Lines Matching refs:cup
868 R^+ \coloneqq R \cup \left(R \circ R^+\right)
982 (P_m' \cup \identity) \circ \cdots \circ
983 (P_2' \cup \identity) \circ
984 (P_1' \cup \identity)
1376 R^+ = R \cup \left(R \circ R^+\right)
1382 T \subseteq R \cup \left(R \circ T\right)
1428 For example, if $R = R_1 \cup R_2$ and $R_1 \circ R_2 = \emptyset$,
1433 R^+ = R_1^+ \cup R_2^+ \cup \left(R_2^+ \circ R_1^+\right)
1512 the Omega calculator~\parencite{Omega_calc}, $R = R_1 \cup R_2$,
1537 R_1 \cup R_2
1541 \cup R_1^+
1542 \cup R_2^+
1593 The relation can be described as $R = R_1 \cup R_2 \cup R_3$,
1639 By computing the power of $R_3$ and $R_1 \cup R_2$ separately
1686 $R_{pq} \coloneqq R_{pq} \cup \left(R_{rq} \circ R_{pr}\right)
1687 \cup \left(R_{rq} \circ R_{rr} \circ R_{pr}\right)$
1800 $R_{00} \cup R_{01} \cup R_{10} \cup R_{11}$.
1816 R^+ = R_i^+ \cup
1830 Now, $R_i^* = R_i^+ \cup \identity$, but in some cases it is possible
1833 ${\cal C}(R_i,D) = R_i^+ \cup \identity_D$ to represent
1855 $D = \domain R_i \cup \range R_i$, but presumably they mean that
1856 they use $D = \domain R \cup \range R$.
1860 they are using the convex hull of $\domain R \cup \range R$
1862 We use the simple hull (\autoref{s:simple hull}) of $\domain R \cup \range R$.
1865 include $\domain R \cup \range R$, but then we have to
1881 R_i^+ \cup
1888 \cup
1895 \cup
1902 \cup
1915 R_i^+ \cup
1918 R_i^+ \cup \identity
1926 \cup
1939 R_i^+ \cup
1946 \cup
1955 R_i^+ \cup \identity
2034 (\autoref{s:simple hull}) of $\domain R \cup \range R$.