// // Copyright (c) 2017 The Khronos Group Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // #include #include #include "harness/testHarness.h" #include "harness/typeWrappers.h" #include #include "procs.h" #include "utils.h" #include #ifdef CL_VERSION_2_0 extern int gWimpyMode; static const char *helper_ndrange_1d_glo[] = { NL, "void block_fn(int len, __global atomic_uint* val)" NL, "{" NL, " atomic_fetch_add_explicit(&val[get_global_linear_id() % len], 1u, " "memory_order_relaxed, memory_scope_device);" NL, "}" NL, "" NL, "kernel void helper_ndrange_1d_glo(__global int* res, uint n, uint len, " "__global uint* glob_size_arr, __global uint* loc_size_arr, __global " "atomic_uint* val, __global uint* ofs_arr)" NL, "{" NL, " size_t tid = get_global_id(0);" NL, " void (^kernelBlock)(void) = ^{ block_fn(len, val); };" NL, "" NL, " for(int i = 0; i < n; i++)" NL, " {" NL, " ndrange_t ndrange = ndrange_1D(glob_size_arr[i]);" NL, " int enq_res = enqueue_kernel(get_default_queue(), " "CLK_ENQUEUE_FLAGS_WAIT_KERNEL, ndrange, kernelBlock);" NL, " if(enq_res != CLK_SUCCESS) { res[tid] = -1; return; }" NL, " }" NL, "}" NL }; static const char *helper_ndrange_1d_loc[] = { NL, "void block_fn(int len, __global atomic_uint* val)" NL, "{" NL, " atomic_fetch_add_explicit(&val[get_global_linear_id() % len], 1u, " "memory_order_relaxed, memory_scope_device);" NL, "}" NL, "" NL, "kernel void helper_ndrange_1d_loc(__global int* res, uint n, uint len, " "__global uint* glob_size_arr, __global uint* loc_size_arr, __global " "atomic_uint* val, __global uint* ofs_arr)" NL, "{" NL, " size_t tid = get_global_id(0);" NL, " void (^kernelBlock)(void) = ^{ block_fn(len, val); };" NL, "" NL, " for(int k = 0; k < n; k++)" NL, " {" NL, " for(int i = 0; i < n; i++)" NL, " {" NL, " if (glob_size_arr[i] >= loc_size_arr[k])" NL, " {" NL, " ndrange_t ndrange = ndrange_1D(glob_size_arr[i], " "loc_size_arr[k]);" NL, " int enq_res = enqueue_kernel(get_default_queue(), " "CLK_ENQUEUE_FLAGS_WAIT_KERNEL, ndrange, kernelBlock);" NL, " if(enq_res != CLK_SUCCESS) { res[tid] = -1; return; }" NL, " }" NL, " }" NL, " }" NL, "}" NL }; static const char *helper_ndrange_1d_ofs[] = { NL, "void block_fn(int len, __global atomic_uint* val)" NL, "{" NL, " atomic_fetch_add_explicit(&val[(get_global_offset(0) + " "get_global_linear_id()) % len], 1u, memory_order_relaxed, " "memory_scope_device);" NL, "}" NL, "" NL, "kernel void helper_ndrange_1d_ofs(__global int* res, uint n, uint len, " "__global uint* glob_size_arr, __global uint* loc_size_arr, __global " "atomic_uint* val, __global uint* ofs_arr)" NL, "{" NL, " size_t tid = get_global_id(0);" NL, " void (^kernelBlock)(void) = ^{ block_fn(len, val); };" NL, "" NL, " for(int l = 0; l < n; l++)" NL, " {" NL, " for(int k = 0; k < n; k++)" NL, " {" NL, " for(int i = 0; i < n; i++)" NL, " {" NL, " if (glob_size_arr[i] >= loc_size_arr[k])" NL, " {" NL, " ndrange_t ndrange = ndrange_1D(ofs_arr[l], glob_size_arr[i], " "loc_size_arr[k]);" NL, " int enq_res = enqueue_kernel(get_default_queue(), " "CLK_ENQUEUE_FLAGS_WAIT_KERNEL, ndrange, kernelBlock);" NL, " if(enq_res != CLK_SUCCESS) { res[tid] = -1; return; }" NL, " }" NL, " }" NL, " }" NL, " }" NL, "}" NL }; static const char *helper_ndrange_2d_glo[] = { NL, "void block_fn(int len, __global atomic_uint* val)" NL, "{" NL, " atomic_fetch_add_explicit(&val[get_global_linear_id() % len], 1u, " "memory_order_relaxed, memory_scope_device);" NL, "}" NL, "" NL, "kernel void helper_ndrange_2d_glo(__global int* res, uint n, uint len, " "__global uint* glob_size_arr, __global uint* loc_size_arr, __global int* " "val, __global uint* ofs_arr)" NL, "{" NL, " size_t tid = get_global_id(0);" NL, " void (^kernelBlock)(void) = ^{ block_fn(len, val); };" NL, "" NL, " for(int i = 0; i < n; i++)" NL, " {" NL, " size_t glob_size[2] = { glob_size_arr[i], glob_size_arr[(i + 1) % n] " "};" NL, " ndrange_t ndrange = ndrange_2D(glob_size);" NL, " int enq_res = enqueue_kernel(get_default_queue(), " "CLK_ENQUEUE_FLAGS_WAIT_KERNEL, ndrange, kernelBlock);" NL, " if(enq_res != CLK_SUCCESS) { res[tid] = -1; return; }" NL, " }" NL, "}" NL }; static const char *helper_ndrange_2d_loc[] = { NL, "void block_fn(int len, __global atomic_uint* val)" NL, "{" NL, " atomic_fetch_add_explicit(&val[get_global_linear_id() % len], 1u, " "memory_order_relaxed, memory_scope_device);" NL, "}" NL, "" NL, "kernel void helper_ndrange_2d_loc(__global int* res, uint n, uint len, " "__global uint* glob_size_arr, __global uint* loc_size_arr, __global int* " "val, __global uint* ofs_arr)" NL, "{" NL, " size_t tid = get_global_id(0);" NL, " void (^kernelBlock)(void) = ^{ block_fn(len, val); };" NL, "" NL, " for(int k = 0; k < n; k++)" NL, " {" NL, " for(int i = 0; i < n; i++)" NL, " {" NL, " if (glob_size_arr[(i + 1) % n] >= loc_size_arr[k])" NL, " {" NL, " size_t glob_size[] = { glob_size_arr[i], glob_size_arr[(i + 1) % " "n] };" NL, " size_t loc_size[] = { 1, loc_size_arr[k] };" NL, "" NL, " ndrange_t ndrange = ndrange_2D(glob_size, loc_size);" NL, " int enq_res = enqueue_kernel(get_default_queue(), " "CLK_ENQUEUE_FLAGS_WAIT_KERNEL, ndrange, kernelBlock);" NL, " if(enq_res != CLK_SUCCESS) { res[tid] = -1; return; }" NL, " }" NL, " }" NL, " }" NL, "}" NL }; static const char *helper_ndrange_2d_ofs[] = { NL, "void block_fn(int len, __global atomic_uint* val)" NL, "{" NL, " atomic_fetch_add_explicit(&val[(get_global_offset(1) * " "get_global_size(0) + get_global_offset(0) + get_global_linear_id()) % " "len], 1u, memory_order_relaxed, memory_scope_device);" NL, "}" NL, "" NL, "kernel void helper_ndrange_2d_ofs(__global int* res, uint n, uint len, " "__global uint* glob_size_arr, __global uint* loc_size_arr, __global int* " "val, __global uint* ofs_arr)" NL, "{" NL, " size_t tid = get_global_id(0);" NL, " void (^kernelBlock)(void) = ^{ block_fn(len, val); };" NL, "" NL, " for(int l = 0; l < n; l++)" NL, " {" NL, " for(int k = 0; k < n; k++)" NL, " {" NL, " for(int i = 0; i < n; i++)" NL, " {" NL, " if (glob_size_arr[(i + 1) % n] >= loc_size_arr[k])" NL, " {" NL, " size_t glob_size[] = { glob_size_arr[i], glob_size_arr[(i + 1) " "% n]};" NL, " size_t loc_size[] = { 1, loc_size_arr[k] };" NL, " size_t ofs[] = { ofs_arr[l], ofs_arr[(l + 1) % n] };" NL, "" NL, " ndrange_t ndrange = ndrange_2D(ofs,glob_size,loc_size);" NL, " int enq_res = enqueue_kernel(get_default_queue(), " "CLK_ENQUEUE_FLAGS_WAIT_KERNEL, ndrange, kernelBlock);" NL, " if(enq_res != CLK_SUCCESS) { res[tid] = -1; return; }" NL, " }" NL, " }" NL, " }" NL, " }" NL, "}" NL }; static const char *helper_ndrange_3d_glo[] = { NL, "void block_fn(int len, __global atomic_uint* val)" NL, "{" NL, " atomic_fetch_add_explicit(&val[get_global_linear_id() % len], 1u, " "memory_order_relaxed, memory_scope_device);" NL, "}" NL, "" NL, "kernel void helper_ndrange_3d_glo(__global int* res, uint n, uint len, " "__global uint* glob_size_arr, __global uint* loc_size_arr, __global int* " "val, __global uint* ofs_arr)" NL, "{" NL, " size_t tid = get_global_id(0);" NL, " void (^kernelBlock)(void) = ^{ block_fn(len, val); };" NL, "" NL, " for(int i = 0; i < n; i++)" NL, " {" NL, " uint global_work_size = glob_size_arr[i] * glob_size_arr[(i + 1) % " "n] * glob_size_arr[(i + 2) % n];" NL, " if (global_work_size <= (len * len))" NL, " {" NL, " size_t glob_size[3] = { glob_size_arr[i], glob_size_arr[(i + 1) % " "n], glob_size_arr[(i + 2) % n] };" NL, " ndrange_t ndrange = ndrange_3D(glob_size);" NL, " int enq_res = enqueue_kernel(get_default_queue(), " "CLK_ENQUEUE_FLAGS_WAIT_KERNEL, ndrange, kernelBlock);" NL, " if(enq_res != CLK_SUCCESS) { res[tid] = -1; return; }" NL, " }" NL, " }" NL, "}" NL }; static const char *helper_ndrange_3d_loc[] = { NL, "void block_fn(int len, __global atomic_uint* val)" NL, "{" NL, " atomic_fetch_add_explicit(&val[get_global_linear_id() % len], 1u, " "memory_order_relaxed, memory_scope_device);" NL, "}" NL, "" NL, "kernel void helper_ndrange_3d_loc(__global int* res, uint n, uint len, " "__global uint* glob_size_arr, __global uint* loc_size_arr, __global int* " "val, __global uint* ofs_arr)" NL, "{" NL, " size_t tid = get_global_id(0);" NL, " void (^kernelBlock)(void) = ^{ block_fn(len, val); };" NL, "" NL, " for(int k = 0; k < n; k++)" NL, " {" NL, " for(int i = 0; i < n; i++)" NL, " {" NL, " uint global_work_size = glob_size_arr[i] * glob_size_arr[(i + 1) % " "n] * glob_size_arr[(i + 2) % n];" NL, " if (glob_size_arr[(i + 2) % n] >= loc_size_arr[k] && " "global_work_size <= (len * len))" NL, " {" NL, " size_t glob_size[] = { glob_size_arr[i], glob_size_arr[(i + 1) % " "n], glob_size_arr[(i + 2) % n] };" NL, " size_t loc_size[] = { 1, 1, loc_size_arr[k] };" NL, " ndrange_t ndrange = ndrange_3D(glob_size,loc_size);" NL, " int enq_res = enqueue_kernel(get_default_queue(), " "CLK_ENQUEUE_FLAGS_WAIT_KERNEL, ndrange, kernelBlock);" NL, " " NL, " if(enq_res != CLK_SUCCESS) { res[tid] = -1; return; }" NL, " }" NL, " }" NL, " }" NL, "}" NL }; static const char *helper_ndrange_3d_ofs[] = { NL, "void block_fn(int len, __global atomic_uint* val)" NL, "{" NL, " atomic_fetch_add_explicit(&val[(get_global_offset(2) * " "get_global_size(0) * get_global_size(1) + get_global_offset(1) * " "get_global_size(0) + get_global_offset(0) + get_global_linear_id()) % " "len], 1u, memory_order_relaxed, memory_scope_device);" NL, "}" NL, "" NL, "kernel void helper_ndrange_3d_ofs(__global int* res, uint n, uint len, " "__global uint* glob_size_arr, __global uint* loc_size_arr, __global int* " "val, __global uint* ofs_arr)" NL, "{" NL, " size_t tid = get_global_id(0);" NL, " void (^kernelBlock)(void) = ^{ block_fn(len, val); };" NL, "" NL, " for(int l = 0; l < n; l++)" NL, " {" NL, " for(int k = 0; k < n; k++)" NL, " {" NL, " for(int i = 0; i < n; i++)" NL, " {" NL, " uint global_work_size = glob_size_arr[i] * glob_size_arr[(i + 1) " "% n] * glob_size_arr[(i + 2) % n];" NL, " if (glob_size_arr[(i + 2) % n] >= loc_size_arr[k] && " "global_work_size <= (len * len))" NL, " {" NL, " size_t glob_size[3] = { glob_size_arr[i], glob_size_arr[(i + 1) " "% n], glob_size_arr[(i + 2) % n]};" NL, " size_t loc_size[3] = { 1, 1, loc_size_arr[k] };" NL, " size_t ofs[3] = { ofs_arr[l], ofs_arr[(l + 1) % n], ofs_arr[(l " "+ 2) % n] };" NL, " ndrange_t ndrange = ndrange_3D(ofs,glob_size,loc_size);" NL, " int enq_res = enqueue_kernel(get_default_queue(), " "CLK_ENQUEUE_FLAGS_WAIT_KERNEL, ndrange, kernelBlock);" NL, " if(enq_res != CLK_SUCCESS) { res[tid] = -1; return; }" NL, " }" NL, " }" NL, " }" NL, " }" NL, "}" NL }; static const kernel_src_dim_check sources_ndrange_Xd[] = { { KERNEL(helper_ndrange_1d_glo), 1, CL_FALSE, CL_FALSE}, { KERNEL(helper_ndrange_1d_loc), 1, CL_TRUE, CL_FALSE}, { KERNEL(helper_ndrange_1d_ofs), 1, CL_TRUE, CL_TRUE}, { KERNEL(helper_ndrange_2d_glo), 2, CL_FALSE, CL_FALSE}, { KERNEL(helper_ndrange_2d_loc), 2, CL_TRUE, CL_FALSE}, { KERNEL(helper_ndrange_2d_ofs), 2, CL_TRUE, CL_TRUE}, { KERNEL(helper_ndrange_3d_glo), 3, CL_FALSE, CL_FALSE}, { KERNEL(helper_ndrange_3d_loc), 3, CL_TRUE, CL_FALSE}, { KERNEL(helper_ndrange_3d_ofs), 3, CL_TRUE, CL_TRUE}, }; static const size_t num_kernels_ndrange_Xd = arr_size(sources_ndrange_Xd); static int check_kernel_results(cl_int* results, cl_int len) { for(cl_int i = 0; i < len; ++i) { if(results[i] != 0) return i; } return -1; } void generate_reference_1D(std::vector &reference_results, std::vector &glob_size_arr) { for (size_t g = 0; g < glob_size_arr.size(); ++g) { for (size_t w = 0; w < glob_size_arr[g]; ++w) { ++reference_results[w]; } } } void generate_reference_1D_local(std::vector &reference_results, std::vector &glob_size_arr, std::vector &loc_size_arr) { for (size_t g = 0; g < glob_size_arr.size(); ++g) { for (size_t l = 0; l < loc_size_arr.size(); ++l) { if (glob_size_arr[g] >= loc_size_arr[l]) { for (size_t w = 0; w < glob_size_arr[g]; ++w) { ++reference_results[w]; } } } } } void generate_reference_1D_offset(std::vector &reference_results, std::vector &glob_size_arr, std::vector &loc_size_arr, std::vector &offset, cl_uint len) { for (size_t g = 0; g < glob_size_arr.size(); ++g) { for (size_t l = 0; l < loc_size_arr.size(); ++l) { if (glob_size_arr[g] >= loc_size_arr[l]) { for (size_t o = 0; o < offset.size(); ++o) { for (size_t w = 0; w < glob_size_arr[g]; ++w) { ++reference_results[(offset[o] + w) % len]; } } } } } } void generate_reference_2D(std::vector &reference_results, std::vector &glob_size_arr, cl_uint len) { for (size_t g = 0; g < glob_size_arr.size(); ++g) { for (size_t h = 0; h < glob_size_arr[(g + 1) % glob_size_arr.size()]; ++h) { for (size_t w = 0; w < glob_size_arr[g]; ++w) { ++reference_results[(h * glob_size_arr[g] + w) % len]; } } } } void generate_reference_2D_local(std::vector &reference_results, std::vector &glob_size_arr, std::vector &loc_size_arr, cl_uint len) { size_t n = glob_size_arr.size(); for (size_t g = 0; g < glob_size_arr.size(); ++g) { for (size_t l = 0; l < loc_size_arr.size(); ++l) { if (glob_size_arr[(g + 1) % n] >= loc_size_arr[l]) { for (size_t h = 0; h < glob_size_arr[(g + 1) % n]; ++h) { for (size_t w = 0; w < glob_size_arr[g]; ++w) { ++reference_results[(h * glob_size_arr[g] + w) % len]; } } } } } } void generate_reference_2D_offset(std::vector &reference_results, std::vector &glob_size_arr, std::vector &loc_size_arr, std::vector &offset, cl_uint len) { size_t n = glob_size_arr.size(); for (size_t g = 0; g < glob_size_arr.size(); ++g) { for (size_t l = 0; l < loc_size_arr.size(); ++l) { if (glob_size_arr[(g + 1) % n] >= loc_size_arr[l]) { for (size_t o = 0; o < offset.size(); ++o) { for (size_t h = 0; h < glob_size_arr[(g + 1) % n]; ++h) { for (size_t w = 0; w < glob_size_arr[g]; ++w) { ++reference_results[(glob_size_arr[g] * offset[(o + 1) % n] + offset[o] + h * glob_size_arr[g] + w) % len]; } } } } } } } void generate_reference_3D(std::vector &reference_results, std::vector &glob_size_arr, cl_uint len) { size_t n = glob_size_arr.size(); for (size_t g = 0; g < glob_size_arr.size(); ++g) { size_t global_work_size = glob_size_arr[(g + 2) % n] * glob_size_arr[(g + 1) % n] * glob_size_arr[g]; if(global_work_size <= (len * len)) { for (size_t d = 0; d < glob_size_arr[(g + 2) % n]; ++d) { for (size_t h = 0; h < glob_size_arr[(g + 1) % n]; ++h) { for (size_t w = 0; w < glob_size_arr[g]; ++w) { ++reference_results[(d * glob_size_arr[(g + 1) % n] * glob_size_arr[g] + h * glob_size_arr[g] + w) % len]; } } } } } } void generate_reference_3D_local(std::vector &reference_results, std::vector &glob_size_arr, std::vector &loc_size_arr, cl_uint len) { size_t n = glob_size_arr.size(); for (size_t g = 0; g < glob_size_arr.size(); ++g) { for (size_t l = 0; l < loc_size_arr.size(); ++l) { size_t global_work_size = glob_size_arr[(g + 2) % n] * glob_size_arr[(g + 1) % n] * glob_size_arr[g]; if (glob_size_arr[(g + 2) % n] >= loc_size_arr[l] && global_work_size <= (len * len)) { for (size_t d = 0; d < glob_size_arr[(g + 2) % n]; ++d) { for (size_t h = 0; h < glob_size_arr[(g + 1) % n]; ++h) { for (size_t w = 0; w < glob_size_arr[g]; ++w) { ++reference_results[(d * glob_size_arr[(g + 1) % n] * glob_size_arr[g] + h * glob_size_arr[g] + w) % len]; } } } } } } } void generate_reference_3D_offset(std::vector &reference_results, std::vector &glob_size_arr, std::vector &loc_size_arr, std::vector &offset, cl_uint len) { size_t n = glob_size_arr.size(); for (size_t g = 0; g < glob_size_arr.size(); ++g) { for (size_t l = 0; l < loc_size_arr.size(); ++l) { size_t global_work_size = glob_size_arr[(g + 2) % n] * glob_size_arr[(g + 1) % n] * glob_size_arr[g]; if (glob_size_arr[(g + 2) % n] >= loc_size_arr[l] && global_work_size <= (len * len)) { for (size_t o = 0; o < offset.size(); ++o) { for (size_t d = 0; d < glob_size_arr[(g + 2) % n]; ++d) { for (size_t h = 0; h < glob_size_arr[(g + 1) % n]; ++h) { for (size_t w = 0; w < glob_size_arr[g]; ++w) { ++reference_results[(glob_size_arr[g] * glob_size_arr[(g + 1) % n] * offset[(o + 2) % n] + glob_size_arr[g] * offset[(o + 1) % n] + offset[o] + d * glob_size_arr[(g + 1) % n] * glob_size_arr[g] + h * glob_size_arr[g] + w) % len]; } } } } } } } } static int check_kernel_results(cl_int* results, cl_int len, std::vector &glob_size_arr, std::vector &loc_size_arr, std::vector &offset, cl_int dim, cl_bool use_local, cl_bool use_offset) { std::vector reference_results(len, 0); switch (dim) { case 1: if (use_local == CL_FALSE) { generate_reference_1D(reference_results, glob_size_arr); } else if(use_local == CL_TRUE && use_offset == CL_FALSE) { generate_reference_1D_local(reference_results, glob_size_arr, loc_size_arr); } else { generate_reference_1D_offset(reference_results, glob_size_arr, loc_size_arr, offset, len); } break; case 2: if (use_local == CL_FALSE) { generate_reference_2D(reference_results, glob_size_arr, len); } else if (use_local == CL_TRUE && use_offset == CL_FALSE) { generate_reference_2D_local(reference_results, glob_size_arr, loc_size_arr, len); } else { generate_reference_2D_offset(reference_results, glob_size_arr, loc_size_arr, offset, len); } break; case 3: if (use_local == CL_FALSE) { generate_reference_3D(reference_results, glob_size_arr, len); } else if (use_local == CL_TRUE && use_offset == CL_FALSE) { generate_reference_3D_local(reference_results, glob_size_arr, loc_size_arr, len); } else { generate_reference_3D_offset(reference_results, glob_size_arr, loc_size_arr, offset, len); } break; default: return 0; break; } for (cl_int i = 0; i < len; ++i) { if (results[i] != reference_results[i]) { log_error("ERROR: Kernel returned %d vs. expected %d\n", results[i], reference_results[i]); return i; } } return -1; } int test_enqueue_ndrange(cl_device_id device, cl_context context, cl_command_queue queue, int num_elements) { MTdata d; cl_uint i; cl_int err_ret, res = 0; clCommandQueueWrapper dev_queue; cl_int k, kernel_results[MAX_GWS] = { 0 }; size_t ret_len; cl_uint max_queues = 1; cl_uint maxQueueSize = 0; d = init_genrand(gRandomSeed); err_ret = clGetDeviceInfo(device, CL_DEVICE_QUEUE_ON_DEVICE_MAX_SIZE, sizeof(maxQueueSize), &maxQueueSize, 0); test_error(err_ret, "clGetDeviceInfo(CL_DEVICE_QUEUE_ON_DEVICE_MAX_SIZE) failed"); err_ret = clGetDeviceInfo(device, CL_DEVICE_MAX_ON_DEVICE_QUEUES, sizeof(max_queues), &max_queues, &ret_len); test_error(err_ret, "clGetDeviceInfo(CL_DEVICE_MAX_ON_DEVICE_QUEUES) failed"); size_t max_local_size = 1; err_ret = clGetDeviceInfo(device, CL_DEVICE_MAX_WORK_GROUP_SIZE, sizeof(max_local_size), &max_local_size, &ret_len); test_error(err_ret, "clGetDeviceInfo(CL_DEVICE_MAX_WORK_GROUP_SIZE) failed"); cl_queue_properties queue_prop_def[] = { CL_QUEUE_PROPERTIES, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE|CL_QUEUE_ON_DEVICE|CL_QUEUE_ON_DEVICE_DEFAULT, CL_QUEUE_SIZE, maxQueueSize, 0 }; dev_queue = clCreateCommandQueueWithProperties(context, device, queue_prop_def, &err_ret); test_error(err_ret, "clCreateCommandQueueWithProperties(CL_QUEUE_DEVICE|CL_QUEUE_DEFAULT) failed"); max_local_size = (max_local_size > MAX_GWS)? MAX_GWS: max_local_size; if(gWimpyMode) { max_local_size = MIN(8, max_local_size); } cl_uint num = 10; cl_uint global_work_size = max_local_size * 2; std::vector glob_size_arr(num); std::vector loc_size_arr(num); std::vector ofs_arr(num); std::vector glob_results(global_work_size, 0); glob_size_arr[0] = 1; glob_size_arr[1] = global_work_size; loc_size_arr[0] = 1; loc_size_arr[1] = max_local_size; ofs_arr[0] = 0; ofs_arr[1] = 1; for(i = 2; i < num; ++i) { glob_size_arr[i] = genrand_int32(d) % global_work_size; glob_size_arr[i] = glob_size_arr[i] ? glob_size_arr[i]: 1; loc_size_arr[i] = genrand_int32(d) % max_local_size; loc_size_arr[i] = loc_size_arr[i] ? loc_size_arr[i]: 1; ofs_arr[i] = genrand_int32(d) % global_work_size; } // check ndrange_dX functions size_t failCnt = 0; for(i = 0; i < num_kernels_ndrange_Xd; ++i) { if (!gKernelName.empty() && gKernelName != sources_ndrange_Xd[i].src.kernel_name) continue; clMemWrapper mem1 = clCreateBuffer(context, CL_MEM_READ_ONLY|CL_MEM_COPY_HOST_PTR, glob_size_arr.size() * sizeof(cl_uint), &glob_size_arr[0], &err_ret); test_error(err_ret, "clCreateBuffer() failed"); clMemWrapper mem2 = clCreateBuffer(context, CL_MEM_READ_ONLY|CL_MEM_COPY_HOST_PTR, loc_size_arr.size() * sizeof(cl_uint), &loc_size_arr[0], &err_ret); test_error(err_ret, "clCreateBuffer() failed"); clMemWrapper mem3 = clCreateBuffer(context, CL_MEM_READ_WRITE|CL_MEM_COPY_HOST_PTR, glob_results.size() * sizeof(cl_int), &glob_results[0], &err_ret); test_error(err_ret, "clCreateBuffer() failed"); clMemWrapper mem4 = clCreateBuffer(context, CL_MEM_READ_WRITE|CL_MEM_COPY_HOST_PTR, ofs_arr.size() * sizeof(cl_uint), &ofs_arr[0], &err_ret); test_error(err_ret, "clCreateBuffer() failed"); kernel_arg args[] = { { sizeof(cl_uint), &num }, { sizeof(cl_uint), &global_work_size }, { sizeof(cl_mem), &mem1 }, { sizeof(cl_mem), &mem2 }, { sizeof(cl_mem), &mem3 }, { sizeof(cl_mem), &mem4 }, }; log_info("Running '%s' kernel (%d of %d) ...\n", sources_ndrange_Xd[i].src.kernel_name, i + 1, num_kernels_ndrange_Xd); err_ret = run_single_kernel_args(context, queue, sources_ndrange_Xd[i].src.lines, sources_ndrange_Xd[i].src.num_lines, sources_ndrange_Xd[i].src.kernel_name, kernel_results, sizeof(kernel_results), arr_size(args), args); cl_int *ptr = (cl_int *)clEnqueueMapBuffer(queue, mem3, CL_TRUE, CL_MAP_READ, 0, glob_results.size() * sizeof(cl_int), 0, 0, 0, &err_ret); test_error(err_ret, "clEnqueueMapBuffer() failed"); if(check_error(err_ret, "'%s' kernel execution failed", sources_ndrange_Xd[i].src.kernel_name)) { ++failCnt; res = -1; } else if((k = check_kernel_results(kernel_results, arr_size(kernel_results))) >= 0 && check_error(-1, "'%s' kernel results validation failed: [%d] returned %d expected 0", sources_ndrange_Xd[i].src.kernel_name, k, kernel_results[k])) res = -1; else if((k = check_kernel_results(ptr, global_work_size, glob_size_arr, loc_size_arr, ofs_arr, sources_ndrange_Xd[i].dim, sources_ndrange_Xd[i].localSize, sources_ndrange_Xd[i].offset)) >= 0 && check_error(-1, "'%s' global kernel results validation failed: [%d] returned %d expected 0", sources_ndrange_Xd[i].src.kernel_name, k, glob_results[k])) res = -1; else log_info("'%s' kernel is OK.\n", sources_ndrange_Xd[i].src.kernel_name); err_ret = clEnqueueUnmapMemObject(queue, mem3, ptr, 0, 0, 0); test_error(err_ret, "clEnqueueUnmapMemObject() failed"); } if (failCnt > 0) { log_error("ERROR: %d of %d kernels failed.\n", failCnt, num_kernels_ndrange_Xd); } return res; } #endif