// // Copyright (c) 2017 The Khronos Group Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // #include "harness/compat.h" #include #include #include #include #include #include "procs.h" #include "harness/conversions.h" #include "harness/typeWrappers.h" struct work_item_data { cl_uint workDim; cl_uint globalSize[ 3 ]; cl_uint globalID[ 3 ]; cl_uint localSize[ 3 ]; cl_uint localID[ 3 ]; cl_uint numGroups[ 3 ]; cl_uint groupID[ 3 ]; }; static const char *workItemKernelCode = "typedef struct {\n" " uint workDim;\n" " uint globalSize[ 3 ];\n" " uint globalID[ 3 ];\n" " uint localSize[ 3 ];\n" " uint localID[ 3 ];\n" " uint numGroups[ 3 ];\n" " uint groupID[ 3 ];\n" " } work_item_data;\n" "\n" "__kernel void sample_kernel( __global work_item_data *outData )\n" "{\n" " int id = get_global_id(0);\n" " outData[ id ].workDim = (uint)get_work_dim();\n" " for( uint i = 0; i < get_work_dim(); i++ )\n" " {\n" " outData[ id ].globalSize[ i ] = (uint)get_global_size( i );\n" " outData[ id ].globalID[ i ] = (uint)get_global_id( i );\n" " outData[ id ].localSize[ i ] = (uint)get_local_size( i );\n" " outData[ id ].localID[ i ] = (uint)get_local_id( i );\n" " outData[ id ].numGroups[ i ] = (uint)get_num_groups( i );\n" " outData[ id ].groupID[ i ] = (uint)get_group_id( i );\n" " }\n" "}"; #define NUM_TESTS 1 int test_work_item_functions(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements) { int error; clProgramWrapper program; clKernelWrapper kernel; clMemWrapper outData; work_item_data testData[ 10240 ]; size_t threads[3], localThreads[3]; MTdata d; error = create_single_kernel_helper( context, &program, &kernel, 1, &workItemKernelCode, "sample_kernel" ); test_error( error, "Unable to create testing kernel" ); outData = clCreateBuffer( context, CL_MEM_READ_WRITE, sizeof( testData ), NULL, &error ); test_error( error, "Unable to create output buffer" ); error = clSetKernelArg( kernel, 0, sizeof( outData ), &outData ); test_error( error, "Unable to set kernel arg" ); d = init_genrand( gRandomSeed ); for( size_t dim = 1; dim <= 3; dim++ ) { for( int i = 0; i < NUM_TESTS; i++ ) { size_t numItems = 1; for( size_t j = 0; j < dim; j++ ) { // All of our thread sizes should be within the max local sizes, since they're all <= 20 threads[ j ] = (size_t)random_in_range( 1, 20, d ); localThreads[ j ] = threads[ j ] / (size_t)random_in_range( 1, (int)threads[ j ], d ); while( localThreads[ j ] > 1 && ( threads[ j ] % localThreads[ j ] != 0 ) ) localThreads[ j ]--; numItems *= threads[ j ]; // Hack for now: localThreads > 1 are iffy localThreads[ j ] = 1; } error = clEnqueueNDRangeKernel( queue, kernel, (cl_uint)dim, NULL, threads, localThreads, 0, NULL, NULL ); test_error( error, "Unable to run kernel" ); error = clEnqueueReadBuffer( queue, outData, CL_TRUE, 0, sizeof( testData ), testData, 0, NULL, NULL ); test_error( error, "Unable to read results" ); // Validate for( size_t q = 0; q < threads[0]; q++ ) { // We can't really validate the actual value of each one, but we can validate that they're within a sane range if( testData[ q ].workDim != (cl_uint)dim ) { log_error( "ERROR: get_work_dim() did not return proper value for %d dimensions (expected %d, got %d)\n", (int)dim, (int)dim, (int)testData[ q ].workDim ); free_mtdata(d); return -1; } for( size_t j = 0; j < dim; j++ ) { if( testData[ q ].globalSize[ j ] != (cl_uint)threads[ j ] ) { log_error( "ERROR: get_global_size(%d) did not return proper value for %d dimensions (expected %d, got %d)\n", (int)j, (int)dim, (int)threads[ j ], (int)testData[ q ].globalSize[ j ] ); free_mtdata(d); return -1; } if (testData[q].globalID[j] >= (cl_uint)threads[j]) { log_error( "ERROR: get_global_id(%d) did not return proper value for %d dimensions (max %d, got %d)\n", (int)j, (int)dim, (int)threads[ j ], (int)testData[ q ].globalID[ j ] ); free_mtdata(d); return -1; } if( testData[ q ].localSize[ j ] != (cl_uint)localThreads[ j ] ) { log_error( "ERROR: get_local_size(%d) did not return proper value for %d dimensions (expected %d, got %d)\n", (int)j, (int)dim, (int)localThreads[ j ], (int)testData[ q ].localSize[ j ] ); free_mtdata(d); return -1; } if (testData[q].localID[j] >= (cl_uint)localThreads[j]) { log_error( "ERROR: get_local_id(%d) did not return proper value for %d dimensions (max %d, got %d)\n", (int)j, (int)dim, (int)localThreads[ j ], (int)testData[ q ].localID[ j ] ); free_mtdata(d); return -1; } size_t groupCount = ( threads[ j ] + localThreads[ j ] - 1 ) / localThreads[ j ]; if( testData[ q ].numGroups[ j ] != (cl_uint)groupCount ) { log_error( "ERROR: get_num_groups(%d) did not return proper value for %d dimensions (expected %d with global dim %d and local dim %d, got %d)\n", (int)j, (int)dim, (int)groupCount, (int)threads[ j ], (int)localThreads[ j ], (int)testData[ q ].numGroups[ j ] ); free_mtdata(d); return -1; } if (testData[q].groupID[j] >= (cl_uint)groupCount) { log_error( "ERROR: get_group_id(%d) did not return proper value for %d dimensions (max %d, got %d)\n", (int)j, (int)dim, (int)groupCount, (int)testData[ q ].groupID[ j ] ); free_mtdata(d); return -1; } } } } } free_mtdata(d); return 0; }