/* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % AAA TTTTT TTTTT RRRR IIIII BBBB U U TTTTT EEEEE % % A A T T R R I B B U U T E % % AAAAA T T RRRR I BBBB U U T EEE % % A A T T R R I B B U U T E % % A A T T R R IIIII BBBB UUU T EEEEE % % % % % % MagickCore Get / Set Image Attributes % % % % Software Design % % Cristy % % October 2002 % % % % % % Copyright 1999-2021 ImageMagick Studio LLC, a non-profit organization % % dedicated to making software imaging solutions freely available. % % % % You may not use this file except in compliance with the License. You may % % obtain a copy of the License at % % % % https://imagemagick.org/script/license.php % % % % Unless required by applicable law or agreed to in writing, software % % distributed under the License is distributed on an "AS IS" BASIS, % % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % % See the License for the specific language governing permissions and % % limitations under the License. % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % */ /* Include declarations. */ #include "MagickCore/studio.h" #include "MagickCore/artifact.h" #include "MagickCore/attribute.h" #include "MagickCore/blob.h" #include "MagickCore/blob-private.h" #include "MagickCore/cache.h" #include "MagickCore/cache-private.h" #include "MagickCore/cache-view.h" #include "MagickCore/channel.h" #include "MagickCore/client.h" #include "MagickCore/color.h" #include "MagickCore/color-private.h" #include "MagickCore/colormap.h" #include "MagickCore/colormap-private.h" #include "MagickCore/colorspace.h" #include "MagickCore/colorspace-private.h" #include "MagickCore/composite.h" #include "MagickCore/composite-private.h" #include "MagickCore/constitute.h" #include "MagickCore/draw.h" #include "MagickCore/draw-private.h" #include "MagickCore/effect.h" #include "MagickCore/enhance.h" #include "MagickCore/exception.h" #include "MagickCore/exception-private.h" #include "MagickCore/geometry.h" #include "MagickCore/histogram.h" #include "MagickCore/identify.h" #include "MagickCore/image.h" #include "MagickCore/image-private.h" #include "MagickCore/list.h" #include "MagickCore/log.h" #include "MagickCore/memory_.h" #include "MagickCore/magick.h" #include "MagickCore/monitor.h" #include "MagickCore/monitor-private.h" #include "MagickCore/option.h" #include "MagickCore/paint.h" #include "MagickCore/pixel.h" #include "MagickCore/pixel-accessor.h" #include "MagickCore/property.h" #include "MagickCore/quantize.h" #include "MagickCore/quantum-private.h" #include "MagickCore/random_.h" #include "MagickCore/resource_.h" #include "MagickCore/semaphore.h" #include "MagickCore/segment.h" #include "MagickCore/splay-tree.h" #include "MagickCore/string_.h" #include "MagickCore/string-private.h" #include "MagickCore/thread-private.h" #include "MagickCore/threshold.h" #include "MagickCore/transform.h" #include "MagickCore/utility.h" /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % + G e t I m a g e B o u n d i n g B o x % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % GetImageBoundingBox() returns the bounding box of an image canvas. % % The format of the GetImageBoundingBox method is: % % RectangleInfo GetImageBoundingBox(const Image *image, % ExceptionInfo *exception) % % A description of each parameter follows: % % o bounds: Method GetImageBoundingBox returns the bounding box of an % image canvas. % % o image: the image. % % o exception: return any errors or warnings in this structure. % */ typedef struct _EdgeInfo { double left, right, top, bottom; } EdgeInfo; static double GetEdgeBackgroundCensus(const Image *image, const CacheView *image_view,const GravityType gravity,const size_t width, const size_t height,const ssize_t x_offset,const ssize_t y_offset, ExceptionInfo *exception) { CacheView *edge_view; const char *artifact; double census; Image *edge_image; PixelInfo background, pixel; RectangleInfo edge_geometry; const Quantum *p; ssize_t y; /* Determine the percent of image background for this edge. */ switch (gravity) { case NorthWestGravity: case NorthGravity: default: { p=GetCacheViewVirtualPixels(image_view,0,0,1,1,exception); break; } case NorthEastGravity: case EastGravity: { p=GetCacheViewVirtualPixels(image_view,(ssize_t) image->columns-1,0,1,1, exception); break; } case SouthEastGravity: case SouthGravity: { p=GetCacheViewVirtualPixels(image_view,(ssize_t) image->columns-1, (ssize_t) image->rows-1,1,1,exception); break; } case SouthWestGravity: case WestGravity: { p=GetCacheViewVirtualPixels(image_view,0,(ssize_t) image->rows-1,1,1, exception); break; } } GetPixelInfoPixel(image,p,&background); artifact=GetImageArtifact(image,"background"); if (artifact != (const char *) NULL) (void) QueryColorCompliance(artifact,AllCompliance,&background,exception); artifact=GetImageArtifact(image,"trim:background-color"); if (artifact != (const char *) NULL) (void) QueryColorCompliance(artifact,AllCompliance,&background,exception); edge_geometry.width=width; edge_geometry.height=height; edge_geometry.x=x_offset; edge_geometry.y=y_offset; GravityAdjustGeometry(image->columns,image->rows,gravity,&edge_geometry); edge_image=CropImage(image,&edge_geometry,exception); if (edge_image == (Image *) NULL) return(0.0); census=0.0; edge_view=AcquireVirtualCacheView(edge_image,exception); for (y=0; y < (ssize_t) edge_image->rows; y++) { ssize_t x; p=GetCacheViewVirtualPixels(edge_view,0,y,edge_image->columns,1,exception); if (p == (const Quantum *) NULL) break; for (x=0; x < (ssize_t) edge_image->columns; x++) { GetPixelInfoPixel(edge_image,p,&pixel); if (IsFuzzyEquivalencePixelInfo(&pixel,&background) == MagickFalse) census++; p+=GetPixelChannels(edge_image); } } census/=((double) edge_image->columns*edge_image->rows); edge_view=DestroyCacheView(edge_view); edge_image=DestroyImage(edge_image); return(census); } static inline double GetMinEdgeBackgroundCensus(const EdgeInfo *edge) { double census; census=MagickMin(MagickMin(MagickMin(edge->left,edge->right),edge->top), edge->bottom); return(census); } static RectangleInfo GetEdgeBoundingBox(const Image *image, ExceptionInfo *exception) { CacheView *edge_view; const char *artifact; double background_census, percent_background; EdgeInfo edge, vertex; Image *edge_image; RectangleInfo bounds; /* Get the image bounding box. */ assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); SetGeometry(image,&bounds); edge_image=CloneImage(image,0,0,MagickTrue,exception); if (edge_image == (Image *) NULL) return(bounds); (void) ParseAbsoluteGeometry("0x0+0+0",&edge_image->page); (void) memset(&vertex,0,sizeof(vertex)); edge_view=AcquireVirtualCacheView(edge_image,exception); edge.left=GetEdgeBackgroundCensus(edge_image,edge_view,WestGravity, 1,0,0,0,exception); edge.right=GetEdgeBackgroundCensus(edge_image,edge_view,EastGravity, 1,0,0,0,exception); edge.top=GetEdgeBackgroundCensus(edge_image,edge_view,NorthGravity, 0,1,0,0,exception); edge.bottom=GetEdgeBackgroundCensus(edge_image,edge_view,SouthGravity, 0,1,0,0,exception); percent_background=1.0; artifact=GetImageArtifact(edge_image,"trim:percent-background"); if (artifact != (const char *) NULL) percent_background=StringToDouble(artifact,(char **) NULL)/100.0; percent_background=MagickMin(MagickMax(1.0-percent_background,MagickEpsilon), 1.0); background_census=GetMinEdgeBackgroundCensus(&edge); for ( ; background_census < percent_background; background_census=GetMinEdgeBackgroundCensus(&edge)) { if ((bounds.width == 0) || (bounds.height == 0)) break; if (fabs(edge.left-background_census) < MagickEpsilon) { /* Trim left edge. */ vertex.left++; bounds.width--; edge.left=GetEdgeBackgroundCensus(edge_image,edge_view, NorthWestGravity,1,bounds.height,(ssize_t) vertex.left,(ssize_t) vertex.top,exception); edge.top=GetEdgeBackgroundCensus(edge_image,edge_view, NorthWestGravity,bounds.width,1,(ssize_t) vertex.left,(ssize_t) vertex.top,exception); edge.bottom=GetEdgeBackgroundCensus(edge_image,edge_view, SouthWestGravity,bounds.width,1,(ssize_t) vertex.left,(ssize_t) vertex.bottom,exception); continue; } if (fabs(edge.right-background_census) < MagickEpsilon) { /* Trim right edge. */ vertex.right++; bounds.width--; edge.right=GetEdgeBackgroundCensus(edge_image,edge_view, NorthEastGravity,1,bounds.height,(ssize_t) vertex.right,(ssize_t) vertex.top,exception); edge.top=GetEdgeBackgroundCensus(edge_image,edge_view, NorthWestGravity,bounds.width,1,(ssize_t) vertex.left,(ssize_t) vertex.top,exception); edge.bottom=GetEdgeBackgroundCensus(edge_image,edge_view, SouthWestGravity,bounds.width,1,(ssize_t) vertex.left,(ssize_t) vertex.bottom,exception); continue; } if (fabs(edge.top-background_census) < MagickEpsilon) { /* Trim top edge. */ vertex.top++; bounds.height--; edge.left=GetEdgeBackgroundCensus(edge_image,edge_view, NorthWestGravity,1,bounds.height,(ssize_t) vertex.left,(ssize_t) vertex.top,exception); edge.right=GetEdgeBackgroundCensus(edge_image,edge_view, NorthEastGravity,1,bounds.height,(ssize_t) vertex.right,(ssize_t) vertex.top,exception); edge.top=GetEdgeBackgroundCensus(edge_image,edge_view, NorthWestGravity,bounds.width,1,(ssize_t) vertex.left,(ssize_t) vertex.top,exception); continue; } if (fabs(edge.bottom-background_census) < MagickEpsilon) { /* Trim bottom edge. */ vertex.bottom++; bounds.height--; edge.left=GetEdgeBackgroundCensus(edge_image,edge_view, NorthWestGravity,1,bounds.height,(ssize_t) vertex.left,(ssize_t) vertex.top,exception); edge.right=GetEdgeBackgroundCensus(edge_image,edge_view, NorthEastGravity,1,bounds.height,(ssize_t) vertex.right,(ssize_t) vertex.top,exception); edge.bottom=GetEdgeBackgroundCensus(edge_image,edge_view, SouthWestGravity,bounds.width,1,(ssize_t) vertex.left,(ssize_t) vertex.bottom,exception); continue; } } edge_view=DestroyCacheView(edge_view); edge_image=DestroyImage(edge_image); bounds.x=(ssize_t) vertex.left; bounds.y=(ssize_t) vertex.top; if ((bounds.width == 0) || (bounds.height == 0)) (void) ThrowMagickException(exception,GetMagickModule(),OptionWarning, "GeometryDoesNotContainImage","`%s'",image->filename); return(bounds); } MagickExport RectangleInfo GetImageBoundingBox(const Image *image, ExceptionInfo *exception) { CacheView *image_view; const char *artifact; MagickBooleanType status; PixelInfo target[4], zero; RectangleInfo bounds; const Quantum *p; ssize_t y; assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); artifact=GetImageArtifact(image,"trim:percent-background"); if (artifact != (const char *) NULL) return(GetEdgeBoundingBox(image,exception)); artifact=GetImageArtifact(image, "trim:edges"); if (artifact == (const char *) NULL) { bounds.width=0; bounds.height=0; bounds.x=(ssize_t) image->columns; bounds.y=(ssize_t) image->rows; } else { char *edges, *p, *q; bounds.width=(size_t) image->columns; bounds.height=(size_t) image->rows; bounds.x=0; bounds.y=0; edges=AcquireString(artifact); q=edges; while ((p=StringToken(",",&q)) != (char *) NULL) { if (LocaleCompare(p,"north") == 0) bounds.y=(ssize_t) image->rows; if (LocaleCompare(p,"east") == 0) bounds.width=0; if (LocaleCompare(p,"south") == 0) bounds.height=0; if (LocaleCompare(p,"west") == 0) bounds.x=(ssize_t) image->columns; } edges=DestroyString(edges); } GetPixelInfo(image,&target[0]); image_view=AcquireVirtualCacheView(image,exception); p=GetCacheViewVirtualPixels(image_view,0,0,1,1,exception); if (p == (const Quantum *) NULL) { image_view=DestroyCacheView(image_view); return(bounds); } GetPixelInfoPixel(image,p,&target[0]); GetPixelInfo(image,&target[1]); p=GetCacheViewVirtualPixels(image_view,(ssize_t) image->columns-1,0,1,1, exception); if (p != (const Quantum *) NULL) GetPixelInfoPixel(image,p,&target[1]); GetPixelInfo(image,&target[2]); p=GetCacheViewVirtualPixels(image_view,0,(ssize_t) image->rows-1,1,1, exception); if (p != (const Quantum *) NULL) GetPixelInfoPixel(image,p,&target[2]); p=GetCacheViewVirtualPixels(image_view,(ssize_t) image->columns-1,(ssize_t) image->rows-1,1,1,exception); if (p != (const Quantum *) NULL) GetPixelInfoPixel(image,p,&target[3]); status=MagickTrue; GetPixelInfo(image,&zero); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static) shared(status) \ magick_number_threads(image,image,image->rows,1) #endif for (y=0; y < (ssize_t) image->rows; y++) { PixelInfo pixel; RectangleInfo bounding_box; const Quantum *magick_restrict p; ssize_t x; if (status == MagickFalse) continue; #if defined(MAGICKCORE_OPENMP_SUPPORT) # pragma omp critical (MagickCore_GetImageBoundingBox) #endif bounding_box=bounds; p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception); if (p == (const Quantum *) NULL) { status=MagickFalse; continue; } pixel=zero; for (x=0; x < (ssize_t) image->columns; x++) { GetPixelInfoPixel(image,p,&pixel); if ((x < bounding_box.x) && (IsFuzzyEquivalencePixelInfo(&pixel,&target[0]) == MagickFalse)) bounding_box.x=x; if ((x > (ssize_t) bounding_box.width) && (IsFuzzyEquivalencePixelInfo(&pixel,&target[1]) == MagickFalse)) bounding_box.width=(size_t) x; if ((y < bounding_box.y) && (IsFuzzyEquivalencePixelInfo(&pixel,&target[0]) == MagickFalse)) bounding_box.y=y; if ((y > (ssize_t) bounding_box.height) && (IsFuzzyEquivalencePixelInfo(&pixel,&target[2]) == MagickFalse)) bounding_box.height=(size_t) y; if ((x < (ssize_t) bounding_box.width) && (y > (ssize_t) bounding_box.height) && (IsFuzzyEquivalencePixelInfo(&pixel,&target[3]) == MagickFalse)) { bounding_box.width=(size_t) x; bounding_box.height=(size_t) y; } p+=GetPixelChannels(image); } #if defined(MAGICKCORE_OPENMP_SUPPORT) # pragma omp critical (MagickCore_GetImageBoundingBox) #endif { if (bounding_box.x < bounds.x) bounds.x=bounding_box.x; if (bounding_box.y < bounds.y) bounds.y=bounding_box.y; if (bounding_box.width > bounds.width) bounds.width=bounding_box.width; if (bounding_box.height > bounds.height) bounds.height=bounding_box.height; } } image_view=DestroyCacheView(image_view); if ((bounds.width == 0) || (bounds.height == 0)) (void) ThrowMagickException(exception,GetMagickModule(),OptionWarning, "GeometryDoesNotContainImage","`%s'",image->filename); else { bounds.width-=(bounds.x-1); bounds.height-=(bounds.y-1); } return(bounds); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % G e t I m a g e C o n v e x H u l l % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % GetImageConvexHull() returns the convex hull points of an image canvas. % % The format of the GetImageConvexHull method is: % % PointInfo *GetImageConvexHull(const Image *image, % size_t number_vertices,ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o number_vertices: the number of vertices in the convex hull. % % o exception: return any errors or warnings in this structure. % */ static double LexicographicalOrder(PointInfo *a,PointInfo *b,PointInfo *c) { /* Order by x-coordinate, and in case of a tie, by y-coordinate. */ return((b->x-a->x)*(c->y-a->y)-(b->y-a->y)*(c->x-a->x)); } static PixelInfo GetEdgeBackgroundColor(const Image *image, const CacheView *image_view,ExceptionInfo *exception) { const char *artifact; double census[4], edge_census; PixelInfo background[4], edge_background; ssize_t i; /* Most dominant color of edges/corners is the background color of the image. */ artifact=GetImageArtifact(image,"convex-hull:background-color"); if (artifact == (const char *) NULL) artifact=GetImageArtifact(image,"background"); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static) #endif for (i=0; i < 4; i++) { CacheView *edge_view; GravityType gravity; Image *edge_image; PixelInfo pixel; RectangleInfo edge_geometry; const Quantum *p; ssize_t y; census[i]=0.0; (void) memset(&edge_geometry,0,sizeof(edge_geometry)); switch (i) { case 0: default: { p=GetCacheViewVirtualPixels(image_view,0,(ssize_t) image->rows-1,1,1, exception); gravity=WestGravity; edge_geometry.width=1; edge_geometry.height=0; break; } case 1: { p=GetCacheViewVirtualPixels(image_view,(ssize_t) image->columns-1,0,1,1, exception); gravity=EastGravity; edge_geometry.width=1; edge_geometry.height=0; break; } case 2: { p=GetCacheViewVirtualPixels(image_view,0,0,1,1,exception); gravity=NorthGravity; edge_geometry.width=0; edge_geometry.height=1; break; } case 3: { p=GetCacheViewVirtualPixels(image_view,(ssize_t) image->columns-1, (ssize_t) image->rows-1,1,1,exception); gravity=SouthGravity; edge_geometry.width=0; edge_geometry.height=1; break; } } GetPixelInfoPixel(image,p,background+i); if (artifact != (const char *) NULL) (void) QueryColorCompliance(artifact,AllCompliance,background+i, exception); GravityAdjustGeometry(image->columns,image->rows,gravity,&edge_geometry); edge_image=CropImage(image,&edge_geometry,exception); if (edge_image == (Image *) NULL) continue; edge_view=AcquireVirtualCacheView(edge_image,exception); for (y=0; y < (ssize_t) edge_image->rows; y++) { ssize_t x; p=GetCacheViewVirtualPixels(edge_view,0,y,edge_image->columns,1, exception); if (p == (const Quantum *) NULL) break; for (x=0; x < (ssize_t) edge_image->columns; x++) { GetPixelInfoPixel(edge_image,p,&pixel); if (IsFuzzyEquivalencePixelInfo(&pixel,background+i) == MagickFalse) census[i]++; p+=GetPixelChannels(edge_image); } } edge_view=DestroyCacheView(edge_view); edge_image=DestroyImage(edge_image); } edge_census=(-1.0); for (i=0; i < 4; i++) if (census[i] > edge_census) { edge_background=background[i]; edge_census=census[i]; } return(edge_background); } void TraceConvexHull(PointInfo *vertices,size_t number_vertices, PointInfo ***monotone_chain,size_t *chain_length) { PointInfo **chain; ssize_t i; size_t demark, n; /* Construct the upper and lower hulls: rightmost to leftmost counterclockwise. */ chain=(*monotone_chain); n=0; for (i=0; i < (ssize_t) number_vertices; i++) { while ((n >= 2) && (LexicographicalOrder(chain[n-2],chain[n-1],&vertices[i]) <= 0.0)) n--; chain[n++]=(&vertices[i]); } demark=n+1; for (i=(ssize_t) number_vertices-2; i >= 0; i--) { while ((n >= demark) && (LexicographicalOrder(chain[n-2],chain[n-1],&vertices[i]) <= 0.0)) n--; chain[n++]=(&vertices[i]); } *chain_length=n; } MagickExport PointInfo *GetImageConvexHull(const Image *image, size_t *number_vertices,ExceptionInfo *exception) { CacheView *image_view; MagickBooleanType status; MemoryInfo *monotone_info, *vertices_info; PixelInfo background; PointInfo *convex_hull, **monotone_chain, *vertices; size_t n; ssize_t y; /* Identify convex hull vertices of image foreground object(s). */ assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); *number_vertices=0; vertices_info=AcquireVirtualMemory(image->columns,image->rows* sizeof(*vertices)); monotone_info=AcquireVirtualMemory(2*image->columns,2* image->rows*sizeof(*monotone_chain)); if ((vertices_info == (MemoryInfo *) NULL) || (monotone_info == (MemoryInfo *) NULL)) { if (monotone_info != (MemoryInfo *) NULL) monotone_info=(MemoryInfo *) RelinquishVirtualMemory(monotone_info); if (vertices_info != (MemoryInfo *) NULL) vertices_info=RelinquishVirtualMemory(vertices_info); return((PointInfo *) NULL); } vertices=(PointInfo *) GetVirtualMemoryBlob(vertices_info); monotone_chain=(PointInfo **) GetVirtualMemoryBlob(monotone_info); image_view=AcquireVirtualCacheView(image,exception); background=GetEdgeBackgroundColor(image,image_view,exception); status=MagickTrue; n=0; for (y=0; y < (ssize_t) image->rows; y++) { const Quantum *p; ssize_t x; if (status == MagickFalse) continue; p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception); if (p == (const Quantum *) NULL) { status=MagickFalse; continue; } for (x=0; x < (ssize_t) image->columns; x++) { PixelInfo pixel; GetPixelInfoPixel(image,p,&pixel); if (IsFuzzyEquivalencePixelInfo(&pixel,&background) == MagickFalse) { vertices[n].x=(double) x; vertices[n].y=(double) y; n++; } p+=GetPixelChannels(image); } } image_view=DestroyCacheView(image_view); /* Return the convex hull of the image foreground object(s). */ TraceConvexHull(vertices,n,&monotone_chain,number_vertices); convex_hull=(PointInfo *) AcquireQuantumMemory(*number_vertices, sizeof(*convex_hull)); if (convex_hull != (PointInfo *) NULL) for (n=0; n < *number_vertices; n++) convex_hull[n]=(*monotone_chain[n]); monotone_info=RelinquishVirtualMemory(monotone_info); vertices_info=RelinquishVirtualMemory(vertices_info); return(convex_hull); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % G e t I m a g e D e p t h % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % GetImageDepth() returns the depth of a particular image channel. % % The format of the GetImageDepth method is: % % size_t GetImageDepth(const Image *image,ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o exception: return any errors or warnings in this structure. % */ MagickExport size_t GetImageDepth(const Image *image,ExceptionInfo *exception) { CacheView *image_view; MagickBooleanType status; ssize_t i; size_t *current_depth, depth, number_threads; ssize_t y; /* Compute image depth. */ assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); number_threads=(size_t) GetMagickResourceLimit(ThreadResource); current_depth=(size_t *) AcquireQuantumMemory(number_threads, sizeof(*current_depth)); if (current_depth == (size_t *) NULL) ThrowFatalException(ResourceLimitFatalError,"MemoryAllocationFailed"); status=MagickTrue; for (i=0; i < (ssize_t) number_threads; i++) current_depth[i]=1; if ((image->storage_class == PseudoClass) && (image->alpha_trait == UndefinedPixelTrait)) { for (i=0; i < (ssize_t) image->colors; i++) { const int id = GetOpenMPThreadId(); while (current_depth[id] < MAGICKCORE_QUANTUM_DEPTH) { MagickBooleanType atDepth; QuantumAny range; atDepth=MagickTrue; range=GetQuantumRange(current_depth[id]); if ((GetPixelRedTraits(image) & UpdatePixelTrait) != 0) if (IsPixelAtDepth(ClampToQuantum(image->colormap[i].red),range) == MagickFalse) atDepth=MagickFalse; if ((atDepth != MagickFalse) && (GetPixelGreenTraits(image) & UpdatePixelTrait) != 0) if (IsPixelAtDepth(ClampToQuantum(image->colormap[i].green),range) == MagickFalse) atDepth=MagickFalse; if ((atDepth != MagickFalse) && (GetPixelBlueTraits(image) & UpdatePixelTrait) != 0) if (IsPixelAtDepth(ClampToQuantum(image->colormap[i].blue),range) == MagickFalse) atDepth=MagickFalse; if ((atDepth != MagickFalse)) break; current_depth[id]++; } } depth=current_depth[0]; for (i=1; i < (ssize_t) number_threads; i++) if (depth < current_depth[i]) depth=current_depth[i]; current_depth=(size_t *) RelinquishMagickMemory(current_depth); return(depth); } image_view=AcquireVirtualCacheView(image,exception); #if !defined(MAGICKCORE_HDRI_SUPPORT) if ((1UL*QuantumRange) <= MaxMap) { size_t *depth_map; /* Scale pixels to desired (optimized with depth map). */ depth_map=(size_t *) AcquireQuantumMemory(MaxMap+1,sizeof(*depth_map)); if (depth_map == (size_t *) NULL) ThrowFatalException(ResourceLimitFatalError,"MemoryAllocationFailed"); for (i=0; i <= (ssize_t) MaxMap; i++) { unsigned int depth; for (depth=1; depth < MAGICKCORE_QUANTUM_DEPTH; depth++) { Quantum pixel; QuantumAny range; range=GetQuantumRange(depth); pixel=(Quantum) i; if (pixel == ScaleAnyToQuantum(ScaleQuantumToAny(pixel,range),range)) break; } depth_map[i]=depth; } #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static) shared(status) \ magick_number_threads(image,image,image->rows,1) #endif for (y=0; y < (ssize_t) image->rows; y++) { const int id = GetOpenMPThreadId(); const Quantum *magick_restrict p; ssize_t x; if (status == MagickFalse) continue; p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception); if (p == (const Quantum *) NULL) continue; for (x=0; x < (ssize_t) image->columns; x++) { ssize_t i; for (i=0; i < (ssize_t) GetPixelChannels(image); i++) { PixelChannel channel = GetPixelChannelChannel(image,i); PixelTrait traits = GetPixelChannelTraits(image,channel); if ((traits & UpdatePixelTrait) == 0) continue; if (depth_map[ScaleQuantumToMap(p[i])] > current_depth[id]) current_depth[id]=depth_map[ScaleQuantumToMap(p[i])]; } p+=GetPixelChannels(image); } if (current_depth[id] == MAGICKCORE_QUANTUM_DEPTH) status=MagickFalse; } image_view=DestroyCacheView(image_view); depth=current_depth[0]; for (i=1; i < (ssize_t) number_threads; i++) if (depth < current_depth[i]) depth=current_depth[i]; depth_map=(size_t *) RelinquishMagickMemory(depth_map); current_depth=(size_t *) RelinquishMagickMemory(current_depth); return(depth); } #endif /* Compute pixel depth. */ #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static) shared(status) \ magick_number_threads(image,image,image->rows,1) #endif for (y=0; y < (ssize_t) image->rows; y++) { const int id = GetOpenMPThreadId(); const Quantum *magick_restrict p; ssize_t x; if (status == MagickFalse) continue; p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception); if (p == (const Quantum *) NULL) continue; for (x=0; x < (ssize_t) image->columns; x++) { ssize_t i; for (i=0; i < (ssize_t) GetPixelChannels(image); i++) { PixelChannel channel; PixelTrait traits; channel=GetPixelChannelChannel(image,i); traits=GetPixelChannelTraits(image,channel); if ((traits & UpdatePixelTrait) == 0) continue; while (current_depth[id] < MAGICKCORE_QUANTUM_DEPTH) { QuantumAny range; range=GetQuantumRange(current_depth[id]); if (p[i] == ScaleAnyToQuantum(ScaleQuantumToAny(p[i],range),range)) break; current_depth[id]++; } } p+=GetPixelChannels(image); } if (current_depth[id] == MAGICKCORE_QUANTUM_DEPTH) status=MagickFalse; } image_view=DestroyCacheView(image_view); depth=current_depth[0]; for (i=1; i < (ssize_t) number_threads; i++) if (depth < current_depth[i]) depth=current_depth[i]; current_depth=(size_t *) RelinquishMagickMemory(current_depth); return(depth); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % G e t I m a g e M i n i m u m B o u n d i n g B o x % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % GetImageMinimumBoundingBox() returns the points that form the minimum % bounding box around the image foreground objects with the "Rotating % Calipers" algorithm. The method also returns these properties: % minimum-bounding-box:area, minimum-bounding-box:width, % minimum-bounding-box:height, and minimum-bounding-box:angle. % % The format of the GetImageMinimumBoundingBox method is: % % PointInfo *GetImageMinimumBoundingBox(Image *image, % size_t number_vertices,ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o number_vertices: the number of vertices in the bounding box. % % o exception: return any errors or warnings in this structure. % */ typedef struct _CaliperInfo { double area, width, height, projection; ssize_t p, q, v; } CaliperInfo; static inline double getAngle(PointInfo *p,PointInfo *q) { /* Get the angle between line (p,q) and horizontal axis, in degrees. */ return(RadiansToDegrees(atan2(q->y-p->y,q->x-p->x))); } static inline double getDistance(PointInfo *p,PointInfo *q) { double distance; distance=hypot(p->x-q->x,p->y-q->y); return(distance*distance); } static inline double getProjection(PointInfo *p,PointInfo *q,PointInfo *v) { double distance; /* Projection of vector (x,y) - p into a line passing through p and q. */ distance=getDistance(p,q); if (distance < MagickEpsilon) return(INFINITY); return((q->x-p->x)*(v->x-p->x)+(v->y-p->y)*(q->y-p->y))/sqrt(distance); } static inline double getFeretDiameter(PointInfo *p,PointInfo *q,PointInfo *v) { double distance; /* Distance from a point (x,y) to a line passing through p and q. */ distance=getDistance(p,q); if (distance < MagickEpsilon) return(INFINITY); return((q->x-p->x)*(v->y-p->y)-(v->x-p->x)*(q->y-p->y))/sqrt(distance); } MagickExport PointInfo *GetImageMinimumBoundingBox(Image *image, size_t *number_vertices,ExceptionInfo *exception) { CaliperInfo caliper_info; const char *artifact; double angle, diameter, distance; PointInfo *bounding_box, *vertices; ssize_t i; size_t number_hull_vertices; /* Generate the minimum bounding box with the "Rotating Calipers" algorithm. */ assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); *number_vertices=0; vertices=GetImageConvexHull(image,&number_hull_vertices,exception); if (vertices == (PointInfo *) NULL) return((PointInfo *) NULL); *number_vertices=4; bounding_box=(PointInfo *) AcquireQuantumMemory(*number_vertices, sizeof(*bounding_box)); if (bounding_box == (PointInfo *) NULL) { vertices=(PointInfo *) RelinquishMagickMemory(vertices); return((PointInfo *) NULL); } caliper_info.area=2.0*image->columns*image->rows; caliper_info.width=(double) image->columns+image->rows; caliper_info.height=0.0; caliper_info.projection=0.0; caliper_info.p=(-1); caliper_info.q=(-1); caliper_info.v=(-1); for (i=0; i < (ssize_t) number_hull_vertices; i++) { double area = 0.0, max_projection = 0.0, min_diameter = -1.0, min_projection = 0.0; ssize_t j, k; ssize_t p = -1, q = -1, v = -1; for (j=0; j < (ssize_t) number_hull_vertices; j++) { double diameter; diameter=fabs(getFeretDiameter(&vertices[i], &vertices[(i+1) % number_hull_vertices],&vertices[j])); if (min_diameter < diameter) { min_diameter=diameter; p=i; q=(i+1) % number_hull_vertices; v=j; } } for (k=0; k < (ssize_t) number_hull_vertices; k++) { double projection; /* Rotating calipers. */ projection=getProjection(&vertices[p],&vertices[q],&vertices[k]); min_projection=MagickMin(min_projection,projection); max_projection=MagickMax(max_projection,projection); } area=min_diameter*(max_projection-min_projection); if (caliper_info.area > area) { caliper_info.area=area; caliper_info.width=min_diameter; caliper_info.height=max_projection-min_projection; caliper_info.projection=max_projection; caliper_info.p=p; caliper_info.q=q; caliper_info.v=v; } } /* Initialize minimum bounding box. */ diameter=getFeretDiameter(&vertices[caliper_info.p], &vertices[caliper_info.q],&vertices[caliper_info.v]); angle=atan2(vertices[caliper_info.q].y-vertices[caliper_info.p].y, vertices[caliper_info.q].x-vertices[caliper_info.p].x); bounding_box[0].x=vertices[caliper_info.p].x+cos(angle)* caliper_info.projection; bounding_box[0].y=vertices[caliper_info.p].y+sin(angle)* caliper_info.projection; bounding_box[1].x=floor(bounding_box[0].x+cos(angle+MagickPI/2.0)*diameter+ 0.5); bounding_box[1].y=floor(bounding_box[0].y+sin(angle+MagickPI/2.0)*diameter+ 0.5); bounding_box[2].x=floor(bounding_box[1].x+cos(angle)*(-caliper_info.height)+ 0.5); bounding_box[2].y=floor(bounding_box[1].y+sin(angle)*(-caliper_info.height)+ 0.5); bounding_box[3].x=floor(bounding_box[2].x+cos(angle+MagickPI/2.0)*(-diameter)+ 0.5); bounding_box[3].y=floor(bounding_box[2].y+sin(angle+MagickPI/2.0)*(-diameter)+ 0.5); /* Export minimum bounding box properties. */ (void) FormatImageProperty(image,"minimum-bounding-box:area","%.*g", GetMagickPrecision(),caliper_info.area); (void) FormatImageProperty(image,"minimum-bounding-box:width","%.*g", GetMagickPrecision(),caliper_info.width); (void) FormatImageProperty(image,"minimum-bounding-box:height","%.*g", GetMagickPrecision(),caliper_info.height); (void) FormatImageProperty(image,"minimum-bounding-box:_p","%.*g,%.*g", GetMagickPrecision(),vertices[caliper_info.p].x, GetMagickPrecision(),vertices[caliper_info.p].y); (void) FormatImageProperty(image,"minimum-bounding-box:_q","%.*g,%.*g", GetMagickPrecision(),vertices[caliper_info.q].x, GetMagickPrecision(),vertices[caliper_info.q].y); (void) FormatImageProperty(image,"minimum-bounding-box:_v","%.*g,%.*g", GetMagickPrecision(),vertices[caliper_info.v].x, GetMagickPrecision(),vertices[caliper_info.v].y); /* Find smallest angle to origin. */ distance=hypot(bounding_box[0].x,bounding_box[0].y); angle=getAngle(&bounding_box[0],&bounding_box[1]); for (i=1; i < 4; i++) { double d = hypot(bounding_box[i].x,bounding_box[i].y); if (d < distance) { distance=d; angle=getAngle(&bounding_box[i],&bounding_box[(i+1) % 4]); } } artifact=GetImageArtifact(image,"minimum-bounding-box:orientation"); if (artifact != (const char *) NULL) { double length, q_length, p_length; PointInfo delta, point; /* Find smallest perpendicular distance from edge to origin. */ point=bounding_box[0]; for (i=1; i < 4; i++) { if (bounding_box[i].x < point.x) point.x=bounding_box[i].x; if (bounding_box[i].y < point.y) point.y=bounding_box[i].y; } for (i=0; i < 4; i++) { bounding_box[i].x-=point.x; bounding_box[i].y-=point.y; } for (i=0; i < 4; i++) { double d, intercept, slope; delta.x=bounding_box[(i+1) % 4].x-bounding_box[i].x; delta.y=bounding_box[(i+1) % 4].y-bounding_box[i].y; slope=delta.y*PerceptibleReciprocal(delta.x); intercept=bounding_box[(i+1) % 4].y-slope*bounding_box[i].x; d=fabs((slope*bounding_box[i].x-bounding_box[i].y+intercept)* PerceptibleReciprocal(sqrt(slope*slope+1.0))); if ((i == 0) || (d < distance)) { distance=d; point=delta; } } angle=RadiansToDegrees(atan(point.y*PerceptibleReciprocal(point.x))); length=hypot(point.x,point.y); p_length=fabs((double) MagickMax(caliper_info.width,caliper_info.height)- length); q_length=fabs(length-(double) MagickMin(caliper_info.width, caliper_info.height)); if (LocaleCompare(artifact,"landscape") == 0) { if (p_length > q_length) angle+=(angle < 0.0) ? 90.0 : -90.0; } else if (LocaleCompare(artifact,"portrait") == 0) { if (p_length < q_length) angle+=(angle >= 0.0) ? 90.0 : -90.0; } } (void) FormatImageProperty(image,"minimum-bounding-box:angle","%.*g", GetMagickPrecision(),angle); (void) FormatImageProperty(image,"minimum-bounding-box:unrotate","%.*g", GetMagickPrecision(),-angle); vertices=(PointInfo *) RelinquishMagickMemory(vertices); return(bounding_box); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % G e t I m a g e Q u a n t u m D e p t h % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % GetImageQuantumDepth() returns the depth of the image rounded to a legal % quantum depth: 8, 16, or 32. % % The format of the GetImageQuantumDepth method is: % % size_t GetImageQuantumDepth(const Image *image, % const MagickBooleanType constrain) % % A description of each parameter follows: % % o image: the image. % % o constrain: A value other than MagickFalse, constrains the depth to % a maximum of MAGICKCORE_QUANTUM_DEPTH. % */ MagickExport size_t GetImageQuantumDepth(const Image *image, const MagickBooleanType constrain) { size_t depth; depth=image->depth; if (depth <= 8) depth=8; else if (depth <= 16) depth=16; else if (depth <= 32) depth=32; else if (depth <= 64) depth=64; if (constrain != MagickFalse) depth=(size_t) MagickMin((double) depth,(double) MAGICKCORE_QUANTUM_DEPTH); return(depth); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % G e t I m a g e T y p e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % GetImageType() returns the type of image: % % Bilevel Grayscale GrayscaleMatte % Palette PaletteMatte TrueColor % TrueColorMatte ColorSeparation ColorSeparationMatte % % The format of the GetImageType method is: % % ImageType GetImageType(const Image *image) % % A description of each parameter follows: % % o image: the image. % */ MagickExport ImageType GetImageType(const Image *image) { assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->colorspace == CMYKColorspace) { if (image->alpha_trait == UndefinedPixelTrait) return(ColorSeparationType); return(ColorSeparationAlphaType); } if (IsImageMonochrome(image) != MagickFalse) return(BilevelType); if (IsImageGray(image) != MagickFalse) { if (image->alpha_trait != UndefinedPixelTrait) return(GrayscaleAlphaType); return(GrayscaleType); } if (IsPaletteImage(image) != MagickFalse) { if (image->alpha_trait != UndefinedPixelTrait) return(PaletteAlphaType); return(PaletteType); } if (image->alpha_trait != UndefinedPixelTrait) return(TrueColorAlphaType); return(TrueColorType); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % I d e n t i f y I m a g e G r a y % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % IdentifyImageGray() returns grayscale if all the pixels in the image have % the same red, green, and blue intensities, and bi-level is the intensity is % either 0 or QuantumRange. Otherwise undefined is returned. % % The format of the IdentifyImageGray method is: % % ImageType IdentifyImageGray(const Image *image,ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o exception: return any errors or warnings in this structure. % */ MagickExport ImageType IdentifyImageGray(const Image *image, ExceptionInfo *exception) { CacheView *image_view; ImageType type; const Quantum *p; ssize_t x; ssize_t y; assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); if ((image->type == BilevelType) || (image->type == GrayscaleType) || (image->type == GrayscaleAlphaType)) return(image->type); if (IssRGBCompatibleColorspace(image->colorspace) == MagickFalse) return(UndefinedType); type=BilevelType; image_view=AcquireVirtualCacheView(image,exception); for (y=0; y < (ssize_t) image->rows; y++) { p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception); if (p == (const Quantum *) NULL) break; for (x=0; x < (ssize_t) image->columns; x++) { if (IsPixelGray(image,p) == MagickFalse) { type=UndefinedType; break; } if ((type == BilevelType) && (IsPixelMonochrome(image,p) == MagickFalse)) type=GrayscaleType; p+=GetPixelChannels(image); } if (type == UndefinedType) break; } image_view=DestroyCacheView(image_view); if ((type == GrayscaleType) && (image->alpha_trait != UndefinedPixelTrait)) type=GrayscaleAlphaType; return(type); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % I d e n t i f y I m a g e M o n o c h r o m e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % IdentifyImageMonochrome() returns MagickTrue if all the pixels in the image % have the same red, green, and blue intensities and the intensity is either % 0 or QuantumRange. % % The format of the IdentifyImageMonochrome method is: % % MagickBooleanType IdentifyImageMonochrome(const Image *image, % ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o exception: return any errors or warnings in this structure. % */ MagickExport MagickBooleanType IdentifyImageMonochrome(const Image *image, ExceptionInfo *exception) { CacheView *image_view; MagickBooleanType bilevel; ssize_t x; const Quantum *p; ssize_t y; assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); if (image->type == BilevelType) return(MagickTrue); if (IssRGBCompatibleColorspace(image->colorspace) == MagickFalse) return(MagickFalse); bilevel=MagickTrue; image_view=AcquireVirtualCacheView(image,exception); for (y=0; y < (ssize_t) image->rows; y++) { p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception); if (p == (const Quantum *) NULL) break; for (x=0; x < (ssize_t) image->columns; x++) { if (IsPixelMonochrome(image,p) == MagickFalse) { bilevel=MagickFalse; break; } p+=GetPixelChannels(image); } if (bilevel == MagickFalse) break; } image_view=DestroyCacheView(image_view); return(bilevel); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % I d e n t i f y I m a g e T y p e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % IdentifyImageType() returns the potential type of image: % % Bilevel Grayscale GrayscaleMatte % Palette PaletteMatte TrueColor % TrueColorMatte ColorSeparation ColorSeparationMatte % % To ensure the image type matches its potential, use SetImageType(): % % (void) SetImageType(image,IdentifyImageType(image,exception),exception); % % The format of the IdentifyImageType method is: % % ImageType IdentifyImageType(const Image *image,ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o exception: return any errors or warnings in this structure. % */ MagickExport ImageType IdentifyImageType(const Image *image, ExceptionInfo *exception) { assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); if (image->colorspace == CMYKColorspace) { if (image->alpha_trait == UndefinedPixelTrait) return(ColorSeparationType); return(ColorSeparationAlphaType); } if (IdentifyImageMonochrome(image,exception) != MagickFalse) return(BilevelType); if (IdentifyImageGray(image,exception) != UndefinedType) { if (image->alpha_trait != UndefinedPixelTrait) return(GrayscaleAlphaType); return(GrayscaleType); } if (IdentifyPaletteImage(image,exception) != MagickFalse) { if (image->alpha_trait != UndefinedPixelTrait) return(PaletteAlphaType); return(PaletteType); } if (image->alpha_trait != UndefinedPixelTrait) return(TrueColorAlphaType); return(TrueColorType); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % I s I m a g e G r a y % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % IsImageGray() returns MagickTrue if the type of the image is grayscale or % bi-level. % % The format of the IsImageGray method is: % % MagickBooleanType IsImageGray(const Image *image) % % A description of each parameter follows: % % o image: the image. % */ MagickExport MagickBooleanType IsImageGray(const Image *image) { assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); if ((image->type == BilevelType) || (image->type == GrayscaleType) || (image->type == GrayscaleAlphaType)) return(MagickTrue); return(MagickFalse); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % I s I m a g e M o n o c h r o m e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % IsImageMonochrome() returns MagickTrue if type of the image is bi-level. % % The format of the IsImageMonochrome method is: % % MagickBooleanType IsImageMonochrome(const Image *image) % % A description of each parameter follows: % % o image: the image. % */ MagickExport MagickBooleanType IsImageMonochrome(const Image *image) { assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->type == BilevelType) return(MagickTrue); return(MagickFalse); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % I s I m a g e O p a q u e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % IsImageOpaque() returns MagickTrue if none of the pixels in the image have % an alpha value other than OpaqueAlpha (QuantumRange). % % Will return true immediatally is alpha channel is not available. % % The format of the IsImageOpaque method is: % % MagickBooleanType IsImageOpaque(const Image *image, % ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o exception: return any errors or warnings in this structure. % */ MagickExport MagickBooleanType IsImageOpaque(const Image *image, ExceptionInfo *exception) { CacheView *image_view; const Quantum *p; ssize_t x; ssize_t y; /* Determine if image is opaque. */ assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); if (image->alpha_trait == UndefinedPixelTrait) return(MagickTrue); image_view=AcquireVirtualCacheView(image,exception); for (y=0; y < (ssize_t) image->rows; y++) { p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception); if (p == (const Quantum *) NULL) break; for (x=0; x < (ssize_t) image->columns; x++) { if (GetPixelAlpha(image,p) != OpaqueAlpha) break; p+=GetPixelChannels(image); } if (x < (ssize_t) image->columns) break; } image_view=DestroyCacheView(image_view); return(y < (ssize_t) image->rows ? MagickFalse : MagickTrue); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % S e t I m a g e D e p t h % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % SetImageDepth() sets the depth of the image. % % The format of the SetImageDepth method is: % % MagickBooleanType SetImageDepth(Image *image,const size_t depth, % ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o channel: the channel. % % o depth: the image depth. % % o exception: return any errors or warnings in this structure. % */ MagickExport MagickBooleanType SetImageDepth(Image *image, const size_t depth,ExceptionInfo *exception) { CacheView *image_view; MagickBooleanType status; QuantumAny range; ssize_t y; assert(image != (Image *) NULL); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"..."); assert(image->signature == MagickCoreSignature); if (depth >= MAGICKCORE_QUANTUM_DEPTH) { image->depth=depth; return(MagickTrue); } range=GetQuantumRange(depth); if (image->storage_class == PseudoClass) { ssize_t i; #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static) shared(status) \ magick_number_threads(image,image,image->colors,1) #endif for (i=0; i < (ssize_t) image->colors; i++) { if ((GetPixelRedTraits(image) & UpdatePixelTrait) != 0) image->colormap[i].red=(double) ScaleAnyToQuantum(ScaleQuantumToAny( ClampPixel(image->colormap[i].red),range),range); if ((GetPixelGreenTraits(image) & UpdatePixelTrait) != 0) image->colormap[i].green=(double) ScaleAnyToQuantum(ScaleQuantumToAny( ClampPixel(image->colormap[i].green),range),range); if ((GetPixelBlueTraits(image) & UpdatePixelTrait) != 0) image->colormap[i].blue=(double) ScaleAnyToQuantum(ScaleQuantumToAny( ClampPixel(image->colormap[i].blue),range),range); if ((GetPixelAlphaTraits(image) & UpdatePixelTrait) != 0) image->colormap[i].alpha=(double) ScaleAnyToQuantum(ScaleQuantumToAny( ClampPixel(image->colormap[i].alpha),range),range); } } status=MagickTrue; image_view=AcquireAuthenticCacheView(image,exception); #if !defined(MAGICKCORE_HDRI_SUPPORT) if ((1UL*QuantumRange) <= MaxMap) { Quantum *depth_map; ssize_t i; /* Scale pixels to desired (optimized with depth map). */ depth_map=(Quantum *) AcquireQuantumMemory(MaxMap+1,sizeof(*depth_map)); if (depth_map == (Quantum *) NULL) ThrowFatalException(ResourceLimitFatalError,"MemoryAllocationFailed"); for (i=0; i <= (ssize_t) MaxMap; i++) depth_map[i]=ScaleAnyToQuantum(ScaleQuantumToAny((Quantum) i,range), range); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static) shared(status) \ magick_number_threads(image,image,image->rows,1) #endif for (y=0; y < (ssize_t) image->rows; y++) { ssize_t x; Quantum *magick_restrict q; if (status == MagickFalse) continue; q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1, exception); if (q == (Quantum *) NULL) { status=MagickFalse; continue; } for (x=0; x < (ssize_t) image->columns; x++) { ssize_t i; for (i=0; i < (ssize_t) GetPixelChannels(image); i++) { PixelChannel channel; PixelTrait traits; channel=GetPixelChannelChannel(image,i); traits=GetPixelChannelTraits(image,channel); if ((traits & UpdatePixelTrait) == 0) continue; q[i]=depth_map[ScaleQuantumToMap(q[i])]; } q+=GetPixelChannels(image); } if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse) { status=MagickFalse; continue; } } image_view=DestroyCacheView(image_view); depth_map=(Quantum *) RelinquishMagickMemory(depth_map); if (status != MagickFalse) image->depth=depth; return(status); } #endif /* Scale pixels to desired depth. */ #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static) shared(status) \ magick_number_threads(image,image,image->rows,1) #endif for (y=0; y < (ssize_t) image->rows; y++) { ssize_t x; Quantum *magick_restrict q; if (status == MagickFalse) continue; q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception); if (q == (Quantum *) NULL) { status=MagickFalse; continue; } for (x=0; x < (ssize_t) image->columns; x++) { ssize_t i; for (i=0; i < (ssize_t) GetPixelChannels(image); i++) { PixelChannel channel; PixelTrait traits; channel=GetPixelChannelChannel(image,i); traits=GetPixelChannelTraits(image,channel); if ((traits & UpdatePixelTrait) == 0) continue; q[i]=ScaleAnyToQuantum(ScaleQuantumToAny(ClampPixel((MagickRealType) q[i]),range),range); } q+=GetPixelChannels(image); } if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse) { status=MagickFalse; continue; } } image_view=DestroyCacheView(image_view); if (status != MagickFalse) image->depth=depth; return(status); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % S e t I m a g e T y p e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % SetImageType() sets the type of image. Choose from these types: % % Bilevel Grayscale GrayscaleMatte % Palette PaletteMatte TrueColor % TrueColorMatte ColorSeparation ColorSeparationMatte % OptimizeType % % The format of the SetImageType method is: % % MagickBooleanType SetImageType(Image *image,const ImageType type, % ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o type: Image type. % % o exception: return any errors or warnings in this structure. % */ MagickExport MagickBooleanType SetImageType(Image *image,const ImageType type, ExceptionInfo *exception) { const char *artifact; ImageInfo *image_info; MagickBooleanType status; QuantizeInfo *quantize_info; assert(image != (Image *) NULL); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"..."); assert(image->signature == MagickCoreSignature); status=MagickTrue; image_info=AcquireImageInfo(); image_info->dither=image->dither; artifact=GetImageArtifact(image,"dither"); if (artifact != (const char *) NULL) (void) SetImageOption(image_info,"dither",artifact); switch (type) { case BilevelType: { status=TransformImageColorspace(image,GRAYColorspace,exception); (void) NormalizeImage(image,exception); quantize_info=AcquireQuantizeInfo(image_info); quantize_info->number_colors=2; quantize_info->colorspace=GRAYColorspace; status=QuantizeImage(quantize_info,image,exception); quantize_info=DestroyQuantizeInfo(quantize_info); image->alpha_trait=UndefinedPixelTrait; break; } case GrayscaleType: { status=TransformImageColorspace(image,GRAYColorspace,exception); image->alpha_trait=UndefinedPixelTrait; break; } case GrayscaleAlphaType: { status=TransformImageColorspace(image,GRAYColorspace,exception); if (image->alpha_trait == UndefinedPixelTrait) (void) SetImageAlphaChannel(image,OpaqueAlphaChannel,exception); break; } case PaletteType: { status=TransformImageColorspace(image,sRGBColorspace,exception); if ((image->storage_class == DirectClass) || (image->colors > 256)) { quantize_info=AcquireQuantizeInfo(image_info); quantize_info->number_colors=256; status=QuantizeImage(quantize_info,image,exception); quantize_info=DestroyQuantizeInfo(quantize_info); } image->alpha_trait=UndefinedPixelTrait; break; } case PaletteBilevelAlphaType: { ChannelType channel_mask; status=TransformImageColorspace(image,sRGBColorspace,exception); if (image->alpha_trait == UndefinedPixelTrait) (void) SetImageAlphaChannel(image,OpaqueAlphaChannel,exception); channel_mask=SetImageChannelMask(image,AlphaChannel); (void) BilevelImage(image,(double) QuantumRange/2.0,exception); (void) SetImageChannelMask(image,channel_mask); quantize_info=AcquireQuantizeInfo(image_info); status=QuantizeImage(quantize_info,image,exception); quantize_info=DestroyQuantizeInfo(quantize_info); break; } case PaletteAlphaType: { status=TransformImageColorspace(image,sRGBColorspace,exception); if (image->alpha_trait == UndefinedPixelTrait) (void) SetImageAlphaChannel(image,OpaqueAlphaChannel,exception); quantize_info=AcquireQuantizeInfo(image_info); quantize_info->colorspace=TransparentColorspace; status=QuantizeImage(quantize_info,image,exception); quantize_info=DestroyQuantizeInfo(quantize_info); break; } case TrueColorType: { status=TransformImageColorspace(image,sRGBColorspace,exception); if (image->storage_class != DirectClass) status=SetImageStorageClass(image,DirectClass,exception); image->alpha_trait=UndefinedPixelTrait; break; } case TrueColorAlphaType: { status=TransformImageColorspace(image,sRGBColorspace,exception); if (image->storage_class != DirectClass) status=SetImageStorageClass(image,DirectClass,exception); if (image->alpha_trait == UndefinedPixelTrait) (void) SetImageAlphaChannel(image,OpaqueAlphaChannel,exception); break; } case ColorSeparationType: { status=TransformImageColorspace(image,CMYKColorspace,exception); if (image->storage_class != DirectClass) status=SetImageStorageClass(image,DirectClass,exception); image->alpha_trait=UndefinedPixelTrait; break; } case ColorSeparationAlphaType: { status=TransformImageColorspace(image,CMYKColorspace,exception); if (image->storage_class != DirectClass) status=SetImageStorageClass(image,DirectClass,exception); if (image->alpha_trait == UndefinedPixelTrait) status=SetImageAlphaChannel(image,OpaqueAlphaChannel,exception); break; } case OptimizeType: case UndefinedType: break; } image_info=DestroyImageInfo(image_info); if (status == MagickFalse) return(status); image->type=type; return(MagickTrue); }