// Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. $assert ELEMENTS_TILE % 8 == 0 $assert ELEMENTS_TILE >= 8 $SIMD_TILE = ELEMENTS_TILE // 8 $ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" #include #include #include #include static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0}; void xnn_f32_vscaleexpminusmax_ukernel__avx2_p5_x${ELEMENTS_TILE}( size_t elements, const float* input, float* output, float scale, float max) { assert(elements % sizeof(float) == 0); const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f); // The smallest x for which expf(x) is normalized. const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep6f); const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f); const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f); const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f); const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f); const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f); const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f); const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f); const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f); const __m256 vscale = _mm256_set1_ps(scale); const __m256 vi_max = _mm256_set1_ps(max); for (; elements >= ${ELEMENTS_TILE} * sizeof(float); elements -= ${ELEMENTS_TILE} * sizeof(float)) { // Load ${ELEMENTS_TILE} (${SIMD_TILE}x8) inputs at a time. const __m256 vi0 = _mm256_loadu_ps(input); $for N in range(1, SIMD_TILE): const __m256 vi${N} = _mm256_loadu_ps(input + ${N * 8}); input += ${ELEMENTS_TILE}; // Subtract maximum input x := i - i_max. This implies x <= 0. $for N in range(SIMD_TILE): const __m256 vx${N} = _mm256_sub_ps(vi${N}, vi_max); // Compute reduced argument elements := round(x / log(2)). $for N in range(SIMD_TILE): __m256 vn${N} = _mm256_fmadd_ps(vx${N}, vlog2e, vmagic_bias); // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly. $for N in range(SIMD_TILE): const __m256 vs${N} = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn${N}), 23)); // Subtract the large number back to get final elements := round(x / log(2)). $for N in range(SIMD_TILE): vn${N} = _mm256_sub_ps(vn${N}, vmagic_bias); // Compute reduced argument t := x - elements * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. $for N in range(SIMD_TILE): __m256 vt${N} = _mm256_fmadd_ps(vn${N}, vminus_ln2_hi, vx${N}); $for N in range(SIMD_TILE): vt${N} = _mm256_fmadd_ps(vn${N}, vminus_ln2_lo, vt${N}); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. $for N in range(SIMD_TILE): __m256 vp${N} = _mm256_fmadd_ps(vc5, vt${N}, vc4); $for N in range(SIMD_TILE): vp${N} = _mm256_fmadd_ps(vp${N}, vt${N}, vc3); $for N in range(SIMD_TILE): vp${N} = _mm256_fmadd_ps(vp${N}, vt${N}, vc2); $for N in range(SIMD_TILE): vp${N} = _mm256_fmadd_ps(vp${N}, vt${N}, vc1); // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p $for N in range(SIMD_TILE): vt${N} = _mm256_mul_ps(vt${N}, vs${N}); $for N in range(SIMD_TILE): __m256 vf${N} = _mm256_fmadd_ps(vt${N}, vp${N}, vs${N}); // For inputs below zero cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. $for N in range(SIMD_TILE): vf${N} = _mm256_andnot_ps(_mm256_cmp_ps(vx${N}, vdenorm_cutoff, _CMP_LT_OS), vf${N}); // Multiply by scale. $for N in range(SIMD_TILE): vf${N} = _mm256_mul_ps(vf${N}, vscale); // Store ${ELEMENTS_TILE} (${SIMD_TILE}x8) outputs at a time. _mm256_storeu_ps(output, vf0); $for N in range(1, SIMD_TILE): _mm256_storeu_ps(output + ${N * 8}, vf${N}); output += ${ELEMENTS_TILE}; } for (; elements >= 8 * sizeof(float); elements -= 8 * sizeof(float)) { // Load 8 inputs at a time. const __m256 vi = _mm256_loadu_ps(input); input += 8; // Subtract maximum input x := i - i_max. This implies x <= 0. const __m256 vx = _mm256_sub_ps(vi, vi_max); // Compute reduced argument elements := round(x / log(2)). __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); // Subtract the large number back to get final elements := round(x / log(2)). vn = _mm256_sub_ps(vn, vmagic_bias); // Compute reduced argument t := x - elements * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt = _mm256_mul_ps(vt, vs); __m256 vf = _mm256_fmadd_ps(vt, vp, vs); // For inputs below zero cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf); // Multiply by scale. vf = _mm256_mul_ps(vf, vscale); // Store 64 (8x8) outputs at a time. _mm256_storeu_ps(output, vf); output += 8; } if (elements != 0) { assert(elements >= 1 * sizeof(float)); assert(elements <= 7 * sizeof(float)); const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - elements)); // Load up to 7 inputs at a time. const __m256 vi = _mm256_maskload_ps(input, vmask); // Subtract maximum input x := i - i_max. This implies x <= 0. const __m256 vx = _mm256_sub_ps(vi, vi_max); // Compute reduced argument elements := round(x / log(2)). __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias); // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e. // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly. const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23)); // Subtract the large number back to get final elements := round(x / log(2)). vn = _mm256_sub_ps(vn, vmagic_bias); // Compute reduced argument t := x - elements * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2]. __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4); vp = _mm256_fmadd_ps(vp, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_fmadd_ps(vp, vt, vc1); // Reconstruct the final f value: // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) // = s + (t * s) * p vt = _mm256_mul_ps(vt, vs); __m256 vf = _mm256_fmadd_ps(vt, vp, vs); // For inputs below zero cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf); // Multiply by scale. vf = _mm256_mul_ps(vf, vscale); // Store up to 7 outputs at a time. _mm256_maskstore_ps(output, vmask, vf); } }