// Copyright 2020 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include #include #include #include #include #include #include #include #include "models/models.h" namespace models { ExecutionPlan FP16MobileNetV3Small(pthreadpool_t threadpool) { alignas(16) static std::array v0; alignas(16) static std::array v1; alignas(16) static std::array v2; alignas(16) static std::array v3; alignas(16) static std::array v4; alignas(16) static std::array v5; alignas(16) static std::array v6; alignas(16) static std::array v7; alignas(16) static std::array v8; alignas(16) static std::array v9; alignas(16) static std::array v10; alignas(16) static std::array v11; alignas(16) static std::array v12; alignas(16) static std::array v13; alignas(16) static std::array v14; alignas(16) static std::array v15; alignas(16) static std::array v16; alignas(16) static std::array v17; alignas(16) static std::array v18; alignas(16) static std::array v19; alignas(16) static std::array v20; alignas(16) static std::array v21; alignas(16) static std::array v22; alignas(16) static std::array v23; alignas(16) static std::array v24; alignas(16) static std::array v25; alignas(16) static std::array v26; alignas(16) static std::array v27; alignas(16) static std::array v28; alignas(16) static std::array v29; alignas(16) static std::array v30; alignas(16) static std::array v31; alignas(16) static std::array v32; alignas(16) static std::array v33; alignas(16) static std::array v34; alignas(16) static std::array v35; alignas(16) static std::array v36; alignas(16) static std::array v37; alignas(16) static std::array v38; alignas(16) static std::array v39; alignas(16) static std::array v40; alignas(16) static std::array v41; alignas(16) static std::array v42; alignas(16) static std::array v43; alignas(16) static std::array v44; alignas(16) static std::array v45; alignas(16) static std::array v46; alignas(16) static std::array v47; alignas(16) static std::array v48; alignas(16) static std::array v49; alignas(16) static std::array v50; alignas(16) static std::array v51; alignas(16) static std::array v52; alignas(16) static std::array v53; alignas(16) static std::array v54; alignas(16) static std::array v55; alignas(16) static std::array v56; alignas(16) static std::array v57; alignas(16) static std::array v58; alignas(16) static std::array v59; alignas(16) static std::array v60; alignas(16) static std::array v61; alignas(16) static std::array v62; alignas(16) static std::array v63; alignas(16) static std::array v64; alignas(16) static std::array v65; alignas(16) static std::array v66; alignas(16) static std::array v67; alignas(16) static std::array v68; alignas(16) static std::array v69; alignas(16) static std::array v70; alignas(16) static std::array v71; alignas(16) static std::array v72; alignas(16) static std::array v73; alignas(16) static std::array v74; alignas(16) static std::array v75; alignas(16) static std::array v76; alignas(16) static std::array v77; alignas(16) static std::array v78; alignas(16) static std::array v79; alignas(16) static std::array v80; alignas(16) static std::array v81; alignas(16) static std::array v82; alignas(16) static std::array v83; alignas(16) static std::array v84; alignas(16) static std::array v85; alignas(16) static std::array v86; alignas(16) static std::array v87; alignas(16) static std::array v88; alignas(16) static std::array v89; alignas(16) static std::array v90; alignas(16) static std::array v91; alignas(16) static std::array v92; alignas(16) static std::array v93; alignas(16) static std::array v94; alignas(16) static std::array v95; alignas(16) static std::array v96; alignas(16) static std::array v97; alignas(16) static std::array v98; alignas(16) static std::array v99; alignas(16) static std::array w100; alignas(16) static std::array w101; alignas(16) static std::array w102; alignas(16) static std::array w103; alignas(16) static std::array w104; alignas(16) static std::array w105; alignas(16) static std::array w106; alignas(16) static std::array w107; alignas(16) static std::array w108; alignas(16) static std::array w109; alignas(16) static std::array w110; alignas(16) static std::array w111; alignas(16) static std::array w112; alignas(16) static std::array w113; alignas(16) static std::array w114; alignas(16) static std::array w115; alignas(16) static std::array w116; alignas(16) static std::array w117; alignas(16) static std::array w118; alignas(16) static std::array w119; alignas(16) static std::array w120; alignas(16) static std::array w121; alignas(16) static std::array w122; alignas(16) static std::array w123; alignas(16) static std::array w124; alignas(16) static std::array w125; alignas(16) static std::array w126; alignas(16) static std::array w127; alignas(16) static std::array w128; alignas(16) static std::array w129; alignas(16) static std::array w130; alignas(16) static std::array w131; alignas(16) static std::array w132; alignas(16) static std::array w133; alignas(16) static std::array w134; alignas(16) static std::array w135; alignas(16) static std::array w136; alignas(16) static std::array w137; alignas(16) static std::array w138; alignas(16) static std::array w139; alignas(16) static std::array w140; alignas(16) static std::array w141; alignas(16) static std::array w142; alignas(16) static std::array w143; alignas(16) static std::array w144; alignas(16) static std::array w145; alignas(16) static std::array w146; alignas(16) static std::array w147; alignas(16) static std::array w148; alignas(16) static std::array w149; alignas(16) static std::array w150; alignas(16) static std::array w151; alignas(16) static std::array w152; alignas(16) static std::array w153; alignas(16) static std::array w154; alignas(16) static std::array w155; alignas(16) static std::array w156; alignas(16) static std::array w157; alignas(16) static std::array w158; alignas(16) static std::array w159; alignas(16) static std::array w160; alignas(16) static std::array w161; alignas(16) static std::array w162; alignas(16) static std::array w163; alignas(16) static std::array w164; alignas(16) static std::array w165; alignas(16) static std::array w166; alignas(16) static std::array w167; alignas(16) static std::array w168; alignas(16) static std::array w169; alignas(16) static std::array w170; alignas(16) static std::array w171; alignas(16) static std::array w172; alignas(16) static std::array w173; alignas(16) static std::array w174; alignas(16) static std::array w175; alignas(16) static std::array w176; alignas(16) static std::array w177; alignas(16) static std::array w178; alignas(16) static std::array w179; alignas(16) static std::array w180; alignas(16) static std::array w181; alignas(16) static std::array w182; alignas(16) static std::array w183; alignas(16) static std::array w184; alignas(16) static std::array w185; alignas(16) static std::array w186; alignas(16) static std::array w187; alignas(16) static std::array w188; alignas(16) static std::array w189; alignas(16) static std::array w190; alignas(16) static std::array w191; alignas(16) static std::array w192; alignas(16) static std::array w193; alignas(16) static std::array w194; alignas(16) static std::array w195; alignas(16) static std::array w196; alignas(16) static std::array w197; alignas(16) static std::array w198; alignas(16) static std::array w199; alignas(16) static std::array w200; alignas(16) static std::array w201; alignas(16) static std::array w202; alignas(16) static std::array w203; alignas(16) static std::array w204; alignas(16) static std::array w205; alignas(16) static std::array w206; alignas(16) static std::array w207; std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32rng = std::bind(std::uniform_real_distribution(-1.0f, +1.0f), std::ref(rng)); auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng); std::generate(v0.begin(), v0.end(), std::ref(f16rng)); std::generate(v1.begin(), v1.end(), std::ref(f16rng)); std::generate(v2.begin(), v2.end(), std::ref(f16rng)); std::generate(v3.begin(), v3.end(), std::ref(f16rng)); std::generate(v4.begin(), v4.end(), std::ref(f16rng)); std::generate(v5.begin(), v5.end(), std::ref(f16rng)); std::generate(v6.begin(), v6.end(), std::ref(f16rng)); std::generate(v7.begin(), v7.end(), std::ref(f16rng)); std::generate(v8.begin(), v8.end(), std::ref(f16rng)); std::generate(v9.begin(), v9.end(), std::ref(f16rng)); std::generate(v10.begin(), v10.end(), std::ref(f16rng)); std::generate(v11.begin(), v11.end(), std::ref(f16rng)); std::generate(v12.begin(), v12.end(), std::ref(f16rng)); std::generate(v13.begin(), v13.end(), std::ref(f16rng)); std::generate(v14.begin(), v14.end(), std::ref(f16rng)); std::generate(v15.begin(), v15.end(), std::ref(f16rng)); std::generate(v16.begin(), v16.end(), std::ref(f16rng)); std::generate(v17.begin(), v17.end(), std::ref(f16rng)); std::generate(v18.begin(), v18.end(), std::ref(f16rng)); std::generate(v19.begin(), v19.end(), std::ref(f16rng)); std::generate(v20.begin(), v20.end(), std::ref(f16rng)); std::generate(v21.begin(), v21.end(), std::ref(f16rng)); std::generate(v22.begin(), v22.end(), std::ref(f16rng)); std::generate(v23.begin(), v23.end(), std::ref(f16rng)); std::generate(v24.begin(), v24.end(), std::ref(f16rng)); std::generate(v25.begin(), v25.end(), std::ref(f16rng)); std::generate(v26.begin(), v26.end(), std::ref(f16rng)); std::generate(v27.begin(), v27.end(), std::ref(f16rng)); std::generate(v28.begin(), v28.end(), std::ref(f16rng)); std::generate(v29.begin(), v29.end(), std::ref(f16rng)); std::generate(v30.begin(), v30.end(), std::ref(f16rng)); std::generate(v31.begin(), v31.end(), std::ref(f16rng)); std::generate(v32.begin(), v32.end(), std::ref(f16rng)); std::generate(v33.begin(), v33.end(), std::ref(f16rng)); std::generate(v34.begin(), v34.end(), std::ref(f16rng)); std::generate(v35.begin(), v35.end(), std::ref(f16rng)); std::generate(v36.begin(), v36.end(), std::ref(f16rng)); std::generate(v37.begin(), v37.end(), std::ref(f16rng)); std::generate(v38.begin(), v38.end(), std::ref(f16rng)); std::generate(v39.begin(), v39.end(), std::ref(f16rng)); std::generate(v40.begin(), v40.end(), std::ref(f16rng)); std::generate(v41.begin(), v41.end(), std::ref(f16rng)); std::generate(v42.begin(), v42.end(), std::ref(f16rng)); std::generate(v43.begin(), v43.end(), std::ref(f16rng)); std::generate(v44.begin(), v44.end(), std::ref(f16rng)); std::generate(v45.begin(), v45.end(), std::ref(f16rng)); std::generate(v46.begin(), v46.end(), std::ref(f16rng)); std::generate(v47.begin(), v47.end(), std::ref(f16rng)); std::generate(v48.begin(), v48.end(), std::ref(f16rng)); std::generate(v49.begin(), v49.end(), std::ref(f16rng)); std::generate(v50.begin(), v50.end(), std::ref(f16rng)); std::generate(v51.begin(), v51.end(), std::ref(f16rng)); std::generate(v52.begin(), v52.end(), std::ref(f16rng)); std::generate(v53.begin(), v53.end(), std::ref(f16rng)); std::generate(v54.begin(), v54.end(), std::ref(f16rng)); std::generate(v55.begin(), v55.end(), std::ref(f16rng)); std::generate(v56.begin(), v56.end(), std::ref(f16rng)); std::generate(v57.begin(), v57.end(), std::ref(f16rng)); std::generate(v58.begin(), v58.end(), std::ref(f16rng)); std::generate(v59.begin(), v59.end(), std::ref(f16rng)); std::generate(v60.begin(), v60.end(), std::ref(f16rng)); std::generate(v61.begin(), v61.end(), std::ref(f16rng)); std::generate(v62.begin(), v62.end(), std::ref(f16rng)); std::generate(v63.begin(), v63.end(), std::ref(f16rng)); std::generate(v64.begin(), v64.end(), std::ref(f16rng)); std::generate(v65.begin(), v65.end(), std::ref(f16rng)); std::generate(v66.begin(), v66.end(), std::ref(f16rng)); std::generate(v67.begin(), v67.end(), std::ref(f16rng)); std::generate(v68.begin(), v68.end(), std::ref(f16rng)); std::generate(v69.begin(), v69.end(), std::ref(f16rng)); std::generate(v70.begin(), v70.end(), std::ref(f16rng)); std::generate(v71.begin(), v71.end(), std::ref(f16rng)); std::generate(v72.begin(), v72.end(), std::ref(f16rng)); std::generate(v73.begin(), v73.end(), std::ref(f16rng)); std::generate(v74.begin(), v74.end(), std::ref(f16rng)); std::generate(v75.begin(), v75.end(), std::ref(f16rng)); std::generate(v76.begin(), v76.end(), std::ref(f16rng)); std::generate(v77.begin(), v77.end(), std::ref(f16rng)); std::generate(v78.begin(), v78.end(), std::ref(f16rng)); std::generate(v79.begin(), v79.end(), std::ref(f16rng)); std::generate(v80.begin(), v80.end(), std::ref(f16rng)); std::generate(v81.begin(), v81.end(), std::ref(f16rng)); std::generate(v82.begin(), v82.end(), std::ref(f16rng)); std::generate(v83.begin(), v83.end(), std::ref(f16rng)); std::generate(v84.begin(), v84.end(), std::ref(f16rng)); std::generate(v85.begin(), v85.end(), std::ref(f16rng)); std::generate(v86.begin(), v86.end(), std::ref(f16rng)); std::generate(v87.begin(), v87.end(), std::ref(f16rng)); std::generate(v88.begin(), v88.end(), std::ref(f16rng)); std::generate(v89.begin(), v89.end(), std::ref(f16rng)); std::generate(v90.begin(), v90.end(), std::ref(f16rng)); std::generate(v91.begin(), v91.end(), std::ref(f16rng)); std::generate(v92.begin(), v92.end(), std::ref(f16rng)); std::generate(v93.begin(), v93.end(), std::ref(f16rng)); std::generate(v94.begin(), v94.end(), std::ref(f16rng)); std::generate(v95.begin(), v95.end(), std::ref(f16rng)); std::generate(v96.begin(), v96.end(), std::ref(f16rng)); std::generate(v97.begin(), v97.end(), std::ref(f16rng)); std::generate(v98.begin(), v98.end(), std::ref(f16rng)); std::generate(v99.begin(), v99.end(), std::ref(f16rng)); std::generate(w100.begin(), w100.end(), std::ref(f16rng)); std::generate(w101.begin(), w101.end(), std::ref(f16rng)); std::generate(w102.begin(), w102.end(), std::ref(f16rng)); std::generate(w103.begin(), w103.end(), std::ref(f16rng)); std::generate(w104.begin(), w104.end(), std::ref(f16rng)); std::generate(w105.begin(), w105.end(), std::ref(f16rng)); std::generate(w106.begin(), w106.end(), std::ref(f16rng)); std::generate(w107.begin(), w107.end(), std::ref(f16rng)); std::generate(w108.begin(), w108.end(), std::ref(f16rng)); std::generate(w109.begin(), w109.end(), std::ref(f16rng)); std::generate(w110.begin(), w110.end(), std::ref(f16rng)); std::generate(w111.begin(), w111.end(), std::ref(f16rng)); std::generate(w112.begin(), w112.end(), std::ref(f16rng)); std::generate(w113.begin(), w113.end(), std::ref(f16rng)); std::generate(w114.begin(), w114.end(), std::ref(f16rng)); std::generate(w115.begin(), w115.end(), std::ref(f16rng)); std::generate(w116.begin(), w116.end(), std::ref(f16rng)); std::generate(w117.begin(), w117.end(), std::ref(f16rng)); std::generate(w118.begin(), w118.end(), std::ref(f16rng)); std::generate(w119.begin(), w119.end(), std::ref(f16rng)); std::generate(w120.begin(), w120.end(), std::ref(f16rng)); std::generate(w121.begin(), w121.end(), std::ref(f16rng)); std::generate(w122.begin(), w122.end(), std::ref(f16rng)); std::generate(w123.begin(), w123.end(), std::ref(f16rng)); std::generate(w124.begin(), w124.end(), std::ref(f16rng)); std::generate(w125.begin(), w125.end(), std::ref(f16rng)); std::generate(w126.begin(), w126.end(), std::ref(f16rng)); std::generate(w127.begin(), w127.end(), std::ref(f16rng)); std::generate(w128.begin(), w128.end(), std::ref(f16rng)); std::generate(w129.begin(), w129.end(), std::ref(f16rng)); std::generate(w130.begin(), w130.end(), std::ref(f16rng)); std::generate(w131.begin(), w131.end(), std::ref(f16rng)); std::generate(w132.begin(), w132.end(), std::ref(f16rng)); std::generate(w133.begin(), w133.end(), std::ref(f16rng)); std::generate(w134.begin(), w134.end(), std::ref(f16rng)); std::generate(w135.begin(), w135.end(), std::ref(f16rng)); std::generate(w136.begin(), w136.end(), std::ref(f16rng)); std::generate(w137.begin(), w137.end(), std::ref(f16rng)); std::generate(w138.begin(), w138.end(), std::ref(f16rng)); std::generate(w139.begin(), w139.end(), std::ref(f16rng)); std::generate(w140.begin(), w140.end(), std::ref(f16rng)); std::generate(w141.begin(), w141.end(), std::ref(f16rng)); std::generate(w142.begin(), w142.end(), std::ref(f16rng)); std::generate(w143.begin(), w143.end(), std::ref(f16rng)); std::generate(w144.begin(), w144.end(), std::ref(f16rng)); std::generate(w145.begin(), w145.end(), std::ref(f16rng)); std::generate(w146.begin(), w146.end(), std::ref(f16rng)); std::generate(w147.begin(), w147.end(), std::ref(f16rng)); std::generate(w148.begin(), w148.end(), std::ref(f16rng)); std::generate(w149.begin(), w149.end(), std::ref(f16rng)); std::generate(w150.begin(), w150.end(), std::ref(f16rng)); std::generate(w151.begin(), w151.end(), std::ref(f16rng)); std::generate(w152.begin(), w152.end(), std::ref(f16rng)); std::generate(w153.begin(), w153.end(), std::ref(f16rng)); std::generate(w154.begin(), w154.end(), std::ref(f16rng)); std::generate(w155.begin(), w155.end(), std::ref(f16rng)); std::generate(w156.begin(), w156.end(), std::ref(f16rng)); std::generate(w157.begin(), w157.end(), std::ref(f16rng)); std::generate(w158.begin(), w158.end(), std::ref(f16rng)); std::generate(w159.begin(), w159.end(), std::ref(f16rng)); std::generate(w160.begin(), w160.end(), std::ref(f16rng)); std::generate(w161.begin(), w161.end(), std::ref(f16rng)); std::generate(w162.begin(), w162.end(), std::ref(f16rng)); std::generate(w163.begin(), w163.end(), std::ref(f16rng)); std::generate(w164.begin(), w164.end(), std::ref(f16rng)); std::generate(w165.begin(), w165.end(), std::ref(f16rng)); std::generate(w166.begin(), w166.end(), std::ref(f16rng)); std::generate(w167.begin(), w167.end(), std::ref(f16rng)); std::generate(w168.begin(), w168.end(), std::ref(f16rng)); std::generate(w169.begin(), w169.end(), std::ref(f16rng)); std::generate(w170.begin(), w170.end(), std::ref(f16rng)); std::generate(w171.begin(), w171.end(), std::ref(f16rng)); std::generate(w172.begin(), w172.end(), std::ref(f16rng)); std::generate(w173.begin(), w173.end(), std::ref(f16rng)); std::generate(w174.begin(), w174.end(), std::ref(f16rng)); std::generate(w175.begin(), w175.end(), std::ref(f16rng)); std::generate(w176.begin(), w176.end(), std::ref(f16rng)); std::generate(w177.begin(), w177.end(), std::ref(f16rng)); std::generate(w178.begin(), w178.end(), std::ref(f16rng)); std::generate(w179.begin(), w179.end(), std::ref(f16rng)); std::generate(w180.begin(), w180.end(), std::ref(f16rng)); std::generate(w181.begin(), w181.end(), std::ref(f16rng)); std::generate(w182.begin(), w182.end(), std::ref(f16rng)); std::generate(w183.begin(), w183.end(), std::ref(f16rng)); std::generate(w184.begin(), w184.end(), std::ref(f16rng)); std::generate(w185.begin(), w185.end(), std::ref(f16rng)); std::generate(w186.begin(), w186.end(), std::ref(f16rng)); std::generate(w187.begin(), w187.end(), std::ref(f16rng)); std::generate(w188.begin(), w188.end(), std::ref(f16rng)); std::generate(w189.begin(), w189.end(), std::ref(f16rng)); std::generate(w190.begin(), w190.end(), std::ref(f16rng)); std::generate(w191.begin(), w191.end(), std::ref(f16rng)); std::generate(w192.begin(), w192.end(), std::ref(f16rng)); std::generate(w193.begin(), w193.end(), std::ref(f16rng)); std::generate(w194.begin(), w194.end(), std::ref(f16rng)); std::generate(w195.begin(), w195.end(), std::ref(f16rng)); std::generate(w196.begin(), w196.end(), std::ref(f16rng)); std::generate(w197.begin(), w197.end(), std::ref(f16rng)); std::generate(w198.begin(), w198.end(), std::ref(f16rng)); std::generate(w199.begin(), w199.end(), std::ref(f16rng)); std::generate(w200.begin(), w200.end(), std::ref(f16rng)); std::generate(w201.begin(), w201.end(), std::ref(f16rng)); std::generate(w202.begin(), w202.end(), std::ref(f16rng)); std::generate(w203.begin(), w203.end(), std::ref(f16rng)); std::generate(w204.begin(), w204.end(), std::ref(f16rng)); std::generate(w205.begin(), w205.end(), std::ref(f16rng)); std::generate(w206.begin(), w206.end(), std::ref(f16rng)); std::generate(w207.begin(), w207.end(), std::ref(f16rng)); ExecutionPlan operators; xnn_status status; xnn_operator_t op0 = nullptr; status = xnn_create_convolution2d_nhwc_f16( 0 /* top padding */, 1 /* right padding */, 1 /* bottom padding */, 0 /* left padding */, 3 /* kernel height */, 3 /* kernel width */, 2 /* subsampling height */, 2 /* subsampling width */, 1 /* dilation_height */, 1 /* dilation_width */, 1 /* groups */, 3 /* input channels per group */, 16 /* output_channels_per_group */, 3 /* input pixel stride */, 16 /* output pixel stride */, w100.data(), w101.data(), -std::numeric_limits::infinity() /* output min */, std::numeric_limits::infinity() /* output max */, 0 /* flags */, &op0); if (status != xnn_status_success) { std::cerr << "failed to create operation #0" << std::endl; return ExecutionPlan(); } operators.emplace_back(op0, xnn_delete_operator); xnn_operator_t op1 = nullptr; status = xnn_create_hardswish_nc_f16( 16 /* channels */, 16 /* input stride */, 16 /* output stride */, 0 /* flags */, &op1); if (status != xnn_status_success) { std::cerr << "failed to create operation #1" << std::endl; return ExecutionPlan(); } operators.emplace_back(op1, xnn_delete_operator); xnn_operator_t op2 = nullptr; status = xnn_create_convolution2d_nhwc_f16( 0 /* top padding */, 1 /* right padding */, 1 /* bottom padding */, 0 /* left padding */, 3 /* kernel height */, 3 /* kernel width */, 2 /* subsampling height */, 2 /* subsampling width */, 1 /* dilation_height */, 1 /* dilation_width */, 16 /* groups */, 1 /* input channels per group */, 1 /* output_channels_per_group */, 16 /* input pixel stride */, 16 /* output pixel stride */, w102.data(), w103.data(), 0.0f /* output min */, std::numeric_limits::infinity() /* output max */, 0 /* flags */, &op2); if (status != xnn_status_success) { std::cerr << "failed to create operation #2" << std::endl; return ExecutionPlan(); } operators.emplace_back(op2, xnn_delete_operator); xnn_operator_t op3 = nullptr; status = xnn_create_global_average_pooling_nwc_f16( 16 /* channels */, 16 /* input stride */, 16 /* output stride */, -std::numeric_limits::infinity(), std::numeric_limits::infinity(), 0 /* flags */, &op3); if (status != xnn_status_success) { std::cerr << "failed to create operation #3" << std::endl; return ExecutionPlan(); } operators.emplace_back(op3, xnn_delete_operator); xnn_operator_t op4 = nullptr; status = xnn_create_convolution2d_nhwc_f16( 0 /* top padding */, 0 /* right padding */, 0 /* bottom padding */, 0 /* left padding */, 1 /* kernel height */, 1 /* kernel width */, 1 /* subsampling height */, 1 /* subsampling width */, 1 /* dilation_height */, 1 /* dilation_width */, 1 /* groups */, 16 /* input channels per group */, 8 /* output_channels_per_group */, 16 /* input pixel stride */, 8 /* output pixel stride */, w104.data(), w105.data(), 0.0f /* output min */, std::numeric_limits::infinity() /* output max */, 0 /* flags */, &op4); if (status != xnn_status_success) { std::cerr << "failed to create operation #4" << std::endl; return ExecutionPlan(); } operators.emplace_back(op4, xnn_delete_operator); xnn_operator_t op5 = nullptr; status = xnn_create_convolution2d_nhwc_f16( 0 /* top padding */, 0 /* right padding */, 0 /* bottom padding */, 0 /* left padding */, 1 /* kernel height */, 1 /* kernel width */, 1 /* subsampling height */, 1 /* subsampling width */, 1 /* dilation_height */, 1 /* dilation_width */, 1 /* groups */, 8 /* input channels per group */, 16 /* output_channels_per_group */, 8 /* input pixel stride */, 16 /* output pixel stride */, w106.data(), w107.data(), 0.0f /* output min */, +0x1.00014Fp+0 /* output max */, 0 /* flags */, &op5); if (status != xnn_status_success) { std::cerr << "failed to create operation #5" << std::endl; return ExecutionPlan(); } operators.emplace_back(op5, xnn_delete_operator); xnn_operator_t op6 = nullptr; status = xnn_create_multiply_nd_f16( -std::numeric_limits::infinity() /* output min */, std::numeric_limits::infinity() /* output max */, 0 /* flags */, &op6); if (status != xnn_status_success) { std::cerr << "failed to create operation #6" << std::endl; return ExecutionPlan(); } operators.emplace_back(op6, xnn_delete_operator); xnn_operator_t op7 = nullptr; status = xnn_create_convolution2d_nhwc_f16( 0 /* top padding */, 0 /* right padding */, 0 /* bottom padding */, 0 /* left padding */, 1 /* kernel height */, 1 /* kernel width */, 1 /* subsampling height */, 1 /* subsampling width */, 1 /* dilation_height */, 1 /* dilation_width */, 1 /* groups */, 16 /* input channels per group */, 16 /* output_channels_per_group */, 16 /* input pixel stride */, 16 /* output pixel stride */, w108.data(), w109.data(), -std::numeric_limits::infinity() /* output min */, std::numeric_limits::infinity() /* output max */, 0 /* flags */, &op7); if (status != xnn_status_success) { std::cerr << "failed to create operation #7" << std::endl; return ExecutionPlan(); } operators.emplace_back(op7, xnn_delete_operator); xnn_operator_t op8 = nullptr; status = xnn_create_convolution2d_nhwc_f16( 0 /* top padding */, 0 /* right padding */, 0 /* bottom padding */, 0 /* left padding */, 1 /* kernel height */, 1 /* kernel width */, 1 /* subsampling height */, 1 /* subsampling width */, 1 /* dilation_height */, 1 /* dilation_width */, 1 /* groups */, 16 /* input channels per group */, 72 /* output_channels_per_group */, 16 /* input pixel stride */, 72 /* output pixel stride */, w110.data(), w111.data(), 0.0f /* output min */, std::numeric_limits::infinity() /* output max */, 0 /* flags */, &op8); if (status != xnn_status_success) { std::cerr << "failed to create operation #8" << std::endl; return ExecutionPlan(); } operators.emplace_back(op8, xnn_delete_operator); xnn_operator_t op9 = nullptr; status = xnn_create_convolution2d_nhwc_f16( 0 /* top padding */, 1 /* right padding */, 1 /* bottom padding */, 0 /* left padding */, 3 /* kernel height */, 3 /* kernel width */, 2 /* subsampling height */, 2 /* subsampling width */, 1 /* dilation_height */, 1 /* dilation_width */, 72 /* groups */, 1 /* input channels per group */, 1 /* output_channels_per_group */, 72 /* input pixel stride */, 72 /* output pixel stride */, w112.data(), w113.data(), 0.0f /* output min */, std::numeric_limits::infinity() /* output max */, 0 /* flags */, &op9); if (status != xnn_status_success) { std::cerr << "failed to create operation #9" << std::endl; return ExecutionPlan(); } operators.emplace_back(op9, xnn_delete_operator); xnn_operator_t op10 = nullptr; status = xnn_create_convolution2d_nhwc_f16( 0 /* top padding */, 0 /* right padding */, 0 /* bottom padding */, 0 /* left padding */, 1 /* kernel height */, 1 /* kernel width */, 1 /* subsampling height */, 1 /* subsampling width */, 1 /* dilation_height */, 1 /* dilation_width */, 1 /* groups */, 72 /* input channels per group */, 24 /* output_channels_per_group */, 72 /* input pixel stride */, 24 /* output pixel stride */, w114.data(), w115.data(), -std::numeric_limits::infinity() /* output min */, std::numeric_limits::infinity() /* output max */, 0 /* flags */, &op10); if (status != xnn_status_success) { std::cerr << "failed to create operation #10" << std::endl; return ExecutionPlan(); } operators.emplace_back(op10, xnn_delete_operator); xnn_operator_t op11 = nullptr; status = xnn_create_convolution2d_nhwc_f16( 0 /* top padding */, 0 /* right padding */, 0 /* bottom padding */, 0 /* left padding */, 1 /* kernel height */, 1 /* kernel width */, 1 /* subsampling height */, 1 /* subsampling width */, 1 /* dilation_height */, 1 /* dilation_width */, 1 /* groups */, 24 /* input channels per group */, 88 /* output_channels_per_group */, 24 /* input pixel stride */, 88 /* output pixel stride */, w116.data(), w117.data(), 0.0f /* output min */, std::numeric_limits::infinity() /* output max */, 0 /* flags */, &op11); if (status != xnn_status_success) { std::cerr << "failed to create operation #11" << std::endl; return ExecutionPlan(); } operators.emplace_back(op11, xnn_delete_operator); xnn_operator_t op12 = nullptr; status = xnn_create_convolution2d_nhwc_f16( 1 /* top padding */, 1 /* right padding */, 1 /* bottom padding */, 1 /* left padding */, 3 /* kernel height */, 3 /* kernel width */, 1 /* subsampling height */, 1 /* subsampling width */, 1 /* dilation_height */, 1 /* dilation_width */, 88 /* groups */, 1 /* input channels per group */, 1 /* output_channels_per_group */, 88 /* input pixel stride */, 88 /* output pixel stride */, w118.data(), w119.data(), 0.0f /* output min */, std::numeric_limits::infinity() /* output max */, 0 /* flags */, &op12); if (status != xnn_status_success) { std::cerr << "failed to create operation #12" << std::endl; return ExecutionPlan(); } operators.emplace_back(op12, xnn_delete_operator); xnn_operator_t op13 = nullptr; status = xnn_create_convolution2d_nhwc_f16( 0 /* top padding */, 0 /* right padding */, 0 /* bottom padding */, 0 /* left padding */, 1 /* kernel height */, 1 /* kernel width */, 1 /* subsampling height */, 1 /* subsampling width */, 1 /* dilation_height */, 1 /* dilation_width */, 1 /* groups */, 88 /* input channels per group */, 24 /* output_channels_per_group */, 88 /* input pixel stride */, 24 /* output pixel stride */, w120.data(), w121.data(), -std::numeric_limits::infinity() /* output min */, std::numeric_limits::infinity() /* output max */, 0 /* flags */, &op13); if (status != xnn_status_success) { std::cerr << "failed to create operation #13" << std::endl; return ExecutionPlan(); } operators.emplace_back(op13, xnn_delete_operator); xnn_operator_t op14 = nullptr; status = xnn_create_add_nd_f16( -std::numeric_limits::infinity() /* output min */, std::numeric_limits::infinity() /* output max */, 0 /* flags */, &op14); if (status != xnn_status_success) { std::cerr << "failed to create operation #14" << std::endl; return ExecutionPlan(); } operators.emplace_back(op14, xnn_delete_operator); xnn_operator_t op15 = nullptr; status = xnn_create_convolution2d_nhwc_f16( 0 /* top padding */, 0 /* right padding */, 0 /* bottom padding */, 0 /* left padding */, 1 /* kernel height */, 1 /* kernel width */, 1 /* subsampling height */, 1 /* subsampling width */, 1 /* dilation_height */, 1 /* dilation_width */, 1 /* groups */, 24 /* input channels per group */, 96 /* output_channels_per_group */, 24 /* input pixel stride */, 96 /* output pixel stride */, w122.data(), w123.data(), -std::numeric_limits::infinity() /* output min */, std::numeric_limits::infinity() /* output max */, 0 /* flags */, &op15); if (status != xnn_status_success) { std::cerr << "failed to create operation #15" << std::endl; return ExecutionPlan(); } operators.emplace_back(op15, xnn_delete_operator); xnn_operator_t op16 = nullptr; status = xnn_create_hardswish_nc_f16( 96 /* channels */, 96 /* input stride */, 96 /* output stride */, 0 /* flags */, &op16); if (status != xnn_status_success) { std::cerr << "failed to create operation #16" << std::endl; return ExecutionPlan(); } operators.emplace_back(op16, xnn_delete_operator); xnn_operator_t op17 = nullptr; status = xnn_create_convolution2d_nhwc_f16( 1 /* top padding */, 2 /* right padding */, 2 /* bottom padding */, 1 /* left padding */, 5 /* kernel height */, 5 /* kernel width */, 2 /* subsampling height */, 2 /* subsampling width */, 1 /* dilation_height */, 1 /* dilation_width */, 96 /* groups */, 1 /* input channels per group */, 1 /* output_channels_per_group */, 96 /* input pixel stride */, 96 /* output pixel stride */, w124.data(), w125.data(), -std::numeric_limits::infinity() /* output min */, std::numeric_limits::infinity() /* output max */, 0 /* flags */, &op17); if (status != xnn_status_success) { std::cerr << "failed to create operation #17" << std::endl; return ExecutionPlan(); } operators.emplace_back(op17, xnn_delete_operator); xnn_operator_t op18 = nullptr; status = xnn_create_hardswish_nc_f16( 96 /* channels */, 96 /* input stride */, 96 /* output stride */, 0 /* flags */, &op18); if (status != xnn_status_success) { std::cerr << "failed to create operation #18" << std::endl; return ExecutionPlan(); } operators.emplace_back(op18, xnn_delete_operator); xnn_operator_t op19 = nullptr; status = xnn_create_global_average_pooling_nwc_f16( 96 /* channels */, 96 /* input stride */, 96 /* output stride */, -std::numeric_limits::infinity(), std::numeric_limits::infinity(), 0 /* flags */, &op19); if (status != xnn_status_success) { std::cerr << "failed to create operation #19" << std::endl; return ExecutionPlan(); } operators.emplace_back(op19, xnn_delete_operator); xnn_operator_t op20 = nullptr; status = xnn_create_convolution2d_nhwc_f16( 0 /* top padding */, 0 /* right padding */, 0 /* bottom padding */, 0 /* left padding */, 1 /* kernel height */, 1 /* kernel width */, 1 /* subsampling height */, 1 /* subsampling width */, 1 /* dilation_height */, 1 /* dilation_width */, 1 /* groups */, 96 /* input channels per group */, 24 /* output_channels_per_group */, 96 /* input pixel stride */, 24 /* output pixel stride */, w126.data(), w127.data(), 0.0f /* output min */, std::numeric_limits::infinity() /* output max */, 0 /* flags */, &op20); if (status != xnn_status_success) { std::cerr << "failed to create operation #20" << std::endl; return ExecutionPlan(); } operators.emplace_back(op20, xnn_delete_operator); xnn_operator_t op21 = nullptr; status = xnn_create_convolution2d_nhwc_f16( 0 /* top padding */, 0 /* right padding */, 0 /* bottom padding */, 0 /* left padding */, 1 /* kernel height */, 1 /* kernel width */, 1 /* subsampling height */, 1 /* subsampling width */, 1 /* dilation_height */, 1 /* dilation_width */, 1 /* groups */, 24 /* input channels per group */, 96 /* output_channels_per_group */, 24 /* input pixel stride */, 96 /* output pixel stride */, w128.data(), w129.data(), 0.0f /* output min */, +0x1.00014Fp+0 /* output max */, 0 /* flags */, &op21); if (status != xnn_status_success) { std::cerr << "failed to create operation #21" << std::endl; return ExecutionPlan(); } operators.emplace_back(op21, xnn_delete_operator); xnn_operator_t op22 = nullptr; status = xnn_create_multiply_nd_f16( -std::numeric_limits::infinity() /* output min */, std::numeric_limits::infinity() /* output max */, 0 /* flags */, &op22); if (status != xnn_status_success) { std::cerr << "failed to create operation #22" << std::endl; return ExecutionPlan(); } operators.emplace_back(op22, xnn_delete_operator); xnn_operator_t op23 = nullptr; status = xnn_create_convolution2d_nhwc_f16( 0 /* top padding */, 0 /* right padding */, 0 /* bottom padding */, 0 /* left padding */, 1 /* kernel height */, 1 /* kernel width */, 1 /* subsampling height */, 1 /* subsampling width */, 1 /* dilation_height */, 1 /* dilation_width */, 1 /* groups */, 96 /* input channels per group */, 40 /* output_channels_per_group */, 96 /* input pixel stride */, 40 /* output pixel stride */, w130.data(), w131.data(), -std::numeric_limits::infinity() /* output min */, std::numeric_limits::infinity() /* output max */, 0 /* flags */, &op23); if (status != xnn_status_success) { std::cerr << "failed to create operation #23" << std::endl; return ExecutionPlan(); } operators.emplace_back(op23, xnn_delete_operator); xnn_operator_t op24 = nullptr; status = xnn_create_convolution2d_nhwc_f16( 0 /* top padding */, 0 /* right padding */, 0 /* bottom padding */, 0 /* left padding */, 1 /* kernel height */, 1 /* kernel width */, 1 /* subsampling height */, 1 /* subsampling width */, 1 /* dilation_height */, 1 /* dilation_width */, 1 /* groups */, 40 /* input channels per group */, 240 /* output_channels_per_group */, 40 /* input pixel stride */, 240 /* output pixel stride */, w132.data(), w133.data(), -std::numeric_limits::infinity() /* output min */, std::numeric_limits::infinity() /* output max */, 0 /* flags */, &op24); if (status != xnn_status_success) { std::cerr << "failed to create operation #24" << std::endl; return ExecutionPlan(); } operators.emplace_back(op24, xnn_delete_operator); xnn_operator_t op25 = nullptr; status = xnn_create_hardswish_nc_f16( 240 /* channels */, 240 /* input stride */, 240 /* output stride */, 0 /* flags */, &op25); if (status != xnn_status_success) { std::cerr << "failed to create operation #25" << std::endl; return ExecutionPlan(); } operators.emplace_back(op25, xnn_delete_operator); xnn_operator_t op26 = nullptr; status = xnn_create_convolution2d_nhwc_f16( 2 /* top padding */, 2 /* right padding */, 2 /* bottom padding */, 2 /* left padding */, 5 /* kernel height */, 5 /* kernel width */, 1 /* subsampling height */, 1 /* subsampling width */, 1 /* dilation_height */, 1 /* dilation_width */, 240 /* groups */, 1 /* input channels per group */, 1 /* output_channels_per_group */, 240 /* input pixel stride */, 240 /* output pixel stride */, w134.data(), w135.data(), -std::numeric_limits::infinity() /* output min */, std::numeric_limits::infinity() /* output max */, 0 /* flags */, &op26); if (status != xnn_status_success) { std::cerr << "failed to create operation #26" << std::endl; return ExecutionPlan(); } operators.emplace_back(op26, xnn_delete_operator); xnn_operator_t op27 = nullptr; status = xnn_create_hardswish_nc_f16( 240 /* channels */, 240 /* input stride */, 240 /* output stride */, 0 /* flags */, &op27); if (status != xnn_status_success) { std::cerr << "failed to create operation #27" << std::endl; return ExecutionPlan(); } operators.emplace_back(op27, xnn_delete_operator); xnn_operator_t op28 = nullptr; status = xnn_create_global_average_pooling_nwc_f16( 240 /* channels */, 240 /* input stride */, 240 /* output stride */, -std::numeric_limits::infinity(), std::numeric_limits::infinity(), 0 /* flags */, &op28); if (status != xnn_status_success) { std::cerr << "failed to create operation #28" << std::endl; return ExecutionPlan(); } operators.emplace_back(op28, xnn_delete_operator); xnn_operator_t op29 = nullptr; status = xnn_create_convolution2d_nhwc_f16( 0 /* top padding */, 0 /* right padding */, 0 /* bottom padding */, 0 /* left padding */, 1 /* kernel height */, 1 /* kernel width */, 1 /* subsampling height */, 1 /* subsampling width */, 1 /* dilation_height */, 1 /* dilation_width */, 1 /* groups */, 240 /* input channels per group */, 64 /* output_channels_per_group */, 240 /* input pixel stride */, 64 /* output pixel stride */, w136.data(), w137.data(), 0.0f /* output min */, std::numeric_limits::infinity() /* output max */, 0 /* flags */, &op29); if (status != xnn_status_success) { std::cerr << "failed to create operation #29" << std::endl; return ExecutionPlan(); } operators.emplace_back(op29, xnn_delete_operator); xnn_operator_t op30 = nullptr; status = xnn_create_convolution2d_nhwc_f16( 0 /* top padding */, 0 /* right padding */, 0 /* bottom padding */, 0 /* left padding */, 1 /* kernel height */, 1 /* kernel width */, 1 /* subsampling height */, 1 /* subsampling width */, 1 /* dilation_height */, 1 /* dilation_width */, 1 /* groups */, 64 /* input channels per group */, 240 /* output_channels_per_group */, 64 /* input pixel stride */, 240 /* output pixel stride */, w138.data(), w139.data(), 0.0f /* output min */, +0x1.00014Fp+0 /* output max */, 0 /* flags */, &op30); if (status != xnn_status_success) { std::cerr << "failed to create operation #30" << std::endl; return ExecutionPlan(); } operators.emplace_back(op30, xnn_delete_operator); xnn_operator_t op31 = nullptr; status = xnn_create_multiply_nd_f16( -std::numeric_limits::infinity() /* output min */, std::numeric_limits::infinity() /* output max */, 0 /* flags */, &op31); if (status != xnn_status_success) { std::cerr << "failed to create operation #31" << std::endl; return ExecutionPlan(); } operators.emplace_back(op31, xnn_delete_operator); xnn_operator_t op32 = nullptr; status = xnn_create_convolution2d_nhwc_f16( 0 /* top padding */, 0 /* right padding */, 0 /* bottom padding */, 0 /* left padding */, 1 /* kernel height */, 1 /* kernel width */, 1 /* subsampling height */, 1 /* subsampling width */, 1 /* dilation_height */, 1 /* dilation_width */, 1 /* groups */, 240 /* input channels per group */, 40 /* output_channels_per_group */, 240 /* input pixel stride */, 40 /* output pixel stride */, w140.data(), w141.data(), -std::numeric_limits::infinity() /* output min */, std::numeric_limits::infinity() /* output max */, 0 /* flags */, &op32); if (status != xnn_status_success) { std::cerr << "failed to create operation #32" << std::endl; return ExecutionPlan(); } operators.emplace_back(op32, xnn_delete_operator); xnn_operator_t op33 = nullptr; status = xnn_create_add_nd_f16( -std::numeric_limits::infinity() /* output min */, std::numeric_limits::infinity() /* output max */, 0 /* flags */, &op33); if (status != xnn_status_success) { std::cerr << "failed to create operation #33" << std::endl; return ExecutionPlan(); } operators.emplace_back(op33, xnn_delete_operator); xnn_operator_t op34 = nullptr; status = xnn_create_convolution2d_nhwc_f16( 0 /* top padding */, 0 /* right padding */, 0 /* bottom padding */, 0 /* left padding */, 1 /* kernel height */, 1 /* kernel width */, 1 /* subsampling height */, 1 /* subsampling width */, 1 /* dilation_height */, 1 /* dilation_width */, 1 /* groups */, 40 /* input channels per group */, 240 /* output_channels_per_group */, 40 /* input pixel stride */, 240 /* output pixel stride */, w142.data(), w143.data(), -std::numeric_limits::infinity() /* output min */, std::numeric_limits::infinity() /* output max */, 0 /* flags */, &op34); if (status != xnn_status_success) { std::cerr << "failed to create operation #34" << std::endl; return ExecutionPlan(); } operators.emplace_back(op34, xnn_delete_operator); xnn_operator_t op35 = nullptr; status = xnn_create_hardswish_nc_f16( 240 /* channels */, 240 /* input stride */, 240 /* output stride */, 0 /* flags */, &op35); if (status != xnn_status_success) { std::cerr << "failed to create operation #35" << std::endl; return ExecutionPlan(); } operators.emplace_back(op35, xnn_delete_operator); xnn_operator_t op36 = nullptr; status = xnn_create_convolution2d_nhwc_f16( 2 /* top padding */, 2 /* right padding */, 2 /* bottom padding */, 2 /* left padding */, 5 /* kernel height */, 5 /* kernel width */, 1 /* subsampling height */, 1 /* subsampling width */, 1 /* dilation_height */, 1 /* dilation_width */, 240 /* groups */, 1 /* input channels per group */, 1 /* output_channels_per_group */, 240 /* input pixel stride */, 240 /* output pixel stride */, w144.data(), w145.data(), -std::numeric_limits::infinity() /* output min */, std::numeric_limits::infinity() /* output max */, 0 /* flags */, &op36); if (status != xnn_status_success) { std::cerr << "failed to create operation #36" << std::endl; return ExecutionPlan(); } operators.emplace_back(op36, xnn_delete_operator); xnn_operator_t op37 = nullptr; status = xnn_create_hardswish_nc_f16( 240 /* channels */, 240 /* input stride */, 240 /* output stride */, 0 /* flags */, &op37); if (status != xnn_status_success) { std::cerr << "failed to create operation #37" << std::endl; return ExecutionPlan(); } operators.emplace_back(op37, xnn_delete_operator); xnn_operator_t op38 = nullptr; status = xnn_create_global_average_pooling_nwc_f16( 240 /* channels */, 240 /* input stride */, 240 /* output stride */, -std::numeric_limits::infinity(), std::numeric_limits::infinity(), 0 /* flags */, &op38); if (status != xnn_status_success) { std::cerr << "failed to create operation #38" << std::endl; return ExecutionPlan(); } operators.emplace_back(op38, xnn_delete_operator); xnn_operator_t op39 = nullptr; status = xnn_create_convolution2d_nhwc_f16( 0 /* top padding */, 0 /* right padding */, 0 /* bottom padding */, 0 /* left padding */, 1 /* kernel height */, 1 /* kernel width */, 1 /* subsampling height */, 1 /* subsampling width */, 1 /* dilation_height */, 1 /* dilation_width */, 1 /* groups */, 240 /* input channels per group */, 64 /* output_channels_per_group */, 240 /* input pixel stride */, 64 /* output pixel stride */, w146.data(), w147.data(), 0.0f /* output min */, std::numeric_limits::infinity() /* output max */, 0 /* flags */, &op39); if (status != xnn_status_success) { std::cerr << "failed to create operation #39" << std::endl; return ExecutionPlan(); } operators.emplace_back(op39, xnn_delete_operator); xnn_operator_t op40 = nullptr; status = xnn_create_convolution2d_nhwc_f16( 0 /* top padding */, 0 /* right padding */, 0 /* bottom padding */, 0 /* left padding */, 1 /* kernel height */, 1 /* kernel width */, 1 /* subsampling height */, 1 /* subsampling width */, 1 /* dilation_height */, 1 /* dilation_width */, 1 /* groups */, 64 /* input channels per group */, 240 /* output_channels_per_group */, 64 /* input pixel stride */, 240 /* output pixel stride */, w148.data(), w149.data(), 0.0f /* output min */, +0x1.00014Fp+0 /* output max */, 0 /* flags */, &op40); if (status != xnn_status_success) { std::cerr << "failed to create operation #40" << std::endl; return ExecutionPlan(); } operators.emplace_back(op40, xnn_delete_operator); xnn_operator_t op41 = nullptr; status = xnn_create_multiply_nd_f16( -std::numeric_limits::infinity() /* output min */, std::numeric_limits::infinity() /* output max */, 0 /* flags */, &op41); if (status != xnn_status_success) { std::cerr << "failed to create operation #41" << std::endl; return ExecutionPlan(); } operators.emplace_back(op41, xnn_delete_operator); xnn_operator_t op42 = nullptr; status = xnn_create_convolution2d_nhwc_f16( 0 /* top padding */, 0 /* right padding */, 0 /* bottom padding */, 0 /* left padding */, 1 /* kernel height */, 1 /* kernel width */, 1 /* subsampling height */, 1 /* subsampling width */, 1 /* dilation_height */, 1 /* dilation_width */, 1 /* groups */, 240 /* input channels per group */, 40 /* output_channels_per_group */, 240 /* input pixel stride */, 40 /* output pixel stride */, w150.data(), w151.data(), -std::numeric_limits::infinity() /* output min */, std::numeric_limits::infinity() /* output max */, 0 /* flags */, &op42); if (status != xnn_status_success) { std::cerr << "failed to create operation #42" << std::endl; return ExecutionPlan(); } operators.emplace_back(op42, xnn_delete_operator); xnn_operator_t op43 = nullptr; status = xnn_create_add_nd_f16( -std::numeric_limits::infinity() /* output min */, std::numeric_limits::infinity() /* output max */, 0 /* flags */, &op43); if (status != xnn_status_success) { std::cerr << "failed to create operation #43" << std::endl; return ExecutionPlan(); } operators.emplace_back(op43, xnn_delete_operator); xnn_operator_t op44 = nullptr; status = xnn_create_convolution2d_nhwc_f16( 0 /* top padding */, 0 /* right padding */, 0 /* bottom padding */, 0 /* left padding */, 1 /* kernel height */, 1 /* kernel width */, 1 /* subsampling height */, 1 /* subsampling width */, 1 /* dilation_height */, 1 /* dilation_width */, 1 /* groups */, 40 /* input channels per group */, 120 /* output_channels_per_group */, 40 /* input pixel stride */, 120 /* output pixel stride */, w152.data(), w153.data(), -std::numeric_limits::infinity() /* output min */, std::numeric_limits::infinity() /* output max */, 0 /* flags */, &op44); if (status != xnn_status_success) { std::cerr << "failed to create operation #44" << std::endl; return ExecutionPlan(); } operators.emplace_back(op44, xnn_delete_operator); xnn_operator_t op45 = nullptr; status = xnn_create_hardswish_nc_f16( 120 /* channels */, 120 /* input stride */, 120 /* output stride */, 0 /* flags */, &op45); if (status != xnn_status_success) { std::cerr << "failed to create operation #45" << std::endl; return ExecutionPlan(); } operators.emplace_back(op45, xnn_delete_operator); xnn_operator_t op46 = nullptr; status = xnn_create_convolution2d_nhwc_f16( 2 /* top padding */, 2 /* right padding */, 2 /* bottom padding */, 2 /* left padding */, 5 /* kernel height */, 5 /* kernel width */, 1 /* subsampling height */, 1 /* subsampling width */, 1 /* dilation_height */, 1 /* dilation_width */, 120 /* groups */, 1 /* input channels per group */, 1 /* output_channels_per_group */, 120 /* input pixel stride */, 120 /* output pixel stride */, w154.data(), w155.data(), -std::numeric_limits::infinity() /* output min */, std::numeric_limits::infinity() /* output max */, 0 /* flags */, &op46); if (status != xnn_status_success) { std::cerr << "failed to create operation #46" << std::endl; return ExecutionPlan(); } operators.emplace_back(op46, xnn_delete_operator); xnn_operator_t op47 = nullptr; status = xnn_create_hardswish_nc_f16( 120 /* channels */, 120 /* input stride */, 120 /* output stride */, 0 /* flags */, &op47); if (status != xnn_status_success) { std::cerr << "failed to create operation #47" << std::endl; return ExecutionPlan(); } operators.emplace_back(op47, xnn_delete_operator); xnn_operator_t op48 = nullptr; status = xnn_create_global_average_pooling_nwc_f16( 120 /* channels */, 120 /* input stride */, 120 /* output stride */, -std::numeric_limits::infinity(), std::numeric_limits::infinity(), 0 /* flags */, &op48); if (status != xnn_status_success) { std::cerr << "failed to create operation #48" << std::endl; return ExecutionPlan(); } operators.emplace_back(op48, xnn_delete_operator); xnn_operator_t op49 = nullptr; status = xnn_create_convolution2d_nhwc_f16( 0 /* top padding */, 0 /* right padding */, 0 /* bottom padding */, 0 /* left padding */, 1 /* kernel height */, 1 /* kernel width */, 1 /* subsampling height */, 1 /* subsampling width */, 1 /* dilation_height */, 1 /* dilation_width */, 1 /* groups */, 120 /* input channels per group */, 32 /* output_channels_per_group */, 120 /* input pixel stride */, 32 /* output pixel stride */, w156.data(), w157.data(), 0.0f /* output min */, std::numeric_limits::infinity() /* output max */, 0 /* flags */, &op49); if (status != xnn_status_success) { std::cerr << "failed to create operation #49" << std::endl; return ExecutionPlan(); } operators.emplace_back(op49, xnn_delete_operator); xnn_operator_t op50 = nullptr; status = xnn_create_convolution2d_nhwc_f16( 0 /* top padding */, 0 /* right padding */, 0 /* bottom padding */, 0 /* left padding */, 1 /* kernel height */, 1 /* kernel width */, 1 /* subsampling height */, 1 /* subsampling width */, 1 /* dilation_height */, 1 /* dilation_width */, 1 /* groups */, 32 /* input channels per group */, 120 /* output_channels_per_group */, 32 /* input pixel stride */, 120 /* output pixel stride */, w158.data(), w159.data(), 0.0f /* output min */, +0x1.00014Fp+0 /* output max */, 0 /* flags */, &op50); if (status != xnn_status_success) { std::cerr << "failed to create operation #50" << std::endl; return ExecutionPlan(); } operators.emplace_back(op50, xnn_delete_operator); xnn_operator_t op51 = nullptr; status = xnn_create_multiply_nd_f16( -std::numeric_limits::infinity() /* output min */, std::numeric_limits::infinity() /* output max */, 0 /* flags */, &op51); if (status != xnn_status_success) { std::cerr << "failed to create operation #51" << std::endl; return ExecutionPlan(); } operators.emplace_back(op51, xnn_delete_operator); xnn_operator_t op52 = nullptr; status = xnn_create_convolution2d_nhwc_f16( 0 /* top padding */, 0 /* right padding */, 0 /* bottom padding */, 0 /* left padding */, 1 /* kernel height */, 1 /* kernel width */, 1 /* subsampling height */, 1 /* subsampling width */, 1 /* dilation_height */, 1 /* dilation_width */, 1 /* groups */, 120 /* input channels per group */, 48 /* output_channels_per_group */, 120 /* input pixel stride */, 48 /* output pixel stride */, w160.data(), w161.data(), -std::numeric_limits::infinity() /* output min */, std::numeric_limits::infinity() /* output max */, 0 /* flags */, &op52); if (status != xnn_status_success) { std::cerr << "failed to create operation #52" << std::endl; return ExecutionPlan(); } operators.emplace_back(op52, xnn_delete_operator); xnn_operator_t op53 = nullptr; status = xnn_create_convolution2d_nhwc_f16( 0 /* top padding */, 0 /* right padding */, 0 /* bottom padding */, 0 /* left padding */, 1 /* kernel height */, 1 /* kernel width */, 1 /* subsampling height */, 1 /* subsampling width */, 1 /* dilation_height */, 1 /* dilation_width */, 1 /* groups */, 48 /* input channels per group */, 144 /* output_channels_per_group */, 48 /* input pixel stride */, 144 /* output pixel stride */, w162.data(), w163.data(), -std::numeric_limits::infinity() /* output min */, std::numeric_limits::infinity() /* output max */, 0 /* flags */, &op53); if (status != xnn_status_success) { std::cerr << "failed to create operation #53" << std::endl; return ExecutionPlan(); } operators.emplace_back(op53, xnn_delete_operator); xnn_operator_t op54 = nullptr; status = xnn_create_hardswish_nc_f16( 144 /* channels */, 144 /* input stride */, 144 /* output stride */, 0 /* flags */, &op54); if (status != xnn_status_success) { std::cerr << "failed to create operation #54" << std::endl; return ExecutionPlan(); } operators.emplace_back(op54, xnn_delete_operator); xnn_operator_t op55 = nullptr; status = xnn_create_convolution2d_nhwc_f16( 2 /* top padding */, 2 /* right padding */, 2 /* bottom padding */, 2 /* left padding */, 5 /* kernel height */, 5 /* kernel width */, 1 /* subsampling height */, 1 /* subsampling width */, 1 /* dilation_height */, 1 /* dilation_width */, 144 /* groups */, 1 /* input channels per group */, 1 /* output_channels_per_group */, 144 /* input pixel stride */, 144 /* output pixel stride */, w164.data(), w165.data(), -std::numeric_limits::infinity() /* output min */, std::numeric_limits::infinity() /* output max */, 0 /* flags */, &op55); if (status != xnn_status_success) { std::cerr << "failed to create operation #55" << std::endl; return ExecutionPlan(); } operators.emplace_back(op55, xnn_delete_operator); xnn_operator_t op56 = nullptr; status = xnn_create_hardswish_nc_f16( 144 /* channels */, 144 /* input stride */, 144 /* output stride */, 0 /* flags */, &op56); if (status != xnn_status_success) { std::cerr << "failed to create operation #56" << std::endl; return ExecutionPlan(); } operators.emplace_back(op56, xnn_delete_operator); xnn_operator_t op57 = nullptr; status = xnn_create_global_average_pooling_nwc_f16( 144 /* channels */, 144 /* input stride */, 144 /* output stride */, -std::numeric_limits::infinity(), std::numeric_limits::infinity(), 0 /* flags */, &op57); if (status != xnn_status_success) { std::cerr << "failed to create operation #57" << std::endl; return ExecutionPlan(); } operators.emplace_back(op57, xnn_delete_operator); xnn_operator_t op58 = nullptr; status = xnn_create_convolution2d_nhwc_f16( 0 /* top padding */, 0 /* right padding */, 0 /* bottom padding */, 0 /* left padding */, 1 /* kernel height */, 1 /* kernel width */, 1 /* subsampling height */, 1 /* subsampling width */, 1 /* dilation_height */, 1 /* dilation_width */, 1 /* groups */, 144 /* input channels per group */, 40 /* output_channels_per_group */, 144 /* input pixel stride */, 40 /* output pixel stride */, w166.data(), w167.data(), 0.0f /* output min */, std::numeric_limits::infinity() /* output max */, 0 /* flags */, &op58); if (status != xnn_status_success) { std::cerr << "failed to create operation #58" << std::endl; return ExecutionPlan(); } operators.emplace_back(op58, xnn_delete_operator); xnn_operator_t op59 = nullptr; status = xnn_create_convolution2d_nhwc_f16( 0 /* top padding */, 0 /* right padding */, 0 /* bottom padding */, 0 /* left padding */, 1 /* kernel height */, 1 /* kernel width */, 1 /* subsampling height */, 1 /* subsampling width */, 1 /* dilation_height */, 1 /* dilation_width */, 1 /* groups */, 40 /* input channels per group */, 144 /* output_channels_per_group */, 40 /* input pixel stride */, 144 /* output pixel stride */, w168.data(), w169.data(), 0.0f /* output min */, +0x1.00014Fp+0 /* output max */, 0 /* flags */, &op59); if (status != xnn_status_success) { std::cerr << "failed to create operation #59" << std::endl; return ExecutionPlan(); } operators.emplace_back(op59, xnn_delete_operator); xnn_operator_t op60 = nullptr; status = xnn_create_multiply_nd_f16( -std::numeric_limits::infinity() /* output min */, std::numeric_limits::infinity() /* output max */, 0 /* flags */, &op60); if (status != xnn_status_success) { std::cerr << "failed to create operation #60" << std::endl; return ExecutionPlan(); } operators.emplace_back(op60, xnn_delete_operator); xnn_operator_t op61 = nullptr; status = xnn_create_convolution2d_nhwc_f16( 0 /* top padding */, 0 /* right padding */, 0 /* bottom padding */, 0 /* left padding */, 1 /* kernel height */, 1 /* kernel width */, 1 /* subsampling height */, 1 /* subsampling width */, 1 /* dilation_height */, 1 /* dilation_width */, 1 /* groups */, 144 /* input channels per group */, 48 /* output_channels_per_group */, 144 /* input pixel stride */, 48 /* output pixel stride */, w170.data(), w171.data(), -std::numeric_limits::infinity() /* output min */, std::numeric_limits::infinity() /* output max */, 0 /* flags */, &op61); if (status != xnn_status_success) { std::cerr << "failed to create operation #61" << std::endl; return ExecutionPlan(); } operators.emplace_back(op61, xnn_delete_operator); xnn_operator_t op62 = nullptr; status = xnn_create_add_nd_f16( -std::numeric_limits::infinity() /* output min */, std::numeric_limits::infinity() /* output max */, 0 /* flags */, &op62); if (status != xnn_status_success) { std::cerr << "failed to create operation #62" << std::endl; return ExecutionPlan(); } operators.emplace_back(op62, xnn_delete_operator); xnn_operator_t op63 = nullptr; status = xnn_create_convolution2d_nhwc_f16( 0 /* top padding */, 0 /* right padding */, 0 /* bottom padding */, 0 /* left padding */, 1 /* kernel height */, 1 /* kernel width */, 1 /* subsampling height */, 1 /* subsampling width */, 1 /* dilation_height */, 1 /* dilation_width */, 1 /* groups */, 48 /* input channels per group */, 288 /* output_channels_per_group */, 48 /* input pixel stride */, 288 /* output pixel stride */, w172.data(), w173.data(), -std::numeric_limits::infinity() /* output min */, std::numeric_limits::infinity() /* output max */, 0 /* flags */, &op63); if (status != xnn_status_success) { std::cerr << "failed to create operation #63" << std::endl; return ExecutionPlan(); } operators.emplace_back(op63, xnn_delete_operator); xnn_operator_t op64 = nullptr; status = xnn_create_hardswish_nc_f16( 288 /* channels */, 288 /* input stride */, 288 /* output stride */, 0 /* flags */, &op64); if (status != xnn_status_success) { std::cerr << "failed to create operation #64" << std::endl; return ExecutionPlan(); } operators.emplace_back(op64, xnn_delete_operator); xnn_operator_t op65 = nullptr; status = xnn_create_convolution2d_nhwc_f16( 1 /* top padding */, 2 /* right padding */, 2 /* bottom padding */, 1 /* left padding */, 5 /* kernel height */, 5 /* kernel width */, 2 /* subsampling height */, 2 /* subsampling width */, 1 /* dilation_height */, 1 /* dilation_width */, 288 /* groups */, 1 /* input channels per group */, 1 /* output_channels_per_group */, 288 /* input pixel stride */, 288 /* output pixel stride */, w174.data(), w175.data(), -std::numeric_limits::infinity() /* output min */, std::numeric_limits::infinity() /* output max */, 0 /* flags */, &op65); if (status != xnn_status_success) { std::cerr << "failed to create operation #65" << std::endl; return ExecutionPlan(); } operators.emplace_back(op65, xnn_delete_operator); xnn_operator_t op66 = nullptr; status = xnn_create_hardswish_nc_f16( 288 /* channels */, 288 /* input stride */, 288 /* output stride */, 0 /* flags */, &op66); if (status != xnn_status_success) { std::cerr << "failed to create operation #66" << std::endl; return ExecutionPlan(); } operators.emplace_back(op66, xnn_delete_operator); xnn_operator_t op67 = nullptr; status = xnn_create_global_average_pooling_nwc_f16( 288 /* channels */, 288 /* input stride */, 288 /* output stride */, -std::numeric_limits::infinity(), std::numeric_limits::infinity(), 0 /* flags */, &op67); if (status != xnn_status_success) { std::cerr << "failed to create operation #67" << std::endl; return ExecutionPlan(); } operators.emplace_back(op67, xnn_delete_operator); xnn_operator_t op68 = nullptr; status = xnn_create_convolution2d_nhwc_f16( 0 /* top padding */, 0 /* right padding */, 0 /* bottom padding */, 0 /* left padding */, 1 /* kernel height */, 1 /* kernel width */, 1 /* subsampling height */, 1 /* subsampling width */, 1 /* dilation_height */, 1 /* dilation_width */, 1 /* groups */, 288 /* input channels per group */, 72 /* output_channels_per_group */, 288 /* input pixel stride */, 72 /* output pixel stride */, w176.data(), w177.data(), 0.0f /* output min */, std::numeric_limits::infinity() /* output max */, 0 /* flags */, &op68); if (status != xnn_status_success) { std::cerr << "failed to create operation #68" << std::endl; return ExecutionPlan(); } operators.emplace_back(op68, xnn_delete_operator); xnn_operator_t op69 = nullptr; status = xnn_create_convolution2d_nhwc_f16( 0 /* top padding */, 0 /* right padding */, 0 /* bottom padding */, 0 /* left padding */, 1 /* kernel height */, 1 /* kernel width */, 1 /* subsampling height */, 1 /* subsampling width */, 1 /* dilation_height */, 1 /* dilation_width */, 1 /* groups */, 72 /* input channels per group */, 288 /* output_channels_per_group */, 72 /* input pixel stride */, 288 /* output pixel stride */, w178.data(), w179.data(), 0.0f /* output min */, +0x1.00014Fp+0 /* output max */, 0 /* flags */, &op69); if (status != xnn_status_success) { std::cerr << "failed to create operation #69" << std::endl; return ExecutionPlan(); } operators.emplace_back(op69, xnn_delete_operator); xnn_operator_t op70 = nullptr; status = xnn_create_multiply_nd_f16( -std::numeric_limits::infinity() /* output min */, std::numeric_limits::infinity() /* output max */, 0 /* flags */, &op70); if (status != xnn_status_success) { std::cerr << "failed to create operation #70" << std::endl; return ExecutionPlan(); } operators.emplace_back(op70, xnn_delete_operator); xnn_operator_t op71 = nullptr; status = xnn_create_convolution2d_nhwc_f16( 0 /* top padding */, 0 /* right padding */, 0 /* bottom padding */, 0 /* left padding */, 1 /* kernel height */, 1 /* kernel width */, 1 /* subsampling height */, 1 /* subsampling width */, 1 /* dilation_height */, 1 /* dilation_width */, 1 /* groups */, 288 /* input channels per group */, 96 /* output_channels_per_group */, 288 /* input pixel stride */, 96 /* output pixel stride */, w180.data(), w181.data(), -std::numeric_limits::infinity() /* output min */, std::numeric_limits::infinity() /* output max */, 0 /* flags */, &op71); if (status != xnn_status_success) { std::cerr << "failed to create operation #71" << std::endl; return ExecutionPlan(); } operators.emplace_back(op71, xnn_delete_operator); xnn_operator_t op72 = nullptr; status = xnn_create_convolution2d_nhwc_f16( 0 /* top padding */, 0 /* right padding */, 0 /* bottom padding */, 0 /* left padding */, 1 /* kernel height */, 1 /* kernel width */, 1 /* subsampling height */, 1 /* subsampling width */, 1 /* dilation_height */, 1 /* dilation_width */, 1 /* groups */, 96 /* input channels per group */, 576 /* output_channels_per_group */, 96 /* input pixel stride */, 576 /* output pixel stride */, w182.data(), w183.data(), -std::numeric_limits::infinity() /* output min */, std::numeric_limits::infinity() /* output max */, 0 /* flags */, &op72); if (status != xnn_status_success) { std::cerr << "failed to create operation #72" << std::endl; return ExecutionPlan(); } operators.emplace_back(op72, xnn_delete_operator); xnn_operator_t op73 = nullptr; status = xnn_create_hardswish_nc_f16( 576 /* channels */, 576 /* input stride */, 576 /* output stride */, 0 /* flags */, &op73); if (status != xnn_status_success) { std::cerr << "failed to create operation #73" << std::endl; return ExecutionPlan(); } operators.emplace_back(op73, xnn_delete_operator); xnn_operator_t op74 = nullptr; status = xnn_create_convolution2d_nhwc_f16( 2 /* top padding */, 2 /* right padding */, 2 /* bottom padding */, 2 /* left padding */, 5 /* kernel height */, 5 /* kernel width */, 1 /* subsampling height */, 1 /* subsampling width */, 1 /* dilation_height */, 1 /* dilation_width */, 576 /* groups */, 1 /* input channels per group */, 1 /* output_channels_per_group */, 576 /* input pixel stride */, 576 /* output pixel stride */, w184.data(), w185.data(), -std::numeric_limits::infinity() /* output min */, std::numeric_limits::infinity() /* output max */, 0 /* flags */, &op74); if (status != xnn_status_success) { std::cerr << "failed to create operation #74" << std::endl; return ExecutionPlan(); } operators.emplace_back(op74, xnn_delete_operator); xnn_operator_t op75 = nullptr; status = xnn_create_hardswish_nc_f16( 576 /* channels */, 576 /* input stride */, 576 /* output stride */, 0 /* flags */, &op75); if (status != xnn_status_success) { std::cerr << "failed to create operation #75" << std::endl; return ExecutionPlan(); } operators.emplace_back(op75, xnn_delete_operator); xnn_operator_t op76 = nullptr; status = xnn_create_global_average_pooling_nwc_f16( 576 /* channels */, 576 /* input stride */, 576 /* output stride */, -std::numeric_limits::infinity(), std::numeric_limits::infinity(), 0 /* flags */, &op76); if (status != xnn_status_success) { std::cerr << "failed to create operation #76" << std::endl; return ExecutionPlan(); } operators.emplace_back(op76, xnn_delete_operator); xnn_operator_t op77 = nullptr; status = xnn_create_convolution2d_nhwc_f16( 0 /* top padding */, 0 /* right padding */, 0 /* bottom padding */, 0 /* left padding */, 1 /* kernel height */, 1 /* kernel width */, 1 /* subsampling height */, 1 /* subsampling width */, 1 /* dilation_height */, 1 /* dilation_width */, 1 /* groups */, 576 /* input channels per group */, 144 /* output_channels_per_group */, 576 /* input pixel stride */, 144 /* output pixel stride */, w186.data(), w187.data(), 0.0f /* output min */, std::numeric_limits::infinity() /* output max */, 0 /* flags */, &op77); if (status != xnn_status_success) { std::cerr << "failed to create operation #77" << std::endl; return ExecutionPlan(); } operators.emplace_back(op77, xnn_delete_operator); xnn_operator_t op78 = nullptr; status = xnn_create_convolution2d_nhwc_f16( 0 /* top padding */, 0 /* right padding */, 0 /* bottom padding */, 0 /* left padding */, 1 /* kernel height */, 1 /* kernel width */, 1 /* subsampling height */, 1 /* subsampling width */, 1 /* dilation_height */, 1 /* dilation_width */, 1 /* groups */, 144 /* input channels per group */, 576 /* output_channels_per_group */, 144 /* input pixel stride */, 576 /* output pixel stride */, w188.data(), w189.data(), 0.0f /* output min */, +0x1.00014Fp+0 /* output max */, 0 /* flags */, &op78); if (status != xnn_status_success) { std::cerr << "failed to create operation #78" << std::endl; return ExecutionPlan(); } operators.emplace_back(op78, xnn_delete_operator); xnn_operator_t op79 = nullptr; status = xnn_create_multiply_nd_f16( -std::numeric_limits::infinity() /* output min */, std::numeric_limits::infinity() /* output max */, 0 /* flags */, &op79); if (status != xnn_status_success) { std::cerr << "failed to create operation #79" << std::endl; return ExecutionPlan(); } operators.emplace_back(op79, xnn_delete_operator); xnn_operator_t op80 = nullptr; status = xnn_create_convolution2d_nhwc_f16( 0 /* top padding */, 0 /* right padding */, 0 /* bottom padding */, 0 /* left padding */, 1 /* kernel height */, 1 /* kernel width */, 1 /* subsampling height */, 1 /* subsampling width */, 1 /* dilation_height */, 1 /* dilation_width */, 1 /* groups */, 576 /* input channels per group */, 96 /* output_channels_per_group */, 576 /* input pixel stride */, 96 /* output pixel stride */, w190.data(), w191.data(), -std::numeric_limits::infinity() /* output min */, std::numeric_limits::infinity() /* output max */, 0 /* flags */, &op80); if (status != xnn_status_success) { std::cerr << "failed to create operation #80" << std::endl; return ExecutionPlan(); } operators.emplace_back(op80, xnn_delete_operator); xnn_operator_t op81 = nullptr; status = xnn_create_add_nd_f16( -std::numeric_limits::infinity() /* output min */, std::numeric_limits::infinity() /* output max */, 0 /* flags */, &op81); if (status != xnn_status_success) { std::cerr << "failed to create operation #81" << std::endl; return ExecutionPlan(); } operators.emplace_back(op81, xnn_delete_operator); xnn_operator_t op82 = nullptr; status = xnn_create_convolution2d_nhwc_f16( 0 /* top padding */, 0 /* right padding */, 0 /* bottom padding */, 0 /* left padding */, 1 /* kernel height */, 1 /* kernel width */, 1 /* subsampling height */, 1 /* subsampling width */, 1 /* dilation_height */, 1 /* dilation_width */, 1 /* groups */, 96 /* input channels per group */, 576 /* output_channels_per_group */, 96 /* input pixel stride */, 576 /* output pixel stride */, w192.data(), w193.data(), -std::numeric_limits::infinity() /* output min */, std::numeric_limits::infinity() /* output max */, 0 /* flags */, &op82); if (status != xnn_status_success) { std::cerr << "failed to create operation #82" << std::endl; return ExecutionPlan(); } operators.emplace_back(op82, xnn_delete_operator); xnn_operator_t op83 = nullptr; status = xnn_create_hardswish_nc_f16( 576 /* channels */, 576 /* input stride */, 576 /* output stride */, 0 /* flags */, &op83); if (status != xnn_status_success) { std::cerr << "failed to create operation #83" << std::endl; return ExecutionPlan(); } operators.emplace_back(op83, xnn_delete_operator); xnn_operator_t op84 = nullptr; status = xnn_create_convolution2d_nhwc_f16( 2 /* top padding */, 2 /* right padding */, 2 /* bottom padding */, 2 /* left padding */, 5 /* kernel height */, 5 /* kernel width */, 1 /* subsampling height */, 1 /* subsampling width */, 1 /* dilation_height */, 1 /* dilation_width */, 576 /* groups */, 1 /* input channels per group */, 1 /* output_channels_per_group */, 576 /* input pixel stride */, 576 /* output pixel stride */, w194.data(), w195.data(), -std::numeric_limits::infinity() /* output min */, std::numeric_limits::infinity() /* output max */, 0 /* flags */, &op84); if (status != xnn_status_success) { std::cerr << "failed to create operation #84" << std::endl; return ExecutionPlan(); } operators.emplace_back(op84, xnn_delete_operator); xnn_operator_t op85 = nullptr; status = xnn_create_hardswish_nc_f16( 576 /* channels */, 576 /* input stride */, 576 /* output stride */, 0 /* flags */, &op85); if (status != xnn_status_success) { std::cerr << "failed to create operation #85" << std::endl; return ExecutionPlan(); } operators.emplace_back(op85, xnn_delete_operator); xnn_operator_t op86 = nullptr; status = xnn_create_global_average_pooling_nwc_f16( 576 /* channels */, 576 /* input stride */, 576 /* output stride */, -std::numeric_limits::infinity(), std::numeric_limits::infinity(), 0 /* flags */, &op86); if (status != xnn_status_success) { std::cerr << "failed to create operation #86" << std::endl; return ExecutionPlan(); } operators.emplace_back(op86, xnn_delete_operator); xnn_operator_t op87 = nullptr; status = xnn_create_convolution2d_nhwc_f16( 0 /* top padding */, 0 /* right padding */, 0 /* bottom padding */, 0 /* left padding */, 1 /* kernel height */, 1 /* kernel width */, 1 /* subsampling height */, 1 /* subsampling width */, 1 /* dilation_height */, 1 /* dilation_width */, 1 /* groups */, 576 /* input channels per group */, 144 /* output_channels_per_group */, 576 /* input pixel stride */, 144 /* output pixel stride */, w196.data(), w197.data(), 0.0f /* output min */, std::numeric_limits::infinity() /* output max */, 0 /* flags */, &op87); if (status != xnn_status_success) { std::cerr << "failed to create operation #87" << std::endl; return ExecutionPlan(); } operators.emplace_back(op87, xnn_delete_operator); xnn_operator_t op88 = nullptr; status = xnn_create_convolution2d_nhwc_f16( 0 /* top padding */, 0 /* right padding */, 0 /* bottom padding */, 0 /* left padding */, 1 /* kernel height */, 1 /* kernel width */, 1 /* subsampling height */, 1 /* subsampling width */, 1 /* dilation_height */, 1 /* dilation_width */, 1 /* groups */, 144 /* input channels per group */, 576 /* output_channels_per_group */, 144 /* input pixel stride */, 576 /* output pixel stride */, w198.data(), w199.data(), 0.0f /* output min */, +0x1.00014Fp+0 /* output max */, 0 /* flags */, &op88); if (status != xnn_status_success) { std::cerr << "failed to create operation #88" << std::endl; return ExecutionPlan(); } operators.emplace_back(op88, xnn_delete_operator); xnn_operator_t op89 = nullptr; status = xnn_create_multiply_nd_f16( -std::numeric_limits::infinity() /* output min */, std::numeric_limits::infinity() /* output max */, 0 /* flags */, &op89); if (status != xnn_status_success) { std::cerr << "failed to create operation #89" << std::endl; return ExecutionPlan(); } operators.emplace_back(op89, xnn_delete_operator); xnn_operator_t op90 = nullptr; status = xnn_create_convolution2d_nhwc_f16( 0 /* top padding */, 0 /* right padding */, 0 /* bottom padding */, 0 /* left padding */, 1 /* kernel height */, 1 /* kernel width */, 1 /* subsampling height */, 1 /* subsampling width */, 1 /* dilation_height */, 1 /* dilation_width */, 1 /* groups */, 576 /* input channels per group */, 96 /* output_channels_per_group */, 576 /* input pixel stride */, 96 /* output pixel stride */, w200.data(), w201.data(), -std::numeric_limits::infinity() /* output min */, std::numeric_limits::infinity() /* output max */, 0 /* flags */, &op90); if (status != xnn_status_success) { std::cerr << "failed to create operation #90" << std::endl; return ExecutionPlan(); } operators.emplace_back(op90, xnn_delete_operator); xnn_operator_t op91 = nullptr; status = xnn_create_add_nd_f16( -std::numeric_limits::infinity() /* output min */, std::numeric_limits::infinity() /* output max */, 0 /* flags */, &op91); if (status != xnn_status_success) { std::cerr << "failed to create operation #91" << std::endl; return ExecutionPlan(); } operators.emplace_back(op91, xnn_delete_operator); xnn_operator_t op92 = nullptr; status = xnn_create_convolution2d_nhwc_f16( 0 /* top padding */, 0 /* right padding */, 0 /* bottom padding */, 0 /* left padding */, 1 /* kernel height */, 1 /* kernel width */, 1 /* subsampling height */, 1 /* subsampling width */, 1 /* dilation_height */, 1 /* dilation_width */, 1 /* groups */, 96 /* input channels per group */, 576 /* output_channels_per_group */, 96 /* input pixel stride */, 576 /* output pixel stride */, w202.data(), w203.data(), -std::numeric_limits::infinity() /* output min */, std::numeric_limits::infinity() /* output max */, 0 /* flags */, &op92); if (status != xnn_status_success) { std::cerr << "failed to create operation #92" << std::endl; return ExecutionPlan(); } operators.emplace_back(op92, xnn_delete_operator); xnn_operator_t op93 = nullptr; status = xnn_create_hardswish_nc_f16( 576 /* channels */, 576 /* input stride */, 576 /* output stride */, 0 /* flags */, &op93); if (status != xnn_status_success) { std::cerr << "failed to create operation #93" << std::endl; return ExecutionPlan(); } operators.emplace_back(op93, xnn_delete_operator); xnn_operator_t op94 = nullptr; status = xnn_create_global_average_pooling_nwc_f16( 576 /* channels */, 576 /* input stride */, 576 /* output stride */, -std::numeric_limits::infinity(), std::numeric_limits::infinity(), 0 /* flags */, &op94); if (status != xnn_status_success) { std::cerr << "failed to create operation #94" << std::endl; return ExecutionPlan(); } operators.emplace_back(op94, xnn_delete_operator); xnn_operator_t op95 = nullptr; status = xnn_create_convolution2d_nhwc_f16( 0 /* top padding */, 0 /* right padding */, 0 /* bottom padding */, 0 /* left padding */, 1 /* kernel height */, 1 /* kernel width */, 1 /* subsampling height */, 1 /* subsampling width */, 1 /* dilation_height */, 1 /* dilation_width */, 1 /* groups */, 576 /* input channels per group */, 1024 /* output_channels_per_group */, 576 /* input pixel stride */, 1024 /* output pixel stride */, w204.data(), w205.data(), -std::numeric_limits::infinity() /* output min */, std::numeric_limits::infinity() /* output max */, 0 /* flags */, &op95); if (status != xnn_status_success) { std::cerr << "failed to create operation #95" << std::endl; return ExecutionPlan(); } operators.emplace_back(op95, xnn_delete_operator); xnn_operator_t op96 = nullptr; status = xnn_create_hardswish_nc_f16( 1024 /* channels */, 1024 /* input stride */, 1024 /* output stride */, 0 /* flags */, &op96); if (status != xnn_status_success) { std::cerr << "failed to create operation #96" << std::endl; return ExecutionPlan(); } operators.emplace_back(op96, xnn_delete_operator); xnn_operator_t op97 = nullptr; status = xnn_create_global_average_pooling_nwc_f16( 1024 /* channels */, 1024 /* input stride */, 1024 /* output stride */, -std::numeric_limits::infinity(), std::numeric_limits::infinity(), 0 /* flags */, &op97); if (status != xnn_status_success) { std::cerr << "failed to create operation #97" << std::endl; return ExecutionPlan(); } operators.emplace_back(op97, xnn_delete_operator); xnn_operator_t op98 = nullptr; status = xnn_create_convolution2d_nhwc_f16( 0 /* top padding */, 0 /* right padding */, 0 /* bottom padding */, 0 /* left padding */, 1 /* kernel height */, 1 /* kernel width */, 1 /* subsampling height */, 1 /* subsampling width */, 1 /* dilation_height */, 1 /* dilation_width */, 1 /* groups */, 1024 /* input channels per group */, 1001 /* output_channels_per_group */, 1024 /* input pixel stride */, 1001 /* output pixel stride */, w206.data(), w207.data(), -std::numeric_limits::infinity() /* output min */, std::numeric_limits::infinity() /* output max */, 0 /* flags */, &op98); if (status != xnn_status_success) { std::cerr << "failed to create operation #98" << std::endl; return ExecutionPlan(); } operators.emplace_back(op98, xnn_delete_operator); status = xnn_setup_convolution2d_nhwc_f16( op0, 1 /* batch size */, 224 /* input height */, 224 /* input width */, v0.data() /* input */, v1.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #0" << std::endl; return ExecutionPlan(); } status = xnn_setup_hardswish_nc_f16( op1, 12544 /* batch size */, v1.data() /* input */, v2.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #1" << std::endl; return ExecutionPlan(); } status = xnn_setup_convolution2d_nhwc_f16( op2, 1 /* batch size */, 112 /* input height */, 112 /* input width */, v2.data() /* input */, v3.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #2" << std::endl; return ExecutionPlan(); } status = xnn_setup_global_average_pooling_nwc_f16( op3, 1 /* batch size */, 3136 /* width */, v3.data() /* input */, v4.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #3" << std::endl; return ExecutionPlan(); } status = xnn_setup_convolution2d_nhwc_f16( op4, 1 /* batch size */, 1 /* input height */, 1 /* input width */, v4.data() /* input */, v5.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #4" << std::endl; return ExecutionPlan(); } status = xnn_setup_convolution2d_nhwc_f16( op5, 1 /* batch size */, 1 /* input height */, 1 /* input width */, v5.data() /* input */, v6.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #5" << std::endl; return ExecutionPlan(); } { const size_t a_shape[] = { 1, 56, 56, 16 }; const size_t b_shape[] = { 1, 1, 1, 16 }; status = xnn_setup_multiply_nd_f16( op6, 4, a_shape, 4, b_shape, v3.data() /* a */, v6.data() /* b */, v7.data() /* output */, threadpool /* threadpool */); } if (status != xnn_status_success) { std::cerr << "failed to setup operation #6" << std::endl; return ExecutionPlan(); } status = xnn_setup_convolution2d_nhwc_f16( op7, 1 /* batch size */, 56 /* input height */, 56 /* input width */, v7.data() /* input */, v8.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #7" << std::endl; return ExecutionPlan(); } status = xnn_setup_convolution2d_nhwc_f16( op8, 1 /* batch size */, 56 /* input height */, 56 /* input width */, v8.data() /* input */, v9.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #8" << std::endl; return ExecutionPlan(); } status = xnn_setup_convolution2d_nhwc_f16( op9, 1 /* batch size */, 56 /* input height */, 56 /* input width */, v9.data() /* input */, v10.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #9" << std::endl; return ExecutionPlan(); } status = xnn_setup_convolution2d_nhwc_f16( op10, 1 /* batch size */, 28 /* input height */, 28 /* input width */, v10.data() /* input */, v11.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #10" << std::endl; return ExecutionPlan(); } status = xnn_setup_convolution2d_nhwc_f16( op11, 1 /* batch size */, 28 /* input height */, 28 /* input width */, v11.data() /* input */, v12.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #11" << std::endl; return ExecutionPlan(); } status = xnn_setup_convolution2d_nhwc_f16( op12, 1 /* batch size */, 28 /* input height */, 28 /* input width */, v12.data() /* input */, v13.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #12" << std::endl; return ExecutionPlan(); } status = xnn_setup_convolution2d_nhwc_f16( op13, 1 /* batch size */, 28 /* input height */, 28 /* input width */, v13.data() /* input */, v14.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #13" << std::endl; return ExecutionPlan(); } { const size_t a_shape[] = { 1, 28, 28, 24 }; const size_t b_shape[] = { 1, 28, 28, 24 }; status = xnn_setup_add_nd_f16( op14, 4, a_shape, 4, b_shape, v14.data() /* a */, v11.data() /* b */, v15.data() /* output */, threadpool /* threadpool */); } if (status != xnn_status_success) { std::cerr << "failed to setup operation #14" << std::endl; return ExecutionPlan(); } status = xnn_setup_convolution2d_nhwc_f16( op15, 1 /* batch size */, 28 /* input height */, 28 /* input width */, v15.data() /* input */, v16.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #15" << std::endl; return ExecutionPlan(); } status = xnn_setup_hardswish_nc_f16( op16, 784 /* batch size */, v16.data() /* input */, v17.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #16" << std::endl; return ExecutionPlan(); } status = xnn_setup_convolution2d_nhwc_f16( op17, 1 /* batch size */, 28 /* input height */, 28 /* input width */, v17.data() /* input */, v18.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #17" << std::endl; return ExecutionPlan(); } status = xnn_setup_hardswish_nc_f16( op18, 196 /* batch size */, v18.data() /* input */, v19.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #18" << std::endl; return ExecutionPlan(); } status = xnn_setup_global_average_pooling_nwc_f16( op19, 1 /* batch size */, 196 /* width */, v19.data() /* input */, v20.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #19" << std::endl; return ExecutionPlan(); } status = xnn_setup_convolution2d_nhwc_f16( op20, 1 /* batch size */, 1 /* input height */, 1 /* input width */, v20.data() /* input */, v21.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #20" << std::endl; return ExecutionPlan(); } status = xnn_setup_convolution2d_nhwc_f16( op21, 1 /* batch size */, 1 /* input height */, 1 /* input width */, v21.data() /* input */, v22.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #21" << std::endl; return ExecutionPlan(); } { const size_t a_shape[] = { 1, 14, 14, 96 }; const size_t b_shape[] = { 1, 1, 1, 96 }; status = xnn_setup_multiply_nd_f16( op22, 4, a_shape, 4, b_shape, v19.data() /* a */, v22.data() /* b */, v23.data() /* output */, threadpool /* threadpool */); } if (status != xnn_status_success) { std::cerr << "failed to setup operation #22" << std::endl; return ExecutionPlan(); } status = xnn_setup_convolution2d_nhwc_f16( op23, 1 /* batch size */, 14 /* input height */, 14 /* input width */, v23.data() /* input */, v24.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #23" << std::endl; return ExecutionPlan(); } status = xnn_setup_convolution2d_nhwc_f16( op24, 1 /* batch size */, 14 /* input height */, 14 /* input width */, v24.data() /* input */, v25.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #24" << std::endl; return ExecutionPlan(); } status = xnn_setup_hardswish_nc_f16( op25, 196 /* batch size */, v25.data() /* input */, v26.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #25" << std::endl; return ExecutionPlan(); } status = xnn_setup_convolution2d_nhwc_f16( op26, 1 /* batch size */, 14 /* input height */, 14 /* input width */, v26.data() /* input */, v27.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #26" << std::endl; return ExecutionPlan(); } status = xnn_setup_hardswish_nc_f16( op27, 196 /* batch size */, v27.data() /* input */, v28.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #27" << std::endl; return ExecutionPlan(); } status = xnn_setup_global_average_pooling_nwc_f16( op28, 1 /* batch size */, 196 /* width */, v28.data() /* input */, v29.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #28" << std::endl; return ExecutionPlan(); } status = xnn_setup_convolution2d_nhwc_f16( op29, 1 /* batch size */, 1 /* input height */, 1 /* input width */, v29.data() /* input */, v30.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #29" << std::endl; return ExecutionPlan(); } status = xnn_setup_convolution2d_nhwc_f16( op30, 1 /* batch size */, 1 /* input height */, 1 /* input width */, v30.data() /* input */, v31.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #30" << std::endl; return ExecutionPlan(); } { const size_t a_shape[] = { 1, 14, 14, 240 }; const size_t b_shape[] = { 1, 1, 1, 240 }; status = xnn_setup_multiply_nd_f16( op31, 4, a_shape, 4, b_shape, v28.data() /* a */, v31.data() /* b */, v32.data() /* output */, threadpool /* threadpool */); } if (status != xnn_status_success) { std::cerr << "failed to setup operation #31" << std::endl; return ExecutionPlan(); } status = xnn_setup_convolution2d_nhwc_f16( op32, 1 /* batch size */, 14 /* input height */, 14 /* input width */, v32.data() /* input */, v33.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #32" << std::endl; return ExecutionPlan(); } { const size_t a_shape[] = { 1, 14, 14, 40 }; const size_t b_shape[] = { 1, 14, 14, 40 }; status = xnn_setup_add_nd_f16( op33, 4, a_shape, 4, b_shape, v33.data() /* a */, v24.data() /* b */, v34.data() /* output */, threadpool /* threadpool */); } if (status != xnn_status_success) { std::cerr << "failed to setup operation #33" << std::endl; return ExecutionPlan(); } status = xnn_setup_convolution2d_nhwc_f16( op34, 1 /* batch size */, 14 /* input height */, 14 /* input width */, v34.data() /* input */, v35.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #34" << std::endl; return ExecutionPlan(); } status = xnn_setup_hardswish_nc_f16( op35, 196 /* batch size */, v35.data() /* input */, v36.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #35" << std::endl; return ExecutionPlan(); } status = xnn_setup_convolution2d_nhwc_f16( op36, 1 /* batch size */, 14 /* input height */, 14 /* input width */, v36.data() /* input */, v37.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #36" << std::endl; return ExecutionPlan(); } status = xnn_setup_hardswish_nc_f16( op37, 196 /* batch size */, v37.data() /* input */, v38.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #37" << std::endl; return ExecutionPlan(); } status = xnn_setup_global_average_pooling_nwc_f16( op38, 1 /* batch size */, 196 /* width */, v38.data() /* input */, v39.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #38" << std::endl; return ExecutionPlan(); } status = xnn_setup_convolution2d_nhwc_f16( op39, 1 /* batch size */, 1 /* input height */, 1 /* input width */, v39.data() /* input */, v40.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #39" << std::endl; return ExecutionPlan(); } status = xnn_setup_convolution2d_nhwc_f16( op40, 1 /* batch size */, 1 /* input height */, 1 /* input width */, v40.data() /* input */, v41.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #40" << std::endl; return ExecutionPlan(); } { const size_t a_shape[] = { 1, 14, 14, 240 }; const size_t b_shape[] = { 1, 1, 1, 240 }; status = xnn_setup_multiply_nd_f16( op41, 4, a_shape, 4, b_shape, v38.data() /* a */, v41.data() /* b */, v42.data() /* output */, threadpool /* threadpool */); } if (status != xnn_status_success) { std::cerr << "failed to setup operation #41" << std::endl; return ExecutionPlan(); } status = xnn_setup_convolution2d_nhwc_f16( op42, 1 /* batch size */, 14 /* input height */, 14 /* input width */, v42.data() /* input */, v43.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #42" << std::endl; return ExecutionPlan(); } { const size_t a_shape[] = { 1, 14, 14, 40 }; const size_t b_shape[] = { 1, 14, 14, 40 }; status = xnn_setup_add_nd_f16( op43, 4, a_shape, 4, b_shape, v43.data() /* a */, v34.data() /* b */, v44.data() /* output */, threadpool /* threadpool */); } if (status != xnn_status_success) { std::cerr << "failed to setup operation #43" << std::endl; return ExecutionPlan(); } status = xnn_setup_convolution2d_nhwc_f16( op44, 1 /* batch size */, 14 /* input height */, 14 /* input width */, v44.data() /* input */, v45.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #44" << std::endl; return ExecutionPlan(); } status = xnn_setup_hardswish_nc_f16( op45, 196 /* batch size */, v45.data() /* input */, v46.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #45" << std::endl; return ExecutionPlan(); } status = xnn_setup_convolution2d_nhwc_f16( op46, 1 /* batch size */, 14 /* input height */, 14 /* input width */, v46.data() /* input */, v47.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #46" << std::endl; return ExecutionPlan(); } status = xnn_setup_hardswish_nc_f16( op47, 196 /* batch size */, v47.data() /* input */, v48.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #47" << std::endl; return ExecutionPlan(); } status = xnn_setup_global_average_pooling_nwc_f16( op48, 1 /* batch size */, 196 /* width */, v48.data() /* input */, v49.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #48" << std::endl; return ExecutionPlan(); } status = xnn_setup_convolution2d_nhwc_f16( op49, 1 /* batch size */, 1 /* input height */, 1 /* input width */, v49.data() /* input */, v50.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #49" << std::endl; return ExecutionPlan(); } status = xnn_setup_convolution2d_nhwc_f16( op50, 1 /* batch size */, 1 /* input height */, 1 /* input width */, v50.data() /* input */, v51.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #50" << std::endl; return ExecutionPlan(); } { const size_t a_shape[] = { 1, 14, 14, 120 }; const size_t b_shape[] = { 1, 1, 1, 120 }; status = xnn_setup_multiply_nd_f16( op51, 4, a_shape, 4, b_shape, v48.data() /* a */, v51.data() /* b */, v52.data() /* output */, threadpool /* threadpool */); } if (status != xnn_status_success) { std::cerr << "failed to setup operation #51" << std::endl; return ExecutionPlan(); } status = xnn_setup_convolution2d_nhwc_f16( op52, 1 /* batch size */, 14 /* input height */, 14 /* input width */, v52.data() /* input */, v53.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #52" << std::endl; return ExecutionPlan(); } status = xnn_setup_convolution2d_nhwc_f16( op53, 1 /* batch size */, 14 /* input height */, 14 /* input width */, v53.data() /* input */, v54.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #53" << std::endl; return ExecutionPlan(); } status = xnn_setup_hardswish_nc_f16( op54, 196 /* batch size */, v54.data() /* input */, v55.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #54" << std::endl; return ExecutionPlan(); } status = xnn_setup_convolution2d_nhwc_f16( op55, 1 /* batch size */, 14 /* input height */, 14 /* input width */, v55.data() /* input */, v56.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #55" << std::endl; return ExecutionPlan(); } status = xnn_setup_hardswish_nc_f16( op56, 196 /* batch size */, v56.data() /* input */, v57.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #56" << std::endl; return ExecutionPlan(); } status = xnn_setup_global_average_pooling_nwc_f16( op57, 1 /* batch size */, 196 /* width */, v57.data() /* input */, v58.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #57" << std::endl; return ExecutionPlan(); } status = xnn_setup_convolution2d_nhwc_f16( op58, 1 /* batch size */, 1 /* input height */, 1 /* input width */, v58.data() /* input */, v59.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #58" << std::endl; return ExecutionPlan(); } status = xnn_setup_convolution2d_nhwc_f16( op59, 1 /* batch size */, 1 /* input height */, 1 /* input width */, v59.data() /* input */, v60.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #59" << std::endl; return ExecutionPlan(); } { const size_t a_shape[] = { 1, 14, 14, 144 }; const size_t b_shape[] = { 1, 1, 1, 144 }; status = xnn_setup_multiply_nd_f16( op60, 4, a_shape, 4, b_shape, v57.data() /* a */, v60.data() /* b */, v61.data() /* output */, threadpool /* threadpool */); } if (status != xnn_status_success) { std::cerr << "failed to setup operation #60" << std::endl; return ExecutionPlan(); } status = xnn_setup_convolution2d_nhwc_f16( op61, 1 /* batch size */, 14 /* input height */, 14 /* input width */, v61.data() /* input */, v62.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #61" << std::endl; return ExecutionPlan(); } { const size_t a_shape[] = { 1, 14, 14, 48 }; const size_t b_shape[] = { 1, 14, 14, 48 }; status = xnn_setup_add_nd_f16( op62, 4, a_shape, 4, b_shape, v62.data() /* a */, v53.data() /* b */, v63.data() /* output */, threadpool /* threadpool */); } if (status != xnn_status_success) { std::cerr << "failed to setup operation #62" << std::endl; return ExecutionPlan(); } status = xnn_setup_convolution2d_nhwc_f16( op63, 1 /* batch size */, 14 /* input height */, 14 /* input width */, v63.data() /* input */, v64.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #63" << std::endl; return ExecutionPlan(); } status = xnn_setup_hardswish_nc_f16( op64, 196 /* batch size */, v64.data() /* input */, v65.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #64" << std::endl; return ExecutionPlan(); } status = xnn_setup_convolution2d_nhwc_f16( op65, 1 /* batch size */, 14 /* input height */, 14 /* input width */, v65.data() /* input */, v66.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #65" << std::endl; return ExecutionPlan(); } status = xnn_setup_hardswish_nc_f16( op66, 49 /* batch size */, v66.data() /* input */, v67.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #66" << std::endl; return ExecutionPlan(); } status = xnn_setup_global_average_pooling_nwc_f16( op67, 1 /* batch size */, 49 /* width */, v67.data() /* input */, v68.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #67" << std::endl; return ExecutionPlan(); } status = xnn_setup_convolution2d_nhwc_f16( op68, 1 /* batch size */, 1 /* input height */, 1 /* input width */, v68.data() /* input */, v69.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #68" << std::endl; return ExecutionPlan(); } status = xnn_setup_convolution2d_nhwc_f16( op69, 1 /* batch size */, 1 /* input height */, 1 /* input width */, v69.data() /* input */, v70.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #69" << std::endl; return ExecutionPlan(); } { const size_t a_shape[] = { 1, 7, 7, 288 }; const size_t b_shape[] = { 1, 1, 1, 288 }; status = xnn_setup_multiply_nd_f16( op70, 4, a_shape, 4, b_shape, v67.data() /* a */, v70.data() /* b */, v71.data() /* output */, threadpool /* threadpool */); } if (status != xnn_status_success) { std::cerr << "failed to setup operation #70" << std::endl; return ExecutionPlan(); } status = xnn_setup_convolution2d_nhwc_f16( op71, 1 /* batch size */, 7 /* input height */, 7 /* input width */, v71.data() /* input */, v72.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #71" << std::endl; return ExecutionPlan(); } status = xnn_setup_convolution2d_nhwc_f16( op72, 1 /* batch size */, 7 /* input height */, 7 /* input width */, v72.data() /* input */, v73.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #72" << std::endl; return ExecutionPlan(); } status = xnn_setup_hardswish_nc_f16( op73, 49 /* batch size */, v73.data() /* input */, v74.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #73" << std::endl; return ExecutionPlan(); } status = xnn_setup_convolution2d_nhwc_f16( op74, 1 /* batch size */, 7 /* input height */, 7 /* input width */, v74.data() /* input */, v75.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #74" << std::endl; return ExecutionPlan(); } status = xnn_setup_hardswish_nc_f16( op75, 49 /* batch size */, v75.data() /* input */, v76.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #75" << std::endl; return ExecutionPlan(); } status = xnn_setup_global_average_pooling_nwc_f16( op76, 1 /* batch size */, 49 /* width */, v76.data() /* input */, v77.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #76" << std::endl; return ExecutionPlan(); } status = xnn_setup_convolution2d_nhwc_f16( op77, 1 /* batch size */, 1 /* input height */, 1 /* input width */, v77.data() /* input */, v78.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #77" << std::endl; return ExecutionPlan(); } status = xnn_setup_convolution2d_nhwc_f16( op78, 1 /* batch size */, 1 /* input height */, 1 /* input width */, v78.data() /* input */, v79.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #78" << std::endl; return ExecutionPlan(); } { const size_t a_shape[] = { 1, 7, 7, 576 }; const size_t b_shape[] = { 1, 1, 1, 576 }; status = xnn_setup_multiply_nd_f16( op79, 4, a_shape, 4, b_shape, v76.data() /* a */, v79.data() /* b */, v80.data() /* output */, threadpool /* threadpool */); } if (status != xnn_status_success) { std::cerr << "failed to setup operation #79" << std::endl; return ExecutionPlan(); } status = xnn_setup_convolution2d_nhwc_f16( op80, 1 /* batch size */, 7 /* input height */, 7 /* input width */, v80.data() /* input */, v81.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #80" << std::endl; return ExecutionPlan(); } { const size_t a_shape[] = { 1, 7, 7, 96 }; const size_t b_shape[] = { 1, 7, 7, 96 }; status = xnn_setup_add_nd_f16( op81, 4, a_shape, 4, b_shape, v81.data() /* a */, v72.data() /* b */, v82.data() /* output */, threadpool /* threadpool */); } if (status != xnn_status_success) { std::cerr << "failed to setup operation #81" << std::endl; return ExecutionPlan(); } status = xnn_setup_convolution2d_nhwc_f16( op82, 1 /* batch size */, 7 /* input height */, 7 /* input width */, v82.data() /* input */, v83.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #82" << std::endl; return ExecutionPlan(); } status = xnn_setup_hardswish_nc_f16( op83, 49 /* batch size */, v83.data() /* input */, v84.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #83" << std::endl; return ExecutionPlan(); } status = xnn_setup_convolution2d_nhwc_f16( op84, 1 /* batch size */, 7 /* input height */, 7 /* input width */, v84.data() /* input */, v85.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #84" << std::endl; return ExecutionPlan(); } status = xnn_setup_hardswish_nc_f16( op85, 49 /* batch size */, v85.data() /* input */, v86.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #85" << std::endl; return ExecutionPlan(); } status = xnn_setup_global_average_pooling_nwc_f16( op86, 1 /* batch size */, 49 /* width */, v86.data() /* input */, v87.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #86" << std::endl; return ExecutionPlan(); } status = xnn_setup_convolution2d_nhwc_f16( op87, 1 /* batch size */, 1 /* input height */, 1 /* input width */, v87.data() /* input */, v88.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #87" << std::endl; return ExecutionPlan(); } status = xnn_setup_convolution2d_nhwc_f16( op88, 1 /* batch size */, 1 /* input height */, 1 /* input width */, v88.data() /* input */, v89.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #88" << std::endl; return ExecutionPlan(); } { const size_t a_shape[] = { 1, 7, 7, 576 }; const size_t b_shape[] = { 1, 1, 1, 576 }; status = xnn_setup_multiply_nd_f16( op89, 4, a_shape, 4, b_shape, v86.data() /* a */, v89.data() /* b */, v90.data() /* output */, threadpool /* threadpool */); } if (status != xnn_status_success) { std::cerr << "failed to setup operation #89" << std::endl; return ExecutionPlan(); } status = xnn_setup_convolution2d_nhwc_f16( op90, 1 /* batch size */, 7 /* input height */, 7 /* input width */, v90.data() /* input */, v91.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #90" << std::endl; return ExecutionPlan(); } { const size_t a_shape[] = { 1, 7, 7, 96 }; const size_t b_shape[] = { 1, 7, 7, 96 }; status = xnn_setup_add_nd_f16( op91, 4, a_shape, 4, b_shape, v91.data() /* a */, v82.data() /* b */, v92.data() /* output */, threadpool /* threadpool */); } if (status != xnn_status_success) { std::cerr << "failed to setup operation #91" << std::endl; return ExecutionPlan(); } status = xnn_setup_convolution2d_nhwc_f16( op92, 1 /* batch size */, 7 /* input height */, 7 /* input width */, v92.data() /* input */, v93.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #92" << std::endl; return ExecutionPlan(); } status = xnn_setup_hardswish_nc_f16( op93, 49 /* batch size */, v93.data() /* input */, v94.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #93" << std::endl; return ExecutionPlan(); } status = xnn_setup_global_average_pooling_nwc_f16( op94, 1 /* batch size */, 49 /* width */, v94.data() /* input */, v95.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #94" << std::endl; return ExecutionPlan(); } status = xnn_setup_convolution2d_nhwc_f16( op95, 1 /* batch size */, 1 /* input height */, 1 /* input width */, v95.data() /* input */, v96.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #95" << std::endl; return ExecutionPlan(); } status = xnn_setup_hardswish_nc_f16( op96, 1 /* batch size */, v96.data() /* input */, v97.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #96" << std::endl; return ExecutionPlan(); } status = xnn_setup_global_average_pooling_nwc_f16( op97, 1 /* batch size */, 1 /* width */, v97.data() /* input */, v98.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #97" << std::endl; return ExecutionPlan(); } status = xnn_setup_convolution2d_nhwc_f16( op98, 1 /* batch size */, 1 /* input height */, 1 /* input width */, v98.data() /* input */, v99.data() /* output */, threadpool /* threadpool */); if (status != xnn_status_success) { std::cerr << "failed to setup operation #98" << std::endl; return ExecutionPlan(); } #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wpessimizing-move" return operators; #pragma clang diagnostic pop } } // namespace models