1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "image_space.h"
18
19 #include <sys/statvfs.h>
20 #include <sys/types.h>
21 #include <unistd.h>
22
23 #include <random>
24
25 #include "android-base/stringprintf.h"
26 #include "android-base/strings.h"
27 #include "android-base/unique_fd.h"
28
29 #include "arch/instruction_set.h"
30 #include "art_field-inl.h"
31 #include "art_method-inl.h"
32 #include "base/array_ref.h"
33 #include "base/bit_memory_region.h"
34 #include "base/callee_save_type.h"
35 #include "base/enums.h"
36 #include "base/file_utils.h"
37 #include "base/macros.h"
38 #include "base/memfd.h"
39 #include "base/os.h"
40 #include "base/scoped_flock.h"
41 #include "base/stl_util.h"
42 #include "base/string_view_cpp20.h"
43 #include "base/systrace.h"
44 #include "base/time_utils.h"
45 #include "base/utils.h"
46 #include "class_root.h"
47 #include "dex/art_dex_file_loader.h"
48 #include "dex/dex_file_loader.h"
49 #include "exec_utils.h"
50 #include "gc/accounting/space_bitmap-inl.h"
51 #include "gc/task_processor.h"
52 #include "image-inl.h"
53 #include "image_space_fs.h"
54 #include "intern_table-inl.h"
55 #include "mirror/class-inl.h"
56 #include "mirror/executable-inl.h"
57 #include "mirror/object-inl.h"
58 #include "mirror/object-refvisitor-inl.h"
59 #include "oat.h"
60 #include "oat_file.h"
61 #include "profile/profile_compilation_info.h"
62 #include "runtime.h"
63 #include "space-inl.h"
64
65 namespace art {
66 namespace gc {
67 namespace space {
68
69 using android::base::Join;
70 using android::base::StringAppendF;
71 using android::base::StringPrintf;
72
73 // We do not allow the boot image and extensions to take more than 1GiB. They are
74 // supposed to be much smaller and allocating more that this would likely fail anyway.
75 static constexpr size_t kMaxTotalImageReservationSize = 1 * GB;
76
77 Atomic<uint32_t> ImageSpace::bitmap_index_(0);
78
ImageSpace(const std::string & image_filename,const char * image_location,const char * profile_file,MemMap && mem_map,accounting::ContinuousSpaceBitmap && live_bitmap,uint8_t * end)79 ImageSpace::ImageSpace(const std::string& image_filename,
80 const char* image_location,
81 const char* profile_file,
82 MemMap&& mem_map,
83 accounting::ContinuousSpaceBitmap&& live_bitmap,
84 uint8_t* end)
85 : MemMapSpace(image_filename,
86 std::move(mem_map),
87 mem_map.Begin(),
88 end,
89 end,
90 kGcRetentionPolicyNeverCollect),
91 live_bitmap_(std::move(live_bitmap)),
92 oat_file_non_owned_(nullptr),
93 image_location_(image_location),
94 profile_file_(profile_file) {
95 DCHECK(live_bitmap_.IsValid());
96 }
97
ChooseRelocationOffsetDelta(int32_t min_delta,int32_t max_delta)98 static int32_t ChooseRelocationOffsetDelta(int32_t min_delta, int32_t max_delta) {
99 CHECK_ALIGNED(min_delta, kPageSize);
100 CHECK_ALIGNED(max_delta, kPageSize);
101 CHECK_LT(min_delta, max_delta);
102
103 int32_t r = GetRandomNumber<int32_t>(min_delta, max_delta);
104 if (r % 2 == 0) {
105 r = RoundUp(r, kPageSize);
106 } else {
107 r = RoundDown(r, kPageSize);
108 }
109 CHECK_LE(min_delta, r);
110 CHECK_GE(max_delta, r);
111 CHECK_ALIGNED(r, kPageSize);
112 return r;
113 }
114
ChooseRelocationOffsetDelta()115 static int32_t ChooseRelocationOffsetDelta() {
116 return ChooseRelocationOffsetDelta(ART_BASE_ADDRESS_MIN_DELTA, ART_BASE_ADDRESS_MAX_DELTA);
117 }
118
GenerateImage(const std::string & image_filename,InstructionSet image_isa,std::string * error_msg)119 static bool GenerateImage(const std::string& image_filename,
120 InstructionSet image_isa,
121 std::string* error_msg) {
122 Runtime* runtime = Runtime::Current();
123 const std::vector<std::string>& boot_class_path = runtime->GetBootClassPath();
124 if (boot_class_path.empty()) {
125 *error_msg = "Failed to generate image because no boot class path specified";
126 return false;
127 }
128 // We should clean up so we are more likely to have room for the image.
129 if (Runtime::Current()->IsZygote()) {
130 LOG(INFO) << "Pruning dalvik-cache since we are generating an image and will need to recompile";
131 PruneDalvikCache(image_isa);
132 }
133
134 std::vector<std::string> arg_vector;
135
136 std::string dex2oat(Runtime::Current()->GetCompilerExecutable());
137 arg_vector.push_back(dex2oat);
138
139 char* dex2oat_bcp = getenv("DEX2OATBOOTCLASSPATH");
140 std::vector<std::string> dex2oat_bcp_vector;
141 if (dex2oat_bcp != nullptr) {
142 arg_vector.push_back("--runtime-arg");
143 arg_vector.push_back(StringPrintf("-Xbootclasspath:%s", dex2oat_bcp));
144 Split(dex2oat_bcp, ':', &dex2oat_bcp_vector);
145 }
146
147 std::string image_option_string("--image=");
148 image_option_string += image_filename;
149 arg_vector.push_back(image_option_string);
150
151 if (!dex2oat_bcp_vector.empty()) {
152 for (size_t i = 0u; i < dex2oat_bcp_vector.size(); i++) {
153 arg_vector.push_back(std::string("--dex-file=") + dex2oat_bcp_vector[i]);
154 arg_vector.push_back(std::string("--dex-location=") + dex2oat_bcp_vector[i]);
155 }
156 } else {
157 const std::vector<std::string>& boot_class_path_locations =
158 runtime->GetBootClassPathLocations();
159 DCHECK_EQ(boot_class_path.size(), boot_class_path_locations.size());
160 for (size_t i = 0u; i < boot_class_path.size(); i++) {
161 arg_vector.push_back(std::string("--dex-file=") + boot_class_path[i]);
162 arg_vector.push_back(std::string("--dex-location=") + boot_class_path_locations[i]);
163 }
164 }
165
166 std::string oat_file_option_string("--oat-file=");
167 oat_file_option_string += ImageHeader::GetOatLocationFromImageLocation(image_filename);
168 arg_vector.push_back(oat_file_option_string);
169
170 // Note: we do not generate a fully debuggable boot image so we do not pass the
171 // compiler flag --debuggable here.
172
173 Runtime::Current()->AddCurrentRuntimeFeaturesAsDex2OatArguments(&arg_vector);
174 CHECK_EQ(image_isa, kRuntimeISA)
175 << "We should always be generating an image for the current isa.";
176
177 int32_t base_offset = ChooseRelocationOffsetDelta();
178 LOG(INFO) << "Using an offset of 0x" << std::hex << base_offset << " from default "
179 << "art base address of 0x" << std::hex << ART_BASE_ADDRESS;
180 arg_vector.push_back(StringPrintf("--base=0x%x", ART_BASE_ADDRESS + base_offset));
181
182 if (!kIsTargetBuild) {
183 arg_vector.push_back("--host");
184 }
185
186 // Check if there is a boot profile, and pass it to dex2oat.
187 if (OS::FileExists("/system/etc/boot-image.prof")) {
188 arg_vector.push_back("--profile-file=/system/etc/boot-image.prof");
189 } else {
190 // We will compile the boot image with compiler filter "speed" unless overridden below.
191 LOG(WARNING) << "Missing boot-image.prof file, /system/etc/boot-image.prof not found: "
192 << strerror(errno);
193 }
194
195 const std::vector<std::string>& compiler_options = Runtime::Current()->GetImageCompilerOptions();
196 for (size_t i = 0; i < compiler_options.size(); ++i) {
197 arg_vector.push_back(compiler_options[i].c_str());
198 }
199
200 std::string command_line(Join(arg_vector, ' '));
201 LOG(INFO) << "GenerateImage: " << command_line;
202 return Exec(arg_vector, error_msg);
203 }
204
FindImageFilenameImpl(const char * image_location,const InstructionSet image_isa,bool * has_system,std::string * system_filename,bool * dalvik_cache_exists,std::string * dalvik_cache,bool * is_global_cache,bool * has_cache,std::string * cache_filename)205 static bool FindImageFilenameImpl(const char* image_location,
206 const InstructionSet image_isa,
207 bool* has_system,
208 std::string* system_filename,
209 bool* dalvik_cache_exists,
210 std::string* dalvik_cache,
211 bool* is_global_cache,
212 bool* has_cache,
213 std::string* cache_filename) {
214 DCHECK(dalvik_cache != nullptr);
215
216 *has_system = false;
217 *has_cache = false;
218 // image_location = /system/framework/boot.art
219 // system_image_location = /system/framework/<image_isa>/boot.art
220 std::string system_image_filename(GetSystemImageFilename(image_location, image_isa));
221 if (OS::FileExists(system_image_filename.c_str())) {
222 *system_filename = system_image_filename;
223 *has_system = true;
224 }
225
226 bool have_android_data = false;
227 *dalvik_cache_exists = false;
228 GetDalvikCache(GetInstructionSetString(image_isa),
229 /*create_if_absent=*/ true,
230 dalvik_cache,
231 &have_android_data,
232 dalvik_cache_exists,
233 is_global_cache);
234
235 if (*dalvik_cache_exists) {
236 DCHECK(have_android_data);
237 // Always set output location even if it does not exist,
238 // so that the caller knows where to create the image.
239 //
240 // image_location = /system/framework/boot.art
241 // *image_filename = /data/dalvik-cache/<image_isa>/system@framework@boot.art
242 std::string error_msg;
243 if (!GetDalvikCacheFilename(image_location,
244 dalvik_cache->c_str(),
245 cache_filename,
246 &error_msg)) {
247 LOG(WARNING) << error_msg;
248 return *has_system;
249 }
250 *has_cache = OS::FileExists(cache_filename->c_str());
251 }
252 return *has_system || *has_cache;
253 }
254
FindImageFilename(const char * image_location,const InstructionSet image_isa,std::string * system_filename,bool * has_system,std::string * cache_filename,bool * dalvik_cache_exists,bool * has_cache,bool * is_global_cache)255 bool ImageSpace::FindImageFilename(const char* image_location,
256 const InstructionSet image_isa,
257 std::string* system_filename,
258 bool* has_system,
259 std::string* cache_filename,
260 bool* dalvik_cache_exists,
261 bool* has_cache,
262 bool* is_global_cache) {
263 std::string dalvik_cache_unused;
264 return FindImageFilenameImpl(image_location,
265 image_isa,
266 has_system,
267 system_filename,
268 dalvik_cache_exists,
269 &dalvik_cache_unused,
270 is_global_cache,
271 has_cache,
272 cache_filename);
273 }
274
ReadSpecificImageHeader(File * image_file,const char * file_description,ImageHeader * image_header,std::string * error_msg)275 static bool ReadSpecificImageHeader(File* image_file,
276 const char* file_description,
277 /*out*/ImageHeader* image_header,
278 /*out*/std::string* error_msg) {
279 if (!image_file->ReadFully(image_header, sizeof(ImageHeader))) {
280 *error_msg = StringPrintf("Unable to read image header from \"%s\"", file_description);
281 return false;
282 }
283 if (!image_header->IsValid()) {
284 *error_msg = StringPrintf("Image header from \"%s\" is invalid", file_description);
285 return false;
286 }
287 return true;
288 }
289
ReadSpecificImageHeader(const char * filename,ImageHeader * image_header,std::string * error_msg)290 static bool ReadSpecificImageHeader(const char* filename,
291 /*out*/ImageHeader* image_header,
292 /*out*/std::string* error_msg) {
293 std::unique_ptr<File> image_file(OS::OpenFileForReading(filename));
294 if (image_file.get() == nullptr) {
295 *error_msg = StringPrintf("Unable to open file \"%s\" for reading image header", filename);
296 return false;
297 }
298 return ReadSpecificImageHeader(image_file.get(), filename, image_header, error_msg);
299 }
300
ReadSpecificImageHeader(const char * filename,std::string * error_msg)301 static std::unique_ptr<ImageHeader> ReadSpecificImageHeader(const char* filename,
302 std::string* error_msg) {
303 std::unique_ptr<ImageHeader> hdr(new ImageHeader);
304 if (!ReadSpecificImageHeader(filename, hdr.get(), error_msg)) {
305 return nullptr;
306 }
307 return hdr;
308 }
309
CanWriteToDalvikCache(const InstructionSet isa)310 static bool CanWriteToDalvikCache(const InstructionSet isa) {
311 const std::string dalvik_cache = GetDalvikCache(GetInstructionSetString(isa));
312 if (access(dalvik_cache.c_str(), O_RDWR) == 0) {
313 return true;
314 } else if (errno != EACCES) {
315 PLOG(WARNING) << "CanWriteToDalvikCache returned error other than EACCES";
316 }
317 return false;
318 }
319
ImageCreationAllowed(bool is_global_cache,const InstructionSet isa,bool is_zygote,std::string * error_msg)320 static bool ImageCreationAllowed(bool is_global_cache,
321 const InstructionSet isa,
322 bool is_zygote,
323 std::string* error_msg) {
324 // Anyone can write into a "local" cache.
325 if (!is_global_cache) {
326 return true;
327 }
328
329 // Only the zygote running as root is allowed to create the global boot image.
330 // If the zygote is running as non-root (and cannot write to the dalvik-cache),
331 // then image creation is not allowed..
332 if (is_zygote) {
333 return CanWriteToDalvikCache(isa);
334 }
335
336 *error_msg = "Only the zygote can create the global boot image.";
337 return false;
338 }
339
VerifyImageAllocations()340 void ImageSpace::VerifyImageAllocations() {
341 uint8_t* current = Begin() + RoundUp(sizeof(ImageHeader), kObjectAlignment);
342 while (current < End()) {
343 CHECK_ALIGNED(current, kObjectAlignment);
344 auto* obj = reinterpret_cast<mirror::Object*>(current);
345 CHECK(obj->GetClass() != nullptr) << "Image object at address " << obj << " has null class";
346 CHECK(live_bitmap_.Test(obj)) << obj->PrettyTypeOf();
347 if (kUseBakerReadBarrier) {
348 obj->AssertReadBarrierState();
349 }
350 current += RoundUp(obj->SizeOf(), kObjectAlignment);
351 }
352 }
353
354 // Helper class for relocating from one range of memory to another.
355 class RelocationRange {
356 public:
357 RelocationRange() = default;
358 RelocationRange(const RelocationRange&) = default;
RelocationRange(uintptr_t source,uintptr_t dest,uintptr_t length)359 RelocationRange(uintptr_t source, uintptr_t dest, uintptr_t length)
360 : source_(source),
361 dest_(dest),
362 length_(length) {}
363
InSource(uintptr_t address) const364 bool InSource(uintptr_t address) const {
365 return address - source_ < length_;
366 }
367
InDest(const void * dest) const368 bool InDest(const void* dest) const {
369 return InDest(reinterpret_cast<uintptr_t>(dest));
370 }
371
InDest(uintptr_t address) const372 bool InDest(uintptr_t address) const {
373 return address - dest_ < length_;
374 }
375
376 // Translate a source address to the destination space.
ToDest(uintptr_t address) const377 uintptr_t ToDest(uintptr_t address) const {
378 DCHECK(InSource(address));
379 return address + Delta();
380 }
381
382 template <typename T>
ToDest(T * src) const383 T* ToDest(T* src) const {
384 return reinterpret_cast<T*>(ToDest(reinterpret_cast<uintptr_t>(src)));
385 }
386
387 // Returns the delta between the dest from the source.
Delta() const388 uintptr_t Delta() const {
389 return dest_ - source_;
390 }
391
Source() const392 uintptr_t Source() const {
393 return source_;
394 }
395
Dest() const396 uintptr_t Dest() const {
397 return dest_;
398 }
399
Length() const400 uintptr_t Length() const {
401 return length_;
402 }
403
404 private:
405 const uintptr_t source_;
406 const uintptr_t dest_;
407 const uintptr_t length_;
408 };
409
operator <<(std::ostream & os,const RelocationRange & reloc)410 std::ostream& operator<<(std::ostream& os, const RelocationRange& reloc) {
411 return os << "(" << reinterpret_cast<const void*>(reloc.Source()) << "-"
412 << reinterpret_cast<const void*>(reloc.Source() + reloc.Length()) << ")->("
413 << reinterpret_cast<const void*>(reloc.Dest()) << "-"
414 << reinterpret_cast<const void*>(reloc.Dest() + reloc.Length()) << ")";
415 }
416
417 template <PointerSize kPointerSize, typename HeapVisitor, typename NativeVisitor>
418 class ImageSpace::PatchObjectVisitor final {
419 public:
PatchObjectVisitor(HeapVisitor heap_visitor,NativeVisitor native_visitor)420 explicit PatchObjectVisitor(HeapVisitor heap_visitor, NativeVisitor native_visitor)
421 : heap_visitor_(heap_visitor), native_visitor_(native_visitor) {}
422
VisitClass(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Class> class_class)423 void VisitClass(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Class> class_class)
424 REQUIRES_SHARED(Locks::mutator_lock_) {
425 // A mirror::Class object consists of
426 // - instance fields inherited from j.l.Object,
427 // - instance fields inherited from j.l.Class,
428 // - embedded tables (vtable, interface method table),
429 // - static fields of the class itself.
430 // The reference fields are at the start of each field section (this is how the
431 // ClassLinker orders fields; except when that would create a gap between superclass
432 // fields and the first reference of the subclass due to alignment, it can be filled
433 // with smaller fields - but that's not the case for j.l.Object and j.l.Class).
434
435 DCHECK_ALIGNED(klass.Ptr(), kObjectAlignment);
436 static_assert(IsAligned<kHeapReferenceSize>(kObjectAlignment), "Object alignment check.");
437 // First, patch the `klass->klass_`, known to be a reference to the j.l.Class.class.
438 // This should be the only reference field in j.l.Object and we assert that below.
439 DCHECK_EQ(class_class,
440 heap_visitor_(klass->GetClass<kVerifyNone, kWithoutReadBarrier>()));
441 klass->SetFieldObjectWithoutWriteBarrier<
442 /*kTransactionActive=*/ false,
443 /*kCheckTransaction=*/ true,
444 kVerifyNone>(mirror::Object::ClassOffset(), class_class);
445 // Then patch the reference instance fields described by j.l.Class.class.
446 // Use the sizeof(Object) to determine where these reference fields start;
447 // this is the same as `class_class->GetFirstReferenceInstanceFieldOffset()`
448 // after patching but the j.l.Class may not have been patched yet.
449 size_t num_reference_instance_fields = class_class->NumReferenceInstanceFields<kVerifyNone>();
450 DCHECK_NE(num_reference_instance_fields, 0u);
451 static_assert(IsAligned<kHeapReferenceSize>(sizeof(mirror::Object)), "Size alignment check.");
452 MemberOffset instance_field_offset(sizeof(mirror::Object));
453 for (size_t i = 0; i != num_reference_instance_fields; ++i) {
454 PatchReferenceField(klass, instance_field_offset);
455 static_assert(sizeof(mirror::HeapReference<mirror::Object>) == kHeapReferenceSize,
456 "Heap reference sizes equality check.");
457 instance_field_offset =
458 MemberOffset(instance_field_offset.Uint32Value() + kHeapReferenceSize);
459 }
460 // Now that we have patched the `super_class_`, if this is the j.l.Class.class,
461 // we can get a reference to j.l.Object.class and assert that it has only one
462 // reference instance field (the `klass_` patched above).
463 if (kIsDebugBuild && klass == class_class) {
464 ObjPtr<mirror::Class> object_class =
465 klass->GetSuperClass<kVerifyNone, kWithoutReadBarrier>();
466 CHECK_EQ(object_class->NumReferenceInstanceFields<kVerifyNone>(), 1u);
467 }
468 // Then patch static fields.
469 size_t num_reference_static_fields = klass->NumReferenceStaticFields<kVerifyNone>();
470 if (num_reference_static_fields != 0u) {
471 MemberOffset static_field_offset =
472 klass->GetFirstReferenceStaticFieldOffset<kVerifyNone>(kPointerSize);
473 for (size_t i = 0; i != num_reference_static_fields; ++i) {
474 PatchReferenceField(klass, static_field_offset);
475 static_assert(sizeof(mirror::HeapReference<mirror::Object>) == kHeapReferenceSize,
476 "Heap reference sizes equality check.");
477 static_field_offset =
478 MemberOffset(static_field_offset.Uint32Value() + kHeapReferenceSize);
479 }
480 }
481 // Then patch native pointers.
482 klass->FixupNativePointers<kVerifyNone>(klass.Ptr(), kPointerSize, *this);
483 }
484
485 template <typename T>
operator ()(T * ptr,void ** dest_addr ATTRIBUTE_UNUSED) const486 T* operator()(T* ptr, void** dest_addr ATTRIBUTE_UNUSED) const {
487 return (ptr != nullptr) ? native_visitor_(ptr) : nullptr;
488 }
489
VisitPointerArray(ObjPtr<mirror::PointerArray> pointer_array)490 void VisitPointerArray(ObjPtr<mirror::PointerArray> pointer_array)
491 REQUIRES_SHARED(Locks::mutator_lock_) {
492 // Fully patch the pointer array, including the `klass_` field.
493 PatchReferenceField</*kMayBeNull=*/ false>(pointer_array, mirror::Object::ClassOffset());
494
495 int32_t length = pointer_array->GetLength<kVerifyNone>();
496 for (int32_t i = 0; i != length; ++i) {
497 ArtMethod** method_entry = reinterpret_cast<ArtMethod**>(
498 pointer_array->ElementAddress<kVerifyNone>(i, kPointerSize));
499 PatchNativePointer</*kMayBeNull=*/ false>(method_entry);
500 }
501 }
502
VisitObject(mirror::Object * object)503 void VisitObject(mirror::Object* object) REQUIRES_SHARED(Locks::mutator_lock_) {
504 // Visit all reference fields.
505 object->VisitReferences</*kVisitNativeRoots=*/ false,
506 kVerifyNone,
507 kWithoutReadBarrier>(*this, *this);
508 // This function should not be called for classes.
509 DCHECK(!object->IsClass<kVerifyNone>());
510 }
511
512 // Visitor for VisitReferences().
operator ()(ObjPtr<mirror::Object> object,MemberOffset field_offset,bool is_static) const513 ALWAYS_INLINE void operator()(ObjPtr<mirror::Object> object,
514 MemberOffset field_offset,
515 bool is_static)
516 const REQUIRES_SHARED(Locks::mutator_lock_) {
517 DCHECK(!is_static);
518 PatchReferenceField(object, field_offset);
519 }
520 // Visitor for VisitReferences(), java.lang.ref.Reference case.
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const521 ALWAYS_INLINE void operator()(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref) const
522 REQUIRES_SHARED(Locks::mutator_lock_) {
523 DCHECK(klass->IsTypeOfReferenceClass());
524 this->operator()(ref, mirror::Reference::ReferentOffset(), /*is_static=*/ false);
525 }
526 // Ignore class native roots; not called from VisitReferences() for kVisitNativeRoots == false.
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const527 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED)
528 const {}
VisitRoot(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const529 void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {}
530
VisitDexCacheArrays(ObjPtr<mirror::DexCache> dex_cache)531 void VisitDexCacheArrays(ObjPtr<mirror::DexCache> dex_cache)
532 REQUIRES_SHARED(Locks::mutator_lock_) {
533 ScopedTrace st("VisitDexCacheArrays");
534 FixupDexCacheArray<mirror::StringDexCacheType>(dex_cache,
535 mirror::DexCache::StringsOffset(),
536 dex_cache->NumStrings<kVerifyNone>());
537 FixupDexCacheArray<mirror::TypeDexCacheType>(dex_cache,
538 mirror::DexCache::ResolvedTypesOffset(),
539 dex_cache->NumResolvedTypes<kVerifyNone>());
540 FixupDexCacheArray<mirror::MethodDexCacheType>(dex_cache,
541 mirror::DexCache::ResolvedMethodsOffset(),
542 dex_cache->NumResolvedMethods<kVerifyNone>());
543 FixupDexCacheArray<mirror::FieldDexCacheType>(dex_cache,
544 mirror::DexCache::ResolvedFieldsOffset(),
545 dex_cache->NumResolvedFields<kVerifyNone>());
546 FixupDexCacheArray<mirror::MethodTypeDexCacheType>(
547 dex_cache,
548 mirror::DexCache::ResolvedMethodTypesOffset(),
549 dex_cache->NumResolvedMethodTypes<kVerifyNone>());
550 FixupDexCacheArray<GcRoot<mirror::CallSite>>(
551 dex_cache,
552 mirror::DexCache::ResolvedCallSitesOffset(),
553 dex_cache->NumResolvedCallSites<kVerifyNone>());
554 FixupDexCacheArray<GcRoot<mirror::String>>(
555 dex_cache,
556 mirror::DexCache::PreResolvedStringsOffset(),
557 dex_cache->NumPreResolvedStrings<kVerifyNone>());
558 }
559
560 template <bool kMayBeNull = true, typename T>
PatchGcRoot(GcRoot<T> * root) const561 ALWAYS_INLINE void PatchGcRoot(/*inout*/GcRoot<T>* root) const
562 REQUIRES_SHARED(Locks::mutator_lock_) {
563 static_assert(sizeof(GcRoot<mirror::Class*>) == sizeof(uint32_t), "GcRoot size check");
564 T* old_value = root->template Read<kWithoutReadBarrier>();
565 DCHECK(kMayBeNull || old_value != nullptr);
566 if (!kMayBeNull || old_value != nullptr) {
567 *root = GcRoot<T>(heap_visitor_(old_value));
568 }
569 }
570
571 template <bool kMayBeNull = true, typename T>
PatchNativePointer(T ** entry) const572 ALWAYS_INLINE void PatchNativePointer(/*inout*/T** entry) const {
573 if (kPointerSize == PointerSize::k64) {
574 uint64_t* raw_entry = reinterpret_cast<uint64_t*>(entry);
575 T* old_value = reinterpret_cast64<T*>(*raw_entry);
576 DCHECK(kMayBeNull || old_value != nullptr);
577 if (!kMayBeNull || old_value != nullptr) {
578 T* new_value = native_visitor_(old_value);
579 *raw_entry = reinterpret_cast64<uint64_t>(new_value);
580 }
581 } else {
582 uint32_t* raw_entry = reinterpret_cast<uint32_t*>(entry);
583 T* old_value = reinterpret_cast32<T*>(*raw_entry);
584 DCHECK(kMayBeNull || old_value != nullptr);
585 if (!kMayBeNull || old_value != nullptr) {
586 T* new_value = native_visitor_(old_value);
587 *raw_entry = reinterpret_cast32<uint32_t>(new_value);
588 }
589 }
590 }
591
592 template <bool kMayBeNull = true>
PatchReferenceField(ObjPtr<mirror::Object> object,MemberOffset offset) const593 ALWAYS_INLINE void PatchReferenceField(ObjPtr<mirror::Object> object, MemberOffset offset) const
594 REQUIRES_SHARED(Locks::mutator_lock_) {
595 ObjPtr<mirror::Object> old_value =
596 object->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(offset);
597 DCHECK(kMayBeNull || old_value != nullptr);
598 if (!kMayBeNull || old_value != nullptr) {
599 ObjPtr<mirror::Object> new_value = heap_visitor_(old_value.Ptr());
600 object->SetFieldObjectWithoutWriteBarrier</*kTransactionActive=*/ false,
601 /*kCheckTransaction=*/ true,
602 kVerifyNone>(offset, new_value);
603 }
604 }
605
606 template <typename T>
FixupDexCacheArrayEntry(std::atomic<mirror::DexCachePair<T>> * array,uint32_t index)607 void FixupDexCacheArrayEntry(std::atomic<mirror::DexCachePair<T>>* array, uint32_t index)
608 REQUIRES_SHARED(Locks::mutator_lock_) {
609 static_assert(sizeof(std::atomic<mirror::DexCachePair<T>>) == sizeof(mirror::DexCachePair<T>),
610 "Size check for removing std::atomic<>.");
611 PatchGcRoot(&(reinterpret_cast<mirror::DexCachePair<T>*>(array)[index].object));
612 }
613
614 template <typename T>
FixupDexCacheArrayEntry(std::atomic<mirror::NativeDexCachePair<T>> * array,uint32_t index)615 void FixupDexCacheArrayEntry(std::atomic<mirror::NativeDexCachePair<T>>* array, uint32_t index)
616 REQUIRES_SHARED(Locks::mutator_lock_) {
617 static_assert(sizeof(std::atomic<mirror::NativeDexCachePair<T>>) ==
618 sizeof(mirror::NativeDexCachePair<T>),
619 "Size check for removing std::atomic<>.");
620 mirror::NativeDexCachePair<T> pair =
621 mirror::DexCache::GetNativePairPtrSize(array, index, kPointerSize);
622 if (pair.object != nullptr) {
623 pair.object = native_visitor_(pair.object);
624 mirror::DexCache::SetNativePairPtrSize(array, index, pair, kPointerSize);
625 }
626 }
627
FixupDexCacheArrayEntry(GcRoot<mirror::CallSite> * array,uint32_t index)628 void FixupDexCacheArrayEntry(GcRoot<mirror::CallSite>* array, uint32_t index)
629 REQUIRES_SHARED(Locks::mutator_lock_) {
630 PatchGcRoot(&array[index]);
631 }
632
FixupDexCacheArrayEntry(GcRoot<mirror::String> * array,uint32_t index)633 void FixupDexCacheArrayEntry(GcRoot<mirror::String>* array, uint32_t index)
634 REQUIRES_SHARED(Locks::mutator_lock_) {
635 PatchGcRoot(&array[index]);
636 }
637
638 template <typename EntryType>
FixupDexCacheArray(ObjPtr<mirror::DexCache> dex_cache,MemberOffset array_offset,uint32_t size)639 void FixupDexCacheArray(ObjPtr<mirror::DexCache> dex_cache,
640 MemberOffset array_offset,
641 uint32_t size) REQUIRES_SHARED(Locks::mutator_lock_) {
642 EntryType* old_array =
643 reinterpret_cast64<EntryType*>(dex_cache->GetField64<kVerifyNone>(array_offset));
644 DCHECK_EQ(old_array != nullptr, size != 0u);
645 if (old_array != nullptr) {
646 EntryType* new_array = native_visitor_(old_array);
647 dex_cache->SetField64<kVerifyNone>(array_offset, reinterpret_cast64<uint64_t>(new_array));
648 for (uint32_t i = 0; i != size; ++i) {
649 FixupDexCacheArrayEntry(new_array, i);
650 }
651 }
652 }
653
654 private:
655 // Heap objects visitor.
656 HeapVisitor heap_visitor_;
657
658 // Native objects visitor.
659 NativeVisitor native_visitor_;
660 };
661
662 template <typename ReferenceVisitor>
663 class ImageSpace::ClassTableVisitor final {
664 public:
ClassTableVisitor(const ReferenceVisitor & reference_visitor)665 explicit ClassTableVisitor(const ReferenceVisitor& reference_visitor)
666 : reference_visitor_(reference_visitor) {}
667
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const668 void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
669 REQUIRES_SHARED(Locks::mutator_lock_) {
670 DCHECK(root->AsMirrorPtr() != nullptr);
671 root->Assign(reference_visitor_(root->AsMirrorPtr()));
672 }
673
674 private:
675 ReferenceVisitor reference_visitor_;
676 };
677
678 class ImageSpace::RemapInternedStringsVisitor {
679 public:
RemapInternedStringsVisitor(const SafeMap<mirror::String *,mirror::String * > & intern_remap)680 explicit RemapInternedStringsVisitor(
681 const SafeMap<mirror::String*, mirror::String*>& intern_remap)
682 REQUIRES_SHARED(Locks::mutator_lock_)
683 : intern_remap_(intern_remap),
684 string_class_(GetStringClass()) {}
685
686 // Visitor for VisitReferences().
operator ()(ObjPtr<mirror::Object> object,MemberOffset field_offset,bool is_static ATTRIBUTE_UNUSED) const687 ALWAYS_INLINE void operator()(ObjPtr<mirror::Object> object,
688 MemberOffset field_offset,
689 bool is_static ATTRIBUTE_UNUSED)
690 const REQUIRES_SHARED(Locks::mutator_lock_) {
691 ObjPtr<mirror::Object> old_value =
692 object->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(field_offset);
693 if (old_value != nullptr &&
694 old_value->GetClass<kVerifyNone, kWithoutReadBarrier>() == string_class_) {
695 auto it = intern_remap_.find(old_value->AsString().Ptr());
696 if (it != intern_remap_.end()) {
697 mirror::String* new_value = it->second;
698 object->SetFieldObjectWithoutWriteBarrier</*kTransactionActive=*/ false,
699 /*kCheckTransaction=*/ true,
700 kVerifyNone>(field_offset, new_value);
701 }
702 }
703 }
704 // Visitor for VisitReferences(), java.lang.ref.Reference case.
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const705 ALWAYS_INLINE void operator()(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref) const
706 REQUIRES_SHARED(Locks::mutator_lock_) {
707 DCHECK(klass->IsTypeOfReferenceClass());
708 this->operator()(ref, mirror::Reference::ReferentOffset(), /*is_static=*/ false);
709 }
710 // Ignore class native roots; not called from VisitReferences() for kVisitNativeRoots == false.
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const711 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED)
712 const {}
VisitRoot(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const713 void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {}
714
715 private:
GetStringClass()716 mirror::Class* GetStringClass() REQUIRES_SHARED(Locks::mutator_lock_) {
717 DCHECK(!intern_remap_.empty());
718 return intern_remap_.begin()->first->GetClass<kVerifyNone, kWithoutReadBarrier>();
719 }
720
721 const SafeMap<mirror::String*, mirror::String*>& intern_remap_;
722 mirror::Class* const string_class_;
723 };
724
725 // Helper class encapsulating loading, so we can access private ImageSpace members (this is a
726 // nested class), but not declare functions in the header.
727 class ImageSpace::Loader {
728 public:
InitAppImage(const char * image_filename,const char * image_location,const OatFile * oat_file,ArrayRef<ImageSpace * const> boot_image_spaces,std::string * error_msg)729 static std::unique_ptr<ImageSpace> InitAppImage(const char* image_filename,
730 const char* image_location,
731 const OatFile* oat_file,
732 ArrayRef<ImageSpace* const> boot_image_spaces,
733 /*out*/std::string* error_msg)
734 REQUIRES_SHARED(Locks::mutator_lock_) {
735 TimingLogger logger(__PRETTY_FUNCTION__, /*precise=*/ true, VLOG_IS_ON(image));
736
737 std::unique_ptr<ImageSpace> space = Init(image_filename,
738 image_location,
739 &logger,
740 /*image_reservation=*/ nullptr,
741 error_msg);
742 if (space != nullptr) {
743 space->oat_file_non_owned_ = oat_file;
744 const ImageHeader& image_header = space->GetImageHeader();
745
746 // Check the oat file checksum.
747 const uint32_t oat_checksum = oat_file->GetOatHeader().GetChecksum();
748 const uint32_t image_oat_checksum = image_header.GetOatChecksum();
749 if (oat_checksum != image_oat_checksum) {
750 *error_msg = StringPrintf("Oat checksum 0x%x does not match the image one 0x%x in image %s",
751 oat_checksum,
752 image_oat_checksum,
753 image_filename);
754 return nullptr;
755 }
756 size_t boot_image_space_dependencies;
757 if (!ValidateBootImageChecksum(image_filename,
758 image_header,
759 oat_file,
760 boot_image_spaces,
761 &boot_image_space_dependencies,
762 error_msg)) {
763 DCHECK(!error_msg->empty());
764 return nullptr;
765 }
766
767 uint32_t expected_reservation_size = RoundUp(image_header.GetImageSize(), kPageSize);
768 if (!CheckImageReservationSize(*space, expected_reservation_size, error_msg) ||
769 !CheckImageComponentCount(*space, /*expected_component_count=*/ 1u, error_msg)) {
770 return nullptr;
771 }
772
773 {
774 TimingLogger::ScopedTiming timing("RelocateImage", &logger);
775 const PointerSize pointer_size = image_header.GetPointerSize();
776 uint32_t boot_image_begin =
777 reinterpret_cast32<uint32_t>(boot_image_spaces.front()->Begin());
778 bool result;
779 if (pointer_size == PointerSize::k64) {
780 result = RelocateInPlace<PointerSize::k64>(boot_image_begin,
781 space->GetMemMap()->Begin(),
782 space->GetLiveBitmap(),
783 oat_file,
784 error_msg);
785 } else {
786 result = RelocateInPlace<PointerSize::k32>(boot_image_begin,
787 space->GetMemMap()->Begin(),
788 space->GetLiveBitmap(),
789 oat_file,
790 error_msg);
791 }
792 if (!result) {
793 return nullptr;
794 }
795 }
796
797 DCHECK_LE(boot_image_space_dependencies, boot_image_spaces.size());
798 if (boot_image_space_dependencies != boot_image_spaces.size()) {
799 TimingLogger::ScopedTiming timing("DeduplicateInternedStrings", &logger);
800 // There shall be no duplicates with boot image spaces this app image depends on.
801 ArrayRef<ImageSpace* const> old_spaces =
802 boot_image_spaces.SubArray(/*pos=*/ boot_image_space_dependencies);
803 SafeMap<mirror::String*, mirror::String*> intern_remap;
804 RemoveInternTableDuplicates(old_spaces, space.get(), &intern_remap);
805 if (!intern_remap.empty()) {
806 RemapInternedStringDuplicates(intern_remap, space.get());
807 }
808 }
809
810 const ImageHeader& primary_header = boot_image_spaces.front()->GetImageHeader();
811 static_assert(static_cast<size_t>(ImageHeader::kResolutionMethod) == 0u);
812 for (size_t i = 0u; i != static_cast<size_t>(ImageHeader::kImageMethodsCount); ++i) {
813 ImageHeader::ImageMethod method = static_cast<ImageHeader::ImageMethod>(i);
814 CHECK_EQ(primary_header.GetImageMethod(method), image_header.GetImageMethod(method))
815 << method;
816 }
817
818 VLOG(image) << "ImageSpace::Loader::InitAppImage exiting " << *space.get();
819 }
820 if (VLOG_IS_ON(image)) {
821 logger.Dump(LOG_STREAM(INFO));
822 }
823 return space;
824 }
825
Init(const char * image_filename,const char * image_location,TimingLogger * logger,MemMap * image_reservation,std::string * error_msg)826 static std::unique_ptr<ImageSpace> Init(const char* image_filename,
827 const char* image_location,
828 TimingLogger* logger,
829 /*inout*/MemMap* image_reservation,
830 /*out*/std::string* error_msg)
831 REQUIRES_SHARED(Locks::mutator_lock_) {
832 CHECK(image_filename != nullptr);
833 CHECK(image_location != nullptr);
834
835 std::unique_ptr<File> file;
836 {
837 TimingLogger::ScopedTiming timing("OpenImageFile", logger);
838 file.reset(OS::OpenFileForReading(image_filename));
839 if (file == nullptr) {
840 *error_msg = StringPrintf("Failed to open '%s'", image_filename);
841 return nullptr;
842 }
843 }
844 return Init(file.get(),
845 image_filename,
846 image_location,
847 /* profile_file=*/ "",
848 /*allow_direct_mapping=*/ true,
849 logger,
850 image_reservation,
851 error_msg);
852 }
853
Init(File * file,const char * image_filename,const char * image_location,const char * profile_file,bool allow_direct_mapping,TimingLogger * logger,MemMap * image_reservation,std::string * error_msg)854 static std::unique_ptr<ImageSpace> Init(File* file,
855 const char* image_filename,
856 const char* image_location,
857 const char* profile_file,
858 bool allow_direct_mapping,
859 TimingLogger* logger,
860 /*inout*/MemMap* image_reservation,
861 /*out*/std::string* error_msg)
862 REQUIRES_SHARED(Locks::mutator_lock_) {
863 CHECK(image_filename != nullptr);
864 CHECK(image_location != nullptr);
865
866 VLOG(image) << "ImageSpace::Init entering image_filename=" << image_filename;
867
868 ImageHeader image_header;
869 {
870 TimingLogger::ScopedTiming timing("ReadImageHeader", logger);
871 bool success = file->PreadFully(&image_header, sizeof(image_header), /*offset=*/ 0u);
872 if (!success || !image_header.IsValid()) {
873 *error_msg = StringPrintf("Invalid image header in '%s'", image_filename);
874 return nullptr;
875 }
876 }
877 // Check that the file is larger or equal to the header size + data size.
878 const uint64_t image_file_size = static_cast<uint64_t>(file->GetLength());
879 if (image_file_size < sizeof(ImageHeader) + image_header.GetDataSize()) {
880 *error_msg = StringPrintf(
881 "Image file truncated: %" PRIu64 " vs. %" PRIu64 ".",
882 image_file_size,
883 static_cast<uint64_t>(sizeof(ImageHeader) + image_header.GetDataSize()));
884 return nullptr;
885 }
886
887 if (VLOG_IS_ON(startup)) {
888 LOG(INFO) << "Dumping image sections";
889 for (size_t i = 0; i < ImageHeader::kSectionCount; ++i) {
890 const auto section_idx = static_cast<ImageHeader::ImageSections>(i);
891 auto& section = image_header.GetImageSection(section_idx);
892 LOG(INFO) << section_idx << " start="
893 << reinterpret_cast<void*>(image_header.GetImageBegin() + section.Offset()) << " "
894 << section;
895 }
896 }
897
898 const auto& bitmap_section = image_header.GetImageBitmapSection();
899 // The location we want to map from is the first aligned page after the end of the stored
900 // (possibly compressed) data.
901 const size_t image_bitmap_offset =
902 RoundUp(sizeof(ImageHeader) + image_header.GetDataSize(), kPageSize);
903 const size_t end_of_bitmap = image_bitmap_offset + bitmap_section.Size();
904 if (end_of_bitmap != image_file_size) {
905 *error_msg = StringPrintf(
906 "Image file size does not equal end of bitmap: size=%" PRIu64 " vs. %zu.",
907 image_file_size,
908 end_of_bitmap);
909 return nullptr;
910 }
911
912 // GetImageBegin is the preferred address to map the image. If we manage to map the
913 // image at the image begin, the amount of fixup work required is minimized.
914 // If it is pic we will retry with error_msg for the2 failure case. Pass a null error_msg to
915 // avoid reading proc maps for a mapping failure and slowing everything down.
916 // For the boot image, we have already reserved the memory and we load the image
917 // into the `image_reservation`.
918 MemMap map = LoadImageFile(
919 image_filename,
920 image_location,
921 image_header,
922 file->Fd(),
923 allow_direct_mapping,
924 logger,
925 image_reservation,
926 error_msg);
927 if (!map.IsValid()) {
928 DCHECK(!error_msg->empty());
929 return nullptr;
930 }
931 DCHECK_EQ(0, memcmp(&image_header, map.Begin(), sizeof(ImageHeader)));
932
933 MemMap image_bitmap_map = MemMap::MapFile(bitmap_section.Size(),
934 PROT_READ,
935 MAP_PRIVATE,
936 file->Fd(),
937 image_bitmap_offset,
938 /*low_4gb=*/ false,
939 image_filename,
940 error_msg);
941 if (!image_bitmap_map.IsValid()) {
942 *error_msg = StringPrintf("Failed to map image bitmap: %s", error_msg->c_str());
943 return nullptr;
944 }
945 const uint32_t bitmap_index = ImageSpace::bitmap_index_.fetch_add(1);
946 std::string bitmap_name(StringPrintf("imagespace %s live-bitmap %u",
947 image_filename,
948 bitmap_index));
949 // Bitmap only needs to cover until the end of the mirror objects section.
950 const ImageSection& image_objects = image_header.GetObjectsSection();
951 // We only want the mirror object, not the ArtFields and ArtMethods.
952 uint8_t* const image_end = map.Begin() + image_objects.End();
953 accounting::ContinuousSpaceBitmap bitmap;
954 {
955 TimingLogger::ScopedTiming timing("CreateImageBitmap", logger);
956 bitmap = accounting::ContinuousSpaceBitmap::CreateFromMemMap(
957 bitmap_name,
958 std::move(image_bitmap_map),
959 reinterpret_cast<uint8_t*>(map.Begin()),
960 // Make sure the bitmap is aligned to card size instead of just bitmap word size.
961 RoundUp(image_objects.End(), gc::accounting::CardTable::kCardSize));
962 if (!bitmap.IsValid()) {
963 *error_msg = StringPrintf("Could not create bitmap '%s'", bitmap_name.c_str());
964 return nullptr;
965 }
966 }
967 // We only want the mirror object, not the ArtFields and ArtMethods.
968 std::unique_ptr<ImageSpace> space(new ImageSpace(image_filename,
969 image_location,
970 profile_file,
971 std::move(map),
972 std::move(bitmap),
973 image_end));
974 return space;
975 }
976
CheckImageComponentCount(const ImageSpace & space,uint32_t expected_component_count,std::string * error_msg)977 static bool CheckImageComponentCount(const ImageSpace& space,
978 uint32_t expected_component_count,
979 /*out*/std::string* error_msg) {
980 const ImageHeader& header = space.GetImageHeader();
981 if (header.GetComponentCount() != expected_component_count) {
982 *error_msg = StringPrintf("Unexpected component count in %s, received %u, expected %u",
983 space.GetImageFilename().c_str(),
984 header.GetComponentCount(),
985 expected_component_count);
986 return false;
987 }
988 return true;
989 }
990
CheckImageReservationSize(const ImageSpace & space,uint32_t expected_reservation_size,std::string * error_msg)991 static bool CheckImageReservationSize(const ImageSpace& space,
992 uint32_t expected_reservation_size,
993 /*out*/std::string* error_msg) {
994 const ImageHeader& header = space.GetImageHeader();
995 if (header.GetImageReservationSize() != expected_reservation_size) {
996 *error_msg = StringPrintf("Unexpected reservation size in %s, received %u, expected %u",
997 space.GetImageFilename().c_str(),
998 header.GetImageReservationSize(),
999 expected_reservation_size);
1000 return false;
1001 }
1002 return true;
1003 }
1004
1005 template <typename Container>
RemoveInternTableDuplicates(const Container & old_spaces,ImageSpace * new_space,SafeMap<mirror::String *,mirror::String * > * intern_remap)1006 static void RemoveInternTableDuplicates(
1007 const Container& old_spaces,
1008 /*inout*/ImageSpace* new_space,
1009 /*inout*/SafeMap<mirror::String*, mirror::String*>* intern_remap)
1010 REQUIRES_SHARED(Locks::mutator_lock_) {
1011 const ImageSection& new_interns = new_space->GetImageHeader().GetInternedStringsSection();
1012 if (new_interns.Size() != 0u) {
1013 const uint8_t* new_data = new_space->Begin() + new_interns.Offset();
1014 size_t new_read_count;
1015 InternTable::UnorderedSet new_set(new_data, /*make_copy_of_data=*/ false, &new_read_count);
1016 for (const auto& old_space : old_spaces) {
1017 const ImageSection& old_interns = old_space->GetImageHeader().GetInternedStringsSection();
1018 if (old_interns.Size() != 0u) {
1019 const uint8_t* old_data = old_space->Begin() + old_interns.Offset();
1020 size_t old_read_count;
1021 InternTable::UnorderedSet old_set(
1022 old_data, /*make_copy_of_data=*/ false, &old_read_count);
1023 RemoveDuplicates(old_set, &new_set, intern_remap);
1024 }
1025 }
1026 }
1027 }
1028
RemapInternedStringDuplicates(const SafeMap<mirror::String *,mirror::String * > & intern_remap,ImageSpace * new_space)1029 static void RemapInternedStringDuplicates(
1030 const SafeMap<mirror::String*, mirror::String*>& intern_remap,
1031 ImageSpace* new_space) REQUIRES_SHARED(Locks::mutator_lock_) {
1032 RemapInternedStringsVisitor visitor(intern_remap);
1033 static_assert(IsAligned<kObjectAlignment>(sizeof(ImageHeader)), "Header alignment check");
1034 uint32_t objects_end = new_space->GetImageHeader().GetObjectsSection().Size();
1035 DCHECK_ALIGNED(objects_end, kObjectAlignment);
1036 for (uint32_t pos = sizeof(ImageHeader); pos != objects_end; ) {
1037 mirror::Object* object = reinterpret_cast<mirror::Object*>(new_space->Begin() + pos);
1038 object->VisitReferences</*kVisitNativeRoots=*/ false,
1039 kVerifyNone,
1040 kWithoutReadBarrier>(visitor, visitor);
1041 pos += RoundUp(object->SizeOf<kVerifyNone>(), kObjectAlignment);
1042 }
1043 }
1044
1045 private:
1046 // Remove duplicates found in the `old_set` from the `new_set`.
1047 // Record the removed Strings for remapping. No read barriers are needed as the
1048 // tables are either just being loaded and not yet a part of the heap, or boot
1049 // image intern tables with non-moveable Strings used when loading an app image.
RemoveDuplicates(const InternTable::UnorderedSet & old_set,InternTable::UnorderedSet * new_set,SafeMap<mirror::String *,mirror::String * > * intern_remap)1050 static void RemoveDuplicates(const InternTable::UnorderedSet& old_set,
1051 /*inout*/InternTable::UnorderedSet* new_set,
1052 /*inout*/SafeMap<mirror::String*, mirror::String*>* intern_remap)
1053 REQUIRES_SHARED(Locks::mutator_lock_) {
1054 if (old_set.size() < new_set->size()) {
1055 for (const GcRoot<mirror::String>& old_s : old_set) {
1056 auto new_it = new_set->find(old_s);
1057 if (UNLIKELY(new_it != new_set->end())) {
1058 intern_remap->Put(new_it->Read<kWithoutReadBarrier>(), old_s.Read<kWithoutReadBarrier>());
1059 new_set->erase(new_it);
1060 }
1061 }
1062 } else {
1063 for (auto new_it = new_set->begin(), end = new_set->end(); new_it != end; ) {
1064 auto old_it = old_set.find(*new_it);
1065 if (UNLIKELY(old_it != old_set.end())) {
1066 intern_remap->Put(new_it->Read<kWithoutReadBarrier>(),
1067 old_it->Read<kWithoutReadBarrier>());
1068 new_it = new_set->erase(new_it);
1069 } else {
1070 ++new_it;
1071 }
1072 }
1073 }
1074 }
1075
ValidateBootImageChecksum(const char * image_filename,const ImageHeader & image_header,const OatFile * oat_file,ArrayRef<ImageSpace * const> boot_image_spaces,size_t * boot_image_space_dependencies,std::string * error_msg)1076 static bool ValidateBootImageChecksum(const char* image_filename,
1077 const ImageHeader& image_header,
1078 const OatFile* oat_file,
1079 ArrayRef<ImageSpace* const> boot_image_spaces,
1080 /*out*/size_t* boot_image_space_dependencies,
1081 /*out*/std::string* error_msg) {
1082 // Use the boot image component count to calculate the checksum from
1083 // the appropriate number of boot image chunks.
1084 uint32_t boot_image_component_count = image_header.GetBootImageComponentCount();
1085 size_t boot_image_spaces_size = boot_image_spaces.size();
1086 if (boot_image_component_count > boot_image_spaces_size) {
1087 *error_msg = StringPrintf("Too many boot image dependencies (%u > %zu) in image %s",
1088 boot_image_component_count,
1089 boot_image_spaces_size,
1090 image_filename);
1091 return false;
1092 }
1093 uint32_t checksum = 0u;
1094 size_t chunk_count = 0u;
1095 size_t space_pos = 0u;
1096 uint64_t boot_image_size = 0u;
1097 for (size_t component_count = 0u; component_count != boot_image_component_count; ) {
1098 const ImageHeader& current_header = boot_image_spaces[space_pos]->GetImageHeader();
1099 if (current_header.GetComponentCount() > boot_image_component_count - component_count) {
1100 *error_msg = StringPrintf("Boot image component count in %s ends in the middle of a chunk, "
1101 "%u is between %zu and %zu",
1102 image_filename,
1103 boot_image_component_count,
1104 component_count,
1105 component_count + current_header.GetComponentCount());
1106 return false;
1107 }
1108 component_count += current_header.GetComponentCount();
1109 checksum ^= current_header.GetImageChecksum();
1110 chunk_count += 1u;
1111 space_pos += current_header.GetImageSpaceCount();
1112 boot_image_size += current_header.GetImageReservationSize();
1113 }
1114 if (image_header.GetBootImageChecksum() != checksum) {
1115 *error_msg = StringPrintf("Boot image checksum mismatch (0x%08x != 0x%08x) in image %s",
1116 image_header.GetBootImageChecksum(),
1117 checksum,
1118 image_filename);
1119 return false;
1120 }
1121 if (image_header.GetBootImageSize() != boot_image_size) {
1122 *error_msg = StringPrintf("Boot image size mismatch (0x%08x != 0x%08" PRIx64 ") in image %s",
1123 image_header.GetBootImageSize(),
1124 boot_image_size,
1125 image_filename);
1126 return false;
1127 }
1128 // Oat checksums, if present, have already been validated, so we know that
1129 // they match the loaded image spaces. Therefore, we just verify that they
1130 // are consistent in the number of boot image chunks they list by looking
1131 // for the kImageChecksumPrefix at the start of each component.
1132 const char* oat_boot_class_path_checksums =
1133 oat_file->GetOatHeader().GetStoreValueByKey(OatHeader::kBootClassPathChecksumsKey);
1134 if (oat_boot_class_path_checksums != nullptr) {
1135 size_t oat_bcp_chunk_count = 0u;
1136 while (*oat_boot_class_path_checksums == kImageChecksumPrefix) {
1137 oat_bcp_chunk_count += 1u;
1138 // Find the start of the next component if any.
1139 const char* separator = strchr(oat_boot_class_path_checksums, ':');
1140 oat_boot_class_path_checksums = (separator != nullptr) ? separator + 1u : "";
1141 }
1142 if (oat_bcp_chunk_count != chunk_count) {
1143 *error_msg = StringPrintf("Boot image chunk count mismatch (%zu != %zu) in image %s",
1144 oat_bcp_chunk_count,
1145 chunk_count,
1146 image_filename);
1147 return false;
1148 }
1149 }
1150 *boot_image_space_dependencies = space_pos;
1151 return true;
1152 }
1153
LoadImageFile(const char * image_filename,const char * image_location,const ImageHeader & image_header,int fd,bool allow_direct_mapping,TimingLogger * logger,MemMap * image_reservation,std::string * error_msg)1154 static MemMap LoadImageFile(const char* image_filename,
1155 const char* image_location,
1156 const ImageHeader& image_header,
1157 int fd,
1158 bool allow_direct_mapping,
1159 TimingLogger* logger,
1160 /*inout*/MemMap* image_reservation,
1161 /*out*/std::string* error_msg)
1162 REQUIRES_SHARED(Locks::mutator_lock_) {
1163 TimingLogger::ScopedTiming timing("MapImageFile", logger);
1164 std::string temp_error_msg;
1165 const bool is_compressed = image_header.HasCompressedBlock();
1166 if (!is_compressed && allow_direct_mapping) {
1167 uint8_t* address = (image_reservation != nullptr) ? image_reservation->Begin() : nullptr;
1168 return MemMap::MapFileAtAddress(address,
1169 image_header.GetImageSize(),
1170 PROT_READ | PROT_WRITE,
1171 MAP_PRIVATE,
1172 fd,
1173 /*start=*/ 0,
1174 /*low_4gb=*/ true,
1175 image_filename,
1176 /*reuse=*/ false,
1177 image_reservation,
1178 error_msg);
1179 }
1180
1181 // Reserve output and copy/decompress into it.
1182 MemMap map = MemMap::MapAnonymous(image_location,
1183 image_header.GetImageSize(),
1184 PROT_READ | PROT_WRITE,
1185 /*low_4gb=*/ true,
1186 image_reservation,
1187 error_msg);
1188 if (map.IsValid()) {
1189 const size_t stored_size = image_header.GetDataSize();
1190 MemMap temp_map = MemMap::MapFile(sizeof(ImageHeader) + stored_size,
1191 PROT_READ,
1192 MAP_PRIVATE,
1193 fd,
1194 /*start=*/ 0,
1195 /*low_4gb=*/ false,
1196 image_filename,
1197 error_msg);
1198 if (!temp_map.IsValid()) {
1199 DCHECK(error_msg == nullptr || !error_msg->empty());
1200 return MemMap::Invalid();
1201 }
1202
1203 if (is_compressed) {
1204 memcpy(map.Begin(), &image_header, sizeof(ImageHeader));
1205
1206 Runtime::ScopedThreadPoolUsage stpu;
1207 ThreadPool* const pool = stpu.GetThreadPool();
1208 const uint64_t start = NanoTime();
1209 Thread* const self = Thread::Current();
1210 static constexpr size_t kMinBlocks = 2u;
1211 const bool use_parallel = pool != nullptr && image_header.GetBlockCount() >= kMinBlocks;
1212 for (const ImageHeader::Block& block : image_header.GetBlocks(temp_map.Begin())) {
1213 auto function = [&](Thread*) {
1214 const uint64_t start2 = NanoTime();
1215 ScopedTrace trace("LZ4 decompress block");
1216 bool result = block.Decompress(/*out_ptr=*/map.Begin(),
1217 /*in_ptr=*/temp_map.Begin(),
1218 error_msg);
1219 if (!result && error_msg != nullptr) {
1220 *error_msg = "Failed to decompress image block " + *error_msg;
1221 }
1222 VLOG(image) << "Decompress block " << block.GetDataSize() << " -> "
1223 << block.GetImageSize() << " in " << PrettyDuration(NanoTime() - start2);
1224 };
1225 if (use_parallel) {
1226 pool->AddTask(self, new FunctionTask(std::move(function)));
1227 } else {
1228 function(self);
1229 }
1230 }
1231 if (use_parallel) {
1232 ScopedTrace trace("Waiting for workers");
1233 // Go to native since we don't want to suspend while holding the mutator lock.
1234 ScopedThreadSuspension sts(Thread::Current(), kNative);
1235 pool->Wait(self, true, false);
1236 }
1237 const uint64_t time = NanoTime() - start;
1238 // Add one 1 ns to prevent possible divide by 0.
1239 VLOG(image) << "Decompressing image took " << PrettyDuration(time) << " ("
1240 << PrettySize(static_cast<uint64_t>(map.Size()) * MsToNs(1000) / (time + 1))
1241 << "/s)";
1242 } else {
1243 DCHECK(!allow_direct_mapping);
1244 // We do not allow direct mapping for boot image extensions compiled to a memfd.
1245 // This prevents wasting memory by kernel keeping the contents of the file alive
1246 // despite these contents being unreachable once the file descriptor is closed
1247 // and mmapped memory is copied for all existing mappings.
1248 //
1249 // Most pages would be copied during relocation while there is only one mapping.
1250 // We could use MAP_SHARED for relocation and then msync() and remap MAP_PRIVATE
1251 // as required for forking from zygote, but there would still be some pages
1252 // wasted anyway and we want to avoid that. (For example, static synchronized
1253 // methods use the class object for locking and thus modify its lockword.)
1254
1255 // No other process should race to overwrite the extension in memfd.
1256 DCHECK_EQ(memcmp(temp_map.Begin(), &image_header, sizeof(ImageHeader)), 0);
1257 memcpy(map.Begin(), temp_map.Begin(), temp_map.Size());
1258 }
1259 }
1260
1261 return map;
1262 }
1263
1264 class EmptyRange {
1265 public:
InSource(uintptr_t) const1266 ALWAYS_INLINE bool InSource(uintptr_t) const { return false; }
InDest(uintptr_t) const1267 ALWAYS_INLINE bool InDest(uintptr_t) const { return false; }
ToDest(uintptr_t) const1268 ALWAYS_INLINE uintptr_t ToDest(uintptr_t) const { UNREACHABLE(); }
1269 };
1270
1271 template <typename Range0, typename Range1 = EmptyRange, typename Range2 = EmptyRange>
1272 class ForwardAddress {
1273 public:
ForwardAddress(const Range0 & range0=Range0 (),const Range1 & range1=Range1 (),const Range2 & range2=Range2 ())1274 explicit ForwardAddress(const Range0& range0 = Range0(),
1275 const Range1& range1 = Range1(),
1276 const Range2& range2 = Range2())
1277 : range0_(range0), range1_(range1), range2_(range2) {}
1278
1279 // Return the relocated address of a heap object.
1280 // Null checks must be performed in the caller (for performance reasons).
1281 template <typename T>
operator ()(T * src) const1282 ALWAYS_INLINE T* operator()(T* src) const {
1283 DCHECK(src != nullptr);
1284 const uintptr_t uint_src = reinterpret_cast<uintptr_t>(src);
1285 if (range2_.InSource(uint_src)) {
1286 return reinterpret_cast<T*>(range2_.ToDest(uint_src));
1287 }
1288 if (range1_.InSource(uint_src)) {
1289 return reinterpret_cast<T*>(range1_.ToDest(uint_src));
1290 }
1291 CHECK(range0_.InSource(uint_src))
1292 << reinterpret_cast<const void*>(src) << " not in "
1293 << reinterpret_cast<const void*>(range0_.Source()) << "-"
1294 << reinterpret_cast<const void*>(range0_.Source() + range0_.Length());
1295 return reinterpret_cast<T*>(range0_.ToDest(uint_src));
1296 }
1297
1298 private:
1299 const Range0 range0_;
1300 const Range1 range1_;
1301 const Range2 range2_;
1302 };
1303
1304 template <typename Forward>
1305 class FixupRootVisitor {
1306 public:
1307 template<typename... Args>
FixupRootVisitor(Args...args)1308 explicit FixupRootVisitor(Args... args) : forward_(args...) {}
1309
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const1310 ALWAYS_INLINE void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
1311 REQUIRES_SHARED(Locks::mutator_lock_) {
1312 if (!root->IsNull()) {
1313 VisitRoot(root);
1314 }
1315 }
1316
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const1317 ALWAYS_INLINE void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
1318 REQUIRES_SHARED(Locks::mutator_lock_) {
1319 mirror::Object* ref = root->AsMirrorPtr();
1320 mirror::Object* new_ref = forward_(ref);
1321 if (ref != new_ref) {
1322 root->Assign(new_ref);
1323 }
1324 }
1325
1326 private:
1327 Forward forward_;
1328 };
1329
1330 template <typename Forward>
1331 class FixupObjectVisitor {
1332 public:
FixupObjectVisitor(gc::accounting::ContinuousSpaceBitmap * visited,const Forward & forward)1333 explicit FixupObjectVisitor(gc::accounting::ContinuousSpaceBitmap* visited,
1334 const Forward& forward)
1335 : visited_(visited), forward_(forward) {}
1336
1337 // Fix up separately since we also need to fix up method entrypoints.
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const1338 ALWAYS_INLINE void VisitRootIfNonNull(
1339 mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {}
1340
VisitRoot(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const1341 ALWAYS_INLINE void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED)
1342 const {}
1343
operator ()(ObjPtr<mirror::Object> obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const1344 ALWAYS_INLINE void operator()(ObjPtr<mirror::Object> obj,
1345 MemberOffset offset,
1346 bool is_static ATTRIBUTE_UNUSED) const
1347 NO_THREAD_SAFETY_ANALYSIS {
1348 // Space is not yet added to the heap, don't do a read barrier.
1349 mirror::Object* ref = obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(
1350 offset);
1351 if (ref != nullptr) {
1352 // Use SetFieldObjectWithoutWriteBarrier to avoid card marking since we are writing to the
1353 // image.
1354 obj->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>(offset, forward_(ref));
1355 }
1356 }
1357
1358 // java.lang.ref.Reference visitor.
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const1359 ALWAYS_INLINE void operator()(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref) const
1360 REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
1361 DCHECK(klass->IsTypeOfReferenceClass());
1362 this->operator()(ref, mirror::Reference::ReferentOffset(), /*is_static=*/ false);
1363 }
1364
operator ()(mirror::Object * obj) const1365 void operator()(mirror::Object* obj) const
1366 NO_THREAD_SAFETY_ANALYSIS {
1367 if (!visited_->Set(obj)) {
1368 // Not already visited.
1369 obj->VisitReferences</*visit native roots*/false, kVerifyNone, kWithoutReadBarrier>(
1370 *this,
1371 *this);
1372 CHECK(!obj->IsClass());
1373 }
1374 }
1375
1376 private:
1377 gc::accounting::ContinuousSpaceBitmap* const visited_;
1378 Forward forward_;
1379 };
1380
1381 // Relocate an image space mapped at target_base which possibly used to be at a different base
1382 // address. In place means modifying a single ImageSpace in place rather than relocating from
1383 // one ImageSpace to another.
1384 template <PointerSize kPointerSize>
RelocateInPlace(uint32_t boot_image_begin,uint8_t * target_base,accounting::ContinuousSpaceBitmap * bitmap,const OatFile * app_oat_file,std::string * error_msg)1385 static bool RelocateInPlace(uint32_t boot_image_begin,
1386 uint8_t* target_base,
1387 accounting::ContinuousSpaceBitmap* bitmap,
1388 const OatFile* app_oat_file,
1389 std::string* error_msg) {
1390 DCHECK(error_msg != nullptr);
1391 // Set up sections.
1392 ImageHeader* image_header = reinterpret_cast<ImageHeader*>(target_base);
1393 const uint32_t boot_image_size = image_header->GetBootImageSize();
1394 const ImageSection& objects_section = image_header->GetObjectsSection();
1395 // Where the app image objects are mapped to.
1396 uint8_t* objects_location = target_base + objects_section.Offset();
1397 TimingLogger logger(__FUNCTION__, true, false);
1398 RelocationRange boot_image(image_header->GetBootImageBegin(),
1399 boot_image_begin,
1400 boot_image_size);
1401 // Metadata is everything after the objects section, use exclusion to be safe.
1402 RelocationRange app_image_metadata(
1403 reinterpret_cast<uintptr_t>(image_header->GetImageBegin()) + objects_section.End(),
1404 reinterpret_cast<uintptr_t>(target_base) + objects_section.End(),
1405 image_header->GetImageSize() - objects_section.End());
1406 // App image heap objects, may be mapped in the heap.
1407 RelocationRange app_image_objects(
1408 reinterpret_cast<uintptr_t>(image_header->GetImageBegin()) + objects_section.Offset(),
1409 reinterpret_cast<uintptr_t>(objects_location),
1410 objects_section.Size());
1411 // Use the oat data section since this is where the OatFile::Begin is.
1412 RelocationRange app_oat(reinterpret_cast<uintptr_t>(image_header->GetOatDataBegin()),
1413 // Not necessarily in low 4GB.
1414 reinterpret_cast<uintptr_t>(app_oat_file->Begin()),
1415 image_header->GetOatDataEnd() - image_header->GetOatDataBegin());
1416 VLOG(image) << "App image metadata " << app_image_metadata;
1417 VLOG(image) << "App image objects " << app_image_objects;
1418 VLOG(image) << "App oat " << app_oat;
1419 VLOG(image) << "Boot image " << boot_image;
1420 // True if we need to fixup any heap pointers.
1421 const bool fixup_image = boot_image.Delta() != 0 || app_image_metadata.Delta() != 0 ||
1422 app_image_objects.Delta() != 0;
1423 if (!fixup_image) {
1424 // Nothing to fix up.
1425 return true;
1426 }
1427 ScopedDebugDisallowReadBarriers sddrb(Thread::Current());
1428
1429 using ForwardObject = ForwardAddress<RelocationRange, RelocationRange>;
1430 ForwardObject forward_object(boot_image, app_image_objects);
1431 ForwardObject forward_metadata(boot_image, app_image_metadata);
1432 using ForwardCode = ForwardAddress<RelocationRange, RelocationRange>;
1433 ForwardCode forward_code(boot_image, app_oat);
1434 PatchObjectVisitor<kPointerSize, ForwardObject, ForwardCode> patch_object_visitor(
1435 forward_object,
1436 forward_metadata);
1437 if (fixup_image) {
1438 // Two pass approach, fix up all classes first, then fix up non class-objects.
1439 // The visited bitmap is used to ensure that pointer arrays are not forwarded twice.
1440 gc::accounting::ContinuousSpaceBitmap visited_bitmap(
1441 gc::accounting::ContinuousSpaceBitmap::Create("Relocate bitmap",
1442 target_base,
1443 image_header->GetImageSize()));
1444 {
1445 TimingLogger::ScopedTiming timing("Fixup classes", &logger);
1446 ObjPtr<mirror::Class> class_class = [&]() NO_THREAD_SAFETY_ANALYSIS {
1447 ObjPtr<mirror::ObjectArray<mirror::Object>> image_roots = app_image_objects.ToDest(
1448 image_header->GetImageRoots<kWithoutReadBarrier>().Ptr());
1449 int32_t class_roots_index = enum_cast<int32_t>(ImageHeader::kClassRoots);
1450 DCHECK_LT(class_roots_index, image_roots->GetLength<kVerifyNone>());
1451 ObjPtr<mirror::ObjectArray<mirror::Class>> class_roots =
1452 ObjPtr<mirror::ObjectArray<mirror::Class>>::DownCast(boot_image.ToDest(
1453 image_roots->GetWithoutChecks<kVerifyNone>(class_roots_index).Ptr()));
1454 return GetClassRoot<mirror::Class, kWithoutReadBarrier>(class_roots);
1455 }();
1456 const auto& class_table_section = image_header->GetClassTableSection();
1457 if (class_table_section.Size() > 0u) {
1458 ScopedObjectAccess soa(Thread::Current());
1459 ClassTableVisitor class_table_visitor(forward_object);
1460 size_t read_count = 0u;
1461 const uint8_t* data = target_base + class_table_section.Offset();
1462 // We avoid making a copy of the data since we want modifications to be propagated to the
1463 // memory map.
1464 ClassTable::ClassSet temp_set(data, /*make_copy_of_data=*/ false, &read_count);
1465 for (ClassTable::TableSlot& slot : temp_set) {
1466 slot.VisitRoot(class_table_visitor);
1467 ObjPtr<mirror::Class> klass = slot.Read<kWithoutReadBarrier>();
1468 if (!app_image_objects.InDest(klass.Ptr())) {
1469 continue;
1470 }
1471 const bool already_marked = visited_bitmap.Set(klass.Ptr());
1472 CHECK(!already_marked) << "App image class already visited";
1473 patch_object_visitor.VisitClass(klass, class_class);
1474 // Then patch the non-embedded vtable and iftable.
1475 ObjPtr<mirror::PointerArray> vtable =
1476 klass->GetVTable<kVerifyNone, kWithoutReadBarrier>();
1477 if (vtable != nullptr &&
1478 app_image_objects.InDest(vtable.Ptr()) &&
1479 !visited_bitmap.Set(vtable.Ptr())) {
1480 patch_object_visitor.VisitPointerArray(vtable);
1481 }
1482 ObjPtr<mirror::IfTable> iftable = klass->GetIfTable<kVerifyNone, kWithoutReadBarrier>();
1483 if (iftable != nullptr && app_image_objects.InDest(iftable.Ptr())) {
1484 // Avoid processing the fields of iftable since we will process them later anyways
1485 // below.
1486 int32_t ifcount = klass->GetIfTableCount<kVerifyNone>();
1487 for (int32_t i = 0; i != ifcount; ++i) {
1488 ObjPtr<mirror::PointerArray> unpatched_ifarray =
1489 iftable->GetMethodArrayOrNull<kVerifyNone, kWithoutReadBarrier>(i);
1490 if (unpatched_ifarray != nullptr) {
1491 // The iftable has not been patched, so we need to explicitly adjust the pointer.
1492 ObjPtr<mirror::PointerArray> ifarray = forward_object(unpatched_ifarray.Ptr());
1493 if (app_image_objects.InDest(ifarray.Ptr()) &&
1494 !visited_bitmap.Set(ifarray.Ptr())) {
1495 patch_object_visitor.VisitPointerArray(ifarray);
1496 }
1497 }
1498 }
1499 }
1500 }
1501 }
1502 }
1503
1504 // Fixup objects may read fields in the boot image, use the mutator lock here for sanity.
1505 // Though its probably not required.
1506 TimingLogger::ScopedTiming timing("Fixup objects", &logger);
1507 ScopedObjectAccess soa(Thread::Current());
1508 // Need to update the image to be at the target base.
1509 uintptr_t objects_begin = reinterpret_cast<uintptr_t>(target_base + objects_section.Offset());
1510 uintptr_t objects_end = reinterpret_cast<uintptr_t>(target_base + objects_section.End());
1511 FixupObjectVisitor<ForwardObject> fixup_object_visitor(&visited_bitmap, forward_object);
1512 bitmap->VisitMarkedRange(objects_begin, objects_end, fixup_object_visitor);
1513 // Fixup image roots.
1514 CHECK(app_image_objects.InSource(reinterpret_cast<uintptr_t>(
1515 image_header->GetImageRoots<kWithoutReadBarrier>().Ptr())));
1516 image_header->RelocateImageReferences(app_image_objects.Delta());
1517 image_header->RelocateBootImageReferences(boot_image.Delta());
1518 CHECK_EQ(image_header->GetImageBegin(), target_base);
1519 // Fix up dex cache DexFile pointers.
1520 ObjPtr<mirror::ObjectArray<mirror::DexCache>> dex_caches =
1521 image_header->GetImageRoot<kWithoutReadBarrier>(ImageHeader::kDexCaches)
1522 ->AsObjectArray<mirror::DexCache, kVerifyNone>();
1523 for (int32_t i = 0, count = dex_caches->GetLength(); i < count; ++i) {
1524 ObjPtr<mirror::DexCache> dex_cache = dex_caches->Get<kVerifyNone, kWithoutReadBarrier>(i);
1525 CHECK(dex_cache != nullptr);
1526 patch_object_visitor.VisitDexCacheArrays(dex_cache);
1527 }
1528 }
1529 {
1530 // Only touches objects in the app image, no need for mutator lock.
1531 TimingLogger::ScopedTiming timing("Fixup methods", &logger);
1532 image_header->VisitPackedArtMethods([&](ArtMethod& method) NO_THREAD_SAFETY_ANALYSIS {
1533 // TODO: Consider a separate visitor for runtime vs normal methods.
1534 if (UNLIKELY(method.IsRuntimeMethod())) {
1535 ImtConflictTable* table = method.GetImtConflictTable(kPointerSize);
1536 if (table != nullptr) {
1537 ImtConflictTable* new_table = forward_metadata(table);
1538 if (table != new_table) {
1539 method.SetImtConflictTable(new_table, kPointerSize);
1540 }
1541 }
1542 const void* old_code = method.GetEntryPointFromQuickCompiledCodePtrSize(kPointerSize);
1543 const void* new_code = forward_code(old_code);
1544 if (old_code != new_code) {
1545 method.SetEntryPointFromQuickCompiledCodePtrSize(new_code, kPointerSize);
1546 }
1547 } else {
1548 patch_object_visitor.PatchGcRoot(&method.DeclaringClassRoot());
1549 method.UpdateEntrypoints(forward_code, kPointerSize);
1550 }
1551 }, target_base, kPointerSize);
1552 }
1553 if (fixup_image) {
1554 {
1555 // Only touches objects in the app image, no need for mutator lock.
1556 TimingLogger::ScopedTiming timing("Fixup fields", &logger);
1557 image_header->VisitPackedArtFields([&](ArtField& field) NO_THREAD_SAFETY_ANALYSIS {
1558 patch_object_visitor.template PatchGcRoot</*kMayBeNull=*/ false>(
1559 &field.DeclaringClassRoot());
1560 }, target_base);
1561 }
1562 {
1563 TimingLogger::ScopedTiming timing("Fixup imt", &logger);
1564 image_header->VisitPackedImTables(forward_metadata, target_base, kPointerSize);
1565 }
1566 {
1567 TimingLogger::ScopedTiming timing("Fixup conflict tables", &logger);
1568 image_header->VisitPackedImtConflictTables(forward_metadata, target_base, kPointerSize);
1569 }
1570 // Fix up the intern table.
1571 const auto& intern_table_section = image_header->GetInternedStringsSection();
1572 if (intern_table_section.Size() > 0u) {
1573 TimingLogger::ScopedTiming timing("Fixup intern table", &logger);
1574 ScopedObjectAccess soa(Thread::Current());
1575 // Fixup the pointers in the newly written intern table to contain image addresses.
1576 InternTable temp_intern_table;
1577 // Note that we require that ReadFromMemory does not make an internal copy of the elements
1578 // so that the VisitRoots() will update the memory directly rather than the copies.
1579 temp_intern_table.AddTableFromMemory(target_base + intern_table_section.Offset(),
1580 [&](InternTable::UnorderedSet& strings)
1581 REQUIRES_SHARED(Locks::mutator_lock_) {
1582 for (GcRoot<mirror::String>& root : strings) {
1583 root = GcRoot<mirror::String>(forward_object(root.Read<kWithoutReadBarrier>()));
1584 }
1585 }, /*is_boot_image=*/ false);
1586 }
1587 }
1588 if (VLOG_IS_ON(image)) {
1589 logger.Dump(LOG_STREAM(INFO));
1590 }
1591 return true;
1592 }
1593 };
1594
AppendImageChecksum(uint32_t component_count,uint32_t checksum,std::string * checksums)1595 static void AppendImageChecksum(uint32_t component_count,
1596 uint32_t checksum,
1597 /*inout*/std::string* checksums) {
1598 static_assert(ImageSpace::kImageChecksumPrefix == 'i', "Format prefix check.");
1599 StringAppendF(checksums, "i;%u/%08x", component_count, checksum);
1600 }
1601
CheckAndRemoveImageChecksum(uint32_t component_count,uint32_t checksum,std::string_view * oat_checksums,std::string * error_msg)1602 static bool CheckAndRemoveImageChecksum(uint32_t component_count,
1603 uint32_t checksum,
1604 /*inout*/std::string_view* oat_checksums,
1605 /*out*/std::string* error_msg) {
1606 std::string image_checksum;
1607 AppendImageChecksum(component_count, checksum, &image_checksum);
1608 if (!StartsWith(*oat_checksums, image_checksum)) {
1609 *error_msg = StringPrintf("Image checksum mismatch, expected %s to start with %s",
1610 std::string(*oat_checksums).c_str(),
1611 image_checksum.c_str());
1612 return false;
1613 }
1614 oat_checksums->remove_prefix(image_checksum.size());
1615 return true;
1616 }
1617
1618 // Helper class to find the primary boot image and boot image extensions
1619 // and determine the boot image layout.
1620 class ImageSpace::BootImageLayout {
1621 public:
1622 // Description of a "chunk" of the boot image, i.e. either primary boot image
1623 // or a boot image extension, used in conjunction with the boot class path to
1624 // load boot image components.
1625 struct ImageChunk {
1626 std::string base_location;
1627 std::string base_filename;
1628 std::string profile_file;
1629 size_t start_index;
1630 uint32_t component_count;
1631 uint32_t image_space_count;
1632 uint32_t reservation_size;
1633 uint32_t checksum;
1634 uint32_t boot_image_component_count;
1635 uint32_t boot_image_checksum;
1636 uint32_t boot_image_size;
1637
1638 // The following file descriptors hold the memfd files for extensions compiled
1639 // in memory and described by the above fields. We want to use them to mmap()
1640 // the contents and then close them while treating the ImageChunk description
1641 // as immutable (const), so make these fields explicitly mutable.
1642 mutable android::base::unique_fd art_fd;
1643 mutable android::base::unique_fd vdex_fd;
1644 mutable android::base::unique_fd oat_fd;
1645 };
1646
BootImageLayout(const std::string & image_location,ArrayRef<const std::string> boot_class_path,ArrayRef<const std::string> boot_class_path_locations)1647 BootImageLayout(const std::string& image_location,
1648 ArrayRef<const std::string> boot_class_path,
1649 ArrayRef<const std::string> boot_class_path_locations)
1650 : image_location_(image_location),
1651 boot_class_path_(boot_class_path),
1652 boot_class_path_locations_(boot_class_path_locations) {}
1653
1654 std::string GetPrimaryImageLocation();
1655
LoadFromSystem(InstructionSet image_isa,std::string * error_msg)1656 bool LoadFromSystem(InstructionSet image_isa, /*out*/std::string* error_msg) {
1657 return LoadOrValidateFromSystem(image_isa, /*oat_checksums=*/ nullptr, error_msg);
1658 }
1659
ValidateFromSystem(InstructionSet image_isa,std::string_view * oat_checksums,std::string * error_msg)1660 bool ValidateFromSystem(InstructionSet image_isa,
1661 /*inout*/std::string_view* oat_checksums,
1662 /*out*/std::string* error_msg) {
1663 DCHECK(oat_checksums != nullptr);
1664 return LoadOrValidateFromSystem(image_isa, oat_checksums, error_msg);
1665 }
1666
LoadFromDalvikCache(const std::string & dalvik_cache,std::string * error_msg)1667 bool LoadFromDalvikCache(const std::string& dalvik_cache, /*out*/std::string* error_msg) {
1668 return LoadOrValidateFromDalvikCache(dalvik_cache, /*oat_checksums=*/ nullptr, error_msg);
1669 }
1670
ValidateFromDalvikCache(const std::string & dalvik_cache,std::string_view * oat_checksums,std::string * error_msg)1671 bool ValidateFromDalvikCache(const std::string& dalvik_cache,
1672 /*inout*/std::string_view* oat_checksums,
1673 /*out*/std::string* error_msg) {
1674 DCHECK(oat_checksums != nullptr);
1675 return LoadOrValidateFromDalvikCache(dalvik_cache, oat_checksums, error_msg);
1676 }
1677
GetChunks() const1678 ArrayRef<const ImageChunk> GetChunks() const {
1679 return ArrayRef<const ImageChunk>(chunks_);
1680 }
1681
GetBaseAddress() const1682 uint32_t GetBaseAddress() const {
1683 return base_address_;
1684 }
1685
GetNextBcpIndex() const1686 size_t GetNextBcpIndex() const {
1687 return next_bcp_index_;
1688 }
1689
GetTotalComponentCount() const1690 size_t GetTotalComponentCount() const {
1691 return total_component_count_;
1692 }
1693
GetTotalReservationSize() const1694 size_t GetTotalReservationSize() const {
1695 return total_reservation_size_;
1696 }
1697
1698 private:
1699 struct NamedComponentLocation {
1700 std::string base_location;
1701 size_t bcp_index;
1702 std::string profile_filename;
1703 };
1704
ExpandLocationImpl(const std::string & location,size_t bcp_index,bool boot_image_extension)1705 std::string ExpandLocationImpl(const std::string& location,
1706 size_t bcp_index,
1707 bool boot_image_extension) {
1708 std::vector<std::string> expanded = ExpandMultiImageLocations(
1709 ArrayRef<const std::string>(boot_class_path_).SubArray(bcp_index, 1u),
1710 location,
1711 boot_image_extension);
1712 DCHECK_EQ(expanded.size(), 1u);
1713 return expanded[0];
1714 }
1715
ExpandLocation(const std::string & location,size_t bcp_index)1716 std::string ExpandLocation(const std::string& location, size_t bcp_index) {
1717 if (bcp_index == 0u) {
1718 DCHECK_EQ(location, ExpandLocationImpl(location, bcp_index, /*boot_image_extension=*/ false));
1719 return location;
1720 } else {
1721 return ExpandLocationImpl(location, bcp_index, /*boot_image_extension=*/ true);
1722 }
1723 }
1724
GetBcpComponentPath(size_t bcp_index)1725 std::string GetBcpComponentPath(size_t bcp_index) {
1726 DCHECK_LE(bcp_index, boot_class_path_.size());
1727 size_t bcp_slash_pos = boot_class_path_[bcp_index].rfind('/');
1728 DCHECK_NE(bcp_slash_pos, std::string::npos);
1729 return boot_class_path_[bcp_index].substr(0u, bcp_slash_pos + 1u);
1730 }
1731
1732 bool VerifyImageLocation(const std::vector<std::string>& components,
1733 /*out*/size_t* named_components_count,
1734 /*out*/std::string* error_msg);
1735
1736 bool MatchNamedComponents(
1737 ArrayRef<const std::string> named_components,
1738 /*out*/std::vector<NamedComponentLocation>* named_component_locations,
1739 /*out*/std::string* error_msg);
1740
1741 bool ValidateBootImageChecksum(const char* file_description,
1742 const ImageHeader& header,
1743 /*out*/std::string* error_msg);
1744
1745 bool ValidateHeader(const ImageHeader& header,
1746 size_t bcp_index,
1747 const char* file_description,
1748 /*out*/std::string* error_msg);
1749
1750 bool ReadHeader(const std::string& base_location,
1751 const std::string& base_filename,
1752 size_t bcp_index,
1753 /*out*/std::string* error_msg);
1754
1755 bool CompileExtension(const std::string& base_location,
1756 const std::string& base_filename,
1757 size_t bcp_index,
1758 const std::string& profile_filename,
1759 ArrayRef<std::string> dependencies,
1760 /*out*/std::string* error_msg);
1761
1762 bool CheckAndRemoveLastChunkChecksum(/*inout*/std::string_view* oat_checksums,
1763 /*out*/std::string* error_msg);
1764
1765 template <typename FilenameFn>
1766 bool LoadOrValidate(FilenameFn&& filename_fn,
1767 /*inout*/std::string_view* oat_checksums,
1768 /*out*/std::string* error_msg);
1769
1770 bool LoadOrValidateFromSystem(InstructionSet image_isa,
1771 /*inout*/std::string_view* oat_checksums,
1772 /*out*/std::string* error_msg);
1773
1774 bool LoadOrValidateFromDalvikCache(const std::string& dalvik_cache,
1775 /*inout*/std::string_view* oat_checksums,
1776 /*out*/std::string* error_msg);
1777
1778 const std::string& image_location_;
1779 ArrayRef<const std::string> boot_class_path_;
1780 ArrayRef<const std::string> boot_class_path_locations_;
1781
1782 std::vector<ImageChunk> chunks_;
1783 uint32_t base_address_ = 0u;
1784 size_t next_bcp_index_ = 0u;
1785 size_t total_component_count_ = 0u;
1786 size_t total_reservation_size_ = 0u;
1787 };
1788
GetPrimaryImageLocation()1789 std::string ImageSpace::BootImageLayout::GetPrimaryImageLocation() {
1790 size_t location_start = 0u;
1791 size_t location_end = image_location_.find(kComponentSeparator);
1792 while (location_end == location_start) {
1793 ++location_start;
1794 location_end = image_location_.find(location_start, kComponentSeparator);
1795 }
1796 std::string location = (location_end == std::string::npos)
1797 ? image_location_.substr(location_start)
1798 : image_location_.substr(location_start, location_end - location_start);
1799 if (location.find('/') == std::string::npos) {
1800 // No path, so use the path from the first boot class path component.
1801 size_t slash_pos = boot_class_path_.empty()
1802 ? std::string::npos
1803 : boot_class_path_[0].rfind('/');
1804 if (slash_pos == std::string::npos) {
1805 return std::string();
1806 }
1807 location.insert(0u, boot_class_path_[0].substr(0u, slash_pos + 1u));
1808 }
1809 return location;
1810 }
1811
VerifyImageLocation(const std::vector<std::string> & components,size_t * named_components_count,std::string * error_msg)1812 bool ImageSpace::BootImageLayout::VerifyImageLocation(
1813 const std::vector<std::string>& components,
1814 /*out*/size_t* named_components_count,
1815 /*out*/std::string* error_msg) {
1816 DCHECK(named_components_count != nullptr);
1817
1818 // Validate boot class path. Require a path and non-empty name in each component.
1819 for (const std::string& bcp_component : boot_class_path_) {
1820 size_t bcp_slash_pos = bcp_component.rfind('/');
1821 if (bcp_slash_pos == std::string::npos || bcp_slash_pos == bcp_component.size() - 1u) {
1822 *error_msg = StringPrintf("Invalid boot class path component: %s", bcp_component.c_str());
1823 return false;
1824 }
1825 }
1826
1827 // Validate the format of image location components.
1828 size_t components_size = components.size();
1829 if (components_size == 0u) {
1830 *error_msg = "Empty image location.";
1831 return false;
1832 }
1833 size_t wildcards_start = components_size; // No wildcards.
1834 for (size_t i = 0; i != components_size; ++i) {
1835 const std::string& component = components[i];
1836 DCHECK(!component.empty()); // Guaranteed by Split().
1837 const size_t profile_separator_pos = component.find(kProfileSeparator);
1838 size_t wildcard_pos = component.find('*');
1839 if (wildcard_pos == std::string::npos) {
1840 if (wildcards_start != components.size()) {
1841 *error_msg =
1842 StringPrintf("Image component without wildcard after component with wildcard: %s",
1843 component.c_str());
1844 return false;
1845 }
1846 if (profile_separator_pos != std::string::npos) {
1847 if (component.find(kProfileSeparator, profile_separator_pos + 1u) != std::string::npos) {
1848 *error_msg = StringPrintf("Multiple profile delimiters in %s", component.c_str());
1849 return false;
1850 }
1851 if (profile_separator_pos == 0u || profile_separator_pos + 1u == component.size()) {
1852 *error_msg = StringPrintf("Missing component and/or profile name in %s",
1853 component.c_str());
1854 return false;
1855 }
1856 if (component.back() == '/') {
1857 *error_msg = StringPrintf("Profile name ends with path separator: %s",
1858 component.c_str());
1859 return false;
1860 }
1861 }
1862 size_t component_name_length =
1863 profile_separator_pos != std::string::npos ? profile_separator_pos : component.size();
1864 if (component[component_name_length - 1u] == '/') {
1865 *error_msg = StringPrintf("Image component ends with path separator: %s",
1866 component.c_str());
1867 return false;
1868 }
1869 } else {
1870 if (profile_separator_pos != std::string::npos) {
1871 *error_msg = StringPrintf("Unsupproted wildcard (*) and profile delimiter (!) in %s",
1872 component.c_str());
1873 return false;
1874 }
1875 if (wildcards_start == components_size) {
1876 wildcards_start = i;
1877 }
1878 // Wildcard must be the last character.
1879 if (wildcard_pos != component.size() - 1u) {
1880 *error_msg = StringPrintf("Unsupported wildcard (*) position in %s", component.c_str());
1881 return false;
1882 }
1883 // And it must be either plain wildcard or preceded by a path separator.
1884 if (component.size() != 1u && component[wildcard_pos - 1u] != '/') {
1885 *error_msg = StringPrintf("Non-plain wildcard (*) not preceded by path separator '/': %s",
1886 component.c_str());
1887 return false;
1888 }
1889 if (i == 0) {
1890 *error_msg = StringPrintf("Primary component contains wildcard (*): %s", component.c_str());
1891 return false;
1892 }
1893 }
1894 }
1895
1896 *named_components_count = wildcards_start;
1897 return true;
1898 }
1899
MatchNamedComponents(ArrayRef<const std::string> named_components,std::vector<NamedComponentLocation> * named_component_locations,std::string * error_msg)1900 bool ImageSpace::BootImageLayout::MatchNamedComponents(
1901 ArrayRef<const std::string> named_components,
1902 /*out*/std::vector<NamedComponentLocation>* named_component_locations,
1903 /*out*/std::string* error_msg) {
1904 DCHECK(!named_components.empty());
1905 DCHECK(named_component_locations->empty());
1906 named_component_locations->reserve(named_components.size());
1907 size_t bcp_component_count = boot_class_path_.size();
1908 size_t bcp_pos = 0;
1909 std::string base_name;
1910 for (size_t i = 0, size = named_components.size(); i != size; ++i) {
1911 std::string component = named_components[i];
1912 std::string profile_filename; // Empty.
1913 const size_t profile_separator_pos = component.find(kProfileSeparator);
1914 if (profile_separator_pos != std::string::npos) {
1915 profile_filename = component.substr(profile_separator_pos + 1u);
1916 DCHECK(!profile_filename.empty()); // Checked by VerifyImageLocation()
1917 component.resize(profile_separator_pos);
1918 DCHECK(!component.empty()); // Checked by VerifyImageLocation()
1919 }
1920 size_t slash_pos = component.rfind('/');
1921 std::string base_location;
1922 if (i == 0u) {
1923 // The primary boot image name is taken as provided. It forms the base
1924 // for expanding the extension filenames.
1925 if (slash_pos != std::string::npos) {
1926 base_name = component.substr(slash_pos + 1u);
1927 base_location = component;
1928 } else {
1929 base_name = component;
1930 base_location = GetBcpComponentPath(0u) + component;
1931 }
1932 } else {
1933 std::string to_match;
1934 if (slash_pos != std::string::npos) {
1935 // If we have the full path, we just need to match the filename to the BCP component.
1936 base_location = component.substr(0u, slash_pos + 1u) + base_name;
1937 to_match = component;
1938 }
1939 while (true) {
1940 if (slash_pos == std::string::npos) {
1941 // If we do not have a full path, we need to update the path based on the BCP location.
1942 std::string path = GetBcpComponentPath(bcp_pos);
1943 to_match = path + component;
1944 base_location = path + base_name;
1945 }
1946 if (ExpandLocation(base_location, bcp_pos) == to_match) {
1947 break;
1948 }
1949 ++bcp_pos;
1950 if (bcp_pos == bcp_component_count) {
1951 *error_msg = StringPrintf("Image component %s does not match a boot class path component",
1952 component.c_str());
1953 return false;
1954 }
1955 }
1956 }
1957 if (!profile_filename.empty() && profile_filename.find('/') == std::string::npos) {
1958 profile_filename.insert(/*pos*/ 0u, GetBcpComponentPath(bcp_pos));
1959 }
1960 NamedComponentLocation location;
1961 location.base_location = base_location;
1962 location.bcp_index = bcp_pos;
1963 location.profile_filename = profile_filename;
1964 named_component_locations->push_back(location);
1965 ++bcp_pos;
1966 }
1967 return true;
1968 }
1969
ValidateBootImageChecksum(const char * file_description,const ImageHeader & header,std::string * error_msg)1970 bool ImageSpace::BootImageLayout::ValidateBootImageChecksum(const char* file_description,
1971 const ImageHeader& header,
1972 /*out*/std::string* error_msg) {
1973 uint32_t boot_image_component_count = header.GetBootImageComponentCount();
1974 if (chunks_.empty() != (boot_image_component_count == 0u)) {
1975 *error_msg = StringPrintf("Unexpected boot image component count in %s: %u, %s",
1976 file_description,
1977 boot_image_component_count,
1978 chunks_.empty() ? "should be 0" : "should not be 0");
1979 return false;
1980 }
1981 uint32_t component_count = 0u;
1982 uint32_t composite_checksum = 0u;
1983 uint64_t boot_image_size = 0u;
1984 for (const ImageChunk& chunk : chunks_) {
1985 if (component_count == boot_image_component_count) {
1986 break; // Hit the component count.
1987 }
1988 if (chunk.start_index != component_count) {
1989 break; // End of contiguous chunks, fail below; same as reaching end of `chunks_`.
1990 }
1991 if (chunk.component_count > boot_image_component_count - component_count) {
1992 *error_msg = StringPrintf("Boot image component count in %s ends in the middle of a chunk, "
1993 "%u is between %u and %u",
1994 file_description,
1995 boot_image_component_count,
1996 component_count,
1997 component_count + chunk.component_count);
1998 return false;
1999 }
2000 component_count += chunk.component_count;
2001 composite_checksum ^= chunk.checksum;
2002 boot_image_size += chunk.reservation_size;
2003 }
2004 DCHECK_LE(component_count, boot_image_component_count);
2005 if (component_count != boot_image_component_count) {
2006 *error_msg = StringPrintf("Missing boot image components for checksum in %s: %u > %u",
2007 file_description,
2008 boot_image_component_count,
2009 component_count);
2010 return false;
2011 }
2012 if (composite_checksum != header.GetBootImageChecksum()) {
2013 *error_msg = StringPrintf("Boot image checksum mismatch in %s: 0x%08x != 0x%08x",
2014 file_description,
2015 header.GetBootImageChecksum(),
2016 composite_checksum);
2017 return false;
2018 }
2019 if (boot_image_size != header.GetBootImageSize()) {
2020 *error_msg = StringPrintf("Boot image size mismatch in %s: 0x%08x != 0x%08" PRIx64,
2021 file_description,
2022 header.GetBootImageSize(),
2023 boot_image_size);
2024 return false;
2025 }
2026 return true;
2027 }
2028
ValidateHeader(const ImageHeader & header,size_t bcp_index,const char * file_description,std::string * error_msg)2029 bool ImageSpace::BootImageLayout::ValidateHeader(const ImageHeader& header,
2030 size_t bcp_index,
2031 const char* file_description,
2032 /*out*/std::string* error_msg) {
2033 size_t bcp_component_count = boot_class_path_.size();
2034 DCHECK_LT(bcp_index, bcp_component_count);
2035 size_t allowed_component_count = bcp_component_count - bcp_index;
2036 DCHECK_LE(total_reservation_size_, kMaxTotalImageReservationSize);
2037 size_t allowed_reservation_size = kMaxTotalImageReservationSize - total_reservation_size_;
2038
2039 if (header.GetComponentCount() == 0u ||
2040 header.GetComponentCount() > allowed_component_count) {
2041 *error_msg = StringPrintf("Unexpected component count in %s, received %u, "
2042 "expected non-zero and <= %zu",
2043 file_description,
2044 header.GetComponentCount(),
2045 allowed_component_count);
2046 return false;
2047 }
2048 if (header.GetImageReservationSize() > allowed_reservation_size) {
2049 *error_msg = StringPrintf("Reservation size too big in %s: %u > %zu",
2050 file_description,
2051 header.GetImageReservationSize(),
2052 allowed_reservation_size);
2053 return false;
2054 }
2055 if (!ValidateBootImageChecksum(file_description, header, error_msg)) {
2056 return false;
2057 }
2058
2059 return true;
2060 }
2061
ReadHeader(const std::string & base_location,const std::string & base_filename,size_t bcp_index,std::string * error_msg)2062 bool ImageSpace::BootImageLayout::ReadHeader(const std::string& base_location,
2063 const std::string& base_filename,
2064 size_t bcp_index,
2065 /*out*/std::string* error_msg) {
2066 DCHECK_LE(next_bcp_index_, bcp_index);
2067 DCHECK_LT(bcp_index, boot_class_path_.size());
2068
2069 std::string actual_filename = ExpandLocation(base_filename, bcp_index);
2070 ImageHeader header;
2071 if (!ReadSpecificImageHeader(actual_filename.c_str(), &header, error_msg)) {
2072 return false;
2073 }
2074 const char* file_description = actual_filename.c_str();
2075 if (!ValidateHeader(header, bcp_index, file_description, error_msg)) {
2076 return false;
2077 }
2078
2079 if (chunks_.empty()) {
2080 base_address_ = reinterpret_cast32<uint32_t>(header.GetImageBegin());
2081 }
2082 ImageChunk chunk;
2083 chunk.base_location = base_location;
2084 chunk.base_filename = base_filename;
2085 chunk.start_index = bcp_index;
2086 chunk.component_count = header.GetComponentCount();
2087 chunk.image_space_count = header.GetImageSpaceCount();
2088 chunk.reservation_size = header.GetImageReservationSize();
2089 chunk.checksum = header.GetImageChecksum();
2090 chunk.boot_image_component_count = header.GetBootImageComponentCount();
2091 chunk.boot_image_checksum = header.GetBootImageChecksum();
2092 chunk.boot_image_size = header.GetBootImageSize();
2093 chunks_.push_back(std::move(chunk));
2094 next_bcp_index_ = bcp_index + header.GetComponentCount();
2095 total_component_count_ += header.GetComponentCount();
2096 total_reservation_size_ += header.GetImageReservationSize();
2097 return true;
2098 }
2099
CompileExtension(const std::string & base_location,const std::string & base_filename,size_t bcp_index,const std::string & profile_filename,ArrayRef<std::string> dependencies,std::string * error_msg)2100 bool ImageSpace::BootImageLayout::CompileExtension(const std::string& base_location,
2101 const std::string& base_filename,
2102 size_t bcp_index,
2103 const std::string& profile_filename,
2104 ArrayRef<std::string> dependencies,
2105 /*out*/std::string* error_msg) {
2106 DCHECK_LE(total_component_count_, next_bcp_index_);
2107 DCHECK_LE(next_bcp_index_, bcp_index);
2108 size_t bcp_component_count = boot_class_path_.size();
2109 DCHECK_LT(bcp_index, bcp_component_count);
2110 DCHECK(!profile_filename.empty());
2111 if (total_component_count_ != bcp_index) {
2112 // We require all previous BCP components to have a boot image space (primary or extension).
2113 *error_msg = "Cannot compile extension because of missing dependencies.";
2114 return false;
2115 }
2116 Runtime* runtime = Runtime::Current();
2117 if (!runtime->IsImageDex2OatEnabled()) {
2118 *error_msg = "Cannot compile extension because dex2oat for image compilation is disabled.";
2119 return false;
2120 }
2121
2122 // Check dependencies.
2123 DCHECK(!dependencies.empty());
2124 size_t dependency_component_count = 0;
2125 for (size_t i = 0, size = dependencies.size(); i != size; ++i) {
2126 if (chunks_.size() == i || chunks_[i].start_index != dependency_component_count) {
2127 *error_msg = StringPrintf("Missing extension dependency \"%s\"", dependencies[i].c_str());
2128 return false;
2129 }
2130 dependency_component_count += chunks_[i].component_count;
2131 }
2132
2133 // Collect locations from the profile.
2134 std::set<std::string> dex_locations;
2135 {
2136 std::unique_ptr<File> profile_file(OS::OpenFileForReading(profile_filename.c_str()));
2137 if (profile_file == nullptr) {
2138 *error_msg = StringPrintf("Failed to open profile file \"%s\" for reading, error: %s",
2139 profile_filename.c_str(),
2140 strerror(errno));
2141 return false;
2142 }
2143
2144 // TODO: Rewrite ProfileCompilationInfo to provide a better interface and
2145 // to store the dex locations in uncompressed section of the file.
2146 auto collect_fn = [&dex_locations](const std::string& dex_location,
2147 uint32_t checksum ATTRIBUTE_UNUSED) {
2148 dex_locations.insert(dex_location); // Just collect locations.
2149 return false; // Do not read the profile data.
2150 };
2151 ProfileCompilationInfo info(/*for_boot_image=*/ true);
2152 if (!info.Load(profile_file->Fd(), /*merge_classes=*/ true, collect_fn)) {
2153 *error_msg = StringPrintf("Failed to scan profile from %s", profile_filename.c_str());
2154 return false;
2155 }
2156 }
2157
2158 // Match boot class path components to locations from profile.
2159 // Note that the profile records only filenames without paths.
2160 size_t bcp_end = bcp_index;
2161 for (; bcp_end != bcp_component_count; ++bcp_end) {
2162 const std::string& bcp_component = boot_class_path_locations_[bcp_end];
2163 size_t slash_pos = bcp_component.rfind('/');
2164 DCHECK_NE(slash_pos, std::string::npos);
2165 std::string bcp_component_name = bcp_component.substr(slash_pos + 1u);
2166 if (dex_locations.count(bcp_component_name) == 0u) {
2167 break; // Did not find the current location in dex file.
2168 }
2169 }
2170
2171 if (bcp_end == bcp_index) {
2172 // No data for the first (requested) component.
2173 *error_msg = StringPrintf("The profile does not contain data for %s",
2174 boot_class_path_locations_[bcp_index].c_str());
2175 return false;
2176 }
2177
2178 // Create in-memory files.
2179 std::string art_filename = ExpandLocation(base_filename, bcp_index);
2180 std::string vdex_filename = ImageHeader::GetVdexLocationFromImageLocation(art_filename);
2181 std::string oat_filename = ImageHeader::GetOatLocationFromImageLocation(art_filename);
2182 android::base::unique_fd art_fd(memfd_create_compat(art_filename.c_str(), /*flags=*/ 0));
2183 android::base::unique_fd vdex_fd(memfd_create_compat(vdex_filename.c_str(), /*flags=*/ 0));
2184 android::base::unique_fd oat_fd(memfd_create_compat(oat_filename.c_str(), /*flags=*/ 0));
2185 if (art_fd.get() == -1 || vdex_fd.get() == -1 || oat_fd.get() == -1) {
2186 *error_msg = StringPrintf("Failed to create memfd handles for compiling extension for %s",
2187 boot_class_path_locations_[bcp_index].c_str());
2188 return false;
2189 }
2190
2191 // Construct the dex2oat command line.
2192 std::string dex2oat = runtime->GetCompilerExecutable();
2193 ArrayRef<const std::string> head_bcp =
2194 boot_class_path_.SubArray(/*pos=*/ 0u, /*length=*/ dependency_component_count);
2195 ArrayRef<const std::string> head_bcp_locations =
2196 boot_class_path_locations_.SubArray(/*pos=*/ 0u, /*length=*/ dependency_component_count);
2197 ArrayRef<const std::string> extension_bcp =
2198 boot_class_path_.SubArray(/*pos=*/ bcp_index, /*length=*/ bcp_end - bcp_index);
2199 ArrayRef<const std::string> extension_bcp_locations =
2200 boot_class_path_locations_.SubArray(/*pos=*/ bcp_index, /*length=*/ bcp_end - bcp_index);
2201 std::string boot_class_path = Join(head_bcp, ':') + ':' + Join(extension_bcp, ':');
2202 std::string boot_class_path_locations =
2203 Join(head_bcp_locations, ':') + ':' + Join(extension_bcp_locations, ':');
2204
2205 std::vector<std::string> args;
2206 args.push_back(dex2oat);
2207 args.push_back("--runtime-arg");
2208 args.push_back("-Xbootclasspath:" + boot_class_path);
2209 args.push_back("--runtime-arg");
2210 args.push_back("-Xbootclasspath-locations:" + boot_class_path_locations);
2211 args.push_back("--boot-image=" + Join(dependencies, kComponentSeparator));
2212 for (size_t i = bcp_index; i != bcp_end; ++i) {
2213 args.push_back("--dex-file=" + boot_class_path_[i]);
2214 args.push_back("--dex-location=" + boot_class_path_locations_[i]);
2215 }
2216 args.push_back("--image-fd=" + std::to_string(art_fd.get()));
2217 args.push_back("--output-vdex-fd=" + std::to_string(vdex_fd.get()));
2218 args.push_back("--oat-fd=" + std::to_string(oat_fd.get()));
2219 args.push_back("--oat-location=" + ImageHeader::GetOatLocationFromImageLocation(base_filename));
2220 args.push_back("--single-image");
2221 args.push_back("--image-format=uncompressed");
2222
2223 // We currently cannot guarantee that the boot class path has no verification failures.
2224 // And we do not want to compile anything, compilation should be done by JIT in zygote.
2225 args.push_back("--compiler-filter=verify");
2226
2227 // Pass the profile.
2228 args.push_back("--profile-file=" + profile_filename);
2229
2230 // Do not let the file descriptor numbers change the compilation output.
2231 args.push_back("--avoid-storing-invocation");
2232
2233 runtime->AddCurrentRuntimeFeaturesAsDex2OatArguments(&args);
2234
2235 if (!kIsTargetBuild) {
2236 args.push_back("--host");
2237 }
2238
2239 // Image compiler options go last to allow overriding above args, such as --compiler-filter.
2240 for (const std::string& compiler_option : runtime->GetImageCompilerOptions()) {
2241 args.push_back(compiler_option);
2242 }
2243
2244 // Compile the extension.
2245 VLOG(image) << "Compiling boot image extension for " << (bcp_end - bcp_index)
2246 << " components, starting from " << boot_class_path_locations_[bcp_index];
2247 if (!Exec(args, error_msg)) {
2248 return false;
2249 }
2250
2251 // Read and validate the image header.
2252 ImageHeader header;
2253 {
2254 File image_file(art_fd.release(), /*check_usage=*/ false);
2255 if (!ReadSpecificImageHeader(&image_file, "compiled image file", &header, error_msg)) {
2256 return false;
2257 }
2258 art_fd.reset(image_file.Release());
2259 }
2260 const char* file_description = "compiled image file";
2261 if (!ValidateHeader(header, bcp_index, file_description, error_msg)) {
2262 return false;
2263 }
2264
2265 DCHECK(!chunks_.empty());
2266 ImageChunk chunk;
2267 chunk.base_location = base_location;
2268 chunk.base_filename = base_filename;
2269 chunk.profile_file = profile_filename;
2270 chunk.start_index = bcp_index;
2271 chunk.component_count = header.GetComponentCount();
2272 chunk.image_space_count = header.GetImageSpaceCount();
2273 chunk.reservation_size = header.GetImageReservationSize();
2274 chunk.checksum = header.GetImageChecksum();
2275 chunk.boot_image_component_count = header.GetBootImageComponentCount();
2276 chunk.boot_image_checksum = header.GetBootImageChecksum();
2277 chunk.boot_image_size = header.GetBootImageSize();
2278 chunk.art_fd.reset(art_fd.release());
2279 chunk.vdex_fd.reset(vdex_fd.release());
2280 chunk.oat_fd.reset(oat_fd.release());
2281 chunks_.push_back(std::move(chunk));
2282 next_bcp_index_ = bcp_index + header.GetComponentCount();
2283 total_component_count_ += header.GetComponentCount();
2284 total_reservation_size_ += header.GetImageReservationSize();
2285 return true;
2286 }
2287
CheckAndRemoveLastChunkChecksum(std::string_view * oat_checksums,std::string * error_msg)2288 bool ImageSpace::BootImageLayout::CheckAndRemoveLastChunkChecksum(
2289 /*inout*/std::string_view* oat_checksums,
2290 /*out*/std::string* error_msg) {
2291 DCHECK(oat_checksums != nullptr);
2292 DCHECK(!chunks_.empty());
2293 const ImageChunk& chunk = chunks_.back();
2294 size_t component_count = chunk.component_count;
2295 size_t checksum = chunk.checksum;
2296 if (!CheckAndRemoveImageChecksum(component_count, checksum, oat_checksums, error_msg)) {
2297 DCHECK(!error_msg->empty());
2298 return false;
2299 }
2300 if (oat_checksums->empty()) {
2301 if (next_bcp_index_ != boot_class_path_.size()) {
2302 *error_msg = StringPrintf("Checksum too short, missing %zu components.",
2303 boot_class_path_.size() - next_bcp_index_);
2304 return false;
2305 }
2306 return true;
2307 }
2308 if (!StartsWith(*oat_checksums, ":")) {
2309 *error_msg = StringPrintf("Missing ':' separator at start of %s",
2310 std::string(*oat_checksums).c_str());
2311 return false;
2312 }
2313 oat_checksums->remove_prefix(1u);
2314 if (oat_checksums->empty()) {
2315 *error_msg = "Missing checksums after the ':' separator.";
2316 return false;
2317 }
2318 return true;
2319 }
2320
2321 template <typename FilenameFn>
LoadOrValidate(FilenameFn && filename_fn,std::string_view * oat_checksums,std::string * error_msg)2322 bool ImageSpace::BootImageLayout::LoadOrValidate(FilenameFn&& filename_fn,
2323 /*inout*/std::string_view* oat_checksums,
2324 /*out*/std::string* error_msg) {
2325 DCHECK(GetChunks().empty());
2326 DCHECK_EQ(GetBaseAddress(), 0u);
2327 bool validate = (oat_checksums != nullptr);
2328 static_assert(ImageSpace::kImageChecksumPrefix == 'i', "Format prefix check.");
2329 DCHECK(!validate || StartsWith(*oat_checksums, "i"));
2330
2331 std::vector<std::string> components;
2332 Split(image_location_, kComponentSeparator, &components);
2333 size_t named_components_count = 0u;
2334 if (!VerifyImageLocation(components, &named_components_count, error_msg)) {
2335 return false;
2336 }
2337
2338 ArrayRef<const std::string> named_components =
2339 ArrayRef<const std::string>(components).SubArray(/*pos=*/ 0u, named_components_count);
2340
2341 std::vector<NamedComponentLocation> named_component_locations;
2342 if (!MatchNamedComponents(named_components, &named_component_locations, error_msg)) {
2343 return false;
2344 }
2345
2346 // Load the image headers of named components.
2347 DCHECK_EQ(named_component_locations.size(), named_components.size());
2348 const size_t bcp_component_count = boot_class_path_.size();
2349 size_t bcp_pos = 0u;
2350 ArrayRef<std::string> extension_dependencies;
2351 for (size_t i = 0, size = named_components.size(); i != size; ++i) {
2352 const std::string& base_location = named_component_locations[i].base_location;
2353 size_t bcp_index = named_component_locations[i].bcp_index;
2354 const std::string& profile_filename = named_component_locations[i].profile_filename;
2355 if (extension_dependencies.empty() && !profile_filename.empty()) {
2356 // Each extension is compiled against the same dependencies, namely the leading
2357 // named components that were specified without providing the profile filename.
2358 extension_dependencies =
2359 ArrayRef<std::string>(components).SubArray(/*pos=*/ 0, /*length=*/ i);
2360 }
2361 if (bcp_index < bcp_pos) {
2362 DCHECK_NE(i, 0u);
2363 LOG(ERROR) << "Named image component already covered by previous image: " << base_location;
2364 continue;
2365 }
2366 if (validate && bcp_index > bcp_pos) {
2367 *error_msg = StringPrintf("End of contiguous boot class path images, remaining checksum: %s",
2368 std::string(*oat_checksums).c_str());
2369 return false;
2370 }
2371 std::string local_error_msg;
2372 std::string* err_msg = (i == 0 || validate) ? error_msg : &local_error_msg;
2373 std::string base_filename;
2374 if (!filename_fn(base_location, &base_filename, err_msg) ||
2375 !ReadHeader(base_location, base_filename, bcp_index, err_msg)) {
2376 if (i == 0u || validate) {
2377 return false;
2378 }
2379 VLOG(image) << "Error reading named image component header for " << base_location
2380 << ", error: " << local_error_msg;
2381 if (profile_filename.empty() ||
2382 !CompileExtension(base_location,
2383 base_filename,
2384 bcp_index,
2385 profile_filename,
2386 extension_dependencies,
2387 &local_error_msg)) {
2388 if (!profile_filename.empty()) {
2389 VLOG(image) << "Error compiling extension for " << boot_class_path_[bcp_index]
2390 << " error: " << local_error_msg;
2391 }
2392 bcp_pos = bcp_index + 1u; // Skip at least this component.
2393 DCHECK_GT(bcp_pos, GetNextBcpIndex());
2394 continue;
2395 }
2396 }
2397 if (validate) {
2398 if (!CheckAndRemoveLastChunkChecksum(oat_checksums, error_msg)) {
2399 return false;
2400 }
2401 if (oat_checksums->empty() || !StartsWith(*oat_checksums, "i")) {
2402 return true; // Let the caller deal with the dex file checksums if any.
2403 }
2404 }
2405 bcp_pos = GetNextBcpIndex();
2406 }
2407
2408 // Look for remaining components if there are any wildcard specifications.
2409 ArrayRef<const std::string> search_paths =
2410 ArrayRef<const std::string>(components).SubArray(/*pos=*/ named_components_count);
2411 if (!search_paths.empty()) {
2412 const std::string& primary_base_location = named_component_locations[0].base_location;
2413 size_t base_slash_pos = primary_base_location.rfind('/');
2414 DCHECK_NE(base_slash_pos, std::string::npos);
2415 std::string base_name = primary_base_location.substr(base_slash_pos + 1u);
2416 DCHECK(!base_name.empty());
2417 while (bcp_pos != bcp_component_count) {
2418 const std::string& bcp_component = boot_class_path_[bcp_pos];
2419 bool found = false;
2420 for (const std::string& path : search_paths) {
2421 std::string base_location;
2422 if (path.size() == 1u) {
2423 DCHECK_EQ(path, "*");
2424 size_t slash_pos = bcp_component.rfind('/');
2425 DCHECK_NE(slash_pos, std::string::npos);
2426 base_location = bcp_component.substr(0u, slash_pos + 1u) + base_name;
2427 } else {
2428 DCHECK(EndsWith(path, "/*"));
2429 base_location = path.substr(0u, path.size() - 1u) + base_name;
2430 }
2431 std::string err_msg; // Ignored.
2432 std::string base_filename;
2433 if (filename_fn(base_location, &base_filename, &err_msg) &&
2434 ReadHeader(base_location, base_filename, bcp_pos, &err_msg)) {
2435 VLOG(image) << "Found image extension for " << ExpandLocation(base_location, bcp_pos);
2436 bcp_pos = GetNextBcpIndex();
2437 found = true;
2438 if (validate) {
2439 if (!CheckAndRemoveLastChunkChecksum(oat_checksums, error_msg)) {
2440 return false;
2441 }
2442 if (oat_checksums->empty() || !StartsWith(*oat_checksums, "i")) {
2443 return true; // Let the caller deal with the dex file checksums if any.
2444 }
2445 }
2446 break;
2447 }
2448 }
2449 if (!found) {
2450 if (validate) {
2451 *error_msg = StringPrintf("Missing extension for %s, remaining checksum: %s",
2452 bcp_component.c_str(),
2453 std::string(*oat_checksums).c_str());
2454 return false;
2455 }
2456 ++bcp_pos;
2457 }
2458 }
2459 }
2460
2461 return true;
2462 }
2463
LoadOrValidateFromSystem(InstructionSet image_isa,std::string_view * oat_checksums,std::string * error_msg)2464 bool ImageSpace::BootImageLayout::LoadOrValidateFromSystem(InstructionSet image_isa,
2465 /*inout*/std::string_view* oat_checksums,
2466 /*out*/std::string* error_msg) {
2467 auto filename_fn = [image_isa](const std::string& location,
2468 /*out*/std::string* filename,
2469 /*out*/std::string* err_msg ATTRIBUTE_UNUSED) {
2470 *filename = GetSystemImageFilename(location.c_str(), image_isa);
2471 return true;
2472 };
2473 return LoadOrValidate(filename_fn, oat_checksums, error_msg);
2474 }
2475
LoadOrValidateFromDalvikCache(const std::string & dalvik_cache,std::string_view * oat_checksums,std::string * error_msg)2476 bool ImageSpace::BootImageLayout::LoadOrValidateFromDalvikCache(
2477 const std::string& dalvik_cache,
2478 /*inout*/std::string_view* oat_checksums,
2479 /*out*/std::string* error_msg) {
2480 auto filename_fn = [&dalvik_cache](const std::string& location,
2481 /*out*/std::string* filename,
2482 /*out*/std::string* err_msg) {
2483 return GetDalvikCacheFilename(location.c_str(), dalvik_cache.c_str(), filename, err_msg);
2484 };
2485 return LoadOrValidate(filename_fn, oat_checksums, error_msg);
2486 }
2487
2488 class ImageSpace::BootImageLoader {
2489 public:
BootImageLoader(const std::vector<std::string> & boot_class_path,const std::vector<std::string> & boot_class_path_locations,const std::string & image_location,InstructionSet image_isa,bool relocate,bool executable,bool is_zygote)2490 BootImageLoader(const std::vector<std::string>& boot_class_path,
2491 const std::vector<std::string>& boot_class_path_locations,
2492 const std::string& image_location,
2493 InstructionSet image_isa,
2494 bool relocate,
2495 bool executable,
2496 bool is_zygote)
2497 : boot_class_path_(boot_class_path),
2498 boot_class_path_locations_(boot_class_path_locations),
2499 image_location_(image_location),
2500 image_isa_(image_isa),
2501 relocate_(relocate),
2502 executable_(executable),
2503 is_zygote_(is_zygote),
2504 has_system_(false),
2505 has_cache_(false),
2506 is_global_cache_(true),
2507 dalvik_cache_exists_(false),
2508 dalvik_cache_(),
2509 cache_filename_() {
2510 }
2511
IsZygote() const2512 bool IsZygote() const { return is_zygote_; }
2513
FindImageFiles()2514 void FindImageFiles() {
2515 BootImageLayout layout(image_location_, boot_class_path_, boot_class_path_locations_);
2516 std::string image_location = layout.GetPrimaryImageLocation();
2517 std::string system_filename;
2518 bool found_image = FindImageFilenameImpl(image_location.c_str(),
2519 image_isa_,
2520 &has_system_,
2521 &system_filename,
2522 &dalvik_cache_exists_,
2523 &dalvik_cache_,
2524 &is_global_cache_,
2525 &has_cache_,
2526 &cache_filename_);
2527 DCHECK(!dalvik_cache_exists_ || !dalvik_cache_.empty());
2528 DCHECK_EQ(found_image, has_system_ || has_cache_);
2529 }
2530
HasSystem() const2531 bool HasSystem() const { return has_system_; }
HasCache() const2532 bool HasCache() const { return has_cache_; }
2533
DalvikCacheExists() const2534 bool DalvikCacheExists() const { return dalvik_cache_exists_; }
IsGlobalCache() const2535 bool IsGlobalCache() const { return is_global_cache_; }
2536
GetDalvikCache() const2537 const std::string& GetDalvikCache() const {
2538 return dalvik_cache_;
2539 }
2540
GetCacheFilename() const2541 const std::string& GetCacheFilename() const {
2542 return cache_filename_;
2543 }
2544
2545 bool LoadFromSystem(bool validate_oat_file,
2546 size_t extra_reservation_size,
2547 /*out*/std::vector<std::unique_ptr<ImageSpace>>* boot_image_spaces,
2548 /*out*/MemMap* extra_reservation,
2549 /*out*/std::string* error_msg) REQUIRES_SHARED(Locks::mutator_lock_);
2550
2551 bool LoadFromDalvikCache(
2552 bool validate_oat_file,
2553 size_t extra_reservation_size,
2554 /*out*/std::vector<std::unique_ptr<ImageSpace>>* boot_image_spaces,
2555 /*out*/MemMap* extra_reservation,
2556 /*out*/std::string* error_msg) REQUIRES_SHARED(Locks::mutator_lock_);
2557
2558 private:
LoadImage(const BootImageLayout & layout,bool validate_oat_file,size_t extra_reservation_size,TimingLogger * logger,std::vector<std::unique_ptr<ImageSpace>> * boot_image_spaces,MemMap * extra_reservation,std::string * error_msg)2559 bool LoadImage(
2560 const BootImageLayout& layout,
2561 bool validate_oat_file,
2562 size_t extra_reservation_size,
2563 TimingLogger* logger,
2564 /*out*/std::vector<std::unique_ptr<ImageSpace>>* boot_image_spaces,
2565 /*out*/MemMap* extra_reservation,
2566 /*out*/std::string* error_msg) REQUIRES_SHARED(Locks::mutator_lock_) {
2567 ArrayRef<const BootImageLayout::ImageChunk> chunks = layout.GetChunks();
2568 DCHECK(!chunks.empty());
2569 const uint32_t base_address = layout.GetBaseAddress();
2570 const size_t image_component_count = layout.GetTotalComponentCount();
2571 const size_t image_reservation_size = layout.GetTotalReservationSize();
2572
2573 DCHECK_LE(image_reservation_size, kMaxTotalImageReservationSize);
2574 static_assert(kMaxTotalImageReservationSize < std::numeric_limits<uint32_t>::max());
2575 if (extra_reservation_size > std::numeric_limits<uint32_t>::max() - image_reservation_size) {
2576 // Since the `image_reservation_size` is limited to kMaxTotalImageReservationSize,
2577 // the `extra_reservation_size` would have to be really excessive to fail this check.
2578 *error_msg = StringPrintf("Excessive extra reservation size: %zu", extra_reservation_size);
2579 return false;
2580 }
2581
2582 // Reserve address space. If relocating, choose a random address for ALSR.
2583 uint8_t* addr = reinterpret_cast<uint8_t*>(
2584 relocate_ ? ART_BASE_ADDRESS + ChooseRelocationOffsetDelta() : base_address);
2585 MemMap image_reservation =
2586 ReserveBootImageMemory(addr, image_reservation_size + extra_reservation_size, error_msg);
2587 if (!image_reservation.IsValid()) {
2588 return false;
2589 }
2590
2591 // Load components.
2592 std::vector<std::unique_ptr<ImageSpace>> spaces;
2593 spaces.reserve(image_component_count);
2594 size_t max_image_space_dependencies = 0u;
2595 for (size_t i = 0, num_chunks = chunks.size(); i != num_chunks; ++i) {
2596 const BootImageLayout::ImageChunk& chunk = chunks[i];
2597 std::string extension_error_msg;
2598 uint8_t* old_reservation_begin = image_reservation.Begin();
2599 size_t old_reservation_size = image_reservation.Size();
2600 DCHECK_LE(chunk.reservation_size, old_reservation_size);
2601 if (!LoadComponents(chunk,
2602 validate_oat_file,
2603 max_image_space_dependencies,
2604 logger,
2605 &spaces,
2606 &image_reservation,
2607 (i == 0) ? error_msg : &extension_error_msg)) {
2608 // Failed to load the chunk. If this is the primary boot image, report the error.
2609 if (i == 0) {
2610 return false;
2611 }
2612 // For extension, shrink the reservation (and remap if needed, see below).
2613 size_t new_reservation_size = old_reservation_size - chunk.reservation_size;
2614 if (new_reservation_size == 0u) {
2615 DCHECK_EQ(extra_reservation_size, 0u);
2616 DCHECK_EQ(i + 1u, num_chunks);
2617 image_reservation.Reset();
2618 } else if (old_reservation_begin != image_reservation.Begin()) {
2619 // Part of the image reservation has been used and then unmapped when
2620 // rollling back the partial boot image extension load. Try to remap
2621 // the image reservation. As this should be running single-threaded,
2622 // the address range should still be available to mmap().
2623 image_reservation.Reset();
2624 std::string remap_error_msg;
2625 image_reservation = ReserveBootImageMemory(old_reservation_begin,
2626 new_reservation_size,
2627 &remap_error_msg);
2628 if (!image_reservation.IsValid()) {
2629 *error_msg = StringPrintf("Failed to remap boot image reservation after failing "
2630 "to load boot image extension (%s: %s): %s",
2631 boot_class_path_locations_[chunk.start_index].c_str(),
2632 extension_error_msg.c_str(),
2633 remap_error_msg.c_str());
2634 return false;
2635 }
2636 } else {
2637 DCHECK_EQ(old_reservation_size, image_reservation.Size());
2638 image_reservation.SetSize(new_reservation_size);
2639 }
2640 LOG(ERROR) << "Failed to load boot image extension "
2641 << boot_class_path_locations_[chunk.start_index] << ": " << extension_error_msg;
2642 }
2643 // Update `max_image_space_dependencies` if all previous BCP components
2644 // were covered and loading the current chunk succeeded.
2645 if (max_image_space_dependencies == chunk.start_index &&
2646 spaces.size() == chunk.start_index + chunk.component_count) {
2647 max_image_space_dependencies = chunk.start_index + chunk.component_count;
2648 }
2649 }
2650
2651 MemMap local_extra_reservation;
2652 if (!RemapExtraReservation(extra_reservation_size,
2653 &image_reservation,
2654 &local_extra_reservation,
2655 error_msg)) {
2656 return false;
2657 }
2658
2659 MaybeRelocateSpaces(spaces, logger);
2660 DeduplicateInternedStrings(ArrayRef<const std::unique_ptr<ImageSpace>>(spaces), logger);
2661 boot_image_spaces->swap(spaces);
2662 *extra_reservation = std::move(local_extra_reservation);
2663 return true;
2664 }
2665
2666 private:
2667 class SimpleRelocateVisitor {
2668 public:
SimpleRelocateVisitor(uint32_t diff,uint32_t begin,uint32_t size)2669 SimpleRelocateVisitor(uint32_t diff, uint32_t begin, uint32_t size)
2670 : diff_(diff), begin_(begin), size_(size) {}
2671
2672 // Adapter taking the same arguments as SplitRangeRelocateVisitor
2673 // to simplify constructing the various visitors in DoRelocateSpaces().
SimpleRelocateVisitor(uint32_t base_diff,uint32_t current_diff,uint32_t bound,uint32_t begin,uint32_t size)2674 SimpleRelocateVisitor(uint32_t base_diff,
2675 uint32_t current_diff,
2676 uint32_t bound,
2677 uint32_t begin,
2678 uint32_t size)
2679 : SimpleRelocateVisitor(base_diff, begin, size) {
2680 // Check arguments unused by this class.
2681 DCHECK_EQ(base_diff, current_diff);
2682 DCHECK_EQ(bound, begin);
2683 }
2684
2685 template <typename T>
operator ()(T * src) const2686 ALWAYS_INLINE T* operator()(T* src) const {
2687 DCHECK(InSource(src));
2688 uint32_t raw_src = reinterpret_cast32<uint32_t>(src);
2689 return reinterpret_cast32<T*>(raw_src + diff_);
2690 }
2691
2692 template <typename T>
InSource(T * ptr) const2693 ALWAYS_INLINE bool InSource(T* ptr) const {
2694 uint32_t raw_ptr = reinterpret_cast32<uint32_t>(ptr);
2695 return raw_ptr - begin_ < size_;
2696 }
2697
2698 template <typename T>
InDest(T * ptr) const2699 ALWAYS_INLINE bool InDest(T* ptr) const {
2700 uint32_t raw_ptr = reinterpret_cast32<uint32_t>(ptr);
2701 uint32_t src_ptr = raw_ptr - diff_;
2702 return src_ptr - begin_ < size_;
2703 }
2704
2705 private:
2706 const uint32_t diff_;
2707 const uint32_t begin_;
2708 const uint32_t size_;
2709 };
2710
2711 class SplitRangeRelocateVisitor {
2712 public:
SplitRangeRelocateVisitor(uint32_t base_diff,uint32_t current_diff,uint32_t bound,uint32_t begin,uint32_t size)2713 SplitRangeRelocateVisitor(uint32_t base_diff,
2714 uint32_t current_diff,
2715 uint32_t bound,
2716 uint32_t begin,
2717 uint32_t size)
2718 : base_diff_(base_diff),
2719 current_diff_(current_diff),
2720 bound_(bound),
2721 begin_(begin),
2722 size_(size) {
2723 DCHECK_NE(begin_, bound_);
2724 // The bound separates the boot image range and the extension range.
2725 DCHECK_LT(bound_ - begin_, size_);
2726 }
2727
2728 template <typename T>
operator ()(T * src) const2729 ALWAYS_INLINE T* operator()(T* src) const {
2730 DCHECK(InSource(src));
2731 uint32_t raw_src = reinterpret_cast32<uint32_t>(src);
2732 uint32_t diff = (raw_src < bound_) ? base_diff_ : current_diff_;
2733 return reinterpret_cast32<T*>(raw_src + diff);
2734 }
2735
2736 template <typename T>
InSource(T * ptr) const2737 ALWAYS_INLINE bool InSource(T* ptr) const {
2738 uint32_t raw_ptr = reinterpret_cast32<uint32_t>(ptr);
2739 return raw_ptr - begin_ < size_;
2740 }
2741
2742 private:
2743 const uint32_t base_diff_;
2744 const uint32_t current_diff_;
2745 const uint32_t bound_;
2746 const uint32_t begin_;
2747 const uint32_t size_;
2748 };
2749
PointerAddress(ArtMethod * method,MemberOffset offset)2750 static void** PointerAddress(ArtMethod* method, MemberOffset offset) {
2751 return reinterpret_cast<void**>(reinterpret_cast<uint8_t*>(method) + offset.Uint32Value());
2752 }
2753
2754 template <PointerSize kPointerSize>
DoRelocateSpaces(ArrayRef<const std::unique_ptr<ImageSpace>> & spaces,int64_t base_diff64)2755 static void DoRelocateSpaces(ArrayRef<const std::unique_ptr<ImageSpace>>& spaces,
2756 int64_t base_diff64) REQUIRES_SHARED(Locks::mutator_lock_) {
2757 DCHECK(!spaces.empty());
2758 gc::accounting::ContinuousSpaceBitmap patched_objects(
2759 gc::accounting::ContinuousSpaceBitmap::Create(
2760 "Marked objects",
2761 spaces.front()->Begin(),
2762 spaces.back()->End() - spaces.front()->Begin()));
2763 const ImageHeader& base_header = spaces[0]->GetImageHeader();
2764 size_t base_image_space_count = base_header.GetImageSpaceCount();
2765 DCHECK_LE(base_image_space_count, spaces.size());
2766 DoRelocateSpaces<kPointerSize, /*kExtension=*/ false>(
2767 spaces.SubArray(/*pos=*/ 0u, base_image_space_count),
2768 base_diff64,
2769 &patched_objects);
2770
2771 for (size_t i = base_image_space_count, size = spaces.size(); i != size; ) {
2772 const ImageHeader& ext_header = spaces[i]->GetImageHeader();
2773 size_t ext_image_space_count = ext_header.GetImageSpaceCount();
2774 DCHECK_LE(ext_image_space_count, size - i);
2775 DoRelocateSpaces<kPointerSize, /*kExtension=*/ true>(
2776 spaces.SubArray(/*pos=*/ i, ext_image_space_count),
2777 base_diff64,
2778 &patched_objects);
2779 i += ext_image_space_count;
2780 }
2781 }
2782
2783 template <PointerSize kPointerSize, bool kExtension>
DoRelocateSpaces(ArrayRef<const std::unique_ptr<ImageSpace>> spaces,int64_t base_diff64,gc::accounting::ContinuousSpaceBitmap * patched_objects)2784 static void DoRelocateSpaces(ArrayRef<const std::unique_ptr<ImageSpace>> spaces,
2785 int64_t base_diff64,
2786 gc::accounting::ContinuousSpaceBitmap* patched_objects)
2787 REQUIRES_SHARED(Locks::mutator_lock_) {
2788 DCHECK(!spaces.empty());
2789 const ImageHeader& first_header = spaces.front()->GetImageHeader();
2790 uint32_t image_begin = reinterpret_cast32<uint32_t>(first_header.GetImageBegin());
2791 uint32_t image_size = first_header.GetImageReservationSize();
2792 DCHECK_NE(image_size, 0u);
2793 uint32_t source_begin = kExtension ? first_header.GetBootImageBegin() : image_begin;
2794 uint32_t source_size = kExtension ? first_header.GetBootImageSize() + image_size : image_size;
2795 if (kExtension) {
2796 DCHECK_EQ(first_header.GetBootImageBegin() + first_header.GetBootImageSize(), image_begin);
2797 }
2798 int64_t current_diff64 = kExtension
2799 ? static_cast<int64_t>(reinterpret_cast32<uint32_t>(spaces.front()->Begin())) -
2800 static_cast<int64_t>(image_begin)
2801 : base_diff64;
2802 if (base_diff64 == 0 && current_diff64 == 0) {
2803 return;
2804 }
2805 uint32_t base_diff = static_cast<uint32_t>(base_diff64);
2806 uint32_t current_diff = static_cast<uint32_t>(current_diff64);
2807
2808 // For boot image the main visitor is a SimpleRelocateVisitor. For the boot image extension we
2809 // mostly use a SplitRelocationVisitor but some work can still use the SimpleRelocationVisitor.
2810 using MainRelocateVisitor = typename std::conditional<
2811 kExtension, SplitRangeRelocateVisitor, SimpleRelocateVisitor>::type;
2812 SimpleRelocateVisitor simple_relocate_visitor(current_diff, image_begin, image_size);
2813 MainRelocateVisitor main_relocate_visitor(
2814 base_diff, current_diff, /*bound=*/ image_begin, source_begin, source_size);
2815
2816 using MainPatchRelocateVisitor =
2817 PatchObjectVisitor<kPointerSize, MainRelocateVisitor, MainRelocateVisitor>;
2818 using SimplePatchRelocateVisitor =
2819 PatchObjectVisitor<kPointerSize, SimpleRelocateVisitor, SimpleRelocateVisitor>;
2820 MainPatchRelocateVisitor main_patch_object_visitor(main_relocate_visitor,
2821 main_relocate_visitor);
2822 SimplePatchRelocateVisitor simple_patch_object_visitor(simple_relocate_visitor,
2823 simple_relocate_visitor);
2824
2825 // Retrieve the Class.class, Method.class and Constructor.class needed in the loops below.
2826 ObjPtr<mirror::ObjectArray<mirror::Class>> class_roots;
2827 ObjPtr<mirror::Class> class_class;
2828 ObjPtr<mirror::Class> method_class;
2829 ObjPtr<mirror::Class> constructor_class;
2830 {
2831 ObjPtr<mirror::ObjectArray<mirror::Object>> image_roots =
2832 simple_relocate_visitor(first_header.GetImageRoots<kWithoutReadBarrier>().Ptr());
2833 DCHECK(!patched_objects->Test(image_roots.Ptr()));
2834
2835 SimpleRelocateVisitor base_relocate_visitor(
2836 base_diff,
2837 source_begin,
2838 kExtension ? source_size - image_size : image_size);
2839 int32_t class_roots_index = enum_cast<int32_t>(ImageHeader::kClassRoots);
2840 DCHECK_LT(class_roots_index, image_roots->GetLength<kVerifyNone>());
2841 class_roots = ObjPtr<mirror::ObjectArray<mirror::Class>>::DownCast(base_relocate_visitor(
2842 image_roots->GetWithoutChecks<kVerifyNone>(class_roots_index).Ptr()));
2843 if (kExtension) {
2844 // Class roots must have been visited if we relocated the primary boot image.
2845 DCHECK(base_diff == 0 || patched_objects->Test(class_roots.Ptr()));
2846 class_class = GetClassRoot<mirror::Class, kWithoutReadBarrier>(class_roots);
2847 method_class = GetClassRoot<mirror::Method, kWithoutReadBarrier>(class_roots);
2848 constructor_class = GetClassRoot<mirror::Constructor, kWithoutReadBarrier>(class_roots);
2849 } else {
2850 DCHECK(!patched_objects->Test(class_roots.Ptr()));
2851 class_class = simple_relocate_visitor(
2852 GetClassRoot<mirror::Class, kWithoutReadBarrier>(class_roots).Ptr());
2853 method_class = simple_relocate_visitor(
2854 GetClassRoot<mirror::Method, kWithoutReadBarrier>(class_roots).Ptr());
2855 constructor_class = simple_relocate_visitor(
2856 GetClassRoot<mirror::Constructor, kWithoutReadBarrier>(class_roots).Ptr());
2857 }
2858 }
2859
2860 for (const std::unique_ptr<ImageSpace>& space : spaces) {
2861 // First patch the image header.
2862 reinterpret_cast<ImageHeader*>(space->Begin())->RelocateImageReferences(current_diff64);
2863 reinterpret_cast<ImageHeader*>(space->Begin())->RelocateBootImageReferences(base_diff64);
2864
2865 // Patch fields and methods.
2866 const ImageHeader& image_header = space->GetImageHeader();
2867 image_header.VisitPackedArtFields([&](ArtField& field) REQUIRES_SHARED(Locks::mutator_lock_) {
2868 // Fields always reference class in the current image.
2869 simple_patch_object_visitor.template PatchGcRoot</*kMayBeNull=*/ false>(
2870 &field.DeclaringClassRoot());
2871 }, space->Begin());
2872 image_header.VisitPackedArtMethods([&](ArtMethod& method)
2873 REQUIRES_SHARED(Locks::mutator_lock_) {
2874 main_patch_object_visitor.PatchGcRoot(&method.DeclaringClassRoot());
2875 void** data_address = PointerAddress(&method, ArtMethod::DataOffset(kPointerSize));
2876 main_patch_object_visitor.PatchNativePointer(data_address);
2877 void** entrypoint_address =
2878 PointerAddress(&method, ArtMethod::EntryPointFromQuickCompiledCodeOffset(kPointerSize));
2879 main_patch_object_visitor.PatchNativePointer(entrypoint_address);
2880 }, space->Begin(), kPointerSize);
2881 auto method_table_visitor = [&](ArtMethod* method) {
2882 DCHECK(method != nullptr);
2883 return main_relocate_visitor(method);
2884 };
2885 image_header.VisitPackedImTables(method_table_visitor, space->Begin(), kPointerSize);
2886 image_header.VisitPackedImtConflictTables(method_table_visitor, space->Begin(), kPointerSize);
2887
2888 // Patch the intern table.
2889 if (image_header.GetInternedStringsSection().Size() != 0u) {
2890 const uint8_t* data = space->Begin() + image_header.GetInternedStringsSection().Offset();
2891 size_t read_count;
2892 InternTable::UnorderedSet temp_set(data, /*make_copy_of_data=*/ false, &read_count);
2893 for (GcRoot<mirror::String>& slot : temp_set) {
2894 // The intern table contains only strings in the current image.
2895 simple_patch_object_visitor.template PatchGcRoot</*kMayBeNull=*/ false>(&slot);
2896 }
2897 }
2898
2899 // Patch the class table and classes, so that we can traverse class hierarchy to
2900 // determine the types of other objects when we visit them later.
2901 if (image_header.GetClassTableSection().Size() != 0u) {
2902 uint8_t* data = space->Begin() + image_header.GetClassTableSection().Offset();
2903 size_t read_count;
2904 ClassTable::ClassSet temp_set(data, /*make_copy_of_data=*/ false, &read_count);
2905 DCHECK(!temp_set.empty());
2906 // The class table contains only classes in the current image.
2907 ClassTableVisitor class_table_visitor(simple_relocate_visitor);
2908 for (ClassTable::TableSlot& slot : temp_set) {
2909 slot.VisitRoot(class_table_visitor);
2910 ObjPtr<mirror::Class> klass = slot.Read<kWithoutReadBarrier>();
2911 DCHECK(klass != nullptr);
2912 DCHECK(!patched_objects->Test(klass.Ptr()));
2913 patched_objects->Set(klass.Ptr());
2914 main_patch_object_visitor.VisitClass(klass, class_class);
2915 // Then patch the non-embedded vtable and iftable.
2916 ObjPtr<mirror::PointerArray> vtable =
2917 klass->GetVTable<kVerifyNone, kWithoutReadBarrier>();
2918 if ((kExtension ? simple_relocate_visitor.InDest(vtable.Ptr()) : vtable != nullptr) &&
2919 !patched_objects->Set(vtable.Ptr())) {
2920 main_patch_object_visitor.VisitPointerArray(vtable);
2921 }
2922 ObjPtr<mirror::IfTable> iftable = klass->GetIfTable<kVerifyNone, kWithoutReadBarrier>();
2923 if (iftable != nullptr) {
2924 int32_t ifcount = klass->GetIfTableCount<kVerifyNone>();
2925 for (int32_t i = 0; i != ifcount; ++i) {
2926 ObjPtr<mirror::PointerArray> unpatched_ifarray =
2927 iftable->GetMethodArrayOrNull<kVerifyNone, kWithoutReadBarrier>(i);
2928 if (kExtension ? simple_relocate_visitor.InSource(unpatched_ifarray.Ptr())
2929 : unpatched_ifarray != nullptr) {
2930 // The iftable has not been patched, so we need to explicitly adjust the pointer.
2931 ObjPtr<mirror::PointerArray> ifarray =
2932 simple_relocate_visitor(unpatched_ifarray.Ptr());
2933 if (!patched_objects->Set(ifarray.Ptr())) {
2934 main_patch_object_visitor.VisitPointerArray(ifarray);
2935 }
2936 }
2937 }
2938 }
2939 }
2940 }
2941 }
2942
2943 for (const std::unique_ptr<ImageSpace>& space : spaces) {
2944 const ImageHeader& image_header = space->GetImageHeader();
2945
2946 static_assert(IsAligned<kObjectAlignment>(sizeof(ImageHeader)), "Header alignment check");
2947 uint32_t objects_end = image_header.GetObjectsSection().Size();
2948 DCHECK_ALIGNED(objects_end, kObjectAlignment);
2949 for (uint32_t pos = sizeof(ImageHeader); pos != objects_end; ) {
2950 mirror::Object* object = reinterpret_cast<mirror::Object*>(space->Begin() + pos);
2951 // Note: use Test() rather than Set() as this is the last time we're checking this object.
2952 if (!patched_objects->Test(object)) {
2953 // This is the last pass over objects, so we do not need to Set().
2954 main_patch_object_visitor.VisitObject(object);
2955 ObjPtr<mirror::Class> klass = object->GetClass<kVerifyNone, kWithoutReadBarrier>();
2956 if (klass->IsDexCacheClass<kVerifyNone>()) {
2957 // Patch dex cache array pointers and elements.
2958 ObjPtr<mirror::DexCache> dex_cache =
2959 object->AsDexCache<kVerifyNone, kWithoutReadBarrier>();
2960 main_patch_object_visitor.VisitDexCacheArrays(dex_cache);
2961 } else if (klass == method_class || klass == constructor_class) {
2962 // Patch the ArtMethod* in the mirror::Executable subobject.
2963 ObjPtr<mirror::Executable> as_executable =
2964 ObjPtr<mirror::Executable>::DownCast(object);
2965 ArtMethod* unpatched_method = as_executable->GetArtMethod<kVerifyNone>();
2966 ArtMethod* patched_method = main_relocate_visitor(unpatched_method);
2967 as_executable->SetArtMethod</*kTransactionActive=*/ false,
2968 /*kCheckTransaction=*/ true,
2969 kVerifyNone>(patched_method);
2970 }
2971 }
2972 pos += RoundUp(object->SizeOf<kVerifyNone>(), kObjectAlignment);
2973 }
2974 }
2975 if (kIsDebugBuild && !kExtension) {
2976 // We used just Test() instead of Set() above but we need to use Set()
2977 // for class roots to satisfy a DCHECK() for extensions.
2978 DCHECK(!patched_objects->Test(class_roots.Ptr()));
2979 patched_objects->Set(class_roots.Ptr());
2980 }
2981 }
2982
MaybeRelocateSpaces(const std::vector<std::unique_ptr<ImageSpace>> & spaces,TimingLogger * logger)2983 void MaybeRelocateSpaces(const std::vector<std::unique_ptr<ImageSpace>>& spaces,
2984 TimingLogger* logger)
2985 REQUIRES_SHARED(Locks::mutator_lock_) {
2986 TimingLogger::ScopedTiming timing("MaybeRelocateSpaces", logger);
2987 ImageSpace* first_space = spaces.front().get();
2988 const ImageHeader& first_space_header = first_space->GetImageHeader();
2989 int64_t base_diff64 =
2990 static_cast<int64_t>(reinterpret_cast32<uint32_t>(first_space->Begin())) -
2991 static_cast<int64_t>(reinterpret_cast32<uint32_t>(first_space_header.GetImageBegin()));
2992 if (!relocate_) {
2993 DCHECK_EQ(base_diff64, 0);
2994 }
2995
2996 ArrayRef<const std::unique_ptr<ImageSpace>> spaces_ref(spaces);
2997 PointerSize pointer_size = first_space_header.GetPointerSize();
2998 if (pointer_size == PointerSize::k64) {
2999 DoRelocateSpaces<PointerSize::k64>(spaces_ref, base_diff64);
3000 } else {
3001 DoRelocateSpaces<PointerSize::k32>(spaces_ref, base_diff64);
3002 }
3003 }
3004
DeduplicateInternedStrings(ArrayRef<const std::unique_ptr<ImageSpace>> spaces,TimingLogger * logger)3005 void DeduplicateInternedStrings(ArrayRef<const std::unique_ptr<ImageSpace>> spaces,
3006 TimingLogger* logger) REQUIRES_SHARED(Locks::mutator_lock_) {
3007 TimingLogger::ScopedTiming timing("DeduplicateInternedStrings", logger);
3008 DCHECK(!spaces.empty());
3009 size_t num_spaces = spaces.size();
3010 const ImageHeader& primary_header = spaces.front()->GetImageHeader();
3011 size_t primary_image_count = primary_header.GetImageSpaceCount();
3012 DCHECK_LE(primary_image_count, num_spaces);
3013 DCHECK_EQ(primary_image_count, primary_header.GetComponentCount());
3014 size_t component_count = primary_image_count;
3015 size_t space_pos = primary_image_count;
3016 while (space_pos != num_spaces) {
3017 const ImageHeader& current_header = spaces[space_pos]->GetImageHeader();
3018 size_t image_space_count = current_header.GetImageSpaceCount();
3019 DCHECK_LE(image_space_count, num_spaces - space_pos);
3020 size_t dependency_component_count = current_header.GetBootImageComponentCount();
3021 DCHECK_LE(dependency_component_count, component_count);
3022 if (dependency_component_count < component_count) {
3023 // There shall be no duplicate strings with the components that this space depends on.
3024 // Find the end of the dependencies, i.e. start of non-dependency images.
3025 size_t start_component_count = primary_image_count;
3026 size_t start_pos = primary_image_count;
3027 while (start_component_count != dependency_component_count) {
3028 const ImageHeader& dependency_header = spaces[start_pos]->GetImageHeader();
3029 DCHECK_LE(dependency_header.GetComponentCount(),
3030 dependency_component_count - start_component_count);
3031 start_component_count += dependency_header.GetComponentCount();
3032 start_pos += dependency_header.GetImageSpaceCount();
3033 }
3034 // Remove duplicates from all intern tables belonging to the chunk.
3035 ArrayRef<const std::unique_ptr<ImageSpace>> old_spaces =
3036 spaces.SubArray(/*pos=*/ start_pos, space_pos - start_pos);
3037 SafeMap<mirror::String*, mirror::String*> intern_remap;
3038 for (size_t i = 0; i != image_space_count; ++i) {
3039 ImageSpace* new_space = spaces[space_pos + i].get();
3040 Loader::RemoveInternTableDuplicates(old_spaces, new_space, &intern_remap);
3041 }
3042 // Remap string for all spaces belonging to the chunk.
3043 if (!intern_remap.empty()) {
3044 for (size_t i = 0; i != image_space_count; ++i) {
3045 ImageSpace* new_space = spaces[space_pos + i].get();
3046 Loader::RemapInternedStringDuplicates(intern_remap, new_space);
3047 }
3048 }
3049 }
3050 component_count += current_header.GetComponentCount();
3051 space_pos += image_space_count;
3052 }
3053 }
3054
Load(const std::string & image_location,const std::string & image_filename,const std::string & profile_file,android::base::unique_fd art_fd,TimingLogger * logger,MemMap * image_reservation,std::string * error_msg)3055 std::unique_ptr<ImageSpace> Load(const std::string& image_location,
3056 const std::string& image_filename,
3057 const std::string& profile_file,
3058 android::base::unique_fd art_fd,
3059 TimingLogger* logger,
3060 /*inout*/MemMap* image_reservation,
3061 /*out*/std::string* error_msg)
3062 REQUIRES_SHARED(Locks::mutator_lock_) {
3063 if (art_fd.get() != -1) {
3064 // No need to lock memfd for which we hold the only file descriptor
3065 // (see locking with ScopedFlock for normal files below).
3066 VLOG(startup) << "Using image file " << image_filename.c_str() << " for image location "
3067 << image_location << " for compiled extension";
3068
3069 File image_file(art_fd.release(), image_filename, /*check_usage=*/ false);
3070 std::unique_ptr<ImageSpace> result = Loader::Init(&image_file,
3071 image_filename.c_str(),
3072 image_location.c_str(),
3073 profile_file.c_str(),
3074 /*allow_direct_mapping=*/ false,
3075 logger,
3076 image_reservation,
3077 error_msg);
3078 // Note: We're closing the image file descriptor here when we destroy
3079 // the `image_file` as we no longer need it.
3080 return result;
3081 }
3082
3083 // Should this be a RDWR lock? This is only a defensive measure, as at
3084 // this point the image should exist.
3085 // However, only the zygote can write into the global dalvik-cache, so
3086 // restrict to zygote processes, or any process that isn't using
3087 // /data/dalvik-cache (which we assume to be allowed to write there).
3088 const bool rw_lock = is_zygote_ || !is_global_cache_;
3089
3090 // Note that we must not use the file descriptor associated with
3091 // ScopedFlock::GetFile to Init the image file. We want the file
3092 // descriptor (and the associated exclusive lock) to be released when
3093 // we leave Create.
3094 ScopedFlock image = LockedFile::Open(image_filename.c_str(),
3095 /*flags=*/ rw_lock ? (O_CREAT | O_RDWR) : O_RDONLY,
3096 /*block=*/ true,
3097 error_msg);
3098
3099 VLOG(startup) << "Using image file " << image_filename.c_str() << " for image location "
3100 << image_location;
3101
3102 // If we are in /system we can assume the image is good. We can also
3103 // assume this if we are using a relocated image (i.e. image checksum
3104 // matches) since this is only different by the offset. We need this to
3105 // make sure that host tests continue to work.
3106 // Since we are the boot image, pass null since we load the oat file from the boot image oat
3107 // file name.
3108 return Loader::Init(image_filename.c_str(),
3109 image_location.c_str(),
3110 logger,
3111 image_reservation,
3112 error_msg);
3113 }
3114
OpenOatFile(ImageSpace * space,android::base::unique_fd vdex_fd,android::base::unique_fd oat_fd,ArrayRef<const std::string> dex_filenames,bool validate_oat_file,ArrayRef<const std::unique_ptr<ImageSpace>> dependencies,TimingLogger * logger,MemMap * image_reservation,std::string * error_msg)3115 bool OpenOatFile(ImageSpace* space,
3116 android::base::unique_fd vdex_fd,
3117 android::base::unique_fd oat_fd,
3118 ArrayRef<const std::string> dex_filenames,
3119 bool validate_oat_file,
3120 ArrayRef<const std::unique_ptr<ImageSpace>> dependencies,
3121 TimingLogger* logger,
3122 /*inout*/MemMap* image_reservation,
3123 /*out*/std::string* error_msg) {
3124 // VerifyImageAllocations() will be called later in Runtime::Init()
3125 // as some class roots like ArtMethod::java_lang_reflect_ArtMethod_
3126 // and ArtField::java_lang_reflect_ArtField_, which are used from
3127 // Object::SizeOf() which VerifyImageAllocations() calls, are not
3128 // set yet at this point.
3129 DCHECK(image_reservation != nullptr);
3130 std::unique_ptr<OatFile> oat_file;
3131 {
3132 TimingLogger::ScopedTiming timing("OpenOatFile", logger);
3133 std::string oat_filename =
3134 ImageHeader::GetOatLocationFromImageLocation(space->GetImageFilename());
3135 std::string oat_location =
3136 ImageHeader::GetOatLocationFromImageLocation(space->GetImageLocation());
3137
3138 DCHECK_EQ(vdex_fd.get() != -1, oat_fd.get() != -1);
3139 if (vdex_fd.get() == -1) {
3140 oat_file.reset(OatFile::Open(/*zip_fd=*/ -1,
3141 oat_filename,
3142 oat_location,
3143 executable_,
3144 /*low_4gb=*/ false,
3145 dex_filenames,
3146 image_reservation,
3147 error_msg));
3148 } else {
3149 oat_file.reset(OatFile::Open(/*zip_fd=*/ -1,
3150 vdex_fd.get(),
3151 oat_fd.get(),
3152 oat_location,
3153 executable_,
3154 /*low_4gb=*/ false,
3155 dex_filenames,
3156 image_reservation,
3157 error_msg));
3158 // We no longer need the file descriptors and they will be closed by
3159 // the unique_fd destructor when we leave this function.
3160 }
3161
3162 if (oat_file == nullptr) {
3163 *error_msg = StringPrintf("Failed to open oat file '%s' referenced from image %s: %s",
3164 oat_filename.c_str(),
3165 space->GetName(),
3166 error_msg->c_str());
3167 return false;
3168 }
3169 const ImageHeader& image_header = space->GetImageHeader();
3170 uint32_t oat_checksum = oat_file->GetOatHeader().GetChecksum();
3171 uint32_t image_oat_checksum = image_header.GetOatChecksum();
3172 if (oat_checksum != image_oat_checksum) {
3173 *error_msg = StringPrintf("Failed to match oat file checksum 0x%x to expected oat checksum"
3174 " 0x%x in image %s",
3175 oat_checksum,
3176 image_oat_checksum,
3177 space->GetName());
3178 return false;
3179 }
3180 const char* oat_boot_class_path =
3181 oat_file->GetOatHeader().GetStoreValueByKey(OatHeader::kBootClassPathKey);
3182 oat_boot_class_path = (oat_boot_class_path != nullptr) ? oat_boot_class_path : "";
3183 const char* oat_boot_class_path_checksums =
3184 oat_file->GetOatHeader().GetStoreValueByKey(OatHeader::kBootClassPathChecksumsKey);
3185 oat_boot_class_path_checksums =
3186 (oat_boot_class_path_checksums != nullptr) ? oat_boot_class_path_checksums : "";
3187 size_t component_count = image_header.GetComponentCount();
3188 if (component_count == 0u) {
3189 if (oat_boot_class_path[0] != 0 || oat_boot_class_path_checksums[0] != 0) {
3190 *error_msg = StringPrintf("Unexpected non-empty boot class path %s and/or checksums %s"
3191 " in image %s",
3192 oat_boot_class_path,
3193 oat_boot_class_path_checksums,
3194 space->GetName());
3195 return false;
3196 }
3197 } else if (dependencies.empty()) {
3198 std::string expected_boot_class_path = Join(ArrayRef<const std::string>(
3199 boot_class_path_locations_).SubArray(0u, component_count), ':');
3200 if (expected_boot_class_path != oat_boot_class_path) {
3201 *error_msg = StringPrintf("Failed to match oat boot class path %s to expected "
3202 "boot class path %s in image %s",
3203 oat_boot_class_path,
3204 expected_boot_class_path.c_str(),
3205 space->GetName());
3206 return false;
3207 }
3208 } else {
3209 std::string local_error_msg;
3210 if (!VerifyBootClassPathChecksums(
3211 oat_boot_class_path_checksums,
3212 oat_boot_class_path,
3213 dependencies,
3214 ArrayRef<const std::string>(boot_class_path_locations_),
3215 ArrayRef<const std::string>(boot_class_path_),
3216 &local_error_msg)) {
3217 *error_msg = StringPrintf("Failed to verify BCP %s with checksums %s in image %s: %s",
3218 oat_boot_class_path,
3219 oat_boot_class_path_checksums,
3220 space->GetName(),
3221 local_error_msg.c_str());
3222 return false;
3223 }
3224 }
3225 ptrdiff_t relocation_diff = space->Begin() - image_header.GetImageBegin();
3226 CHECK(image_header.GetOatDataBegin() != nullptr);
3227 uint8_t* oat_data_begin = image_header.GetOatDataBegin() + relocation_diff;
3228 if (oat_file->Begin() != oat_data_begin) {
3229 *error_msg = StringPrintf("Oat file '%s' referenced from image %s has unexpected begin"
3230 " %p v. %p",
3231 oat_filename.c_str(),
3232 space->GetName(),
3233 oat_file->Begin(),
3234 oat_data_begin);
3235 return false;
3236 }
3237 }
3238 if (validate_oat_file) {
3239 TimingLogger::ScopedTiming timing("ValidateOatFile", logger);
3240 if (!ImageSpace::ValidateOatFile(*oat_file, error_msg)) {
3241 DCHECK(!error_msg->empty());
3242 return false;
3243 }
3244 }
3245 space->oat_file_ = std::move(oat_file);
3246 space->oat_file_non_owned_ = space->oat_file_.get();
3247 return true;
3248 }
3249
LoadComponents(const BootImageLayout::ImageChunk & chunk,bool validate_oat_file,size_t max_image_space_dependencies,TimingLogger * logger,std::vector<std::unique_ptr<ImageSpace>> * spaces,MemMap * image_reservation,std::string * error_msg)3250 bool LoadComponents(const BootImageLayout::ImageChunk& chunk,
3251 bool validate_oat_file,
3252 size_t max_image_space_dependencies,
3253 TimingLogger* logger,
3254 /*inout*/std::vector<std::unique_ptr<ImageSpace>>* spaces,
3255 /*inout*/MemMap* image_reservation,
3256 /*out*/std::string* error_msg)
3257 REQUIRES_SHARED(Locks::mutator_lock_) {
3258 // Make sure we destroy the spaces we created if we're returning an error.
3259 // Note that this can unmap part of the original `image_reservation`.
3260 class Guard {
3261 public:
3262 explicit Guard(std::vector<std::unique_ptr<ImageSpace>>* spaces_in)
3263 : spaces_(spaces_in), committed_(spaces_->size()) {}
3264 void Commit() {
3265 DCHECK_LT(committed_, spaces_->size());
3266 committed_ = spaces_->size();
3267 }
3268 ~Guard() {
3269 DCHECK_LE(committed_, spaces_->size());
3270 spaces_->resize(committed_);
3271 }
3272 private:
3273 std::vector<std::unique_ptr<ImageSpace>>* const spaces_;
3274 size_t committed_;
3275 };
3276 Guard guard(spaces);
3277
3278 bool is_extension = (chunk.start_index != 0u);
3279 DCHECK_NE(spaces->empty(), is_extension);
3280 if (max_image_space_dependencies < chunk.boot_image_component_count) {
3281 DCHECK(is_extension);
3282 *error_msg = StringPrintf("Missing dependencies for extension component %s, %zu < %u",
3283 boot_class_path_locations_[chunk.start_index].c_str(),
3284 max_image_space_dependencies,
3285 chunk.boot_image_component_count);
3286 return false;
3287 }
3288 ArrayRef<const std::string> requested_bcp_locations =
3289 ArrayRef<const std::string>(boot_class_path_locations_).SubArray(
3290 chunk.start_index, chunk.image_space_count);
3291 std::vector<std::string> locations =
3292 ExpandMultiImageLocations(requested_bcp_locations, chunk.base_location, is_extension);
3293 std::vector<std::string> filenames =
3294 ExpandMultiImageLocations(requested_bcp_locations, chunk.base_filename, is_extension);
3295 DCHECK_EQ(locations.size(), filenames.size());
3296 for (size_t i = 0u, size = locations.size(); i != size; ++i) {
3297 spaces->push_back(Load(locations[i],
3298 filenames[i],
3299 chunk.profile_file,
3300 std::move(chunk.art_fd),
3301 logger,
3302 image_reservation,
3303 error_msg));
3304 const ImageSpace* space = spaces->back().get();
3305 if (space == nullptr) {
3306 return false;
3307 }
3308 uint32_t expected_component_count = (i == 0u) ? chunk.component_count : 0u;
3309 uint32_t expected_reservation_size = (i == 0u) ? chunk.reservation_size : 0u;
3310 if (!Loader::CheckImageReservationSize(*space, expected_reservation_size, error_msg) ||
3311 !Loader::CheckImageComponentCount(*space, expected_component_count, error_msg)) {
3312 return false;
3313 }
3314 const ImageHeader& header = space->GetImageHeader();
3315 if (i == 0 && (chunk.checksum != header.GetImageChecksum() ||
3316 chunk.image_space_count != header.GetImageSpaceCount() ||
3317 chunk.boot_image_component_count != header.GetBootImageComponentCount() ||
3318 chunk.boot_image_checksum != header.GetBootImageChecksum() ||
3319 chunk.boot_image_size != header.GetBootImageSize())) {
3320 *error_msg = StringPrintf("Image header modified since previously read from %s; "
3321 "checksum: 0x%08x -> 0x%08x,"
3322 "image_space_count: %u -> %u"
3323 "boot_image_component_count: %u -> %u, "
3324 "boot_image_checksum: 0x%08x -> 0x%08x"
3325 "boot_image_size: 0x%08x -> 0x%08x",
3326 space->GetImageFilename().c_str(),
3327 chunk.checksum,
3328 chunk.image_space_count,
3329 header.GetImageSpaceCount(),
3330 header.GetImageChecksum(),
3331 chunk.boot_image_component_count,
3332 header.GetBootImageComponentCount(),
3333 chunk.boot_image_checksum,
3334 header.GetBootImageChecksum(),
3335 chunk.boot_image_size,
3336 header.GetBootImageSize());
3337 return false;
3338 }
3339 }
3340 DCHECK_GE(max_image_space_dependencies, chunk.boot_image_component_count);
3341 ArrayRef<const std::unique_ptr<ImageSpace>> dependencies =
3342 ArrayRef<const std::unique_ptr<ImageSpace>>(*spaces).SubArray(
3343 /*pos=*/ 0u, chunk.boot_image_component_count);
3344 for (size_t i = 0u, size = locations.size(); i != size; ++i) {
3345 ImageSpace* space = (*spaces)[spaces->size() - chunk.image_space_count + i].get();
3346 size_t bcp_chunk_size = (chunk.image_space_count == 1u) ? chunk.component_count : 1u;
3347 if (!OpenOatFile(space,
3348 std::move(chunk.vdex_fd),
3349 std::move(chunk.oat_fd),
3350 boot_class_path_.SubArray(/*pos=*/ chunk.start_index + i, bcp_chunk_size),
3351 validate_oat_file,
3352 dependencies,
3353 logger,
3354 image_reservation,
3355 error_msg)) {
3356 return false;
3357 }
3358 }
3359
3360 guard.Commit();
3361 return true;
3362 }
3363
ReserveBootImageMemory(uint8_t * addr,uint32_t reservation_size,std::string * error_msg)3364 MemMap ReserveBootImageMemory(uint8_t* addr,
3365 uint32_t reservation_size,
3366 /*out*/std::string* error_msg) {
3367 DCHECK_ALIGNED(reservation_size, kPageSize);
3368 DCHECK_ALIGNED(addr, kPageSize);
3369 return MemMap::MapAnonymous("Boot image reservation",
3370 addr,
3371 reservation_size,
3372 PROT_NONE,
3373 /*low_4gb=*/ true,
3374 /*reuse=*/ false,
3375 /*reservation=*/ nullptr,
3376 error_msg);
3377 }
3378
RemapExtraReservation(size_t extra_reservation_size,MemMap * image_reservation,MemMap * extra_reservation,std::string * error_msg)3379 bool RemapExtraReservation(size_t extra_reservation_size,
3380 /*inout*/MemMap* image_reservation,
3381 /*out*/MemMap* extra_reservation,
3382 /*out*/std::string* error_msg) {
3383 DCHECK_ALIGNED(extra_reservation_size, kPageSize);
3384 DCHECK(!extra_reservation->IsValid());
3385 size_t expected_size = image_reservation->IsValid() ? image_reservation->Size() : 0u;
3386 if (extra_reservation_size != expected_size) {
3387 *error_msg = StringPrintf("Image reservation mismatch after loading boot image: %zu != %zu",
3388 extra_reservation_size,
3389 expected_size);
3390 return false;
3391 }
3392 if (extra_reservation_size != 0u) {
3393 DCHECK(image_reservation->IsValid());
3394 DCHECK_EQ(extra_reservation_size, image_reservation->Size());
3395 *extra_reservation = image_reservation->RemapAtEnd(image_reservation->Begin(),
3396 "Boot image extra reservation",
3397 PROT_NONE,
3398 error_msg);
3399 if (!extra_reservation->IsValid()) {
3400 return false;
3401 }
3402 }
3403 DCHECK(!image_reservation->IsValid());
3404 return true;
3405 }
3406
3407 const ArrayRef<const std::string> boot_class_path_;
3408 const ArrayRef<const std::string> boot_class_path_locations_;
3409 const std::string image_location_;
3410 const InstructionSet image_isa_;
3411 const bool relocate_;
3412 const bool executable_;
3413 const bool is_zygote_;
3414 bool has_system_;
3415 bool has_cache_;
3416 bool is_global_cache_;
3417 bool dalvik_cache_exists_;
3418 std::string dalvik_cache_;
3419 std::string cache_filename_;
3420 };
3421
LoadFromSystem(bool validate_oat_file,size_t extra_reservation_size,std::vector<std::unique_ptr<ImageSpace>> * boot_image_spaces,MemMap * extra_reservation,std::string * error_msg)3422 bool ImageSpace::BootImageLoader::LoadFromSystem(
3423 bool validate_oat_file,
3424 size_t extra_reservation_size,
3425 /*out*/std::vector<std::unique_ptr<ImageSpace>>* boot_image_spaces,
3426 /*out*/MemMap* extra_reservation,
3427 /*out*/std::string* error_msg) {
3428 TimingLogger logger(__PRETTY_FUNCTION__, /*precise=*/ true, VLOG_IS_ON(image));
3429
3430 BootImageLayout layout(image_location_, boot_class_path_, boot_class_path_locations_);
3431 if (!layout.LoadFromSystem(image_isa_, error_msg)) {
3432 return false;
3433 }
3434
3435 if (!LoadImage(layout,
3436 validate_oat_file,
3437 extra_reservation_size,
3438 &logger,
3439 boot_image_spaces,
3440 extra_reservation,
3441 error_msg)) {
3442 return false;
3443 }
3444
3445 if (VLOG_IS_ON(image)) {
3446 LOG(INFO) << "ImageSpace::BootImageLoader::LoadFromSystem exiting "
3447 << boot_image_spaces->front();
3448 logger.Dump(LOG_STREAM(INFO));
3449 }
3450 return true;
3451 }
3452
LoadFromDalvikCache(bool validate_oat_file,size_t extra_reservation_size,std::vector<std::unique_ptr<ImageSpace>> * boot_image_spaces,MemMap * extra_reservation,std::string * error_msg)3453 bool ImageSpace::BootImageLoader::LoadFromDalvikCache(
3454 bool validate_oat_file,
3455 size_t extra_reservation_size,
3456 /*out*/std::vector<std::unique_ptr<ImageSpace>>* boot_image_spaces,
3457 /*out*/MemMap* extra_reservation,
3458 /*out*/std::string* error_msg) {
3459 TimingLogger logger(__PRETTY_FUNCTION__, /*precise=*/ true, VLOG_IS_ON(image));
3460 DCHECK(DalvikCacheExists());
3461
3462 BootImageLayout layout(image_location_, boot_class_path_, boot_class_path_locations_);
3463 if (!layout.LoadFromDalvikCache(dalvik_cache_, error_msg)) {
3464 return false;
3465 }
3466 if (!LoadImage(layout,
3467 validate_oat_file,
3468 extra_reservation_size,
3469 &logger,
3470 boot_image_spaces,
3471 extra_reservation,
3472 error_msg)) {
3473 return false;
3474 }
3475
3476 if (VLOG_IS_ON(image)) {
3477 LOG(INFO) << "ImageSpace::BootImageLoader::LoadFromDalvikCache exiting "
3478 << boot_image_spaces->front();
3479 logger.Dump(LOG_STREAM(INFO));
3480 }
3481 return true;
3482 }
3483
IsBootClassPathOnDisk(InstructionSet image_isa)3484 bool ImageSpace::IsBootClassPathOnDisk(InstructionSet image_isa) {
3485 Runtime* runtime = Runtime::Current();
3486 BootImageLayout layout(runtime->GetImageLocation(),
3487 ArrayRef<const std::string>(runtime->GetBootClassPath()),
3488 ArrayRef<const std::string>(runtime->GetBootClassPathLocations()));
3489 const std::string image_location = layout.GetPrimaryImageLocation();
3490 ImageSpaceLoadingOrder order = runtime->GetImageSpaceLoadingOrder();
3491 std::unique_ptr<ImageHeader> image_header;
3492 std::string error_msg;
3493
3494 std::string system_filename;
3495 bool has_system = false;
3496 std::string cache_filename;
3497 bool has_cache = false;
3498 bool dalvik_cache_exists = false;
3499 bool is_global_cache = false;
3500 if (FindImageFilename(image_location.c_str(),
3501 image_isa,
3502 &system_filename,
3503 &has_system,
3504 &cache_filename,
3505 &dalvik_cache_exists,
3506 &has_cache,
3507 &is_global_cache)) {
3508 DCHECK(has_system || has_cache);
3509 const std::string& filename = (order == ImageSpaceLoadingOrder::kSystemFirst)
3510 ? (has_system ? system_filename : cache_filename)
3511 : (has_cache ? cache_filename : system_filename);
3512 image_header = ReadSpecificImageHeader(filename.c_str(), &error_msg);
3513 }
3514
3515 return image_header != nullptr;
3516 }
3517
3518 static constexpr uint64_t kLowSpaceValue = 50 * MB;
3519 static constexpr uint64_t kTmpFsSentinelValue = 384 * MB;
3520
3521 // Read the free space of the cache partition and make a decision whether to keep the generated
3522 // image. This is to try to mitigate situations where the system might run out of space later.
CheckSpace(const std::string & cache_filename,std::string * error_msg)3523 static bool CheckSpace(const std::string& cache_filename, std::string* error_msg) {
3524 // Using statvfs vs statvfs64 because of b/18207376, and it is enough for all practical purposes.
3525 struct statvfs buf;
3526
3527 int res = TEMP_FAILURE_RETRY(statvfs(cache_filename.c_str(), &buf));
3528 if (res != 0) {
3529 // Could not stat. Conservatively tell the system to delete the image.
3530 *error_msg = "Could not stat the filesystem, assuming low-memory situation.";
3531 return false;
3532 }
3533
3534 uint64_t fs_overall_size = buf.f_bsize * static_cast<uint64_t>(buf.f_blocks);
3535 // Zygote is privileged, but other things are not. Use bavail.
3536 uint64_t fs_free_size = buf.f_bsize * static_cast<uint64_t>(buf.f_bavail);
3537
3538 // Take the overall size as an indicator for a tmpfs, which is being used for the decryption
3539 // environment. We do not want to fail quickening the boot image there, as it is beneficial
3540 // for time-to-UI.
3541 if (fs_overall_size > kTmpFsSentinelValue) {
3542 if (fs_free_size < kLowSpaceValue) {
3543 *error_msg = StringPrintf("Low-memory situation: only %4.2f megabytes available, need at "
3544 "least %" PRIu64 ".",
3545 static_cast<double>(fs_free_size) / MB,
3546 kLowSpaceValue / MB);
3547 return false;
3548 }
3549 }
3550 return true;
3551 }
3552
LoadBootImage(const std::vector<std::string> & boot_class_path,const std::vector<std::string> & boot_class_path_locations,const std::string & image_location,const InstructionSet image_isa,ImageSpaceLoadingOrder order,bool relocate,bool executable,bool is_zygote,size_t extra_reservation_size,std::vector<std::unique_ptr<ImageSpace>> * boot_image_spaces,MemMap * extra_reservation)3553 bool ImageSpace::LoadBootImage(
3554 const std::vector<std::string>& boot_class_path,
3555 const std::vector<std::string>& boot_class_path_locations,
3556 const std::string& image_location,
3557 const InstructionSet image_isa,
3558 ImageSpaceLoadingOrder order,
3559 bool relocate,
3560 bool executable,
3561 bool is_zygote,
3562 size_t extra_reservation_size,
3563 /*out*/std::vector<std::unique_ptr<ImageSpace>>* boot_image_spaces,
3564 /*out*/MemMap* extra_reservation) {
3565 ScopedTrace trace(__FUNCTION__);
3566
3567 DCHECK(boot_image_spaces != nullptr);
3568 DCHECK(boot_image_spaces->empty());
3569 DCHECK_ALIGNED(extra_reservation_size, kPageSize);
3570 DCHECK(extra_reservation != nullptr);
3571 DCHECK_NE(image_isa, InstructionSet::kNone);
3572
3573 if (image_location.empty()) {
3574 return false;
3575 }
3576
3577 BootImageLoader loader(boot_class_path,
3578 boot_class_path_locations,
3579 image_location,
3580 image_isa,
3581 relocate,
3582 executable,
3583 is_zygote);
3584
3585 // Step 0: Extra zygote work.
3586
3587 loader.FindImageFiles();
3588
3589 // Step 0.a: If we're the zygote, check for free space, and prune the cache preemptively,
3590 // if necessary. While the runtime may be fine (it is pretty tolerant to
3591 // out-of-disk-space situations), other parts of the platform are not.
3592 //
3593 // The advantage of doing this proactively is that the later steps are simplified,
3594 // i.e., we do not need to code retries.
3595 bool low_space = false;
3596 if (loader.IsZygote() && loader.DalvikCacheExists()) {
3597 // Extra checks for the zygote. These only apply when loading the first image, explained below.
3598 const std::string& dalvik_cache = loader.GetDalvikCache();
3599 DCHECK(!dalvik_cache.empty());
3600 std::string local_error_msg;
3601 bool check_space = CheckSpace(dalvik_cache, &local_error_msg);
3602 if (!check_space) {
3603 LOG(WARNING) << local_error_msg << " Preemptively pruning the dalvik cache.";
3604 PruneDalvikCache(image_isa);
3605
3606 // Re-evaluate the image.
3607 loader.FindImageFiles();
3608
3609 // Disable compilation/patching - we do not want to fill up the space again.
3610 low_space = true;
3611 }
3612 }
3613
3614 // Collect all the errors.
3615 std::vector<std::string> error_msgs;
3616
3617 auto try_load_from = [&](auto has_fn, auto load_fn, bool validate_oat_file) {
3618 if ((loader.*has_fn)()) {
3619 std::string local_error_msg;
3620 if ((loader.*load_fn)(validate_oat_file,
3621 extra_reservation_size,
3622 boot_image_spaces,
3623 extra_reservation,
3624 &local_error_msg)) {
3625 return true;
3626 }
3627 error_msgs.push_back(local_error_msg);
3628 }
3629 return false;
3630 };
3631
3632 auto try_load_from_system = [&]() {
3633 // Validate the oat files if the loading order checks data first. Otherwise assume system
3634 // integrity.
3635 return try_load_from(&BootImageLoader::HasSystem,
3636 &BootImageLoader::LoadFromSystem,
3637 /*validate_oat_file=*/ order != ImageSpaceLoadingOrder::kSystemFirst);
3638 };
3639 auto try_load_from_cache = [&]() {
3640 // Always validate oat files from the dalvik cache.
3641 return try_load_from(&BootImageLoader::HasCache,
3642 &BootImageLoader::LoadFromDalvikCache,
3643 /*validate_oat_file=*/ true);
3644 };
3645
3646 auto invoke_sequentially = [](auto first, auto second) {
3647 return first() || second();
3648 };
3649
3650 // Step 1+2: Check system and cache images in the asked-for order.
3651 if (order == ImageSpaceLoadingOrder::kSystemFirst) {
3652 if (invoke_sequentially(try_load_from_system, try_load_from_cache)) {
3653 return true;
3654 }
3655 } else {
3656 if (invoke_sequentially(try_load_from_cache, try_load_from_system)) {
3657 return true;
3658 }
3659 }
3660
3661 // Step 3: We do not have an existing image in /system,
3662 // so generate an image into the dalvik cache.
3663 if (!loader.HasSystem() && loader.DalvikCacheExists()) {
3664 std::string local_error_msg;
3665 if (low_space || !Runtime::Current()->IsImageDex2OatEnabled()) {
3666 local_error_msg = "Image compilation disabled.";
3667 } else if (ImageCreationAllowed(loader.IsGlobalCache(),
3668 image_isa,
3669 is_zygote,
3670 &local_error_msg)) {
3671 bool compilation_success =
3672 GenerateImage(loader.GetCacheFilename(), image_isa, &local_error_msg);
3673 if (compilation_success) {
3674 if (loader.LoadFromDalvikCache(/*validate_oat_file=*/ false,
3675 extra_reservation_size,
3676 boot_image_spaces,
3677 extra_reservation,
3678 &local_error_msg)) {
3679 return true;
3680 }
3681 }
3682 }
3683 error_msgs.push_back(StringPrintf("Cannot compile image to %s: %s",
3684 loader.GetCacheFilename().c_str(),
3685 local_error_msg.c_str()));
3686 }
3687
3688 // We failed. Prune the cache the free up space, create a compound error message
3689 // and return false.
3690 if (loader.DalvikCacheExists()) {
3691 PruneDalvikCache(image_isa);
3692 }
3693
3694 std::ostringstream oss;
3695 bool first = true;
3696 for (const auto& msg : error_msgs) {
3697 if (!first) {
3698 oss << "\n ";
3699 }
3700 oss << msg;
3701 }
3702
3703 LOG(ERROR) << "Could not create image space with image file '" << image_location << "'. "
3704 << "Attempting to fall back to imageless running. Error was: " << oss.str();
3705
3706 return false;
3707 }
3708
~ImageSpace()3709 ImageSpace::~ImageSpace() {
3710 // Everything done by member destructors. Classes forward-declared in header are now defined.
3711 }
3712
CreateFromAppImage(const char * image,const OatFile * oat_file,std::string * error_msg)3713 std::unique_ptr<ImageSpace> ImageSpace::CreateFromAppImage(const char* image,
3714 const OatFile* oat_file,
3715 std::string* error_msg) {
3716 // Note: The oat file has already been validated.
3717 const std::vector<ImageSpace*>& boot_image_spaces =
3718 Runtime::Current()->GetHeap()->GetBootImageSpaces();
3719 return CreateFromAppImage(image,
3720 oat_file,
3721 ArrayRef<ImageSpace* const>(boot_image_spaces),
3722 error_msg);
3723 }
3724
CreateFromAppImage(const char * image,const OatFile * oat_file,ArrayRef<ImageSpace * const> boot_image_spaces,std::string * error_msg)3725 std::unique_ptr<ImageSpace> ImageSpace::CreateFromAppImage(
3726 const char* image,
3727 const OatFile* oat_file,
3728 ArrayRef<ImageSpace* const> boot_image_spaces,
3729 std::string* error_msg) {
3730 return Loader::InitAppImage(image,
3731 image,
3732 oat_file,
3733 boot_image_spaces,
3734 error_msg);
3735 }
3736
GetOatFile() const3737 const OatFile* ImageSpace::GetOatFile() const {
3738 return oat_file_non_owned_;
3739 }
3740
ReleaseOatFile()3741 std::unique_ptr<const OatFile> ImageSpace::ReleaseOatFile() {
3742 CHECK(oat_file_ != nullptr);
3743 return std::move(oat_file_);
3744 }
3745
Dump(std::ostream & os) const3746 void ImageSpace::Dump(std::ostream& os) const {
3747 os << GetType()
3748 << " begin=" << reinterpret_cast<void*>(Begin())
3749 << ",end=" << reinterpret_cast<void*>(End())
3750 << ",size=" << PrettySize(Size())
3751 << ",name=\"" << GetName() << "\"]";
3752 }
3753
ValidateOatFile(const OatFile & oat_file,std::string * error_msg)3754 bool ImageSpace::ValidateOatFile(const OatFile& oat_file, std::string* error_msg) {
3755 const ArtDexFileLoader dex_file_loader;
3756 for (const OatDexFile* oat_dex_file : oat_file.GetOatDexFiles()) {
3757 const std::string& dex_file_location = oat_dex_file->GetDexFileLocation();
3758
3759 // Skip multidex locations - These will be checked when we visit their
3760 // corresponding primary non-multidex location.
3761 if (DexFileLoader::IsMultiDexLocation(dex_file_location.c_str())) {
3762 continue;
3763 }
3764
3765 std::vector<uint32_t> checksums;
3766 if (!dex_file_loader.GetMultiDexChecksums(dex_file_location.c_str(), &checksums, error_msg)) {
3767 *error_msg = StringPrintf("ValidateOatFile failed to get checksums of dex file '%s' "
3768 "referenced by oat file %s: %s",
3769 dex_file_location.c_str(),
3770 oat_file.GetLocation().c_str(),
3771 error_msg->c_str());
3772 return false;
3773 }
3774 CHECK(!checksums.empty());
3775 if (checksums[0] != oat_dex_file->GetDexFileLocationChecksum()) {
3776 *error_msg = StringPrintf("ValidateOatFile found checksum mismatch between oat file "
3777 "'%s' and dex file '%s' (0x%x != 0x%x)",
3778 oat_file.GetLocation().c_str(),
3779 dex_file_location.c_str(),
3780 oat_dex_file->GetDexFileLocationChecksum(),
3781 checksums[0]);
3782 return false;
3783 }
3784
3785 // Verify checksums for any related multidex entries.
3786 for (size_t i = 1; i < checksums.size(); i++) {
3787 std::string multi_dex_location = DexFileLoader::GetMultiDexLocation(
3788 i,
3789 dex_file_location.c_str());
3790 const OatDexFile* multi_dex = oat_file.GetOatDexFile(multi_dex_location.c_str(),
3791 nullptr,
3792 error_msg);
3793 if (multi_dex == nullptr) {
3794 *error_msg = StringPrintf("ValidateOatFile oat file '%s' is missing entry '%s'",
3795 oat_file.GetLocation().c_str(),
3796 multi_dex_location.c_str());
3797 return false;
3798 }
3799
3800 if (checksums[i] != multi_dex->GetDexFileLocationChecksum()) {
3801 *error_msg = StringPrintf("ValidateOatFile found checksum mismatch between oat file "
3802 "'%s' and dex file '%s' (0x%x != 0x%x)",
3803 oat_file.GetLocation().c_str(),
3804 multi_dex_location.c_str(),
3805 multi_dex->GetDexFileLocationChecksum(),
3806 checksums[i]);
3807 return false;
3808 }
3809 }
3810 }
3811 return true;
3812 }
3813
GetBootClassPathChecksums(ArrayRef<ImageSpace * const> image_spaces,ArrayRef<const DexFile * const> boot_class_path)3814 std::string ImageSpace::GetBootClassPathChecksums(
3815 ArrayRef<ImageSpace* const> image_spaces,
3816 ArrayRef<const DexFile* const> boot_class_path) {
3817 DCHECK(!boot_class_path.empty());
3818 size_t bcp_pos = 0u;
3819 std::string boot_image_checksum;
3820
3821 for (size_t image_pos = 0u, size = image_spaces.size(); image_pos != size; ) {
3822 const ImageSpace* main_space = image_spaces[image_pos];
3823 // Caller must make sure that the image spaces correspond to the head of the BCP.
3824 DCHECK_NE(main_space->oat_file_non_owned_->GetOatDexFiles().size(), 0u);
3825 DCHECK_EQ(main_space->oat_file_non_owned_->GetOatDexFiles()[0]->GetDexFileLocation(),
3826 boot_class_path[bcp_pos]->GetLocation());
3827 const ImageHeader& current_header = main_space->GetImageHeader();
3828 uint32_t image_space_count = current_header.GetImageSpaceCount();
3829 DCHECK_NE(image_space_count, 0u);
3830 DCHECK_LE(image_space_count, image_spaces.size() - image_pos);
3831 if (image_pos != 0u) {
3832 boot_image_checksum += ':';
3833 }
3834 uint32_t component_count = current_header.GetComponentCount();
3835 AppendImageChecksum(component_count, current_header.GetImageChecksum(), &boot_image_checksum);
3836 for (size_t space_index = 0; space_index != image_space_count; ++space_index) {
3837 const ImageSpace* space = image_spaces[image_pos + space_index];
3838 const OatFile* oat_file = space->oat_file_non_owned_;
3839 size_t num_dex_files = oat_file->GetOatDexFiles().size();
3840 if (kIsDebugBuild) {
3841 CHECK_NE(num_dex_files, 0u);
3842 CHECK_LE(oat_file->GetOatDexFiles().size(), boot_class_path.size() - bcp_pos);
3843 for (size_t i = 0; i != num_dex_files; ++i) {
3844 CHECK_EQ(oat_file->GetOatDexFiles()[i]->GetDexFileLocation(),
3845 boot_class_path[bcp_pos + i]->GetLocation());
3846 }
3847 }
3848 bcp_pos += num_dex_files;
3849 }
3850 image_pos += image_space_count;
3851 }
3852
3853 ArrayRef<const DexFile* const> boot_class_path_tail =
3854 ArrayRef<const DexFile* const>(boot_class_path).SubArray(bcp_pos);
3855 DCHECK(boot_class_path_tail.empty() ||
3856 !DexFileLoader::IsMultiDexLocation(boot_class_path_tail.front()->GetLocation().c_str()));
3857 for (const DexFile* dex_file : boot_class_path_tail) {
3858 if (!DexFileLoader::IsMultiDexLocation(dex_file->GetLocation().c_str())) {
3859 if (!boot_image_checksum.empty()) {
3860 boot_image_checksum += ':';
3861 }
3862 boot_image_checksum += kDexFileChecksumPrefix;
3863 }
3864 StringAppendF(&boot_image_checksum, "/%08x", dex_file->GetLocationChecksum());
3865 }
3866 return boot_image_checksum;
3867 }
3868
CheckAndCountBCPComponents(std::string_view oat_boot_class_path,ArrayRef<const std::string> boot_class_path,std::string * error_msg)3869 static size_t CheckAndCountBCPComponents(std::string_view oat_boot_class_path,
3870 ArrayRef<const std::string> boot_class_path,
3871 /*out*/std::string* error_msg) {
3872 // Check that the oat BCP is a prefix of current BCP locations and count components.
3873 size_t component_count = 0u;
3874 std::string_view remaining_bcp(oat_boot_class_path);
3875 bool bcp_ok = false;
3876 for (const std::string& location : boot_class_path) {
3877 if (!StartsWith(remaining_bcp, location)) {
3878 break;
3879 }
3880 remaining_bcp.remove_prefix(location.size());
3881 ++component_count;
3882 if (remaining_bcp.empty()) {
3883 bcp_ok = true;
3884 break;
3885 }
3886 if (!StartsWith(remaining_bcp, ":")) {
3887 break;
3888 }
3889 remaining_bcp.remove_prefix(1u);
3890 }
3891 if (!bcp_ok) {
3892 *error_msg = StringPrintf("Oat boot class path (%s) is not a prefix of"
3893 " runtime boot class path (%s)",
3894 std::string(oat_boot_class_path).c_str(),
3895 Join(boot_class_path, ':').c_str());
3896 return static_cast<size_t>(-1);
3897 }
3898 return component_count;
3899 }
3900
VerifyBootClassPathChecksums(std::string_view oat_checksums,std::string_view oat_boot_class_path,const std::string & image_location,ArrayRef<const std::string> boot_class_path_locations,ArrayRef<const std::string> boot_class_path,InstructionSet image_isa,ImageSpaceLoadingOrder order,std::string * error_msg)3901 bool ImageSpace::VerifyBootClassPathChecksums(std::string_view oat_checksums,
3902 std::string_view oat_boot_class_path,
3903 const std::string& image_location,
3904 ArrayRef<const std::string> boot_class_path_locations,
3905 ArrayRef<const std::string> boot_class_path,
3906 InstructionSet image_isa,
3907 ImageSpaceLoadingOrder order,
3908 /*out*/std::string* error_msg) {
3909 if (oat_checksums.empty() || oat_boot_class_path.empty()) {
3910 *error_msg = oat_checksums.empty() ? "Empty checksums." : "Empty boot class path.";
3911 return false;
3912 }
3913
3914 DCHECK_EQ(boot_class_path_locations.size(), boot_class_path.size());
3915 size_t bcp_size =
3916 CheckAndCountBCPComponents(oat_boot_class_path, boot_class_path_locations, error_msg);
3917 if (bcp_size == static_cast<size_t>(-1)) {
3918 DCHECK(!error_msg->empty());
3919 return false;
3920 }
3921
3922 size_t bcp_pos = 0u;
3923 if (StartsWith(oat_checksums, "i")) {
3924 // Use only the matching part of the BCP for validation.
3925 BootImageLayout layout(image_location,
3926 boot_class_path.SubArray(/*pos=*/ 0u, bcp_size),
3927 boot_class_path_locations.SubArray(/*pos=*/ 0u, bcp_size));
3928 std::string primary_image_location = layout.GetPrimaryImageLocation();
3929 std::string system_filename;
3930 bool has_system = false;
3931 std::string cache_filename;
3932 bool has_cache = false;
3933 bool dalvik_cache_exists = false;
3934 bool is_global_cache = false;
3935 if (!FindImageFilename(primary_image_location.c_str(),
3936 image_isa,
3937 &system_filename,
3938 &has_system,
3939 &cache_filename,
3940 &dalvik_cache_exists,
3941 &has_cache,
3942 &is_global_cache)) {
3943 *error_msg = StringPrintf("Unable to find image file for %s and %s",
3944 image_location.c_str(),
3945 GetInstructionSetString(image_isa));
3946 return false;
3947 }
3948
3949 DCHECK(has_system || has_cache);
3950 bool use_system = (order == ImageSpaceLoadingOrder::kSystemFirst) ? has_system : !has_cache;
3951 bool image_checksums_ok = use_system
3952 ? layout.ValidateFromSystem(image_isa, &oat_checksums, error_msg)
3953 : layout.ValidateFromDalvikCache(cache_filename, &oat_checksums, error_msg);
3954 if (!image_checksums_ok) {
3955 return false;
3956 }
3957 bcp_pos = layout.GetNextBcpIndex();
3958 }
3959
3960 for ( ; bcp_pos != bcp_size; ++bcp_pos) {
3961 static_assert(ImageSpace::kDexFileChecksumPrefix == 'd', "Format prefix check.");
3962 if (!StartsWith(oat_checksums, "d")) {
3963 *error_msg = StringPrintf("Missing dex checksums, expected %s to start with 'd'",
3964 std::string(oat_checksums).c_str());
3965 return false;
3966 }
3967 oat_checksums.remove_prefix(1u);
3968
3969 const std::string& bcp_filename = boot_class_path[bcp_pos];
3970 std::vector<std::unique_ptr<const DexFile>> dex_files;
3971 const ArtDexFileLoader dex_file_loader;
3972 if (!dex_file_loader.Open(bcp_filename.c_str(),
3973 bcp_filename, // The location does not matter here.
3974 /*verify=*/ false,
3975 /*verify_checksum=*/ false,
3976 error_msg,
3977 &dex_files)) {
3978 return false;
3979 }
3980 DCHECK(!dex_files.empty());
3981 for (const std::unique_ptr<const DexFile>& dex_file : dex_files) {
3982 std::string dex_file_checksum = StringPrintf("/%08x", dex_file->GetLocationChecksum());
3983 if (!StartsWith(oat_checksums, dex_file_checksum)) {
3984 *error_msg = StringPrintf("Dex checksum mismatch, expected %s to start with %s",
3985 std::string(oat_checksums).c_str(),
3986 dex_file_checksum.c_str());
3987 return false;
3988 }
3989 oat_checksums.remove_prefix(dex_file_checksum.size());
3990 }
3991 if (bcp_pos + 1u != bcp_size) {
3992 if (!StartsWith(oat_checksums, ":")) {
3993 *error_msg = StringPrintf("Missing ':' separator at start of %s",
3994 std::string(oat_checksums).c_str());
3995 return false;
3996 }
3997 oat_checksums.remove_prefix(1u);
3998 }
3999 }
4000 if (!oat_checksums.empty()) {
4001 *error_msg = StringPrintf("Checksum too long, unexpected tail %s",
4002 std::string(oat_checksums).c_str());
4003 return false;
4004 }
4005 return true;
4006 }
4007
VerifyBootClassPathChecksums(std::string_view oat_checksums,std::string_view oat_boot_class_path,ArrayRef<const std::unique_ptr<ImageSpace>> image_spaces,ArrayRef<const std::string> boot_class_path_locations,ArrayRef<const std::string> boot_class_path,std::string * error_msg)4008 bool ImageSpace::VerifyBootClassPathChecksums(
4009 std::string_view oat_checksums,
4010 std::string_view oat_boot_class_path,
4011 ArrayRef<const std::unique_ptr<ImageSpace>> image_spaces,
4012 ArrayRef<const std::string> boot_class_path_locations,
4013 ArrayRef<const std::string> boot_class_path,
4014 /*out*/std::string* error_msg) {
4015 DCHECK_EQ(boot_class_path.size(), boot_class_path_locations.size());
4016 DCHECK_GE(boot_class_path_locations.size(), image_spaces.size());
4017 if (oat_checksums.empty() || oat_boot_class_path.empty()) {
4018 *error_msg = oat_checksums.empty() ? "Empty checksums." : "Empty boot class path.";
4019 return false;
4020 }
4021
4022 size_t oat_bcp_size =
4023 CheckAndCountBCPComponents(oat_boot_class_path, boot_class_path_locations, error_msg);
4024 if (oat_bcp_size == static_cast<size_t>(-1)) {
4025 DCHECK(!error_msg->empty());
4026 return false;
4027 }
4028 const size_t num_image_spaces = image_spaces.size();
4029 if (num_image_spaces != oat_bcp_size) {
4030 *error_msg = StringPrintf("Image header records more dependencies (%zu) than BCP (%zu)",
4031 num_image_spaces,
4032 oat_bcp_size);
4033 return false;
4034 }
4035
4036 // Verify image checksums.
4037 size_t bcp_pos = 0u;
4038 size_t image_pos = 0u;
4039 while (image_pos != num_image_spaces && StartsWith(oat_checksums, "i")) {
4040 // Verify the current image checksum.
4041 const ImageHeader& current_header = image_spaces[image_pos]->GetImageHeader();
4042 uint32_t image_space_count = current_header.GetImageSpaceCount();
4043 DCHECK_NE(image_space_count, 0u);
4044 DCHECK_LE(image_space_count, image_spaces.size() - image_pos);
4045 uint32_t component_count = current_header.GetComponentCount();
4046 uint32_t checksum = current_header.GetImageChecksum();
4047 if (!CheckAndRemoveImageChecksum(component_count, checksum, &oat_checksums, error_msg)) {
4048 DCHECK(!error_msg->empty());
4049 return false;
4050 }
4051
4052 if (kIsDebugBuild) {
4053 for (size_t space_index = 0; space_index != image_space_count; ++space_index) {
4054 const OatFile* oat_file = image_spaces[image_pos + space_index]->oat_file_non_owned_;
4055 size_t num_dex_files = oat_file->GetOatDexFiles().size();
4056 CHECK_NE(num_dex_files, 0u);
4057 const std::string main_location = oat_file->GetOatDexFiles()[0]->GetDexFileLocation();
4058 CHECK_EQ(main_location, boot_class_path_locations[bcp_pos + space_index]);
4059 CHECK(!DexFileLoader::IsMultiDexLocation(main_location.c_str()));
4060 size_t num_base_locations = 1u;
4061 for (size_t i = 1u; i != num_dex_files; ++i) {
4062 if (DexFileLoader::IsMultiDexLocation(
4063 oat_file->GetOatDexFiles()[i]->GetDexFileLocation().c_str())) {
4064 CHECK_EQ(image_space_count, 1u); // We can find base locations only for --single-image.
4065 ++num_base_locations;
4066 }
4067 }
4068 if (image_space_count == 1u) {
4069 CHECK_EQ(num_base_locations, component_count);
4070 }
4071 }
4072 }
4073
4074 image_pos += image_space_count;
4075 bcp_pos += component_count;
4076
4077 if (!StartsWith(oat_checksums, ":")) {
4078 // Check that we've reached the end of checksums and BCP.
4079 if (!oat_checksums.empty()) {
4080 *error_msg = StringPrintf("Expected ':' separator or end of checksums, remaining %s.",
4081 std::string(oat_checksums).c_str());
4082 return false;
4083 }
4084 if (image_pos != oat_bcp_size) {
4085 *error_msg = StringPrintf("Component count mismatch between checksums (%zu) and BCP (%zu)",
4086 image_pos,
4087 oat_bcp_size);
4088 return false;
4089 }
4090 return true;
4091 }
4092 oat_checksums.remove_prefix(1u);
4093 }
4094
4095 // We do not allow dependencies of extensions on dex files. That would require
4096 // interleaving the loading of the images with opening the other BCP dex files.
4097 return false;
4098 }
4099
ExpandMultiImageLocations(ArrayRef<const std::string> dex_locations,const std::string & image_location,bool boot_image_extension)4100 std::vector<std::string> ImageSpace::ExpandMultiImageLocations(
4101 ArrayRef<const std::string> dex_locations,
4102 const std::string& image_location,
4103 bool boot_image_extension) {
4104 DCHECK(!dex_locations.empty());
4105
4106 // Find the path.
4107 size_t last_slash = image_location.rfind('/');
4108 CHECK_NE(last_slash, std::string::npos);
4109
4110 // We also need to honor path components that were encoded through '@'. Otherwise the loading
4111 // code won't be able to find the images.
4112 if (image_location.find('@', last_slash) != std::string::npos) {
4113 last_slash = image_location.rfind('@');
4114 }
4115
4116 // Find the dot separating the primary image name from the extension.
4117 size_t last_dot = image_location.rfind('.');
4118 // Extract the extension and base (the path and primary image name).
4119 std::string extension;
4120 std::string base = image_location;
4121 if (last_dot != std::string::npos && last_dot > last_slash) {
4122 extension = image_location.substr(last_dot); // Including the dot.
4123 base.resize(last_dot);
4124 }
4125 // For non-empty primary image name, add '-' to the `base`.
4126 if (last_slash + 1u != base.size()) {
4127 base += '-';
4128 }
4129
4130 std::vector<std::string> locations;
4131 locations.reserve(dex_locations.size());
4132 size_t start_index = 0u;
4133 if (!boot_image_extension) {
4134 start_index = 1u;
4135 locations.push_back(image_location);
4136 }
4137
4138 // Now create the other names. Use a counted loop to skip the first one if needed.
4139 for (size_t i = start_index; i < dex_locations.size(); ++i) {
4140 // Replace path with `base` (i.e. image path and prefix) and replace the original
4141 // extension (if any) with `extension`.
4142 std::string name = dex_locations[i];
4143 size_t last_dex_slash = name.rfind('/');
4144 if (last_dex_slash != std::string::npos) {
4145 name = name.substr(last_dex_slash + 1);
4146 }
4147 size_t last_dex_dot = name.rfind('.');
4148 if (last_dex_dot != std::string::npos) {
4149 name.resize(last_dex_dot);
4150 }
4151 locations.push_back(base + name + extension);
4152 }
4153 return locations;
4154 }
4155
DumpSections(std::ostream & os) const4156 void ImageSpace::DumpSections(std::ostream& os) const {
4157 const uint8_t* base = Begin();
4158 const ImageHeader& header = GetImageHeader();
4159 for (size_t i = 0; i < ImageHeader::kSectionCount; ++i) {
4160 auto section_type = static_cast<ImageHeader::ImageSections>(i);
4161 const ImageSection& section = header.GetImageSection(section_type);
4162 os << section_type << " " << reinterpret_cast<const void*>(base + section.Offset())
4163 << "-" << reinterpret_cast<const void*>(base + section.End()) << "\n";
4164 }
4165 }
4166
DisablePreResolvedStrings()4167 void ImageSpace::DisablePreResolvedStrings() {
4168 // Clear dex cache pointers.
4169 ObjPtr<mirror::ObjectArray<mirror::DexCache>> dex_caches =
4170 GetImageHeader().GetImageRoot(ImageHeader::kDexCaches)->AsObjectArray<mirror::DexCache>();
4171 for (size_t len = dex_caches->GetLength(), i = 0; i < len; ++i) {
4172 ObjPtr<mirror::DexCache> dex_cache = dex_caches->Get(i);
4173 dex_cache->ClearPreResolvedStrings();
4174 }
4175 }
4176
ReleaseMetadata()4177 void ImageSpace::ReleaseMetadata() {
4178 const ImageSection& metadata = GetImageHeader().GetMetadataSection();
4179 VLOG(image) << "Releasing " << metadata.Size() << " image metadata bytes";
4180 // In the case where new app images may have been added around the checkpoint, ensure that we
4181 // don't madvise the cache for these.
4182 ObjPtr<mirror::ObjectArray<mirror::DexCache>> dex_caches =
4183 GetImageHeader().GetImageRoot(ImageHeader::kDexCaches)->AsObjectArray<mirror::DexCache>();
4184 bool have_startup_cache = false;
4185 for (size_t len = dex_caches->GetLength(), i = 0; i < len; ++i) {
4186 ObjPtr<mirror::DexCache> dex_cache = dex_caches->Get(i);
4187 if (dex_cache->NumPreResolvedStrings() != 0u) {
4188 have_startup_cache = true;
4189 }
4190 }
4191 // Only safe to do for images that have their preresolved strings caches disabled. This is because
4192 // uncompressed images madvise to the original unrelocated image contents.
4193 if (!have_startup_cache) {
4194 // Avoid using ZeroAndReleasePages since the zero fill might not be word atomic.
4195 uint8_t* const page_begin = AlignUp(Begin() + metadata.Offset(), kPageSize);
4196 uint8_t* const page_end = AlignDown(Begin() + metadata.End(), kPageSize);
4197 if (page_begin < page_end) {
4198 CHECK_NE(madvise(page_begin, page_end - page_begin, MADV_DONTNEED), -1) << "madvise failed";
4199 }
4200 }
4201 }
4202
4203 } // namespace space
4204 } // namespace gc
4205 } // namespace art
4206