloc_size=" << alloc_size;
3356 }
3357 // Found a block.
3358 CHECK(it != skipped_blocks_map_.end());
3359 byte_size = it->first;
3360 addr = it->second;
3361 CHECK_GE(byte_size, alloc_size);
3362 CHECK(region_space_->IsInToSpace(reinterpret_cast<mirror::Object*>(addr)));
3363 CHECK_ALIGNED(byte_size, space::RegionSpace::kAlignment);
3364 if (kVerboseMode) {
3365 LOG(INFO) << "Reusing skipped bytes : " << reinterpret_cast<void*>(addr) << ", " << byte_size;
3366 }
3367 skipped_blocks_map_.erase(it);
3368 }
3369 memset(addr, 0, byte_size);
3370 if (byte_size > alloc_size) {
3371 // Return the remainder to the map.
3372 CHECK_ALIGNED(byte_size - alloc_size, space::RegionSpace::kAlignment);
3373 CHECK_GE(byte_size - alloc_size, min_object_size);
3374 // FillWithDummyObject may mark an object, avoid holding skipped_blocks_lock_ to prevent lock
3375 // violation and possible deadlock. The deadlock case is a recursive case:
3376 // FillWithDummyObject -> Mark(IntArray.class) -> Copy -> AllocateInSkippedBlock.
3377 FillWithDummyObject(self,
3378 reinterpret_cast<mirror::Object*>(addr + alloc_size),
3379 byte_size - alloc_size);
3380 CHECK(region_space_->IsInToSpace(reinterpret_cast<mirror::Object*>(addr + alloc_size)));
3381 {
3382 MutexLock mu(self, skipped_blocks_lock_);
3383 skipped_blocks_map_.insert(std::make_pair(byte_size - alloc_size, addr + alloc_size));
3384 }
3385 }
3386 return reinterpret_cast<mirror::Object*>(addr);
3387 }
3388
Copy(Thread * const self,mirror::Object * from_ref,mirror::Object * holder,MemberOffset offset)3389 mirror::Object* ConcurrentCopying::Copy(Thread* const self,
3390 mirror::Object* from_ref,
3391 mirror::Object* holder,
3392 MemberOffset offset) {
3393 DCHECK(region_space_->IsInFromSpace(from_ref));
3394 // If the class pointer is null, the object is invalid. This could occur for a dangling pointer
3395 // from a previous GC that is either inside or outside the allocated region.
3396 mirror::Class* klass = from_ref->GetClass<kVerifyNone, kWithoutReadBarrier>();
3397 if (UNLIKELY(klass == nullptr)) {
3398 // Remove memory protection from the region space and log debugging information.
3399 region_space_->Unprotect();
3400 heap_->GetVerification()->LogHeapCorruption(holder, offset, from_ref, /* fatal= */ true);
3401 }
3402 // There must not be a read barrier to avoid nested RB that might violate the to-space invariant.
3403 // Note that from_ref is a from space ref so the SizeOf() call will access the from-space meta
3404 // objects, but it's ok and necessary.
3405 size_t obj_size = from_ref->SizeOf<kDefaultVerifyFlags>();
3406 size_t region_space_alloc_size = (obj_size <= space::RegionSpace::kRegionSize)
3407 ? RoundUp(obj_size, space::RegionSpace::kAlignment)
3408 : RoundUp(obj_size, space::RegionSpace::kRegionSize);
3409 size_t region_space_bytes_allocated = 0U;
3410 size_t non_moving_space_bytes_allocated = 0U;
3411 size_t bytes_allocated = 0U;
3412 size_t dummy;
3413 bool fall_back_to_non_moving = false;
3414 mirror::Object* to_ref = region_space_->AllocNonvirtual</*kForEvac=*/ true>(
3415 region_space_alloc_size, ®ion_space_bytes_allocated, nullptr, &dummy);
3416 bytes_allocated = region_space_bytes_allocated;
3417 if (LIKELY(to_ref != nullptr)) {
3418 DCHECK_EQ(region_space_alloc_size, region_space_bytes_allocated);
3419 } else {
3420 // Failed to allocate in the region space. Try the skipped blocks.
3421 to_ref = AllocateInSkippedBlock(self, region_space_alloc_size);
3422 if (to_ref != nullptr) {
3423 // Succeeded to allocate in a skipped block.
3424 if (heap_->use_tlab_) {
3425 // This is necessary for the tlab case as it's not accounted in the space.
3426 region_space_->RecordAlloc(to_ref);
3427 }
3428 bytes_allocated = region_space_alloc_size;
3429 heap_->num_bytes_allocated_.fetch_sub(bytes_allocated, std::memory_order_relaxed);
3430 to_space_bytes_skipped_.fetch_sub(bytes_allocated, std::memory_order_relaxed);
3431 to_space_objects_skipped_.fetch_sub(1, std::memory_order_relaxed);
3432 } else {
3433 // Fall back to the non-moving space.
3434 fall_back_to_non_moving = true;
3435 if (kVerboseMode) {
3436 LOG(INFO) << "Out of memory in the to-space. Fall back to non-moving. skipped_bytes="
3437 << to_space_bytes_skipped_.load(std::memory_order_relaxed)
3438 << " skipped_objects="
3439 << to_space_objects_skipped_.load(std::memory_order_relaxed);
3440 }
3441 to_ref = heap_->non_moving_space_->Alloc(self, obj_size,
3442 &non_moving_space_bytes_allocated, nullptr, &dummy);
3443 if (UNLIKELY(to_ref == nullptr)) {
3444 LOG(FATAL_WITHOUT_ABORT) << "Fall-back non-moving space allocation failed for a "
3445 << obj_size << " byte object in region type "
3446 << region_space_->GetRegionType(from_ref);
3447 LOG(FATAL) << "Object address=" << from_ref << " type=" << from_ref->PrettyTypeOf();
3448 }
3449 bytes_allocated = non_moving_space_bytes_allocated;
3450 }
3451 }
3452 DCHECK(to_ref != nullptr);
3453
3454 // Copy the object excluding the lock word since that is handled in the loop.
3455 to_ref->SetClass(klass);
3456 const size_t kObjectHeaderSize = sizeof(mirror::Object);
3457 DCHECK_GE(obj_size, kObjectHeaderSize);
3458 static_assert(kObjectHeaderSize == sizeof(mirror::HeapReference<mirror::Class>) +
3459 sizeof(LockWord),
3460 "Object header size does not match");
3461 // Memcpy can tear for words since it may do byte copy. It is only safe to do this since the
3462 // object in the from space is immutable other than the lock word. b/31423258
3463 memcpy(reinterpret_cast<uint8_t*>(to_ref) + kObjectHeaderSize,
3464 reinterpret_cast<const uint8_t*>(from_ref) + kObjectHeaderSize,
3465 obj_size - kObjectHeaderSize);
3466
3467 // Attempt to install the forward pointer. This is in a loop as the
3468 // lock word atomic write can fail.
3469 while (true) {
3470 LockWord old_lock_word = from_ref->GetLockWord(false);
3471
3472 if (old_lock_word.GetState() == LockWord::kForwardingAddress) {
3473 // Lost the race. Another thread (either GC or mutator) stored
3474 // the forwarding pointer first. Make the lost copy (to_ref)
3475 // look like a valid but dead (dummy) object and keep it for
3476 // future reuse.
3477 FillWithDummyObject(self, to_ref, bytes_allocated);
3478 if (!fall_back_to_non_moving) {
3479 DCHECK(region_space_->IsInToSpace(to_ref));
3480 if (bytes_allocated > space::RegionSpace::kRegionSize) {
3481 // Free the large alloc.
3482 region_space_->FreeLarge</*kForEvac=*/ true>(to_ref, bytes_allocated);
3483 } else {
3484 // Record the lost copy for later reuse.
3485 heap_->num_bytes_allocated_.fetch_add(bytes_allocated, std::memory_order_relaxed);
3486 to_space_bytes_skipped_.fetch_add(bytes_allocated, std::memory_order_relaxed);
3487 to_space_objects_skipped_.fetch_add(1, std::memory_order_relaxed);
3488 MutexLock mu(self, skipped_blocks_lock_);
3489 skipped_blocks_map_.insert(std::make_pair(bytes_allocated,
3490 reinterpret_cast<uint8_t*>(to_ref)));
3491 }
3492 } else {
3493 DCHECK(heap_->non_moving_space_->HasAddress(to_ref));
3494 DCHECK_EQ(bytes_allocated, non_moving_space_bytes_allocated);
3495 // Free the non-moving-space chunk.
3496 heap_->non_moving_space_->Free(self, to_ref);
3497 }
3498
3499 // Get the winner's forward ptr.
3500 mirror::Object* lost_fwd_ptr = to_ref;
3501 to_ref = reinterpret_cast<mirror::Object*>(old_lock_word.ForwardingAddress());
3502 CHECK(to_ref != nullptr);
3503 CHECK_NE(to_ref, lost_fwd_ptr);
3504 CHECK(region_space_->IsInToSpace(to_ref) || heap_->non_moving_space_->HasAddress(to_ref))
3505 << "to_ref=" << to_ref << " " << heap_->DumpSpaces();
3506 CHECK_NE(to_ref->GetLockWord(false).GetState(), LockWord::kForwardingAddress);
3507 return to_ref;
3508 }
3509
3510 // Copy the old lock word over since we did not copy it yet.
3511 to_ref->SetLockWord(old_lock_word, false);
3512 // Set the gray ptr.
3513 if (kUseBakerReadBarrier) {
3514 to_ref->SetReadBarrierState(ReadBarrier::GrayState());
3515 }
3516
3517 // Do a fence to prevent the field CAS in ConcurrentCopying::Process from possibly reordering
3518 // before the object copy.
3519 std::atomic_thread_fence(std::memory_order_release);
3520
3521 LockWord new_lock_word = LockWord::FromForwardingAddress(reinterpret_cast<size_t>(to_ref));
3522
3523 // Try to atomically write the fwd ptr.
3524 bool success = from_ref->CasLockWord(old_lock_word,
3525 new_lock_word,
3526 CASMode::kWeak,
3527 std::memory_order_relaxed);
3528 if (LIKELY(success)) {
3529 // The CAS succeeded.
3530 DCHECK(thread_running_gc_ != nullptr);
3531 if (LIKELY(self == thread_running_gc_)) {
3532 objects_moved_gc_thread_ += 1;
3533 bytes_moved_gc_thread_ += bytes_allocated;
3534 } else {
3535 objects_moved_.fetch_add(1, std::memory_order_relaxed);
3536 bytes_moved_.fetch_add(bytes_allocated, std::memory_order_relaxed);
3537 }
3538
3539 if (LIKELY(!fall_back_to_non_moving)) {
3540 DCHECK(region_space_->IsInToSpace(to_ref));
3541 } else {
3542 DCHECK(heap_->non_moving_space_->HasAddress(to_ref));
3543 DCHECK_EQ(bytes_allocated, non_moving_space_bytes_allocated);
3544 if (!use_generational_cc_ || !young_gen_) {
3545 // Mark it in the live bitmap.
3546 CHECK(!heap_->non_moving_space_->GetLiveBitmap()->AtomicTestAndSet(to_ref));
3547 }
3548 if (!kUseBakerReadBarrier) {
3549 // Mark it in the mark bitmap.
3550 CHECK(!heap_->non_moving_space_->GetMarkBitmap()->AtomicTestAndSet(to_ref));
3551 }
3552 }
3553 if (kUseBakerReadBarrier) {
3554 DCHECK(to_ref->GetReadBarrierState() == ReadBarrier::GrayState());
3555 }
3556 DCHECK(GetFwdPtr(from_ref) == to_ref);
3557 CHECK_NE(to_ref->GetLockWord(false).GetState(), LockWord::kForwardingAddress);
3558 PushOntoMarkStack(self, to_ref);
3559 return to_ref;
3560 } else {
3561 // The CAS failed. It may have lost the race or may have failed
3562 // due to monitor/hashcode ops. Either way, retry.
3563 }
3564 }
3565 }
3566
IsMarked(mirror::Object * from_ref)3567 mirror::Object* ConcurrentCopying::IsMarked(mirror::Object* from_ref) {
3568 DCHECK(from_ref != nullptr);
3569 space::RegionSpace::RegionType rtype = region_space_->GetRegionType(from_ref);
3570 if (rtype == space::RegionSpace::RegionType::kRegionTypeToSpace) {
3571 // It's already marked.
3572 return from_ref;
3573 }
3574 mirror::Object* to_ref;
3575 if (rtype == space::RegionSpace::RegionType::kRegionTypeFromSpace) {
3576 to_ref = GetFwdPtr(from_ref);
3577 DCHECK(to_ref == nullptr || region_space_->IsInToSpace(to_ref) ||
3578 heap_->non_moving_space_->HasAddress(to_ref))
3579 << "from_ref=" << from_ref << " to_ref=" << to_ref;
3580 } else if (rtype == space::RegionSpace::RegionType::kRegionTypeUnevacFromSpace) {
3581 if (IsMarkedInUnevacFromSpace(from_ref)) {
3582 to_ref = from_ref;
3583 } else {
3584 to_ref = nullptr;
3585 }
3586 } else {
3587 // At this point, `from_ref` should not be in the region space
3588 // (i.e. within an "unused" region).
3589 DCHECK(!region_space_->HasAddress(from_ref)) << from_ref;
3590 // from_ref is in a non-moving space.
3591 if (immune_spaces_.ContainsObject(from_ref)) {
3592 // An immune object is alive.
3593 to_ref = from_ref;
3594 } else {
3595 // Non-immune non-moving space. Use the mark bitmap.
3596 if (IsMarkedInNonMovingSpace(from_ref)) {
3597 // Already marked.
3598 to_ref = from_ref;
3599 } else {
3600 to_ref = nullptr;
3601 }
3602 }
3603 }
3604 return to_ref;
3605 }
3606
IsOnAllocStack(mirror::Object * ref)3607 bool ConcurrentCopying::IsOnAllocStack(mirror::Object* ref) {
3608 // TODO: Explain why this is here. What release operation does it pair with?
3609 std::atomic_thread_fence(std::memory_order_acquire);
3610 accounting::ObjectStack* alloc_stack = GetAllocationStack();
3611 return alloc_stack->Contains(ref);
3612 }
3613
MarkNonMoving(Thread * const self,mirror::Object * ref,mirror::Object * holder,MemberOffset offset)3614 mirror::Object* ConcurrentCopying::MarkNonMoving(Thread* const self,
3615 mirror::Object* ref,
3616 mirror::Object* holder,
3617 MemberOffset offset) {
3618 // ref is in a non-moving space (from_ref == to_ref).
3619 DCHECK(!region_space_->HasAddress(ref)) << ref;
3620 DCHECK(!immune_spaces_.ContainsObject(ref));
3621 // Use the mark bitmap.
3622 accounting::ContinuousSpaceBitmap* mark_bitmap = heap_->GetNonMovingSpace()->GetMarkBitmap();
3623 accounting::LargeObjectBitmap* los_bitmap = nullptr;
3624 const bool is_los = !mark_bitmap->HasAddress(ref);
3625 if (is_los) {
3626 if (!IsAligned<kPageSize>(ref)) {
3627 // Ref is a large object that is not aligned, it must be heap
3628 // corruption. Remove memory protection and dump data before
3629 // AtomicSetReadBarrierState since it will fault if the address is not
3630 // valid.
3631 region_space_->Unprotect();
3632 heap_->GetVerification()->LogHeapCorruption(holder, offset, ref, /* fatal= */ true);
3633 }
3634 DCHECK(heap_->GetLargeObjectsSpace())
3635 << "ref=" << ref
3636 << " doesn't belong to non-moving space and large object space doesn't exist";
3637 los_bitmap = heap_->GetLargeObjectsSpace()->GetMarkBitmap();
3638 DCHECK(los_bitmap->HasAddress(ref));
3639 }
3640 if (use_generational_cc_) {
3641 // The sticky-bit CC collector is only compatible with Baker-style read barriers.
3642 DCHECK(kUseBakerReadBarrier);
3643 // Not done scanning, use AtomicSetReadBarrierPointer.
3644 if (!done_scanning_.load(std::memory_order_acquire)) {
3645 // Since the mark bitmap is still filled in from last GC, we can not use that or else the
3646 // mutator may see references to the from space. Instead, use the Baker pointer itself as
3647 // the mark bit.
3648 //
3649 // We need to avoid marking objects that are on allocation stack as that will lead to a
3650 // situation (after this GC cycle is finished) where some object(s) are on both allocation
3651 // stack and live bitmap. This leads to visiting the same object(s) twice during a heapdump
3652 // (b/117426281).
3653 if (!IsOnAllocStack(ref) &&
3654 ref->AtomicSetReadBarrierState(ReadBarrier::NonGrayState(), ReadBarrier::GrayState())) {
3655 // TODO: We don't actually need to scan this object later, we just need to clear the gray
3656 // bit.
3657 // We don't need to mark newly allocated objects (those in allocation stack) as they can
3658 // only point to to-space objects. Also, they are considered live till the next GC cycle.
3659 PushOntoMarkStack(self, ref);
3660 }
3661 return ref;
3662 }
3663 }
3664 if (!is_los && mark_bitmap->Test(ref)) {
3665 // Already marked.
3666 } else if (is_los && los_bitmap->Test(ref)) {
3667 // Already marked in LOS.
3668 } else if (IsOnAllocStack(ref)) {
3669 // If it's on the allocation stack, it's considered marked. Keep it white (non-gray).
3670 // Objects on the allocation stack need not be marked.
3671 if (!is_los) {
3672 DCHECK(!mark_bitmap->Test(ref));
3673 } else {
3674 DCHECK(!los_bitmap->Test(ref));
3675 }
3676 if (kUseBakerReadBarrier) {
3677 DCHECK_EQ(ref->GetReadBarrierState(), ReadBarrier::NonGrayState());
3678 }
3679 } else {
3680 // Not marked nor on the allocation stack. Try to mark it.
3681 // This may or may not succeed, which is ok.
3682 bool success = false;
3683 if (kUseBakerReadBarrier) {
3684 success = ref->AtomicSetReadBarrierState(ReadBarrier::NonGrayState(),
3685 ReadBarrier::GrayState());
3686 } else {
3687 success = is_los ?
3688 !los_bitmap->AtomicTestAndSet(ref) :
3689 !mark_bitmap->AtomicTestAndSet(ref);
3690 }
3691 if (success) {
3692 if (kUseBakerReadBarrier) {
3693 DCHECK_EQ(ref->GetReadBarrierState(), ReadBarrier::GrayState());
3694 }
3695 PushOntoMarkStack(self, ref);
3696 }
3697 }
3698 return ref;
3699 }
3700
FinishPhase()3701 void ConcurrentCopying::FinishPhase() {
3702 Thread* const self = Thread::Current();
3703 {
3704 MutexLock mu(self, mark_stack_lock_);
3705 CHECK(revoked_mark_stacks_.empty());
3706 AssertEmptyThreadMarkStackMap();
3707 CHECK_EQ(pooled_mark_stacks_.size(), kMarkStackPoolSize);
3708 }
3709 // kVerifyNoMissingCardMarks relies on the region space cards not being cleared to avoid false
3710 // positives.
3711 if (!kVerifyNoMissingCardMarks && !use_generational_cc_) {
3712 TimingLogger::ScopedTiming split("ClearRegionSpaceCards", GetTimings());
3713 // We do not currently use the region space cards at all, madvise them away to save ram.
3714 heap_->GetCardTable()->ClearCardRange(region_space_->Begin(), region_space_->Limit());
3715 } else if (use_generational_cc_ && !young_gen_) {
3716 region_space_inter_region_bitmap_.Clear();
3717 non_moving_space_inter_region_bitmap_.Clear();
3718 }
3719 {
3720 MutexLock mu(self, skipped_blocks_lock_);
3721 skipped_blocks_map_.clear();
3722 }
3723 {
3724 ReaderMutexLock mu(self, *Locks::mutator_lock_);
3725 {
3726 WriterMutexLock mu2(self, *Locks::heap_bitmap_lock_);
3727 heap_->ClearMarkedObjects();
3728 }
3729 if (kUseBakerReadBarrier && kFilterModUnionCards) {
3730 TimingLogger::ScopedTiming split("FilterModUnionCards", GetTimings());
3731 ReaderMutexLock mu2(self, *Locks::heap_bitmap_lock_);
3732 for (space::ContinuousSpace* space : immune_spaces_.GetSpaces()) {
3733 DCHECK(space->IsImageSpace() || space->IsZygoteSpace());
3734 accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space);
3735 // Filter out cards that don't need to be set.
3736 if (table != nullptr) {
3737 table->FilterCards();
3738 }
3739 }
3740 }
3741 if (kUseBakerReadBarrier) {
3742 TimingLogger::ScopedTiming split("EmptyRBMarkBitStack", GetTimings());
3743 DCHECK(rb_mark_bit_stack_ != nullptr);
3744 const auto* limit = rb_mark_bit_stack_->End();
3745 for (StackReference<mirror::Object>* it = rb_mark_bit_stack_->Begin(); it != limit; ++it) {
3746 CHECK(it->AsMirrorPtr()->AtomicSetMarkBit(1, 0))
3747 << "rb_mark_bit_stack_->Begin()" << rb_mark_bit_stack_->Begin() << '\n'
3748 << "rb_mark_bit_stack_->End()" << rb_mark_bit_stack_->End() << '\n'
3749 << "rb_mark_bit_stack_->IsFull()"
3750 << std::boolalpha << rb_mark_bit_stack_->IsFull() << std::noboolalpha << '\n'
3751 << DumpReferenceInfo(it->AsMirrorPtr(), "*it");
3752 }
3753 rb_mark_bit_stack_->Reset();
3754 }
3755 }
3756 if (measure_read_barrier_slow_path_) {
3757 MutexLock mu(self, rb_slow_path_histogram_lock_);
3758 rb_slow_path_time_histogram_.AdjustAndAddValue(
3759 rb_slow_path_ns_.load(std::memory_order_relaxed));
3760 rb_slow_path_count_total_ += rb_slow_path_count_.load(std::memory_order_relaxed);
3761 rb_slow_path_count_gc_total_ += rb_slow_path_count_gc_.load(std::memory_order_relaxed);
3762 }
3763 }
3764
IsNullOrMarkedHeapReference(mirror::HeapReference<mirror::Object> * field,bool do_atomic_update)3765 bool ConcurrentCopying::IsNullOrMarkedHeapReference(mirror::HeapReference<mirror::Object>* field,
3766 bool do_atomic_update) {
3767 mirror::Object* from_ref = field->AsMirrorPtr();
3768 if (from_ref == nullptr) {
3769 return true;
3770 }
3771 mirror::Object* to_ref = IsMarked(from_ref);
3772 if (to_ref == nullptr) {
3773 return false;
3774 }
3775 if (from_ref != to_ref) {
3776 if (do_atomic_update) {
3777 do {
3778 if (field->AsMirrorPtr() != from_ref) {
3779 // Concurrently overwritten by a mutator.
3780 break;
3781 }
3782 } while (!field->CasWeakRelaxed(from_ref, to_ref));
3783 } else {
3784 // TODO: Why is this seq_cst when the above is relaxed? Document memory ordering.
3785 field->Assign</* kIsVolatile= */ true>(to_ref);
3786 }
3787 }
3788 return true;
3789 }
3790
MarkObject(mirror::Object * from_ref)3791 mirror::Object* ConcurrentCopying::MarkObject(mirror::Object* from_ref) {
3792 return Mark(Thread::Current(), from_ref);
3793 }
3794
DelayReferenceReferent(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> reference)3795 void ConcurrentCopying::DelayReferenceReferent(ObjPtr<mirror::Class> klass,
3796 ObjPtr<mirror::Reference> reference) {
3797 heap_->GetReferenceProcessor()->DelayReferenceReferent(klass, reference, this);
3798 }
3799
ProcessReferences(Thread * self)3800 void ConcurrentCopying::ProcessReferences(Thread* self) {
3801 TimingLogger::ScopedTiming split("ProcessReferences", GetTimings());
3802 // We don't really need to lock the heap bitmap lock as we use CAS to mark in bitmaps.
3803 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
3804 GetHeap()->GetReferenceProcessor()->ProcessReferences(
3805 /*concurrent=*/ true, GetTimings(), GetCurrentIteration()->GetClearSoftReferences(), this);
3806 }
3807
RevokeAllThreadLocalBuffers()3808 void ConcurrentCopying::RevokeAllThreadLocalBuffers() {
3809 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
3810 region_space_->RevokeAllThreadLocalBuffers();
3811 }
3812
MarkFromReadBarrierWithMeasurements(Thread * const self,mirror::Object * from_ref)3813 mirror::Object* ConcurrentCopying::MarkFromReadBarrierWithMeasurements(Thread* const self,
3814 mirror::Object* from_ref) {
3815 if (self != thread_running_gc_) {
3816 rb_slow_path_count_.fetch_add(1u, std::memory_order_relaxed);
3817 } else {
3818 rb_slow_path_count_gc_.fetch_add(1u, std::memory_order_relaxed);
3819 }
3820 ScopedTrace tr(__FUNCTION__);
3821 const uint64_t start_time = measure_read_barrier_slow_path_ ? NanoTime() : 0u;
3822 mirror::Object* ret =
3823 Mark</*kGrayImmuneObject=*/true, /*kNoUnEvac=*/false, /*kFromGCThread=*/false>(self,
3824 from_ref);
3825 if (measure_read_barrier_slow_path_) {
3826 rb_slow_path_ns_.fetch_add(NanoTime() - start_time, std::memory_order_relaxed);
3827 }
3828 return ret;
3829 }
3830
DumpPerformanceInfo(std::ostream & os)3831 void ConcurrentCopying::DumpPerformanceInfo(std::ostream& os) {
3832 GarbageCollector::DumpPerformanceInfo(os);
3833 size_t num_gc_cycles = GetCumulativeTimings().GetIterations();
3834 MutexLock mu(Thread::Current(), rb_slow_path_histogram_lock_);
3835 if (rb_slow_path_time_histogram_.SampleSize() > 0) {
3836 Histogram<uint64_t>::CumulativeData cumulative_data;
3837 rb_slow_path_time_histogram_.CreateHistogram(&cumulative_data);
3838 rb_slow_path_time_histogram_.PrintConfidenceIntervals(os, 0.99, cumulative_data);
3839 }
3840 if (rb_slow_path_count_total_ > 0) {
3841 os << "Slow path count " << rb_slow_path_count_total_ << "\n";
3842 }
3843 if (rb_slow_path_count_gc_total_ > 0) {
3844 os << "GC slow path count " << rb_slow_path_count_gc_total_ << "\n";
3845 }
3846
3847 os << "Average " << (young_gen_ ? "minor" : "major") << " GC reclaim bytes ratio "
3848 << (reclaimed_bytes_ratio_sum_ / num_gc_cycles) << " over " << num_gc_cycles
3849 << " GC cycles\n";
3850
3851 os << "Average " << (young_gen_ ? "minor" : "major") << " GC copied live bytes ratio "
3852 << (copied_live_bytes_ratio_sum_ / gc_count_) << " over " << gc_count_
3853 << " " << (young_gen_ ? "minor" : "major") << " GCs\n";
3854
3855 os << "Cumulative bytes moved "
3856 << cumulative_bytes_moved_.load(std::memory_order_relaxed) << "\n";
3857 os << "Cumulative objects moved "
3858 << cumulative_objects_moved_.load(std::memory_order_relaxed) << "\n";
3859
3860 os << "Peak regions allocated "
3861 << region_space_->GetMaxPeakNumNonFreeRegions() << " ("
3862 << PrettySize(region_space_->GetMaxPeakNumNonFreeRegions() * space::RegionSpace::kRegionSize)
3863 << ") / " << region_space_->GetNumRegions() / 2 << " ("
3864 << PrettySize(region_space_->GetNumRegions() * space::RegionSpace::kRegionSize / 2)
3865 << ")\n";
3866 }
3867
3868 } // namespace collector
3869 } // namespace gc
3870 } // namespace art
3871