# Copyright 2018 The Android Open Source Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Verifies exposure times on RAW images.""" import logging import os.path import matplotlib from matplotlib import pylab from mobly import test_runner import numpy as np import its_base_test import camera_properties_utils import capture_request_utils import image_processing_utils import its_session_utils BLK_LVL_RTOL = 0.1 BURST_LEN = 10 # break captures into burst of BURST_LEN requests COLORS = ['R', 'Gr', 'Gb', 'B'] EXP_LONG_THRESH = 1E6 # 1ms EXP_MULT_SHORT = pow(2, 1.0/3) # Test 3 steps per 2x exposure EXP_MULT_LONG = pow(10, 1.0/3) # Test 3 steps per 10x exposure IMG_DELTA_THRESH = 0.99 # Each shot must be > 0.99*previous IMG_SAT_RTOL = 0.01 # 1% IMG_STATS_GRID = 9 # find used to find the center 11.11% NAME = os.path.splitext(os.path.basename(__file__))[0] NS_TO_MS_FACTOR = 1.0E-6 NUM_COLORS = len(COLORS) NUM_ISO_STEPS = 5 def create_test_exposure_list(e_min, e_max): """Create the list of exposure values to test.""" e_list = [] mult = 1.0 while e_min*mult < e_max: e_list.append(int(e_min*mult)) if e_min*mult < EXP_LONG_THRESH: mult *= EXP_MULT_SHORT else: mult *= EXP_MULT_LONG if e_list[-1] < e_max*IMG_DELTA_THRESH: e_list.append(int(e_max)) return e_list def define_raw_stats_fmt(props): """Define format with active array width and height.""" aax = props['android.sensor.info.preCorrectionActiveArraySize']['left'] aay = props['android.sensor.info.preCorrectionActiveArraySize']['top'] aaw = props['android.sensor.info.preCorrectionActiveArraySize']['right']-aax aah = props['android.sensor.info.preCorrectionActiveArraySize']['bottom']-aay return {'format': 'rawStats', 'gridWidth': aaw // IMG_STATS_GRID, 'gridHeight': aah // IMG_STATS_GRID} def create_plot(exps, means, sens, log_path): """Create plots R, Gr, Gb, B vs exposures. Args: exps: array of exposure times in ms means: array of means for RAW captures sens: int value for ISO gain log_path: path to write plot file Returns: None """ # means[0] is black level value r = [m[0] for m in means[1:]] gr = [m[1] for m in means[1:]] gb = [m[2] for m in means[1:]] b = [m[3] for m in means[1:]] pylab.figure('%s_%s' % (NAME, sens)) pylab.plot(exps, r, 'r.-') pylab.plot(exps, b, 'b.-') pylab.plot(exps, gr, 'g.-') pylab.plot(exps, gb, 'k.-') pylab.xscale('log') pylab.yscale('log') pylab.title('%s ISO=%d' % (NAME, sens)) pylab.xlabel('Exposure time (ms)') pylab.ylabel('Center patch pixel mean') matplotlib.pyplot.savefig( '%s_s=%d.png' % (os.path.join(log_path, NAME), sens)) pylab.clf() def assert_increasing_means(means, exps, sens, black_levels, white_level): """Assert that each image increases unless over/undersaturated. Args: means: COLORS means for set of images exps: exposure times in ms sens: ISO gain value black_levels: COLORS black_level values white_level: full scale value Returns: None """ allow_under_saturated = True for i in range(1, len(means)): prev_mean = means[i-1] mean = means[i] if np.isclose(max(mean), white_level, rtol=IMG_SAT_RTOL): logging.debug('Saturated: white_level %f, max_mean %f', white_level, max(mean)) break if allow_under_saturated and np.allclose( mean, black_levels, rtol=BLK_LVL_RTOL): # All channel means are close to black level continue allow_under_saturated = False # Check pixel means are increasing (with small tolerance) for ch, color in enumerate(COLORS): e_msg = 'ISO=%d, %s, exp %3fms mean: %.2f, %s mean: %.2f, TOL=%.f%%' % ( sens, color, exps[i-1], mean[ch], 'black level' if i == 1 else 'exp_time %.3fms'%exps[i-2], prev_mean[ch], IMG_DELTA_THRESH*100) if mean[ch] <= prev_mean[ch] * IMG_DELTA_THRESH: raise AssertionError(e_msg) class RawExposureTest(its_base_test.ItsBaseTest): """Capture RAW images with increasing exp time and measure pixel values.""" def test_raw_exposure(self): logging.debug('Starting %s', NAME) with its_session_utils.ItsSession( device_id=self.dut.serial, camera_id=self.camera_id, hidden_physical_id=self.hidden_physical_id) as cam: props = cam.get_camera_properties() props = cam.override_with_hidden_physical_camera_props(props) camera_properties_utils.skip_unless( camera_properties_utils.raw16(props) and camera_properties_utils.manual_sensor(props) and camera_properties_utils.per_frame_control(props) and not camera_properties_utils.mono_camera(props)) log_path = self.log_path # Load chart for scene its_session_utils.load_scene( cam, props, self.scene, self.tablet, self.chart_distance) # Create list of exposures e_min, e_max = props['android.sensor.info.exposureTimeRange'] e_test = create_test_exposure_list(e_min, e_max) e_test_ms = [e*NS_TO_MS_FACTOR for e in e_test] # Capture with rawStats to reduce capture times fmt = define_raw_stats_fmt(props) # Create sensitivity range from min to max analog sensitivity sens_min, _ = props['android.sensor.info.sensitivityRange'] sens_max = props['android.sensor.maxAnalogSensitivity'] sens_step = (sens_max - sens_min) // NUM_ISO_STEPS white_level = float(props['android.sensor.info.whiteLevel']) black_levels = [image_processing_utils.get_black_level( i, props) for i in range(NUM_COLORS)] # Do captures with exposure list over sensitivity range for s in range(sens_min, sens_max, sens_step): # Break caps into bursts and do captures burst_len = BURST_LEN caps = [] reqs = [capture_request_utils.manual_capture_request( s, e, 0) for e in e_test] # Eliminate burst len==1. Error because returns [[]], not [{}, ...] while len(reqs) % burst_len == 1: burst_len -= 1 # Break caps into bursts for i in range(len(reqs) // burst_len): caps += cam.do_capture(reqs[i*burst_len:(i+1)*burst_len], fmt) last_n = len(reqs) % burst_len if last_n: caps += cam.do_capture(reqs[-last_n:], fmt) # Extract means for each capture means = [] means.append(black_levels) for i, cap in enumerate(caps): mean_image, _ = image_processing_utils.unpack_rawstats_capture(cap) mean = mean_image[IMG_STATS_GRID // 2, IMG_STATS_GRID // 2] logging.debug('ISO=%d, exp_time=%.3fms, mean=%s', s, (e_test[i] * NS_TO_MS_FACTOR), str(mean)) means.append(mean) # Create plot create_plot(e_test_ms, means, s, log_path) # Each shot mean should be brighter (except under/overexposed scene) assert_increasing_means(means, e_test_ms, s, black_levels, white_level) if __name__ == '__main__': test_runner.main()