// // Copyright (c) 2017 The Khronos Group Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // #include "../testBase.h" // Defined in test_fill_2D_3D.cpp extern int test_fill_image_generic( cl_context context, cl_command_queue queue, image_descriptor *imageInfo, const size_t origin[], const size_t region[], ExplicitType outputType, MTdata d ); int test_fill_image_size_2D( cl_context context, cl_command_queue queue, image_descriptor *imageInfo, ExplicitType outputType, MTdata d ) { size_t origin[ 3 ], region[ 3 ]; int ret = 0, retCode; // First, try just a full covering region fill origin[ 0 ] = origin[ 1 ] = origin[ 2 ] = 0; region[ 0 ] = imageInfo->width; region[ 1 ] = imageInfo->height; region[ 2 ] = 1; retCode = test_fill_image_generic( context, queue, imageInfo, origin, region, outputType, d ); if ( retCode < 0 ) return retCode; else ret += retCode; // Now try a sampling of different random regions for ( int i = 0; i < 8; i++ ) { // Pick a random size region[ 0 ] = ( imageInfo->width > 8 ) ? (size_t)random_in_range( 8, (int)imageInfo->width - 1, d ) : imageInfo->width; region[ 1 ] = ( imageInfo->height > 8 ) ? (size_t)random_in_range( 8, (int)imageInfo->height - 1, d ) : imageInfo->height; // Now pick positions within valid ranges origin[ 0 ] = ( imageInfo->width > region[ 0 ] ) ? (size_t)random_in_range( 0, (int)( imageInfo->width - region[ 0 ] - 1 ), d ) : 0; origin[ 1 ] = ( imageInfo->height > region[ 1 ] ) ? (size_t)random_in_range( 0, (int)( imageInfo->height - region[ 1 ] - 1 ), d ) : 0; // Go for it! retCode = test_fill_image_generic( context, queue, imageInfo, origin, region, outputType, d ); if ( retCode < 0 ) return retCode; else ret += retCode; } return ret; } int test_fill_image_set_2D( cl_device_id device, cl_context context, cl_command_queue queue, cl_image_format *format, ExplicitType outputType ) { size_t maxWidth, maxHeight; cl_ulong maxAllocSize, memSize; image_descriptor imageInfo = { 0 }; RandomSeed seed(gRandomSeed); const size_t rowPadding_default = 48; size_t rowPadding = gEnablePitch ? rowPadding_default : 0; size_t pixelSize; memset(&imageInfo, 0x0, sizeof(image_descriptor)); imageInfo.type = CL_MEM_OBJECT_IMAGE2D; imageInfo.format = format; pixelSize = get_pixel_size( imageInfo.format ); int error = clGetDeviceInfo( device, CL_DEVICE_IMAGE2D_MAX_WIDTH, sizeof( maxWidth ), &maxWidth, NULL ); error |= clGetDeviceInfo( device, CL_DEVICE_IMAGE2D_MAX_HEIGHT, sizeof( maxHeight ), &maxHeight, NULL ); error |= clGetDeviceInfo( device, CL_DEVICE_MAX_MEM_ALLOC_SIZE, sizeof( maxAllocSize ), &maxAllocSize, NULL ); error |= clGetDeviceInfo( device, CL_DEVICE_GLOBAL_MEM_SIZE, sizeof( memSize ), &memSize, NULL ); test_error( error, "Unable to get max image 2D size from device" ); if (memSize > (cl_ulong)SIZE_MAX) { memSize = (cl_ulong)SIZE_MAX; } if ( gTestSmallImages ) { for ( imageInfo.width = 1; imageInfo.width < 13; imageInfo.width++ ) { imageInfo.rowPitch = imageInfo.width * pixelSize + rowPadding; if (gEnablePitch) { rowPadding = rowPadding_default; do { rowPadding++; imageInfo.rowPitch = imageInfo.width * pixelSize + rowPadding; } while ((imageInfo.rowPitch % pixelSize) != 0); } for ( imageInfo.height = 1; imageInfo.height < 9; imageInfo.height++ ) { if ( gDebugTrace ) log_info( " at size %d,%d\n", (int)imageInfo.width, (int)imageInfo.height ); int ret = test_fill_image_size_2D( context, queue, &imageInfo, outputType, seed ); if ( ret ) return -1; } } } else if ( gTestMaxImages ) { // Try a specific set of maximum sizes size_t numbeOfSizes; size_t sizes[100][3]; get_max_sizes(&numbeOfSizes, 100, sizes, maxWidth, maxHeight, 1, 1, maxAllocSize, memSize, CL_MEM_OBJECT_IMAGE2D, imageInfo.format); for ( size_t idx = 0; idx < numbeOfSizes; idx++ ) { imageInfo.width = sizes[ idx ][ 0 ]; imageInfo.height = sizes[ idx ][ 1 ]; imageInfo.rowPitch = imageInfo.width * pixelSize + rowPadding; if (gEnablePitch) { rowPadding = rowPadding_default; do { rowPadding++; imageInfo.rowPitch = imageInfo.width * pixelSize + rowPadding; } while ((imageInfo.rowPitch % pixelSize) != 0); } log_info( "Testing %d x %d\n", (int)sizes[ idx ][ 0 ], (int)sizes[ idx ][ 1 ] ); if ( gDebugTrace ) log_info( " at max size %d,%d\n", (int)sizes[ idx ][ 0 ], (int)sizes[ idx ][ 1 ] ); if ( test_fill_image_size_2D( context, queue, &imageInfo, outputType, seed ) ) return -1; } } else { for ( int i = 0; i < NUM_IMAGE_ITERATIONS; i++ ) { cl_ulong size; // Loop until we get a size that a) will fit in the max alloc size and b) that an allocation of that // image, the result array, plus offset arrays, will fit in the global ram space do { imageInfo.width = (size_t)random_log_in_range( 16, (int)maxWidth / 32, seed ); imageInfo.height = (size_t)random_log_in_range( 16, (int)maxHeight / 32, seed ); imageInfo.rowPitch = imageInfo.width * pixelSize + rowPadding; if (gEnablePitch) { rowPadding = rowPadding_default; do { rowPadding++; imageInfo.rowPitch = imageInfo.width * pixelSize + rowPadding; } while ((imageInfo.rowPitch % pixelSize) != 0); } size = (size_t)imageInfo.rowPitch * (size_t)imageInfo.height * 4; } while ( size > maxAllocSize || ( size * 3 ) > memSize ); if ( gDebugTrace ) log_info( " at size %d,%d (row pitch %d) out of %d,%d\n", (int)imageInfo.width, (int)imageInfo.height, (int)imageInfo.rowPitch, (int)maxWidth, (int)maxHeight ); int ret = test_fill_image_size_2D( context, queue, &imageInfo, outputType, seed ); if ( ret ) return -1; } } return 0; }