// // Copyright (c) 2017 The Khronos Group Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // #include "harness/compat.h" #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/types.h> #include <sys/stat.h> #include "procs.h" static const char *image_dim_kernel_code = "\n" "__kernel void test_image_dim(read_only image2d_t srcimg, write_only image2d_t dstimg, sampler_t sampler)\n" "{\n" " int tid_x = get_global_id(0);\n" " int tid_y = get_global_id(1);\n" " float4 color;\n" "\n" " color = read_imagef(srcimg, sampler, (int2)(tid_x, tid_y));\n" " write_imagef(dstimg, (int2)(tid_x, tid_y), color);\n" "\n" "}\n"; static unsigned char *generate_8888_image(size_t w, size_t h, MTdata d) { unsigned char *ptr = new unsigned char[4 * w * h]; size_t i; for (i = 0; i < w * h * 4; i++) { ptr[i] = (unsigned char)genrand_int32(d); } return ptr; } static int verify_8888_image(unsigned char *image, unsigned char *outptr, size_t w, size_t h) { size_t i; for (i = 0; i < w * h; i++) { if (outptr[i] != image[i]) return -1; } return 0; } int test_imagedim_pow2(cl_device_id device, cl_context context, cl_command_queue queue, int n_elems) { cl_mem streams[2]; cl_image_format img_format; unsigned char *input_ptr, *output_ptr; cl_program program; cl_kernel kernel; size_t threads[2]; cl_ulong max_mem_size; size_t img_width, max_img_width; size_t img_height, max_img_height; size_t max_img_dim; int i, j, i2, j2, err = 0; size_t max_image2d_width, max_image2d_height; int total_errors = 0; MTdata d; PASSIVE_REQUIRE_IMAGE_SUPPORT( device ) err = create_single_kernel_helper( context, &program, &kernel, 1, &image_dim_kernel_code, "test_image_dim" ); if (err) { log_error("create_program_and_kernel_with_sources failed\n"); return -1; } err = clGetDeviceInfo(device, CL_DEVICE_GLOBAL_MEM_SIZE,sizeof(max_mem_size), &max_mem_size, NULL); if (err) { log_error("clGetDeviceInfo for CL_DEVICE_GLOBAL_MEM_SIZE failed (%d)\n", err); return -1; } err = clGetDeviceInfo(device, CL_DEVICE_IMAGE2D_MAX_WIDTH, sizeof(max_image2d_width), &max_image2d_width, NULL); if (err) { log_error("clGetDeviceInfo for CL_DEVICE_IMAGE2D_MAX_WIDTH failed (%d)\n", err); return -1; } err = clGetDeviceInfo(device, CL_DEVICE_IMAGE2D_MAX_HEIGHT, sizeof(max_image2d_width), &max_image2d_height, NULL); if (err) { log_error("clGetDeviceInfo for CL_DEVICE_IMAGE2D_MAX_HEIGHT failed (%d)\n", err); return -1; } log_info("Device reported max image sizes of %lu x %lu, and max mem size of %gMB.\n", max_image2d_width, max_image2d_height, max_mem_size/(1024.0*1024.0)); if (max_mem_size > (cl_ulong)SIZE_MAX) { max_mem_size = (cl_ulong)SIZE_MAX; } cl_sampler sampler = clCreateSampler(context, CL_FALSE, CL_ADDRESS_CLAMP_TO_EDGE, CL_FILTER_NEAREST, &err); test_error(err, "clCreateSampler failed"); max_img_width = max_image2d_width; max_img_height = max_image2d_height; // determine max image dim we can allocate - assume RGBA image, 4 bytes per pixel, // and we want to consume 1/4 of global memory (this is the minimum required to be // supported by the spec) max_mem_size /= 4; // use 1/4 max_mem_size /= 4; // 4 bytes per pixel max_img_dim = (size_t)sqrt((double)max_mem_size); // convert to a power of 2 { unsigned int n = (unsigned int)max_img_dim; unsigned int m = 0x80000000; // round-down to the nearest power of 2 while (m > n) m >>= 1; max_img_dim = m; } if (max_img_width > max_img_dim) max_img_width = max_img_dim; if (max_img_height > max_img_dim) max_img_height = max_img_dim; log_info("Adjusted maximum image size to test is %d x %d, which is a max mem size of %gMB.\n", max_img_width, max_img_height, (max_img_width*max_img_height*4)/(1024.0*1024.0)); d = init_genrand( gRandomSeed ); input_ptr = generate_8888_image(max_img_width, max_img_height, d); output_ptr = new unsigned char[4 * max_img_width * max_img_height]; // test power of 2 width, height starting at 1 to 4K for (i = 1, i2 = 0; i <= max_img_height; i <<= 1, i2++) { img_height = (1 << i2); for (j = 1, j2 = 0; j <= max_img_width; j <<= 1, j2++) { img_width = (1 << j2); img_format.image_channel_order = CL_RGBA; img_format.image_channel_data_type = CL_UNORM_INT8; streams[0] = create_image_2d(context, CL_MEM_READ_WRITE, &img_format, img_width, img_height, 0, NULL, NULL); if (!streams[0]) { log_error("create_image_2d failed. width = %d, height = %d\n", img_width, img_height); delete[] input_ptr; delete[] output_ptr; free_mtdata(d); return -1; } img_format.image_channel_order = CL_RGBA; img_format.image_channel_data_type = CL_UNORM_INT8; streams[1] = create_image_2d(context, CL_MEM_READ_WRITE, &img_format, img_width, img_height, 0, NULL, NULL); if (!streams[1]) { log_error("create_image_2d failed. width = %d, height = %d\n", img_width, img_height); clReleaseMemObject(streams[0]); delete[] input_ptr; delete[] output_ptr; free_mtdata(d); return -1; } size_t origin[3] = {0,0,0}; size_t region[3] = {img_width, img_height, 1}; err = clEnqueueWriteImage(queue, streams[0], CL_FALSE, origin, region, 0, 0, input_ptr, 0, NULL, NULL); if (err != CL_SUCCESS) { log_error("clWriteImage failed\n"); clReleaseMemObject(streams[0]); clReleaseMemObject(streams[1]); delete[] input_ptr; delete[] output_ptr; free_mtdata(d); return -1; } err = clSetKernelArg(kernel, 0, sizeof streams[0], &streams[0]); err |= clSetKernelArg(kernel, 1, sizeof streams[1], &streams[1]); err |= clSetKernelArg(kernel, 2, sizeof sampler, &sampler); if (err != CL_SUCCESS) { log_error("clSetKernelArgs failed\n"); clReleaseMemObject(streams[0]); clReleaseMemObject(streams[1]); delete[] input_ptr; delete[] output_ptr; free_mtdata(d); return -1; } threads[0] = (size_t)img_width; threads[1] = (size_t)img_height; log_info("Testing image dimensions %d x %d with local threads NULL.\n", img_width, img_height); err = clEnqueueNDRangeKernel( queue, kernel, 2, NULL, threads, NULL, 0, NULL, NULL ); if (err != CL_SUCCESS) { log_error("clEnqueueNDRangeKernel failed\n"); log_error("Image Dimension test failed. image width = %d, image height = %d, local NULL\n", img_width, img_height); clReleaseMemObject(streams[0]); clReleaseMemObject(streams[1]); delete[] input_ptr; delete[] output_ptr; free_mtdata(d); return -1; } err = clEnqueueReadImage(queue, streams[1], CL_TRUE, origin, region, 0, 0, output_ptr, 0, NULL, NULL); if (err != CL_SUCCESS) { log_error("clReadImage failed\n"); log_error("Image Dimension test failed. image width = %d, image height = %d, local NULL\n", img_width, img_height); clReleaseMemObject(streams[0]); clReleaseMemObject(streams[1]); delete[] input_ptr; delete[] output_ptr; free_mtdata(d); return -1; } err = verify_8888_image(input_ptr, output_ptr, img_width, img_height); if (err) { total_errors++; log_error("Image Dimension test failed. image width = %d, image height = %d\n", img_width, img_height); } clReleaseMemObject(streams[0]); clReleaseMemObject(streams[1]); } } // cleanup delete[] input_ptr; delete[] output_ptr; free_mtdata(d); clReleaseSampler(sampler); clReleaseKernel(kernel); clReleaseProgram(program); return total_errors; } int test_imagedim_non_pow2(cl_device_id device, cl_context context, cl_command_queue queue, int n_elems) { cl_mem streams[2]; cl_image_format img_format; unsigned char *input_ptr, *output_ptr; cl_program program; cl_kernel kernel; size_t threads[2], local_threads[2]; cl_ulong max_mem_size; size_t img_width, max_img_width; size_t img_height, max_img_height; size_t max_img_dim; int i, j, i2, j2, err = 0; size_t max_image2d_width, max_image2d_height; int total_errors = 0; size_t max_local_workgroup_size[3]; MTdata d; PASSIVE_REQUIRE_IMAGE_SUPPORT( device ) err = create_single_kernel_helper( context, &program, &kernel, 1, &image_dim_kernel_code, "test_image_dim" ); if (err) { log_error("create_program_and_kernel_with_sources failed\n"); return -1; } size_t work_group_size = 0; err = clGetKernelWorkGroupInfo(kernel, device, CL_KERNEL_WORK_GROUP_SIZE, sizeof(work_group_size), &work_group_size, NULL); test_error(err, "clGetKerenlWorkgroupInfo failed for CL_KERNEL_WORK_GROUP_SIZE"); err = clGetDeviceInfo(device, CL_DEVICE_MAX_WORK_ITEM_SIZES, sizeof(max_local_workgroup_size), max_local_workgroup_size, NULL); test_error(err, "clGetDeviceInfo failed for CL_DEVICE_MAX_WORK_ITEM_SIZES"); err = clGetDeviceInfo(device, CL_DEVICE_GLOBAL_MEM_SIZE,sizeof(max_mem_size), &max_mem_size, NULL); if (err) { log_error("clGetDeviceInfo for CL_DEVICE_GLOBAL_MEM_SIZE failed (%d)\n", err); return -1; } err = clGetDeviceInfo(device, CL_DEVICE_IMAGE2D_MAX_WIDTH, sizeof(max_image2d_width), &max_image2d_width, NULL); if (err) { log_error("clGetDeviceInfo for CL_DEVICE_IMAGE2D_MAX_WIDTH failed (%d)\n", err); return -1; } err = clGetDeviceInfo(device, CL_DEVICE_IMAGE2D_MAX_HEIGHT, sizeof(max_image2d_width), &max_image2d_height, NULL); if (err) { log_error("clGetDeviceInfo for CL_DEVICE_IMAGE2D_MAX_HEIGHT failed (%d)\n", err); return -1; } log_info("Device reported max image sizes of %lu x %lu, and max mem size of %gMB.\n", max_image2d_width, max_image2d_height, max_mem_size/(1024.0*1024.0)); cl_sampler sampler = clCreateSampler(context, CL_FALSE, CL_ADDRESS_CLAMP_TO_EDGE, CL_FILTER_NEAREST, &err); test_error(err, "clCreateSampler failed"); max_img_width = (int)max_image2d_width; max_img_height = (int)max_image2d_height; if (max_mem_size > (cl_ulong)SIZE_MAX) { max_mem_size = (cl_ulong)SIZE_MAX; } // determine max image dim we can allocate - assume RGBA image, 4 bytes per pixel, // and we want to consume 1/4 of global memory (this is the minimum required to be // supported by the spec) max_mem_size /= 4; // use 1/4 max_mem_size /= 4; // 4 bytes per pixel max_img_dim = (int)sqrt((double)max_mem_size); // convert to a power of 2 { unsigned int n = (unsigned int)max_img_dim; unsigned int m = 0x80000000; // round-down to the nearest power of 2 while (m > n) m >>= 1; max_img_dim = (int)m; } if (max_img_width > max_img_dim) max_img_width = max_img_dim; if (max_img_height > max_img_dim) max_img_height = max_img_dim; log_info("Adjusted maximum image size to test is %d x %d, which is a max mem size of %gMB.\n", max_img_width, max_img_height, (max_img_width*max_img_height*4)/(1024.0*1024.0)); d = init_genrand( gRandomSeed ); input_ptr = generate_8888_image(max_img_width, max_img_height, d); output_ptr = new unsigned char[4 * max_img_width * max_img_height]; int plus_minus; for (plus_minus = 0; plus_minus < 3; plus_minus++) { // test power of 2 width, height starting at 1 to 4K for (i=2,i2=1; i<=max_img_height; i<<=1,i2++) { img_height = (1 << i2); for (j=2,j2=1; j<=max_img_width; j<<=1,j2++) { img_width = (1 << j2); size_t effective_img_height = img_height; size_t effective_img_width = img_width; local_threads[0] = 1; local_threads[1] = 1; switch (plus_minus) { case 0: effective_img_height--; local_threads[0] = work_group_size > max_local_workgroup_size[0] ? max_local_workgroup_size[0] : work_group_size; while (img_width%local_threads[0] != 0) local_threads[0]--; break; case 1: effective_img_width--; local_threads[1] = work_group_size > max_local_workgroup_size[1] ? max_local_workgroup_size[1] : work_group_size; while (img_height%local_threads[1] != 0) local_threads[1]--; break; case 2: effective_img_width--; effective_img_height--; break; default: break; } img_format.image_channel_order = CL_RGBA; img_format.image_channel_data_type = CL_UNORM_INT8; streams[0] = create_image_2d( context, CL_MEM_READ_WRITE, &img_format, effective_img_width, effective_img_height, 0, NULL, NULL); if (!streams[0]) { log_error("create_image_2d failed. width = %d, height = %d\n", effective_img_width, effective_img_height); delete[] input_ptr; delete[] output_ptr; free_mtdata(d); return -1; } img_format.image_channel_order = CL_RGBA; img_format.image_channel_data_type = CL_UNORM_INT8; streams[1] = create_image_2d( context, CL_MEM_READ_WRITE, &img_format, effective_img_width, effective_img_height, 0, NULL, NULL); if (!streams[1]) { log_error("create_image_2d failed. width = %d, height = %d\n", effective_img_width, effective_img_height); clReleaseMemObject(streams[0]); delete[] input_ptr; delete[] output_ptr; free_mtdata(d); return -1; } size_t origin[3] = {0,0,0}; size_t region[3] = {effective_img_width, effective_img_height, 1}; err = clEnqueueWriteImage(queue, streams[0], CL_FALSE, origin, region, 0, 0, input_ptr, 0, NULL, NULL); if (err != CL_SUCCESS) { log_error("clWriteImage failed\n"); clReleaseMemObject(streams[0]); clReleaseMemObject(streams[1]); delete[] input_ptr; delete[] output_ptr; free_mtdata(d); return -1; } err = clSetKernelArg(kernel, 0, sizeof streams[0], &streams[0]); err |= clSetKernelArg(kernel, 1, sizeof streams[1], &streams[1]); err |= clSetKernelArg(kernel, 2, sizeof sampler, &sampler); if (err != CL_SUCCESS) { log_error("clSetKernelArgs failed\n"); clReleaseMemObject(streams[0]); clReleaseMemObject(streams[1]); delete[] input_ptr; delete[] output_ptr; free_mtdata(d); return -1; } threads[0] = (size_t)effective_img_width; threads[1] = (size_t)effective_img_height; log_info("Testing image dimensions %d x %d with local threads %d x %d.\n", effective_img_width, effective_img_height, (int)local_threads[0], (int)local_threads[1]); err = clEnqueueNDRangeKernel( queue, kernel, 2, NULL, threads, local_threads, 0, NULL, NULL ); if (err != CL_SUCCESS) { log_error("clEnqueueNDRangeKernel failed\n"); log_error("Image Dimension test failed. image width = %d, image height = %d, local %d x %d\n", effective_img_width, effective_img_height, (int)local_threads[0], (int)local_threads[1]); clReleaseMemObject(streams[0]); clReleaseMemObject(streams[1]); delete[] input_ptr; delete[] output_ptr; free_mtdata(d); return -1; } err = clEnqueueReadImage(queue, streams[1], CL_TRUE, origin, region, 0, 0, output_ptr, 0, NULL, NULL); if (err != CL_SUCCESS) { log_error("clReadImage failed\n"); log_error("Image Dimension test failed. image width = %d, image height = %d, local %d x %d\n", effective_img_width, effective_img_height, (int)local_threads[0], (int)local_threads[1]); clReleaseMemObject(streams[0]); clReleaseMemObject(streams[1]); delete[] input_ptr; delete[] output_ptr; free_mtdata(d); return -1; } err = verify_8888_image(input_ptr, output_ptr, effective_img_width, effective_img_height); if (err) { total_errors++; log_error("Image Dimension test failed. image width = %d, image height = %d\n", effective_img_width, effective_img_height); } clReleaseMemObject(streams[0]); clReleaseMemObject(streams[1]); } } } // cleanup delete[] input_ptr; delete[] output_ptr; free_mtdata(d); clReleaseSampler(sampler); clReleaseKernel(kernel); clReleaseProgram(program); return total_errors; }