// // Copyright (c) 2017 The Khronos Group Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // #include "function_list.h" #include "test_functions.h" #include "utility.h" #include #define CORRECTLY_ROUNDED 0 #define FLUSHED 1 static int BuildKernel(const char *name, int vectorSize, cl_kernel *k, cl_program *p, bool relaxedMode) { const char *c[] = { "__kernel void math_kernel", sizeNames[vectorSize], "( __global float", sizeNames[vectorSize], "* out, __global float", sizeNames[vectorSize], "* in1, __global float", sizeNames[vectorSize], "* in2, __global float", sizeNames[vectorSize], "* in3 )\n" "{\n" " size_t i = get_global_id(0);\n" " out[i] = ", name, "( in1[i], in2[i], in3[i] );\n" "}\n" }; const char *c3[] = { "__kernel void math_kernel", sizeNames[vectorSize], "( __global float* out, __global float* in, __global float* in2, " "__global float* in3)\n" "{\n" " size_t i = get_global_id(0);\n" " if( i + 1 < get_global_size(0) )\n" " {\n" " float3 f0 = vload3( 0, in + 3 * i );\n" " float3 f1 = vload3( 0, in2 + 3 * i );\n" " float3 f2 = vload3( 0, in3 + 3 * i );\n" " f0 = ", name, "( f0, f1, f2 );\n" " vstore3( f0, 0, out + 3*i );\n" " }\n" " else\n" " {\n" " size_t parity = i & 1; // Figure out how many elements are " "left over after BUFFER_SIZE % (3*sizeof(float)). Assume power of two " "buffer size \n" " float3 f0;\n" " float3 f1;\n" " float3 f2;\n" " switch( parity )\n" " {\n" " case 1:\n" " f0 = (float3)( in[3*i], NAN, NAN ); \n" " f1 = (float3)( in2[3*i], NAN, NAN ); \n" " f2 = (float3)( in3[3*i], NAN, NAN ); \n" " break;\n" " case 0:\n" " f0 = (float3)( in[3*i], in[3*i+1], NAN ); \n" " f1 = (float3)( in2[3*i], in2[3*i+1], NAN ); \n" " f2 = (float3)( in3[3*i], in3[3*i+1], NAN ); \n" " break;\n" " }\n" " f0 = ", name, "( f0, f1, f2 );\n" " switch( parity )\n" " {\n" " case 0:\n" " out[3*i+1] = f0.y; \n" " // fall through\n" " case 1:\n" " out[3*i] = f0.x; \n" " break;\n" " }\n" " }\n" "}\n" }; const char **kern = c; size_t kernSize = sizeof(c) / sizeof(c[0]); if (sizeValues[vectorSize] == 3) { kern = c3; kernSize = sizeof(c3) / sizeof(c3[0]); } char testName[32]; snprintf(testName, sizeof(testName) - 1, "math_kernel%s", sizeNames[vectorSize]); return MakeKernel(kern, (cl_uint)kernSize, testName, k, p, relaxedMode); } typedef struct BuildKernelInfo { cl_uint offset; // the first vector size to build cl_kernel *kernels; cl_program *programs; const char *nameInCode; bool relaxedMode; // Whether to build with -cl-fast-relaxed-math. } BuildKernelInfo; static cl_int BuildKernelFn(cl_uint job_id, cl_uint thread_id UNUSED, void *p) { BuildKernelInfo *info = (BuildKernelInfo *)p; cl_uint i = info->offset + job_id; return BuildKernel(info->nameInCode, i, info->kernels + i, info->programs + i, info->relaxedMode); } // A table of more difficult cases to get right static const float specialValues[] = { -NAN, -INFINITY, -FLT_MAX, MAKE_HEX_FLOAT(-0x1.000002p64f, -0x1000002L, 40), MAKE_HEX_FLOAT(-0x1.0p64f, -0x1L, 64), MAKE_HEX_FLOAT(-0x1.fffffep63f, -0x1fffffeL, 39), MAKE_HEX_FLOAT(-0x1.000002p63f, -0x1000002L, 39), MAKE_HEX_FLOAT(-0x1.0p63f, -0x1L, 63), MAKE_HEX_FLOAT(-0x1.fffffep62f, -0x1fffffeL, 38), -3.0f, MAKE_HEX_FLOAT(-0x1.800002p1f, -0x1800002L, -23), -2.5f, MAKE_HEX_FLOAT(-0x1.7ffffep1f, -0x17ffffeL, -23), -2.0f, MAKE_HEX_FLOAT(-0x1.800002p0f, -0x1800002L, -24), -1.75f, -1.5f, -1.25f, MAKE_HEX_FLOAT(-0x1.7ffffep0f, -0x17ffffeL, -24), MAKE_HEX_FLOAT(-0x1.000002p0f, -0x1000002L, -24), MAKE_HEX_FLOAT(-0x1.003p0f, -0x1003000L, -24), -MAKE_HEX_FLOAT(0x1.001p0f, 0x1001000L, -24), -1.0f, MAKE_HEX_FLOAT(-0x1.fffffep-1f, -0x1fffffeL, -25), MAKE_HEX_FLOAT(-0x1.000002p-126f, -0x1000002L, -150), -FLT_MIN, MAKE_HEX_FLOAT(-0x0.fffffep-126f, -0x0fffffeL, -150), MAKE_HEX_FLOAT(-0x0.000ffep-126f, -0x0000ffeL, -150), MAKE_HEX_FLOAT(-0x0.0000fep-126f, -0x00000feL, -150), MAKE_HEX_FLOAT(-0x0.00000ep-126f, -0x000000eL, -150), MAKE_HEX_FLOAT(-0x0.00000cp-126f, -0x000000cL, -150), MAKE_HEX_FLOAT(-0x0.00000ap-126f, -0x000000aL, -150), MAKE_HEX_FLOAT(-0x0.000008p-126f, -0x0000008L, -150), MAKE_HEX_FLOAT(-0x0.000006p-126f, -0x0000006L, -150), MAKE_HEX_FLOAT(-0x0.000004p-126f, -0x0000004L, -150), MAKE_HEX_FLOAT(-0x0.000002p-126f, -0x0000002L, -150), -0.0f, +NAN, +INFINITY, +FLT_MAX, MAKE_HEX_FLOAT(+0x1.000002p64f, +0x1000002L, 40), MAKE_HEX_FLOAT(+0x1.0p64f, +0x1L, 64), MAKE_HEX_FLOAT(+0x1.fffffep63f, +0x1fffffeL, 39), MAKE_HEX_FLOAT(+0x1.000002p63f, +0x1000002L, 39), MAKE_HEX_FLOAT(+0x1.0p63f, +0x1L, 63), MAKE_HEX_FLOAT(+0x1.fffffep62f, +0x1fffffeL, 38), +3.0f, MAKE_HEX_FLOAT(+0x1.800002p1f, +0x1800002L, -23), 2.5f, MAKE_HEX_FLOAT(+0x1.7ffffep1f, +0x17ffffeL, -23), +2.0f, MAKE_HEX_FLOAT(+0x1.800002p0f, +0x1800002L, -24), 1.75f, 1.5f, 1.25f, MAKE_HEX_FLOAT(+0x1.7ffffep0f, +0x17ffffeL, -24), MAKE_HEX_FLOAT(+0x1.000002p0f, +0x1000002L, -24), MAKE_HEX_FLOAT(0x1.003p0f, 0x1003000L, -24), +MAKE_HEX_FLOAT(0x1.001p0f, 0x1001000L, -24), +1.0f, MAKE_HEX_FLOAT(+0x1.fffffep-1f, +0x1fffffeL, -25), MAKE_HEX_FLOAT(0x1.000002p-126f, 0x1000002L, -150), +FLT_MIN, MAKE_HEX_FLOAT(+0x0.fffffep-126f, +0x0fffffeL, -150), MAKE_HEX_FLOAT(+0x0.000ffep-126f, +0x0000ffeL, -150), MAKE_HEX_FLOAT(+0x0.0000fep-126f, +0x00000feL, -150), MAKE_HEX_FLOAT(+0x0.00000ep-126f, +0x000000eL, -150), MAKE_HEX_FLOAT(+0x0.00000cp-126f, +0x000000cL, -150), MAKE_HEX_FLOAT(+0x0.00000ap-126f, +0x000000aL, -150), MAKE_HEX_FLOAT(+0x0.000008p-126f, +0x0000008L, -150), MAKE_HEX_FLOAT(+0x0.000006p-126f, +0x0000006L, -150), MAKE_HEX_FLOAT(+0x0.000004p-126f, +0x0000004L, -150), MAKE_HEX_FLOAT(+0x0.000002p-126f, +0x0000002L, -150), +0.0f, }; static const size_t specialValuesCount = sizeof(specialValues) / sizeof(specialValues[0]); int TestFunc_Float_Float_Float_Float(const Func *f, MTdata d, bool relaxedMode) { int error; logFunctionInfo(f->name, sizeof(cl_float), relaxedMode); cl_program programs[VECTOR_SIZE_COUNT]; cl_kernel kernels[VECTOR_SIZE_COUNT]; float maxError = 0.0f; int ftz = f->ftz || gForceFTZ || 0 == (CL_FP_DENORM & gFloatCapabilities); float maxErrorVal = 0.0f; float maxErrorVal2 = 0.0f; float maxErrorVal3 = 0.0f; uint64_t step = getTestStep(sizeof(float), BUFFER_SIZE); cl_uchar overflow[BUFFER_SIZE / sizeof(float)]; float float_ulps; if (gIsEmbedded) float_ulps = f->float_embedded_ulps; else float_ulps = f->float_ulps; int skipNanInf = (0 == strcmp("fma", f->nameInCode)) && !gInfNanSupport; // Init the kernels { BuildKernelInfo build_info = { gMinVectorSizeIndex, kernels, programs, f->nameInCode, relaxedMode }; if ((error = ThreadPool_Do(BuildKernelFn, gMaxVectorSizeIndex - gMinVectorSizeIndex, &build_info))) return error; } for (uint64_t i = 0; i < (1ULL << 32); i += step) { // Init input array cl_uint *p = (cl_uint *)gIn; cl_uint *p2 = (cl_uint *)gIn2; cl_uint *p3 = (cl_uint *)gIn3; size_t idx = 0; if (i == 0) { // test edge cases float *fp = (float *)gIn; float *fp2 = (float *)gIn2; float *fp3 = (float *)gIn3; uint32_t x, y, z; x = y = z = 0; for (; idx < BUFFER_SIZE / sizeof(float); idx++) { fp[idx] = specialValues[x]; fp2[idx] = specialValues[y]; fp3[idx] = specialValues[z]; if (++x >= specialValuesCount) { x = 0; if (++y >= specialValuesCount) { y = 0; if (++z >= specialValuesCount) break; } } } if (idx == BUFFER_SIZE / sizeof(float)) vlog_error("Test Error: not all special cases tested!\n"); } for (; idx < BUFFER_SIZE / sizeof(float); idx++) { p[idx] = genrand_int32(d); p2[idx] = genrand_int32(d); p3[idx] = genrand_int32(d); } if ((error = clEnqueueWriteBuffer(gQueue, gInBuffer, CL_FALSE, 0, BUFFER_SIZE, gIn, 0, NULL, NULL))) { vlog_error("\n*** Error %d in clEnqueueWriteBuffer ***\n", error); return error; } if ((error = clEnqueueWriteBuffer(gQueue, gInBuffer2, CL_FALSE, 0, BUFFER_SIZE, gIn2, 0, NULL, NULL))) { vlog_error("\n*** Error %d in clEnqueueWriteBuffer2 ***\n", error); return error; } if ((error = clEnqueueWriteBuffer(gQueue, gInBuffer3, CL_FALSE, 0, BUFFER_SIZE, gIn3, 0, NULL, NULL))) { vlog_error("\n*** Error %d in clEnqueueWriteBuffer3 ***\n", error); return error; } // write garbage into output arrays for (auto j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++) { uint32_t pattern = 0xffffdead; memset_pattern4(gOut[j], &pattern, BUFFER_SIZE); if ((error = clEnqueueWriteBuffer(gQueue, gOutBuffer[j], CL_FALSE, 0, BUFFER_SIZE, gOut[j], 0, NULL, NULL))) { vlog_error("\n*** Error %d in clEnqueueWriteBuffer2(%d) ***\n", error, j); goto exit; } } // Run the kernels for (auto j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++) { size_t vectorSize = sizeof(cl_float) * sizeValues[j]; size_t localCount = (BUFFER_SIZE + vectorSize - 1) / vectorSize; // BUFFER_SIZE / vectorSize rounded up if ((error = clSetKernelArg(kernels[j], 0, sizeof(gOutBuffer[j]), &gOutBuffer[j]))) { LogBuildError(programs[j]); goto exit; } if ((error = clSetKernelArg(kernels[j], 1, sizeof(gInBuffer), &gInBuffer))) { LogBuildError(programs[j]); goto exit; } if ((error = clSetKernelArg(kernels[j], 2, sizeof(gInBuffer2), &gInBuffer2))) { LogBuildError(programs[j]); goto exit; } if ((error = clSetKernelArg(kernels[j], 3, sizeof(gInBuffer3), &gInBuffer3))) { LogBuildError(programs[j]); goto exit; } if ((error = clEnqueueNDRangeKernel(gQueue, kernels[j], 1, NULL, &localCount, NULL, 0, NULL, NULL))) { vlog_error("FAILED -- could not execute kernel\n"); goto exit; } } // Get that moving if ((error = clFlush(gQueue))) vlog("clFlush failed\n"); // Calculate the correctly rounded reference result float *r = (float *)gOut_Ref; float *s = (float *)gIn; float *s2 = (float *)gIn2; float *s3 = (float *)gIn3; if (skipNanInf) { for (size_t j = 0; j < BUFFER_SIZE / sizeof(float); j++) { feclearexcept(FE_OVERFLOW); r[j] = (float)f->func.f_fma(s[j], s2[j], s3[j], CORRECTLY_ROUNDED); overflow[j] = FE_OVERFLOW == (FE_OVERFLOW & fetestexcept(FE_OVERFLOW)); } } else { for (size_t j = 0; j < BUFFER_SIZE / sizeof(float); j++) r[j] = (float)f->func.f_fma(s[j], s2[j], s3[j], CORRECTLY_ROUNDED); } // Read the data back for (auto j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++) { if ((error = clEnqueueReadBuffer(gQueue, gOutBuffer[j], CL_TRUE, 0, BUFFER_SIZE, gOut[j], 0, NULL, NULL))) { vlog_error("ReadArray failed %d\n", error); goto exit; } } if (gSkipCorrectnessTesting) break; // Verify data uint32_t *t = (uint32_t *)gOut_Ref; for (size_t j = 0; j < BUFFER_SIZE / sizeof(float); j++) { for (auto k = gMinVectorSizeIndex; k < gMaxVectorSizeIndex; k++) { uint32_t *q = (uint32_t *)(gOut[k]); // If we aren't getting the correctly rounded result if (t[j] != q[j]) { float err; int fail; float test = ((float *)q)[j]; float correct = f->func.f_fma(s[j], s2[j], s3[j], CORRECTLY_ROUNDED); // Per section 10 paragraph 6, accept any result if an input // or output is a infinity or NaN or overflow if (skipNanInf) { if (overflow[j] || IsFloatInfinity(correct) || IsFloatNaN(correct) || IsFloatInfinity(s[j]) || IsFloatNaN(s[j]) || IsFloatInfinity(s2[j]) || IsFloatNaN(s2[j]) || IsFloatInfinity(s3[j]) || IsFloatNaN(s3[j])) continue; } err = Ulp_Error(test, correct); fail = !(fabsf(err) <= float_ulps); if (fail && ftz) { float correct2, err2; // retry per section 6.5.3.2 with flushing on if (0.0f == test && 0.0f == f->func.f_fma(s[j], s2[j], s3[j], FLUSHED)) { fail = 0; err = 0.0f; } // retry per section 6.5.3.3 if (fail && IsFloatSubnormal(s[j])) { // look at me, float err3, correct3; if (skipNanInf) feclearexcept(FE_OVERFLOW); correct2 = f->func.f_fma(0.0f, s2[j], s3[j], CORRECTLY_ROUNDED); correct3 = f->func.f_fma(-0.0f, s2[j], s3[j], CORRECTLY_ROUNDED); if (skipNanInf) { if (fetestexcept(FE_OVERFLOW)) continue; // Note: no double rounding here. Reference // functions calculate in single precision. if (IsFloatInfinity(correct2) || IsFloatNaN(correct2) || IsFloatInfinity(correct3) || IsFloatNaN(correct3)) continue; } err2 = Ulp_Error(test, correct2); err3 = Ulp_Error(test, correct3); fail = fail && ((!(fabsf(err2) <= float_ulps)) && (!(fabsf(err3) <= float_ulps))); if (fabsf(err2) < fabsf(err)) err = err2; if (fabsf(err3) < fabsf(err)) err = err3; // retry per section 6.5.3.4 if (0.0f == test && (0.0f == f->func.f_fma(0.0f, s2[j], s3[j], FLUSHED) || 0.0f == f->func.f_fma(-0.0f, s2[j], s3[j], FLUSHED))) { fail = 0; err = 0.0f; } // try with first two args as zero if (IsFloatSubnormal(s2[j])) { // its fun to have fun, double correct4, correct5; float err4, err5; if (skipNanInf) feclearexcept(FE_OVERFLOW); correct2 = f->func.f_fma(0.0f, 0.0f, s3[j], CORRECTLY_ROUNDED); correct3 = f->func.f_fma(-0.0f, 0.0f, s3[j], CORRECTLY_ROUNDED); correct4 = f->func.f_fma(0.0f, -0.0f, s3[j], CORRECTLY_ROUNDED); correct5 = f->func.f_fma(-0.0f, -0.0f, s3[j], CORRECTLY_ROUNDED); // Per section 10 paragraph 6, accept any result // if an input or output is a infinity or NaN or // overflow if (!gInfNanSupport) { if (fetestexcept(FE_OVERFLOW)) continue; // Note: no double rounding here. Reference // functions calculate in single precision. if (IsFloatInfinity(correct2) || IsFloatNaN(correct2) || IsFloatInfinity(correct3) || IsFloatNaN(correct3) || IsFloatInfinity(correct4) || IsFloatNaN(correct4) || IsFloatInfinity(correct5) || IsFloatNaN(correct5)) continue; } err2 = Ulp_Error(test, correct2); err3 = Ulp_Error(test, correct3); err4 = Ulp_Error(test, correct4); err5 = Ulp_Error(test, correct5); fail = fail && ((!(fabsf(err2) <= float_ulps)) && (!(fabsf(err3) <= float_ulps)) && (!(fabsf(err4) <= float_ulps)) && (!(fabsf(err5) <= float_ulps))); if (fabsf(err2) < fabsf(err)) err = err2; if (fabsf(err3) < fabsf(err)) err = err3; if (fabsf(err4) < fabsf(err)) err = err4; if (fabsf(err5) < fabsf(err)) err = err5; // retry per section 6.5.3.4 if (0.0f == test && (0.0f == f->func.f_fma(0.0f, 0.0f, s3[j], FLUSHED) || 0.0f == f->func.f_fma(-0.0f, 0.0f, s3[j], FLUSHED) || 0.0f == f->func.f_fma(0.0f, -0.0f, s3[j], FLUSHED) || 0.0f == f->func.f_fma(-0.0f, -0.0f, s3[j], FLUSHED))) { fail = 0; err = 0.0f; } if (IsFloatSubnormal(s3[j])) { if (test == 0.0f) // 0*0+0 is 0 { fail = 0; err = 0.0f; } } } else if (IsFloatSubnormal(s3[j])) { double correct4, correct5; float err4, err5; if (skipNanInf) feclearexcept(FE_OVERFLOW); correct2 = f->func.f_fma(0.0f, s2[j], 0.0f, CORRECTLY_ROUNDED); correct3 = f->func.f_fma(-0.0f, s2[j], 0.0f, CORRECTLY_ROUNDED); correct4 = f->func.f_fma(0.0f, s2[j], -0.0f, CORRECTLY_ROUNDED); correct5 = f->func.f_fma(-0.0f, s2[j], -0.0f, CORRECTLY_ROUNDED); // Per section 10 paragraph 6, accept any result // if an input or output is a infinity or NaN or // overflow if (!gInfNanSupport) { if (fetestexcept(FE_OVERFLOW)) continue; // Note: no double rounding here. Reference // functions calculate in single precision. if (IsFloatInfinity(correct2) || IsFloatNaN(correct2) || IsFloatInfinity(correct3) || IsFloatNaN(correct3) || IsFloatInfinity(correct4) || IsFloatNaN(correct4) || IsFloatInfinity(correct5) || IsFloatNaN(correct5)) continue; } err2 = Ulp_Error(test, correct2); err3 = Ulp_Error(test, correct3); err4 = Ulp_Error(test, correct4); err5 = Ulp_Error(test, correct5); fail = fail && ((!(fabsf(err2) <= float_ulps)) && (!(fabsf(err3) <= float_ulps)) && (!(fabsf(err4) <= float_ulps)) && (!(fabsf(err5) <= float_ulps))); if (fabsf(err2) < fabsf(err)) err = err2; if (fabsf(err3) < fabsf(err)) err = err3; if (fabsf(err4) < fabsf(err)) err = err4; if (fabsf(err5) < fabsf(err)) err = err5; // retry per section 6.5.3.4 if (0.0f == test && (0.0f == f->func.f_fma(0.0f, s2[j], 0.0f, FLUSHED) || 0.0f == f->func.f_fma(-0.0f, s2[j], 0.0f, FLUSHED) || 0.0f == f->func.f_fma(0.0f, s2[j], -0.0f, FLUSHED) || 0.0f == f->func.f_fma(-0.0f, s2[j], -0.0f, FLUSHED))) { fail = 0; err = 0.0f; } } } else if (fail && IsFloatSubnormal(s2[j])) { double correct2, correct3; float err2, err3; if (skipNanInf) feclearexcept(FE_OVERFLOW); correct2 = f->func.f_fma(s[j], 0.0f, s3[j], CORRECTLY_ROUNDED); correct3 = f->func.f_fma(s[j], -0.0f, s3[j], CORRECTLY_ROUNDED); if (skipNanInf) { if (fetestexcept(FE_OVERFLOW)) continue; // Note: no double rounding here. Reference // functions calculate in single precision. if (IsFloatInfinity(correct2) || IsFloatNaN(correct2) || IsFloatInfinity(correct3) || IsFloatNaN(correct3)) continue; } err2 = Ulp_Error(test, correct2); err3 = Ulp_Error(test, correct3); fail = fail && ((!(fabsf(err2) <= float_ulps)) && (!(fabsf(err3) <= float_ulps))); if (fabsf(err2) < fabsf(err)) err = err2; if (fabsf(err3) < fabsf(err)) err = err3; // retry per section 6.5.3.4 if (0.0f == test && (0.0f == f->func.f_fma(s[j], 0.0f, s3[j], FLUSHED) || 0.0f == f->func.f_fma(s[j], -0.0f, s3[j], FLUSHED))) { fail = 0; err = 0.0f; } // try with second two args as zero if (IsFloatSubnormal(s3[j])) { double correct4, correct5; float err4, err5; if (skipNanInf) feclearexcept(FE_OVERFLOW); correct2 = f->func.f_fma(s[j], 0.0f, 0.0f, CORRECTLY_ROUNDED); correct3 = f->func.f_fma(s[j], -0.0f, 0.0f, CORRECTLY_ROUNDED); correct4 = f->func.f_fma(s[j], 0.0f, -0.0f, CORRECTLY_ROUNDED); correct5 = f->func.f_fma(s[j], -0.0f, -0.0f, CORRECTLY_ROUNDED); // Per section 10 paragraph 6, accept any result // if an input or output is a infinity or NaN or // overflow if (!gInfNanSupport) { if (fetestexcept(FE_OVERFLOW)) continue; // Note: no double rounding here. Reference // functions calculate in single precision. if (IsFloatInfinity(correct2) || IsFloatNaN(correct2) || IsFloatInfinity(correct3) || IsFloatNaN(correct3) || IsFloatInfinity(correct4) || IsFloatNaN(correct4) || IsFloatInfinity(correct5) || IsFloatNaN(correct5)) continue; } err2 = Ulp_Error(test, correct2); err3 = Ulp_Error(test, correct3); err4 = Ulp_Error(test, correct4); err5 = Ulp_Error(test, correct5); fail = fail && ((!(fabsf(err2) <= float_ulps)) && (!(fabsf(err3) <= float_ulps)) && (!(fabsf(err4) <= float_ulps)) && (!(fabsf(err5) <= float_ulps))); if (fabsf(err2) < fabsf(err)) err = err2; if (fabsf(err3) < fabsf(err)) err = err3; if (fabsf(err4) < fabsf(err)) err = err4; if (fabsf(err5) < fabsf(err)) err = err5; // retry per section 6.5.3.4 if (0.0f == test && (0.0f == f->func.f_fma(s[j], 0.0f, 0.0f, FLUSHED) || 0.0f == f->func.f_fma(s[j], -0.0f, 0.0f, FLUSHED) || 0.0f == f->func.f_fma(s[j], 0.0f, -0.0f, FLUSHED) || 0.0f == f->func.f_fma(s[j], -0.0f, -0.0f, FLUSHED))) { fail = 0; err = 0.0f; } } } else if (fail && IsFloatSubnormal(s3[j])) { double correct2, correct3; float err2, err3; if (skipNanInf) feclearexcept(FE_OVERFLOW); correct2 = f->func.f_fma(s[j], s2[j], 0.0f, CORRECTLY_ROUNDED); correct3 = f->func.f_fma(s[j], s2[j], -0.0f, CORRECTLY_ROUNDED); if (skipNanInf) { if (fetestexcept(FE_OVERFLOW)) continue; // Note: no double rounding here. Reference // functions calculate in single precision. if (IsFloatInfinity(correct2) || IsFloatNaN(correct2) || IsFloatInfinity(correct3) || IsFloatNaN(correct3)) continue; } err2 = Ulp_Error(test, correct2); err3 = Ulp_Error(test, correct3); fail = fail && ((!(fabsf(err2) <= float_ulps)) && (!(fabsf(err3) <= float_ulps))); if (fabsf(err2) < fabsf(err)) err = err2; if (fabsf(err3) < fabsf(err)) err = err3; // retry per section 6.5.3.4 if (0.0f == test && (0.0f == f->func.f_fma(s[j], s2[j], 0.0f, FLUSHED) || 0.0f == f->func.f_fma(s[j], s2[j], -0.0f, FLUSHED))) { fail = 0; err = 0.0f; } } } if (fabsf(err) > maxError) { maxError = fabsf(err); maxErrorVal = s[j]; maxErrorVal2 = s2[j]; maxErrorVal3 = s3[j]; } if (fail) { vlog_error( "\nERROR: %s%s: %f ulp error at {%a, %a, %a} " "({0x%8.8x, 0x%8.8x, 0x%8.8x}): *%a vs. %a\n", f->name, sizeNames[k], err, s[j], s2[j], s3[j], ((cl_uint *)s)[j], ((cl_uint *)s2)[j], ((cl_uint *)s3)[j], ((float *)gOut_Ref)[j], test); error = -1; goto exit; } } } } if (0 == (i & 0x0fffffff)) { if (gVerboseBruteForce) { vlog("base:%14u step:%10u bufferSize:%10zd \n", i, step, BUFFER_SIZE); } else { vlog("."); } fflush(stdout); } } if (!gSkipCorrectnessTesting) { if (gWimpyMode) vlog("Wimp pass"); else vlog("passed"); vlog("\t%8.2f @ {%a, %a, %a}", maxError, maxErrorVal, maxErrorVal2, maxErrorVal3); } vlog("\n"); exit: // Release for (auto k = gMinVectorSizeIndex; k < gMaxVectorSizeIndex; k++) { clReleaseKernel(kernels[k]); clReleaseProgram(programs[k]); } return error; }