// Copyright 2020 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. $assert ROW_TILE >= 1 $assert ACCUMULATORS >= 1 #include #include #include #include void xnn_f32_dwconv2d_chw_ukernel_3x3s2p1__sse_${ROW_TILE}x4${"_acc%d" % ACCUMULATORS if ACCUMULATORS > 1 else ""}( size_t input_height, size_t input_width, const float* input, const float* weights, const float* zero, float* output, uint32_t padding_top, const union xnn_f32_chw_params params[restrict XNN_MIN_ELEMENTS(1)]) { assert(input_height != 0); assert(input_width != 0); assert(input_width % sizeof(float) == 0); assert(padding_top >= 0); assert(padding_top <= 1); const __m128 vmask_even = _mm_load_ps((const float*) params->sse.mask_even); const __m128 vmask_odd = _mm_load_ps((const float*) params->sse.mask_odd); const __m128 vmax = _mm_load_ps(params->sse.max); const __m128 vmin = _mm_load_ps(params->sse.min); const __m128 vbias = _mm_load1_ps(weights); const __m128 vk00 = _mm_load1_ps(weights + 1); const __m128 vk01 = _mm_load1_ps(weights + 2); const __m128 vk02 = _mm_load1_ps(weights + 3); const __m128 vk10 = _mm_load1_ps(weights + 4); const __m128 vk11 = _mm_load1_ps(weights + 5); const __m128 vk12 = _mm_load1_ps(weights + 6); const __m128 vk20 = _mm_load1_ps(weights + 7); const __m128 vk21 = _mm_load1_ps(weights + 8); const __m128 vk22 = _mm_load1_ps(weights + 9); const size_t input_decrement = round_down_po2(input_width, 4 /* SIMD output width */ * 2 /* subsampling */ * sizeof(float)); $if ROW_TILE > 1: const size_t output_width = round_down_po2((input_width + (2 /* padding */ - 3 /* kernel size */ + 2 /* subsampling */) * sizeof(float)) / 2, sizeof(float)); const float* i0 = (const float*) ((uintptr_t) input - ((-padding_top) & input_width)); const float* i1 = (const float*) ((uintptr_t) i0 + input_width); if XNN_UNPREDICTABLE(padding_top != 0) { i0 = zero; } $for M in range(2, 1 + 2 * ROW_TILE): const float* i${M} = (const float*) ((uintptr_t) i${M-1} + input_width); float* o0 = output; $for M in range(1, ROW_TILE): float* o${M} = (float*) ((uintptr_t) o${M-1} + output_width); size_t padded_input_height = input_height + padding_top + 1 /* padding bottom */; size_t output_height = (padded_input_height - 3 /* kernel size */ + 2 /* subsampling */) / 2; do { $for M in range(2, 1 + 2 * ROW_TILE): if XNN_UNPREDICTABLE(padded_input_height < ${2 + M}) { i${M} = zero; $if M % 2 == 1: o${(M - 1) / 2} = o${(M - 1) / 2 - 1}; } $for M in range(1 + 2 * ROW_TILE): __m128 vi${M}x7531 = _mm_setzero_ps(); size_t w = input_width; for (; w >= 8 * sizeof(float); w -= 8 * sizeof(float)) { $for M in range(1 + 2 * ROW_TILE): const __m128 vi${M}x89AB = _mm_loadu_ps(i${M}); const __m128 vi${M}xCDEF = _mm_loadu_ps(i${M} + 4); i${M} += 8; $for M in range(1 + 2 * ROW_TILE): const __m128 vi${M}x8ACE = _mm_shuffle_ps(vi${M}x89AB, vi${M}xCDEF, _MM_SHUFFLE(2, 0, 2, 0)); const __m128 vi${M}x9BDF = _mm_shuffle_ps(vi${M}x89AB, vi${M}xCDEF, _MM_SHUFFLE(3, 1, 3, 1)); $for K in range(3): $for M in range(ROW_TILE): $if K == 0: __m128 vo${M}p0 = _mm_add_ps(vbias, _mm_mul_ps(vi${2*M+K}x8ACE, vk${K}1)); $elif K < ACCUMULATORS: __m128 vo${M}p${K} = _mm_mul_ps(vi${2*M+K}x8ACE, vk${K}1); $else: vo${M}p${K % ACCUMULATORS} = _mm_add_ps(vo${M}p${K % ACCUMULATORS}, _mm_mul_ps(vi${2*M+K}x8ACE, vk${K}1)); $for M in range(1 + 2 * ROW_TILE): const __m128 vi${M}xF9BD = _mm_shuffle_ps(vi${M}x9BDF, vi${M}x9BDF, _MM_SHUFFLE(2, 1, 0, 3)); $for K in range(3): $for M in range(ROW_TILE): $if K+3 < ACCUMULATORS: __m128 vo${M}p${K+3} = _mm_mul_ps(vi${2*M+K}x9BDF, vk${K}2); $else: vo${M}p${(K+3) % ACCUMULATORS} = _mm_add_ps(vo${M}p${(K+3) % ACCUMULATORS}, _mm_mul_ps(vi${2*M+K}x9BDF, vk${K}2)); $for M in range(1 + 2 * ROW_TILE): const __m128 vi${M}x7BDF = _mm_move_ss(vi${M}xF9BD, vi${M}x7531); $for M in range(1 + 2 * ROW_TILE): vi${M}x7531 = vi${M}xF9BD; $for K in range(3): $for M in range(ROW_TILE): vo${M}p${(K+6) % ACCUMULATORS} = _mm_add_ps(vo${M}p${(K+6) % ACCUMULATORS}, _mm_mul_ps(vi${2*M+K}x7BDF, vk${K}0)); $if ACCUMULATORS > 1: $ACC_SLICE = 1 $while ACC_SLICE < ACCUMULATORS: $for A in range(0, ACCUMULATORS, ACC_SLICE * 2): $if A + ACC_SLICE < ACCUMULATORS: $for M in range(ROW_TILE): vo${M}p${A} = _mm_add_ps(vo${M}p${A}, vo${M}p${A + ACC_SLICE}); $ACC_SLICE *= 2 $for M in range(ROW_TILE): __m128 vo${M} = _mm_max_ps(vo${M}p0, vmin); $for M in range(ROW_TILE): vo${M} = _mm_min_ps(vo${M}, vmax); $for M in reversed(range(ROW_TILE)): _mm_storeu_ps(o${M}, vo${M}); o${M} += 4; } // Potentially process the last block of 0..7 pixels. assert(w < 8 * sizeof(float)); if XNN_LIKELY(w != 0) { $for M in range(1 + 2 * ROW_TILE): const __m128 vi${M}x89AB = _mm_loadu_ps(i${M}); const __m128 vi${M}xCDEF = _mm_loadu_ps(i${M} + 4); $for M in range(1 + 2 * ROW_TILE): const __m128 vi${M}x8ACE = _mm_and_ps(vmask_even, _mm_shuffle_ps(vi${M}x89AB, vi${M}xCDEF, _MM_SHUFFLE(2, 0, 2, 0))); const __m128 vi${M}x9BDF = _mm_and_ps(vmask_odd, _mm_shuffle_ps(vi${M}x89AB, vi${M}xCDEF, _MM_SHUFFLE(3, 1, 3, 1))); $for K in range(3): $for M in range(ROW_TILE): $if K == 0: __m128 vo${M}p0 = _mm_add_ps(vbias, _mm_mul_ps(vi${2*M+K}x8ACE, vk${K}1)); $elif K < ACCUMULATORS: __m128 vo${M}p${K} = _mm_mul_ps(vi${2*M+K}x8ACE, vk${K}1); $else: vo${M}p${K % ACCUMULATORS} = _mm_add_ps(vo${M}p${K % ACCUMULATORS}, _mm_mul_ps(vi${2*M+K}x8ACE, vk${K}1)); $for M in range(1 + 2 * ROW_TILE): const __m128 vi${M}xF9BD = _mm_shuffle_ps(vi${M}x9BDF, vi${M}x9BDF, _MM_SHUFFLE(2, 1, 0, 3)); $for K in range(3): $for M in range(ROW_TILE): $if K+3 < ACCUMULATORS: __m128 vo${M}p${K+3} = _mm_mul_ps(vi${2*M+K}x9BDF, vk${K}2); $else: vo${M}p${(K+3) % ACCUMULATORS} = _mm_add_ps(vo${M}p${(K+3) % ACCUMULATORS}, _mm_mul_ps(vi${2*M+K}x9BDF, vk${K}2)); $for M in range(1 + 2 * ROW_TILE): const __m128 vi${M}x7BDF = _mm_move_ss(vi${M}xF9BD, vi${M}x7531); $for M in range(1 + 2 * ROW_TILE): vi${M}x7531 = vi${M}xF9BD; $for K in range(3): $for M in range(ROW_TILE): vo${M}p${(K+6) % ACCUMULATORS} = _mm_add_ps(vo${M}p${(K+6) % ACCUMULATORS}, _mm_mul_ps(vi${2*M+K}x7BDF, vk${K}0)); $if ACCUMULATORS > 1: $ACC_SLICE = 1 $while ACC_SLICE < ACCUMULATORS: $for A in range(0, ACCUMULATORS, ACC_SLICE * 2): $if A + ACC_SLICE < ACCUMULATORS: $for M in range(ROW_TILE): vo${M}p${A} = _mm_add_ps(vo${M}p${A}, vo${M}p${A + ACC_SLICE}); $ACC_SLICE *= 2 $for M in range(ROW_TILE): __m128 vo${M} = _mm_max_ps(vo${M}p0, vmin); $for M in range(ROW_TILE): vo${M} = _mm_min_ps(vo${M}, vmax); if (w == 7 * sizeof(float)) { $for M in reversed(range(ROW_TILE)): _mm_storeu_ps(o${M}, vo${M}); o${M} += 4; } else { w += 1 * sizeof(float); if (w & (4 * sizeof(float))) { $for M in reversed(range(ROW_TILE)): _mm_storel_pi((__m64*) o${M}, vo${M}); o${M} += 2; $for M in range(ROW_TILE): vo${M} = _mm_movehl_ps(vo${M}, vo${M}); } if (w & (2 * sizeof(float))) { $for M in reversed(range(ROW_TILE)): _mm_store_ss(o${M}, vo${M}); o${M} += 1; } } } i0 = (const float*) ((uintptr_t) i${2 * ROW_TILE} - input_decrement); $for M in range(1, 1 + 2 * ROW_TILE): i${M} = (const float*) ((uintptr_t) i${M-1} + input_width); $if ROW_TILE > 1: o0 = o${ROW_TILE - 1}; $for M in range(1, ROW_TILE): o${M} = (float*) ((uintptr_t) o${M-1} + output_width); $if ROW_TILE > 1: output_height = doz(output_height, ${ROW_TILE}); padded_input_height = doz(padded_input_height, ${ROW_TILE * 2}); $else: output_height -= 1; padded_input_height -= 2; } while (output_height != 0); }