// Copyright 2020 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. $assert ELEMENTS_TILE >= 1 $ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" #include #include #include #include void xnn_f32_raddstoreexpminusmax_ukernel__scalar_p5_x${ELEMENTS_TILE}${"" if ACCUMULATORS == 1 else "_acc%d" % ACCUMULATORS}( size_t elements, const float* input, float* output, float* sum, float vi_max) { assert(elements % sizeof(float) == 0); const float vmagic_bias = 0x1.8000FEp23f; // The smallest x for which expf(x) is normalized. const float vdenorm_cutoff = -0x1.5D589Ep6f; const float vlog2e = 0x1.715476p+0f; // Last 7 bits are zeroes const float vminus_ln2_hi = -0x1.62E400p-1f; const float vminus_ln2_lo = -0x1.7F7D1Cp-20f; const float vc1 = 0x1.FFFFF6p-1f; const float vc2 = 0x1.FFFDC6p-2f; const float vc3 = 0x1.555A80p-3f; const float vc4 = 0x1.573A1Ap-5f; const float vc5 = 0x1.0F9F9Cp-7f; $if ELEMENTS_TILE > 1: $for K in range(ACCUMULATORS): float vacc${K} = 0.0f; for (; elements >= ${ELEMENTS_TILE} * sizeof(float); elements -= ${ELEMENTS_TILE} * sizeof(float)) { // Load ${ELEMENTS_TILE} inputs at a time. $for N in range(ELEMENTS_TILE): const float vi${N} = input[${N}]; input += ${ELEMENTS_TILE}; // Subtract maximum input x := i - i_max. This implies x <= 0. $for N in range(ELEMENTS_TILE): const float vx${N} = vi${N} - vi_max; // Compute reduced argument n := round(x / log(2)). // We do it by adding a large number (magic bias) to the product x * (1/log(2)), which cause rounding of the result // to an integer, then subtracing the large number back. The trick with adding large number is valid only within // certain bounds (|x| <= 2**22), but thats ok, because inputs outside of [-87.336540, 0.0] underflow expf(x) // anyway. We fixup the result for such inputs at the very end of the algorithm. $for N in range(ELEMENTS_TILE): float vn${N} = vx${N} * vlog2e + vmagic_bias; // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly. $for N in range(ELEMENTS_TILE): const float vs${N} = fp32_from_bits(fp32_to_bits(vn${N}) << 23); // Subtract the large number back to get final n := round(x / log(2)). $for N in range(ELEMENTS_TILE): vn${N} -= vmagic_bias; // Compute reduced argument t := x - n * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. $for N in range(ELEMENTS_TILE): float vt${N} = vn${N} * vminus_ln2_hi + vx${N}; $for N in range(ELEMENTS_TILE): vt${N} = vn${N} * vminus_ln2_lo + vt${N}; // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. $for N in range(ELEMENTS_TILE): float vp${N} = vc5 * vt${N} + vc4; $for N in range(ELEMENTS_TILE): vp${N} = vp${N} * vt${N} + vc3; $for N in range(ELEMENTS_TILE): vp${N} = vp${N} * vt${N} + vc2; $for N in range(ELEMENTS_TILE): vp${N} = vp${N} * vt${N} + vc1; // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p $for N in range(ELEMENTS_TILE): vt${N} *= vs${N}; $for N in range(ELEMENTS_TILE): float vf${N} = vt${N} * vp${N} + vs${N}; // For inputs below denormal cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. $for N in range(ELEMENTS_TILE): if XNN_UNPREDICTABLE(vx${N} < vdenorm_cutoff) { vf${N} = 0.0f; } // Store ${ELEMENTS_TILE} outputs at a time. $for N in range(ELEMENTS_TILE): output[${N}] = vf${N}; output += ${ELEMENTS_TILE}; // Accumulate computed exponents. $for N in range(ELEMENTS_TILE): vacc${N % ACCUMULATORS} += vf${N}; } $if ACCUMULATORS > 1: // Add up all accumulators to vacc0 $ACC_SLICE = 1 $while ACC_SLICE < ACCUMULATORS: $for A in range(0, ACCUMULATORS, ACC_SLICE * 2): $if A + ACC_SLICE < ACCUMULATORS: vacc${A} += vacc${A + ACC_SLICE}; $ACC_SLICE *= 2 float vacc = vacc0; $else: float vacc = 0.0f; for (; elements >= sizeof(float); elements -= sizeof(float)) { // Load 1 input at a time. const float vi = *input++; // Subtract maximum input x := i - i_max. This implies x <= 0. const float vx = vi - vi_max; // Compute reduced argument n := round(x / log(2)). // We do it by adding a large number (magic bias) to the product x * (1/log(2)), which cause rounding of the result // to an integer, then subtracing the large number back. The trick with adding large number is valid only within // certain bounds (|x| <= 2**22), but thats ok, because inputs outside of [-87.336540, 0.0] underflow expf(x) // anyway. We fixup the result for such inputs at the very end of the algorithm. float vn = vx * vlog2e + vmagic_bias; // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly. const float vs = fp32_from_bits(fp32_to_bits(vn) << 23); // Subtract the large number back to get final n := round(x / log(2)). vn -= vmagic_bias; // Compute reduced argument t := x - n * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. float vt = vn * vminus_ln2_hi + vx; vt = vn * vminus_ln2_lo + vt; // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. float vp = vc5 * vt + vc4; vp = vp * vt + vc3; vp = vp * vt + vc2; vp = vp * vt + vc1; // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt *= vs; float vf = vt * vp + vs; // For inputs below denormal cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. if XNN_UNPREDICTABLE(vx < vdenorm_cutoff) { vf = 0.0f; } // Store 1 output at a time. *output++ = vf; // Accumulate computed exponents. vacc += vf; } *sum = vacc; }