// Copyright 2020 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. $assert CHANNEL_TILE % 4 == 0 $assert HEIGHT_TILE == 2 $ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" $VMULADDQ_LANE_F32 = "vfmaq_lane_f32" if FMA else "vmlaq_lane_f32" #include #include #include #include void xnn_f32_conv_hwc_ukernel_3x3s2p1c3x${CHANNEL_TILE}__${"neonfma" if FMA else "neon"}_${HEIGHT_TILE}x1( size_t input_height, size_t input_width, size_t output_y_start, size_t output_y_end, const float* input, const float* zero, const float* weights, float* output, size_t input_padding_top, size_t output_channels, size_t output_height_stride, size_t output_width_stride, const union xnn_f32_minmax_params params[restrict XNN_MIN_ELEMENTS(1)]) { assert(input_width != 0); assert(output_y_end > output_y_start); assert(input_padding_top <= 1); assert(output_channels != 0); const size_t input_height_stride = input_width * 3 /* channels */ * sizeof(float); const size_t input_width_decrement = input_width * 3 /* channels */ * sizeof(float); const size_t output_width = (input_width + 1) / 2; const size_t output_channel_decrement = output_width * output_width_stride - ${CHANNEL_TILE} * sizeof(float); const size_t output_height_increment = output_height_stride * 2 - round_up_po2(output_channels, ${CHANNEL_TILE}) * sizeof(float); // Adjustment for padding processed below const float* i0 = (const float*) ((uintptr_t) input + input_height_stride * (output_y_start * 2 /* vertical stride */ - input_padding_top)); $for Y in range(HEIGHT_TILE + 3 - 1): const float* i${Y+1} = (const float*) ((uintptr_t) i${Y} + input_height_stride); float* o0 = (float*) ((uintptr_t) output + output_height_stride * output_y_start); $for Y in range(HEIGHT_TILE - 1): float* o${Y+1} = (float*) ((uintptr_t) o${Y} + output_height_stride); if XNN_UNPREDICTABLE(output_y_start < input_padding_top) { i0 = zero; } $if FMA: const float32x4_t vmin = vld1q_dup_f32(¶ms->scalar.min); const float32x4_t vmax = vld1q_dup_f32(¶ms->scalar.max); for (size_t output_y = output_y_start; output_y < output_y_end; output_y += 2) { const size_t input_y2 = output_y * 2 + 2 - input_padding_top; const size_t input_y4 = input_y2 + 2; if XNN_UNPREDICTABLE(input_y2 > input_height) { i1 = zero; } if XNN_UNPREDICTABLE(input_y2 >= input_height) { i2 = zero; } if XNN_UNPREDICTABLE(input_y4 > input_height) { i3 = zero; } if XNN_UNPREDICTABLE(input_y4 >= input_height) { i4 = zero; } if XNN_UNPREDICTABLE(output_y + 2 > output_y_end) { o1 = o0; } const float* w = weights; size_t c = output_channels; do { // viMx0 = ( iM0c2, iM0c1, iM0c0, --- ) $for Y in range(HEIGHT_TILE + 3): float32x4_t vi${Y}x0 = vmovq_n_f32(0.0f); size_t iw = input_width; for (; iw >= 2; iw -= 2) { float32x4_t vo0c${ABC[0:4]} = vld1q_f32(w); $for C in range(4, CHANNEL_TILE, 4): float32x4_t vo0c${ABC[C:C+4]} = vld1q_f32(w + ${C}); $for Y in range(1, HEIGHT_TILE): $for C in range(0, CHANNEL_TILE, 4): float32x4_t vo${Y}c${ABC[C:C+4]} = vo0c${ABC[C:C+4]}; $for C in range(0, CHANNEL_TILE, 4): const float32x4_t vk00c0x${ABC[C:C+4]} = vld1q_f32(w + ${C + CHANNEL_TILE}); $for C in range(0, CHANNEL_TILE, 4): $for Y in range(HEIGHT_TILE): vo${Y}c${ABC[C:C+4]} = ${VMULADDQ_LANE_F32}(vo${Y}c${ABC[C:C+4]}, vk00c0x${ABC[C:C+4]}, vget_low_f32(vi${Y*2}x0), 1); $for C in range(0, CHANNEL_TILE, 4): const float32x4_t vk10c0x${ABC[C:C+4]} = vld1q_f32(w + ${C + CHANNEL_TILE * 2}); $for C in range(0, CHANNEL_TILE, 4): $for Y in range(HEIGHT_TILE): vo${Y}c${ABC[C:C+4]} = ${VMULADDQ_LANE_F32}(vo${Y}c${ABC[C:C+4]}, vk10c0x${ABC[C:C+4]}, vget_low_f32(vi${Y*2+1}x0), 1); $for C in range(0, CHANNEL_TILE, 4): const float32x4_t vk20c0x${ABC[C:C+4]} = vld1q_f32(w + ${C + CHANNEL_TILE * 3}); $for C in range(0, CHANNEL_TILE, 4): $for Y in range(HEIGHT_TILE): vo${Y}c${ABC[C:C+4]} = ${VMULADDQ_LANE_F32}(vo${Y}c${ABC[C:C+4]}, vk20c0x${ABC[C:C+4]}, vget_low_f32(vi${Y*2+2}x0), 1); $for C in range(0, CHANNEL_TILE, 4): const float32x4_t vk00c1x${ABC[C:C+4]} = vld1q_f32(w + ${C + CHANNEL_TILE * 4}); $for C in range(0, CHANNEL_TILE, 4): $for Y in range(HEIGHT_TILE): vo${Y}c${ABC[C:C+4]} = ${VMULADDQ_LANE_F32}(vo${Y}c${ABC[C:C+4]}, vk00c1x${ABC[C:C+4]}, vget_high_f32(vi${Y*2}x0), 0); $for C in range(0, CHANNEL_TILE, 4): const float32x4_t vk10c1x${ABC[C:C+4]} = vld1q_f32(w + ${C + CHANNEL_TILE * 5}); $for C in range(0, CHANNEL_TILE, 4): $for Y in range(HEIGHT_TILE): vo${Y}c${ABC[C:C+4]} = ${VMULADDQ_LANE_F32}(vo${Y}c${ABC[C:C+4]}, vk10c1x${ABC[C:C+4]}, vget_high_f32(vi${Y*2+1}x0), 0); $for C in range(0, CHANNEL_TILE, 4): const float32x4_t vk20c1x${ABC[C:C+4]} = vld1q_f32(w + ${C + CHANNEL_TILE * 6}); $for C in range(0, CHANNEL_TILE, 4): $for Y in range(HEIGHT_TILE): vo${Y}c${ABC[C:C+4]} = ${VMULADDQ_LANE_F32}(vo${Y}c${ABC[C:C+4]}, vk20c1x${ABC[C:C+4]}, vget_high_f32(vi${Y*2+2}x0), 0); $for C in range(0, CHANNEL_TILE, 4): const float32x4_t vk00c2x${ABC[C:C+4]} = vld1q_f32(w + ${C + CHANNEL_TILE * 7}); $for C in range(0, CHANNEL_TILE, 4): $for Y in range(HEIGHT_TILE): vo${Y}c${ABC[C:C+4]} = ${VMULADDQ_LANE_F32}(vo${Y}c${ABC[C:C+4]}, vk00c2x${ABC[C:C+4]}, vget_high_f32(vi${Y*2}x0), 1); $for C in range(0, CHANNEL_TILE, 4): const float32x4_t vk10c2x${ABC[C:C+4]} = vld1q_f32(w + ${C + CHANNEL_TILE * 8}); $for C in range(0, CHANNEL_TILE, 4): $for Y in range(HEIGHT_TILE): vo${Y}c${ABC[C:C+4]} = ${VMULADDQ_LANE_F32}(vo${Y}c${ABC[C:C+4]}, vk10c2x${ABC[C:C+4]}, vget_high_f32(vi${Y*2+1}x0), 1); $for C in range(0, CHANNEL_TILE, 4): const float32x4_t vk20c2x${ABC[C:C+4]} = vld1q_f32(w + ${C + CHANNEL_TILE * 9}); $for C in range(0, CHANNEL_TILE, 4): $for Y in range(HEIGHT_TILE): vo${Y}c${ABC[C:C+4]} = ${VMULADDQ_LANE_F32}(vo${Y}c${ABC[C:C+4]}, vk20c2x${ABC[C:C+4]}, vget_high_f32(vi${Y*2+2}x0), 1); // viMx1 = ( iM2c0, iM1c2, iM1c1, iM1c0 ) $for Y in range(HEIGHT_TILE + 3): const float32x4_t vi${Y}x1 = vld1q_f32(i${Y}); i${Y} += 4; $for C in range(0, CHANNEL_TILE, 4): const float32x4_t vk01c0x${ABC[C:C+4]} = vld1q_f32(w + ${C + CHANNEL_TILE * 10}); $for C in range(0, CHANNEL_TILE, 4): $for Y in range(HEIGHT_TILE): vo${Y}c${ABC[C:C+4]} = ${VMULADDQ_LANE_F32}(vo${Y}c${ABC[C:C+4]}, vk01c0x${ABC[C:C+4]}, vget_low_f32(vi${Y*2}x1), 0); $for C in range(0, CHANNEL_TILE, 4): const float32x4_t vk11c0x${ABC[C:C+4]} = vld1q_f32(w + ${C + CHANNEL_TILE * 11}); $for C in range(0, CHANNEL_TILE, 4): $for Y in range(HEIGHT_TILE): vo${Y}c${ABC[C:C+4]} = ${VMULADDQ_LANE_F32}(vo${Y}c${ABC[C:C+4]}, vk11c0x${ABC[C:C+4]}, vget_low_f32(vi${Y*2+1}x1), 0); $for C in range(0, CHANNEL_TILE, 4): const float32x4_t vk21c0x${ABC[C:C+4]} = vld1q_f32(w + ${C + CHANNEL_TILE * 12}); $for C in range(0, CHANNEL_TILE, 4): $for Y in range(HEIGHT_TILE): vo${Y}c${ABC[C:C+4]} = ${VMULADDQ_LANE_F32}(vo${Y}c${ABC[C:C+4]}, vk21c0x${ABC[C:C+4]}, vget_low_f32(vi${Y*2+2}x1), 0); $for C in range(0, CHANNEL_TILE, 4): const float32x4_t vk01c1x${ABC[C:C+4]} = vld1q_f32(w + ${C + CHANNEL_TILE * 13}); $for C in range(0, CHANNEL_TILE, 4): $for Y in range(HEIGHT_TILE): vo${Y}c${ABC[C:C+4]} = ${VMULADDQ_LANE_F32}(vo${Y}c${ABC[C:C+4]}, vk01c1x${ABC[C:C+4]}, vget_low_f32(vi${Y*2}x1), 1); $for C in range(0, CHANNEL_TILE, 4): const float32x4_t vk11c1x${ABC[C:C+4]} = vld1q_f32(w + ${C + CHANNEL_TILE * 14}); $for C in range(0, CHANNEL_TILE, 4): $for Y in range(HEIGHT_TILE): vo${Y}c${ABC[C:C+4]} = ${VMULADDQ_LANE_F32}(vo${Y}c${ABC[C:C+4]}, vk11c1x${ABC[C:C+4]}, vget_low_f32(vi${Y*2+1}x1), 1); $for C in range(0, CHANNEL_TILE, 4): const float32x4_t vk21c1x${ABC[C:C+4]} = vld1q_f32(w + ${C + CHANNEL_TILE * 15}); $for C in range(0, CHANNEL_TILE, 4): $for Y in range(HEIGHT_TILE): vo${Y}c${ABC[C:C+4]} = ${VMULADDQ_LANE_F32}(vo${Y}c${ABC[C:C+4]}, vk21c1x${ABC[C:C+4]}, vget_low_f32(vi${Y*2+2}x1), 1); $for C in range(0, CHANNEL_TILE, 4): const float32x4_t vk01c2x${ABC[C:C+4]} = vld1q_f32(w + ${C + CHANNEL_TILE * 16}); $for C in range(0, CHANNEL_TILE, 4): $for Y in range(HEIGHT_TILE): vo${Y}c${ABC[C:C+4]} = ${VMULADDQ_LANE_F32}(vo${Y}c${ABC[C:C+4]}, vk01c2x${ABC[C:C+4]}, vget_high_f32(vi${Y*2}x1), 0); $for C in range(0, CHANNEL_TILE, 4): const float32x4_t vk11c2x${ABC[C:C+4]} = vld1q_f32(w + ${C + CHANNEL_TILE * 17}); $for C in range(0, CHANNEL_TILE, 4): $for Y in range(HEIGHT_TILE): vo${Y}c${ABC[C:C+4]} = ${VMULADDQ_LANE_F32}(vo${Y}c${ABC[C:C+4]}, vk11c2x${ABC[C:C+4]}, vget_high_f32(vi${Y*2+1}x1), 0); $for C in range(0, CHANNEL_TILE, 4): const float32x4_t vk21c2x${ABC[C:C+4]} = vld1q_f32(w + ${C + CHANNEL_TILE * 18}); $for C in range(0, CHANNEL_TILE, 4): $for Y in range(HEIGHT_TILE): vo${Y}c${ABC[C:C+4]} = ${VMULADDQ_LANE_F32}(vo${Y}c${ABC[C:C+4]}, vk21c2x${ABC[C:C+4]}, vget_high_f32(vi${Y*2+2}x1), 0); $for C in range(0, CHANNEL_TILE, 4): const float32x4_t vk02c0x${ABC[C:C+4]} = vld1q_f32(w + ${C + CHANNEL_TILE * 19}); $for C in range(0, CHANNEL_TILE, 4): $for Y in range(HEIGHT_TILE): vo${Y}c${ABC[C:C+4]} = ${VMULADDQ_LANE_F32}(vo${Y}c${ABC[C:C+4]}, vk02c0x${ABC[C:C+4]}, vget_high_f32(vi${Y*2}x1), 1); $for C in range(0, CHANNEL_TILE, 4): const float32x4_t vk12c0x${ABC[C:C+4]} = vld1q_f32(w + ${C + CHANNEL_TILE * 20}); $for C in range(0, CHANNEL_TILE, 4): $for Y in range(HEIGHT_TILE): vo${Y}c${ABC[C:C+4]} = ${VMULADDQ_LANE_F32}(vo${Y}c${ABC[C:C+4]}, vk12c0x${ABC[C:C+4]}, vget_high_f32(vi${Y*2+1}x1), 1); $for C in range(0, CHANNEL_TILE, 4): const float32x4_t vk22c0x${ABC[C:C+4]} = vld1q_f32(w + ${C + CHANNEL_TILE * 21}); $for C in range(0, CHANNEL_TILE, 4): $for Y in range(HEIGHT_TILE): vo${Y}c${ABC[C:C+4]} = ${VMULADDQ_LANE_F32}(vo${Y}c${ABC[C:C+4]}, vk22c0x${ABC[C:C+4]}, vget_high_f32(vi${Y*2+2}x1), 1); // viMx2 = ( iM2c2, iM2c1 ) $for Y in range(HEIGHT_TILE + 3): const float32x2_t vi${Y}x2 = vld1_f32(i${Y}); i${Y} += 2; $for C in range(0, CHANNEL_TILE, 4): const float32x4_t vk02c1x${ABC[C:C+4]} = vld1q_f32(w + ${C + CHANNEL_TILE * 22}); $for C in range(0, CHANNEL_TILE, 4): $for Y in range(HEIGHT_TILE): vo${Y}c${ABC[C:C+4]} = ${VMULADDQ_LANE_F32}(vo${Y}c${ABC[C:C+4]}, vk02c1x${ABC[C:C+4]}, vi${Y*2}x2, 0); $for C in range(0, CHANNEL_TILE, 4): const float32x4_t vk12c1x${ABC[C:C+4]} = vld1q_f32(w + ${C + CHANNEL_TILE * 23}); $for C in range(0, CHANNEL_TILE, 4): $for Y in range(HEIGHT_TILE): vo${Y}c${ABC[C:C+4]} = ${VMULADDQ_LANE_F32}(vo${Y}c${ABC[C:C+4]}, vk12c1x${ABC[C:C+4]}, vi${Y*2+1}x2, 0); $for C in range(0, CHANNEL_TILE, 4): const float32x4_t vk22c1x${ABC[C:C+4]} = vld1q_f32(w + ${C + CHANNEL_TILE * 24}); $for C in range(0, CHANNEL_TILE, 4): $for Y in range(HEIGHT_TILE): vo${Y}c${ABC[C:C+4]} = ${VMULADDQ_LANE_F32}(vo${Y}c${ABC[C:C+4]}, vk22c1x${ABC[C:C+4]}, vi${Y*2+2}x2, 0); $for C in range(0, CHANNEL_TILE, 4): const float32x4_t vk02c2x${ABC[C:C+4]} = vld1q_f32(w + ${C + CHANNEL_TILE * 25}); $for C in range(0, CHANNEL_TILE, 4): $for Y in range(HEIGHT_TILE): vo${Y}c${ABC[C:C+4]} = ${VMULADDQ_LANE_F32}(vo${Y}c${ABC[C:C+4]}, vk02c2x${ABC[C:C+4]}, vi${Y*2}x2, 1); $for C in range(0, CHANNEL_TILE, 4): const float32x4_t vk12c2x${ABC[C:C+4]} = vld1q_f32(w + ${C + CHANNEL_TILE * 26}); $for C in range(0, CHANNEL_TILE, 4): $for Y in range(HEIGHT_TILE): vo${Y}c${ABC[C:C+4]} = ${VMULADDQ_LANE_F32}(vo${Y}c${ABC[C:C+4]}, vk12c2x${ABC[C:C+4]}, vi${Y*2+1}x2, 1); $for C in range(0, CHANNEL_TILE, 4): const float32x4_t vk22c2x${ABC[C:C+4]} = vld1q_f32(w + ${C + CHANNEL_TILE * 27}); $for C in range(0, CHANNEL_TILE, 4): $for Y in range(HEIGHT_TILE): vo${Y}c${ABC[C:C+4]} = ${VMULADDQ_LANE_F32}(vo${Y}c${ABC[C:C+4]}, vk22c2x${ABC[C:C+4]}, vi${Y*2+2}x2, 1); $for Y in range(HEIGHT_TILE + 3): vi${Y}x0 = vcombine_f32(vget_high_f32(vi${Y}x1), vi${Y}x2); $if not FMA: const float32x4_t vmin = vld1q_dup_f32(¶ms->scalar.min); const float32x4_t vmax = vld1q_dup_f32(¶ms->scalar.max); $for C in range(0, CHANNEL_TILE, 4): $for Y in range(HEIGHT_TILE): vo${Y}c${ABC[C:C+4]} = vmaxq_f32(vo${Y}c${ABC[C:C+4]}, vmin); $for C in range(0, CHANNEL_TILE, 4): $for Y in range(HEIGHT_TILE): vo${Y}c${ABC[C:C+4]} = vminq_f32(vo${Y}c${ABC[C:C+4]}, vmax); if XNN_LIKELY(c >= ${CHANNEL_TILE}) { $for Y in reversed(range(HEIGHT_TILE)): vst1q_f32(o${Y}, vo${Y}c${ABC[0:4]}); $for C in range(4, CHANNEL_TILE, 4): vst1q_f32(o${Y} + 4, vo${Y}c${ABC[C:C+4]}); o${Y} = (float*) ((uintptr_t) o${Y} + output_width_stride); } else { $for Y in range(HEIGHT_TILE): float* o${Y}_tmp = o${Y}; $for LOG2_CHANNEL_TILE in reversed(range(CHANNEL_TILE.bit_length())): $if CHANNEL_TILE != 1 << LOG2_CHANNEL_TILE: $if LOG2_CHANNEL_TILE == 1: $for Y in range(HEIGHT_TILE): float32x2_t vo${Y}c${ABC[0:2]} = vget_low_f32(vo${Y}c${ABC[0:4]}); if (c & ${1 << LOG2_CHANNEL_TILE}) { $if LOG2_CHANNEL_TILE >= 2: $for C in range(0, 1 << (LOG2_CHANNEL_TILE - 1), 4): $for Y in reversed(range(HEIGHT_TILE)): vst1q_f32(o${Y}_tmp, vo${Y}c${ABC[C:C+4]}); o${Y}_tmp += 4; vo${Y}c${ABC[C:C+4]} = vo${Y}c${ABC[C+(1<scalar.min); const float32x4_t vmax = vld1q_dup_f32(¶ms->scalar.max); $for C in range(0, CHANNEL_TILE, 4): $for Y in range(HEIGHT_TILE): vo${Y}c${ABC[C:C+4]} = vmaxq_f32(vo${Y}c${ABC[C:C+4]}, vmin); $for C in range(0, CHANNEL_TILE, 4): $for Y in range(HEIGHT_TILE): vo${Y}c${ABC[C:C+4]} = vminq_f32(vo${Y}c${ABC[C:C+4]}, vmax); if XNN_LIKELY(c >= ${CHANNEL_TILE}) { $for Y in reversed(range(HEIGHT_TILE)): vst1q_f32(o${Y}, vo${Y}c${ABC[0:4]}); $for C in range(4, CHANNEL_TILE, 4): vst1q_f32(o${Y} + 4, vo${Y}c${ABC[C:C+4]}); o${Y} = (float*) ((uintptr_t) o${Y} + output_width_stride); } else { $for Y in range(HEIGHT_TILE): float* o${Y}_tmp = o${Y}; $for LOG2_CHANNEL_TILE in reversed(range(CHANNEL_TILE.bit_length())): $if CHANNEL_TILE != 1 << LOG2_CHANNEL_TILE: $if LOG2_CHANNEL_TILE == 1: $for Y in range(HEIGHT_TILE): float32x2_t vo${Y}c${ABC[0:2]} = vget_low_f32(vo${Y}c${ABC[0:4]}); if (c & ${1 << LOG2_CHANNEL_TILE}) { $if LOG2_CHANNEL_TILE >= 2: $for C in range(0, 1 << (LOG2_CHANNEL_TILE - 1), 4): $for Y in reversed(range(HEIGHT_TILE)): vst1q_f32(o${Y}_tmp, vo${Y}c${ABC[C:C+4]}); o${Y}_tmp += 4; vo${Y}c${ABC[C:C+4]} = vo${Y}c${ABC[C+(1<