// Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. $assert ELEMENTS_TILE % 16 == 0 $assert ELEMENTS_TILE >= 16 $SIMD_TILE = ELEMENTS_TILE // 16 $ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" #include #include #include #include void xnn_f32_raddexpminusmax_ukernel__avx512f_p5_scalef_x${ELEMENTS_TILE}${"" if ACCUMULATORS == 1 else "_acc%d" % ACCUMULATORS}( size_t elements, const float* input, float* sum, float max) { assert(elements % sizeof(float) == 0); const __m512 vlog2e = _mm512_set1_ps(0x1.715476p+0f); const __m512 vminus_ln2_hi = _mm512_set1_ps(-0x1.62E43p-1f); const __m512 vminus_ln2_lo = _mm512_set1_ps(0x1.05C61p-29f); const __m512 vc0 = _mm512_set1_ps(1.0f); const __m512 vc1 = _mm512_set1_ps(0x1.FFFFF6p-1f); const __m512 vc2 = _mm512_set1_ps(0x1.FFFDC6p-2f); const __m512 vc3 = _mm512_set1_ps(0x1.555A80p-3f); const __m512 vc4 = _mm512_set1_ps(0x1.573A1Ap-5f); const __m512 vc5 = _mm512_set1_ps(0x1.0F9F9Cp-7f); const __m512 vi_max = _mm512_set1_ps(max); $for K in range(ACCUMULATORS): __m512 vacc${K} = _mm512_setzero_ps(); for (; elements >= ${ELEMENTS_TILE} * sizeof(float); elements -= ${ELEMENTS_TILE} * sizeof(float)) { // Load ${ELEMENTS_TILE} (${SIMD_TILE}x16) inputs at a time. const __m512 vi0 = _mm512_loadu_ps(input); $for N in range(1, SIMD_TILE): const __m512 vi${N} = _mm512_loadu_ps(input + ${N * 16}); input += ${ELEMENTS_TILE}; // Subtract maximum input x := i - i_max. $for N in range(SIMD_TILE): const __m512 vx${N} = _mm512_sub_ps(vi${N}, vi_max); // Compute reduced argument elements := round(x / log(2)). $for N in range(SIMD_TILE): const __m512 vn${N} = _mm512_roundscale_ps(_mm512_mul_ps(vx${N}, vlog2e), 0); // Compute reduced argument t := x - elements * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. $for N in range(SIMD_TILE): __m512 vt${N} = _mm512_fmadd_ps(vn${N}, vminus_ln2_hi, vx${N}); $for N in range(SIMD_TILE): vt${N} = _mm512_fmadd_ps(vn${N}, vminus_ln2_lo, vt${N}); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. $for N in range(SIMD_TILE): __m512 vp${N} = _mm512_fmadd_ps(vc5, vt${N}, vc4); $for N in range(SIMD_TILE): vp${N} = _mm512_fmadd_ps(vp${N}, vt${N}, vc3); $for N in range(SIMD_TILE): vp${N} = _mm512_fmadd_ps(vp${N}, vt${N}, vc2); $for N in range(SIMD_TILE): vp${N} = _mm512_fmadd_ps(vp${N}, vt${N}, vc1); $for N in range(SIMD_TILE): vp${N} = _mm512_fmadd_ps(vp${N}, vt${N}, vc0); // Reconstruct the final f value: // f = 2**elements * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = 2**elements * p $for N in range(SIMD_TILE): const __m512 vf${N} = _mm512_scalef_ps(vp${N}, vn${N}); // Accumulate computed exponents. $for N in range(SIMD_TILE): vacc${N % ACCUMULATORS} = _mm512_add_ps(vacc${N % ACCUMULATORS}, vf${N}); } $if ACCUMULATORS > 1: // Add up all accumulators to vacc0 $ACC_SLICE = 1 $while ACC_SLICE < ACCUMULATORS: $for A in range(0, ACCUMULATORS, ACC_SLICE * 2): $if A + ACC_SLICE < ACCUMULATORS: vacc${A} = _mm512_add_ps(vacc${A}, vacc${A + ACC_SLICE}); $ACC_SLICE *= 2 __m512 vacc = vacc0; for (; elements >= 16 * sizeof(float); elements -= 16 * sizeof(float)) { // Load 16 inputs at a time. const __m512 vi = _mm512_loadu_ps(input); input += 16; // Subtract maximum input x := i - i_max. const __m512 vx = _mm512_sub_ps(vi, vi_max); // Compute reduced argument elements := round(x / log(2)). const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := x - elements * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Reconstruct the final f value: // f = 2**elements * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = 2**elements * p const __m512 vf = _mm512_scalef_ps(vp, vn); // Accumulate computed exponents. vacc = _mm512_add_ps(vacc, vf); } if (elements != 0) { // Prepare mask for valid 32-bit elements (depends on elements). elements >>= 2 /* log2(sizeof(float)) */; const __mmask16 vmask = _cvtu32_mask16((uint16_t) ((uint32_t) (UINT32_C(1) << elements) - UINT32_C(1))); // Load up to 15 inputs at a time. const __m512 vi = _mm512_maskz_loadu_ps(vmask, input); // Subtract maximum input x := i - i_max. const __m512 vx = _mm512_sub_ps(vi, vi_max); // Compute reduced argument elements := round(x / log(2)). const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := x - elements * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Reconstruct the final f value: // f = 2**elements * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = 2**elements * p const __m512 vf = _mm512_scalef_ps(vp, vn); // Accumulate computed exponents. vacc = _mm512_mask_add_ps(vacc, vmask, vacc, vf); } *sum = _mm512_reduce_add_ps(vacc); }