// Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. $assert ELEMENTS_TILE % 16 == 0 $assert ELEMENTS_TILE >= 16 $SIMD_TILE = ELEMENTS_TILE // 16 $ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" #include #include #include #include #include #include void xnn_f32_raddextexp_ukernel__avx512f_p5_scalef_x${ELEMENTS_TILE}${"" if ACCUMULATORS == 1 else "_acc%d" % ACCUMULATORS}( size_t elements, const float* x, float* sum) { assert(elements % sizeof(float) == 0); const __m512 vlog2e = _mm512_set1_ps(0x1.715476p+0f); const __m512 vminus_ln2_hi = _mm512_set1_ps(-0x1.62E43p-1f); const __m512 vminus_ln2_lo = _mm512_set1_ps(0x1.05C61p-29f); const __m512 vc0 = _mm512_set1_ps(1.0f); const __m512 vc1 = _mm512_set1_ps(0x1.FFFFF6p-1f); const __m512 vc2 = _mm512_set1_ps(0x1.FFFDC6p-2f); const __m512 vc3 = _mm512_set1_ps(0x1.555A80p-3f); const __m512 vc4 = _mm512_set1_ps(0x1.573A1Ap-5f); const __m512 vc5 = _mm512_set1_ps(0x1.0F9F9Cp-7f); const __m512 vminus_inf = _mm512_set1_ps(-INFINITY); $for K in range(ACCUMULATORS): __m512 vaccv${K} = _mm512_setzero_ps(); $for K in range(ACCUMULATORS): __m512 vacce${K} = vminus_inf; for (; elements >= ${ELEMENTS_TILE} * sizeof(float); elements -= ${ELEMENTS_TILE} * sizeof(float)) { // Load ${ELEMENTS_TILE} (${SIMD_TILE}x16) inputs at a time. const __m512 vx0 = _mm512_loadu_ps(x); $for N in range(1, SIMD_TILE): const __m512 vx${N} = _mm512_loadu_ps(x + ${N * 16}); x += ${ELEMENTS_TILE}; // Compute reduced argument elements := round(x / log(2)). $for N in range(SIMD_TILE): const __m512 vn${N} = _mm512_roundscale_ps(_mm512_mul_ps(vx${N}, vlog2e), 0); // Compute reduced argument t := x - elements * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. $for N in range(SIMD_TILE): __m512 vt${N} = _mm512_fmadd_ps(vn${N}, vminus_ln2_hi, vx${N}); $for N in range(SIMD_TILE): vt${N} = _mm512_fmadd_ps(vn${N}, vminus_ln2_lo, vt${N}); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. $for N in range(SIMD_TILE): __m512 vp${N} = _mm512_fmadd_ps(vc5, vt${N}, vc4); $for N in range(SIMD_TILE): vp${N} = _mm512_fmadd_ps(vp${N}, vt${N}, vc3); $for N in range(SIMD_TILE): vp${N} = _mm512_fmadd_ps(vp${N}, vt${N}, vc2); $for N in range(SIMD_TILE): vp${N} = _mm512_fmadd_ps(vp${N}, vt${N}, vc1); $for N in range(SIMD_TILE): vp${N} = _mm512_fmadd_ps(vp${N}, vt${N}, vc0); // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation where // - vnX is "exponent" // - vpX is "mantissa" // // exp2(ae) * av + exp2(be) * bv = // = exp2(max(ae, be)) * exp2(ae - max(ae, be)) * av + exp2(max(ae, be)) * exp2(be - max(ae, be)) * bv // = exp2(max_e) * (exp2(ae - max_e) * av + exp2(be - max_e) * bv) // = exp2(max_e) * (exp2(delta_ae) * av + exp2(delta_be) * bv) // // For computational efficiency we add three "extended" floating-point numbers at a time. $for N in range(SIMD_TILE): $if N < ACCUMULATORS: __m512 vmax_e${N} = _mm512_max_ps(vacce${N}, vn${N}); $else: vmax_e${N % ACCUMULATORS} = _mm512_max_ps(vmax_e${N % ACCUMULATORS}, vn${N}); $for K in range(ACCUMULATORS): const __m512 vdelta_acce${K} = _mm512_sub_ps(vacce${K}, vmax_e${K}); $for N in range(SIMD_TILE): const __m512 vdelta_e${N} = _mm512_sub_ps(vn${N}, vmax_e${N % ACCUMULATORS}); // Update accumulated "mantissa" and "exponent" values $for K in range(ACCUMULATORS): vaccv${K} = _mm512_scalef_ps(vaccv${K}, vdelta_acce${K}); $for N in range(SIMD_TILE): vaccv${N % ACCUMULATORS} = _mm512_add_ps(vaccv${N % ACCUMULATORS}, _mm512_scalef_ps(vp${N}, vdelta_e${N})); $for K in range(ACCUMULATORS): vacce${K} = vmax_e${K}; } // Reduce partial sums of "extended" floating-point numbers into a single "extended" SIMD vector of sums. $if ACCUMULATORS > 1: $for A in range(0, ACCUMULATORS, 2): $if A + 1 < ACCUMULATORS: const __m512 vmax_acce${ABC[A:A+2]} = _mm512_max_ps(vacce${A}, vacce${A+1}); $else: const __m512 vmax_acce${ABC[A]} = vacce${A}; $ACC_SLICE = 2 $while ACC_SLICE < ACCUMULATORS: $for A in range(0, ACCUMULATORS, ACC_SLICE * 2): $if A + ACC_SLICE < ACCUMULATORS: const __m512 vmax_acce${ABC[A:min(A+ACC_SLICE*2, ACCUMULATORS)]} = _mm512_max_ps(vmax_acce${ABC[A:A+ACC_SLICE]}, vmax_acce${ABC[A+ACC_SLICE:min(ACCUMULATORS,A+ACC_SLICE*2)]}); $ACC_SLICE *= 2 $for K in range(ACCUMULATORS): const __m512 vdelta_acce${K} = _mm512_sub_ps(vacce${K}, vmax_acce${ABC[0:ACCUMULATORS]}); __m512 vaccv = _mm512_scalef_ps(vaccv0, vdelta_acce0); $for K in range(1, ACCUMULATORS): vaccv = _mm512_add_ps(vaccv, _mm512_scalef_ps(vaccv${K}, vdelta_acce${K})); __m512 vacce = vmax_acce${ABC[0:ACCUMULATORS]}; $else: __m512 vaccv = vaccv0; __m512 vacce = vacce0; for (; elements >= 16 * sizeof(float); elements -= 16 * sizeof(float)) { // Load 16 inputs at a time. const __m512 vx = _mm512_loadu_ps(x); x += 16; // Compute reduced argument elements := round(x / log(2)). const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := x - elements * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation. const __m512 vmax_e = _mm512_max_ps(vacce, vn); const __m512 vdelta_acce = _mm512_sub_ps(vacce, vmax_e); const __m512 vdelta_e = _mm512_sub_ps(vn, vmax_e); vaccv = _mm512_scalef_ps(vaccv, vdelta_acce); vaccv = _mm512_add_ps(vaccv, _mm512_scalef_ps(vp, vdelta_e)); vacce = vmax_e; } if XNN_UNLIKELY(elements != 0) { // Prepare mask for valid 32-bit elements (depends on elements). elements >>= 2 /* log2(sizeof(float)) */; const __mmask16 vmask = _cvtu32_mask16((uint16_t) ((uint32_t) (UINT32_C(1) << elements) - UINT32_C(1))); // Load up to 15 inputs at a time. const __m512 vx = _mm512_maskz_loadu_ps(vmask, x); // Compute reduced argument elements := round(x / log(2)). const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0); // Compute reduced argument t := x - elements * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m512 vp = _mm512_fmadd_ps(vc5, vt, vc4); vp = _mm512_fmadd_ps(vp, vt, vc3); vp = _mm512_fmadd_ps(vp, vt, vc2); vp = _mm512_fmadd_ps(vp, vt, vc1); vp = _mm512_fmadd_ps(vp, vt, vc0); // Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation. const __m512 vmax_e = _mm512_mask_max_ps(vacce, vmask, vacce, vn); const __m512 vdelta_acce = _mm512_sub_ps(vacce, vmax_e); const __m512 vdelta_e = _mm512_sub_ps(vn, vmax_e); vaccv = _mm512_mask_scalef_ps(vaccv, vmask, vaccv, vdelta_acce); vaccv = _mm512_mask_add_ps(vaccv, vmask, vaccv, _mm512_maskz_scalef_ps(vmask, vp, vdelta_e)); vacce = vmax_e; } // Reduce partial sums of "extended" floating-point numbers into a single "extended" floating-point sum. const float vmax_acce = _mm512_reduce_max_ps(vacce); const __m512 vdelta_acce = _mm512_sub_ps(vacce, _mm512_set1_ps(vmax_acce)); sum[0] = _mm512_reduce_add_ps(_mm512_scalef_ps(vaccv, vdelta_acce)); sum[1] = vmax_acce; _mm256_zeroupper(); }