// Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. $assert BATCH_TILE % 8 == 0 $assert BATCH_TILE >= 8 $ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" $assert OP in ["ADD", "DIV", "MAX", "MIN", "MUL", "SUB", "SQRDIFF"] $assert ACTIVATION in ["LINEAR", "MINMAX"] #include #include #include #include static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0}; $_MM256_OP_PS = { $ "ADD": lambda x, y: "_mm256_add_ps(%s, %s)" % (x, y), $ "DIV": lambda x, y: "_mm256_div_ps(%s, %s)" % (x, y), $ "MAX": lambda x, y: "_mm256_max_ps(%s, %s)" % (x, y), $ "MIN": lambda x, y: "_mm256_min_ps(%s, %s)" % (x, y), $ "MUL": lambda x, y: "_mm256_mul_ps(%s, %s)" % (x, y), $ "SUB": lambda x, y: "_mm256_sub_ps(%s, %s)" % (x, y), $ "SQRDIFF": lambda x, y: "_mm256_sub_ps(%s, %s)" % (x, y), $}[OP] $SUFFIX = {"LINEAR": "", "MINMAX": "_minmax"}[ACTIVATION] $PARAMS = {"LINEAR": "xnn_f32_default_params", "MINMAX": "xnn_f32_minmax_params"}[ACTIVATION] void xnn_f32_v${OP.lower()}${SUFFIX}_ukernel__avx_x${BATCH_TILE}( size_t n, const float* a, const float* b, float* y, const union ${PARAMS} params[restrict XNN_MIN_ELEMENTS(1)]) { assert(n != 0); assert(n % sizeof(float) == 0); assert(a != NULL); assert(b != NULL); assert(y != NULL); $if ACTIVATION == "MINMAX": const __m256 vy_min = _mm256_broadcast_ps((const __m128*) params->sse.min); const __m256 vy_max = _mm256_broadcast_ps((const __m128*) params->sse.max); for (; n >= ${BATCH_TILE} * sizeof(float); n -= ${BATCH_TILE} * sizeof(float)) { const __m256 va${ABC[0:8]} = _mm256_loadu_ps(a); $for N in range(8, BATCH_TILE, 8): const __m256 va${ABC[N:N+8]} = _mm256_loadu_ps(a + ${N}); a += ${BATCH_TILE}; const __m256 vb${ABC[0:8]} = _mm256_loadu_ps(b); $for N in range(8, BATCH_TILE, 8): const __m256 vb${ABC[N:N+8]} = _mm256_loadu_ps(b + ${N}); b += ${BATCH_TILE}; $for N in range(0, BATCH_TILE, 8): __m256 vy${ABC[N:N+8]} = ${_MM256_OP_PS("va" + ABC[N:N+8], "vb" + ABC[N:N+8])}; $if OP == "SQRDIFF": $for N in range(0, BATCH_TILE, 8): vy${ABC[N:N+8]} = _mm256_mul_ps(vy${ABC[N:N+8]}, vy${ABC[N:N+8]}); $if ACTIVATION == "MINMAX": $for N in range(0, BATCH_TILE, 8): vy${ABC[N:N+8]} = _mm256_max_ps(vy${ABC[N:N+8]}, vy_min); $for N in range(0, BATCH_TILE, 8): vy${ABC[N:N+8]} = _mm256_min_ps(vy${ABC[N:N+8]}, vy_max); _mm256_storeu_ps(y, vy${ABC[0:8]}); $for N in range(8, BATCH_TILE, 8): _mm256_storeu_ps(y + ${N}, vy${ABC[N:N+8]}); y += ${BATCH_TILE}; } $if BATCH_TILE > 8: for (; n >= 8 * sizeof(float); n -= 8 * sizeof(float)) { const __m256 va = _mm256_loadu_ps(a); a += 8; const __m256 vb = _mm256_loadu_ps(b); b += 8; __m256 vy = ${_MM256_OP_PS("va", "vb")}; $if OP == "SQRDIFF": vy = _mm256_mul_ps(vy, vy); $if ACTIVATION == "MINMAX": vy = _mm256_max_ps(vy, vy_min); vy = _mm256_min_ps(vy, vy_max); _mm256_storeu_ps(y, vy); y += 8; } if XNN_UNLIKELY(n != 0) { assert(n >= 1 * sizeof(float)); assert(n <= 7 * sizeof(float)); __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - n)); const __m256 va = _mm256_maskload_ps(a, vmask); const __m256 vb = _mm256_maskload_ps(b, vmask); __m256 vy = ${_MM256_OP_PS("va", "vb")}; $if OP == "SQRDIFF": vy = _mm256_mul_ps(vy, vy); $if ACTIVATION == "MINMAX": vy = _mm256_max_ps(vy, vy_min); vy = _mm256_min_ps(vy, vy_max); // _mm256_maskstore_ps(y, vmask, vy) could be used here, but triggers msan failures (probably an msan bug). __m128 vy_lo = _mm256_castps256_ps128(vy); if (n & (4 * sizeof(float))) { _mm_storeu_ps(y, vy_lo); vy_lo = _mm256_extractf128_ps(vy, 1); y += 4; } if (n & (2 * sizeof(float))) { _mm_storel_pi((__m64*) y, vy_lo); vy_lo = _mm_movehl_ps(vy_lo, vy_lo); y += 2; } if (n & (1 * sizeof(float))) { _mm_store_ss(y, vy_lo); } } }