// Copyright 2020 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. $assert ELEMENTS_TILE >= 1 $ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" #include #include #include #include // Note redefine as uint32[] to avoid redundant bitcasts. extern XNN_INTERNAL const uint32_t xnn_table_exp2_k_over_64[64]; void xnn_f32_raddstoreexpminusmax_ukernel__scalar_lut64_p2_x${ELEMENTS_TILE}${"" if ACCUMULATORS == 1 else "_acc%d" % ACCUMULATORS}( size_t elements, const float* input, float* output, float* sum, float vi_max) { assert(elements % sizeof(float) == 0); const float vmagic_bias = 0x1.800000p23f; // The smallest x for which expf(x) is normalized. const float vdenorm_cutoff = -0x1.5D589Ep6f; const float vlog2e_x64 = 0x1.715476p6f; // Last 13 bits are zeroes const float vminus_ln2_o64_hi = -0x1.630000p-7f; const float vminus_ln2_o64_lo = 0x1.BD0106p-19f; const float vc2 = 0x1.FFFF0Ap-2f; const uint32_t vindex_mask = UINT32_C(0x3F); $if ELEMENTS_TILE > 1: $for K in range(ACCUMULATORS): float vacc${K} = 0.0f; for (; elements >= ${ELEMENTS_TILE} * sizeof(float); elements -= ${ELEMENTS_TILE} * sizeof(float)) { // Load ${ELEMENTS_TILE} inputs at a time. $for N in range(ELEMENTS_TILE): const float vi${N} = input[${N}]; input += ${ELEMENTS_TILE}; // Subtract maximum input x := i - i_max. This implies x <= 0. $for N in range(ELEMENTS_TILE): const float vx${N} = vi${N} - vi_max; // Compute reduced argument n := round(x * 64 / log(2)). // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction. // The trick with adding large number is valid only within certain bounds (|x * 64 / log(2)| <= 2**22, i.e. // |x| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs outside of [-87.336540, 0.0] // result in denormalized or underflown expf(x). We fixup the result for such inputs at the very end of the // algorithm. $for N in range(ELEMENTS_TILE): float vn${N} = vx${N} * vlog2e_x64 + vmagic_bias; // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that expf(x) is normalized, // i.e. -87.33642 <= x <= 0.0. As n has 6 fractional bits, we split s == 2**(n / 64) = 2**e * 2**(n / 64 - e), where // e := int(n / 64). We create s in two steps: // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the // fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0. // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized // number, because for -87.33642 <= x <= 0.0 (inputs for which expf(x) is normalized) we have -126 <= e <= 0, // and thus the adjusted exponent is not lower than -126. // // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent). $for N in range(ELEMENTS_TILE): const uint32_t ve${N} = (fp32_to_bits(vn${N}) & UINT32_C(0xFFFFFFC0)) << 17; // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64). $for N in range(ELEMENTS_TILE): const uint32_t vidx${N} = fp32_to_bits(vn${N}) & vindex_mask; // Adjust exponent of the value l fetched from the table to get the final s value. $for N in range(ELEMENTS_TILE): const float vs${N} = fp32_from_bits(xnn_table_exp2_k_over_64[vidx${N}] + ve${N}); // Subtract the large number back to get final n := round(x * 64 / log(2)) as a floating-point number. $for N in range(ELEMENTS_TILE): vn${N} -= vmagic_bias; // Compute reduced argument t := x - n * log(2) / 64. // Use Cody-Waite range reduction method (note the two constants representing log(2) / 64) to improve accuracy. $for N in range(ELEMENTS_TILE): float vt${N} = vn${N} * vminus_ln2_o64_hi + vx${N}; $for N in range(ELEMENTS_TILE): vt${N} = vn${N} * vminus_ln2_o64_lo + vt${N}; // Compute degree-2 polynomial approximation for exp(t) on [-log(2)/128, log(2)/128]. $for N in range(ELEMENTS_TILE): float vp${N} = vt${N} * vc2; $for N in range(ELEMENTS_TILE): vp${N} = vp${N} * vt${N} + vt${N}; // Reconstruct the final f value: // f = s * (1 + t * (1 + t * c2)) // = s * (1 + t + t * (t * c2)) // = s + s * (t + t * (t * c2)) // = s + s * p $for N in range(ELEMENTS_TILE): float vf${N} = vp${N} * vs${N} + vs${N}; // For inputs below denormal cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. $for N in range(ELEMENTS_TILE): if XNN_UNPREDICTABLE(vx${N} < vdenorm_cutoff) { vf${N} = 0.0f; } // Store ${ELEMENTS_TILE} outputs at a time. $for N in range(ELEMENTS_TILE): output[${N}] = vf${N}; output += ${ELEMENTS_TILE}; // Accumulate computed exponents. $for N in range(ELEMENTS_TILE): vacc${N % ACCUMULATORS} += vf${N}; } $if ACCUMULATORS > 1: // Add up all accumulators to vacc0 $ACC_SLICE = 1 $while ACC_SLICE < ACCUMULATORS: $for A in range(0, ACCUMULATORS, ACC_SLICE * 2): $if A + ACC_SLICE < ACCUMULATORS: vacc${A} += vacc${A + ACC_SLICE}; $ACC_SLICE *= 2 float vacc = vacc0; $else: float vacc = 0.0f; for (; elements >= sizeof(float); elements -= sizeof(float)) { // Load 1 input at a time. const float vi = *input++; // Subtract maximum input x := i - i_max. This implies x <= 0. const float vx = vi - vi_max; // Compute reduced argument n := round(x * 64 / log(2)). // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction. // The trick with adding large number is valid only within certain bounds (|x * 64 / log(2)| <= 2**22, i.e. // |x| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs outside of [-87.336540, 0.0] // result in denormalized or underflown expf(x). We fixup the result for such inputs at the very end of the // algorithm. float vn = vx * vlog2e_x64 + vmagic_bias; // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that expf(x) is normalized, // i.e. -87.33642 <= x <= 0.0. As n has 6 fractional bits, we split s == 2**(n / 64) = 2**e * 2**(n / 64 - e), where // e := int(n / 64). We create s in two steps: // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the // fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0. // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized // number, because for -87.33642 <= x <= 0.0 (inputs for which expf(x) is normalized) we have -126 <= e <= 0, // and thus the adjusted exponent is not lower than -126. // // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent). const uint32_t ve = (fp32_to_bits(vn) & UINT32_C(0xFFFFFFC0)) << 17; // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64). const uint32_t vidx = fp32_to_bits(vn) & vindex_mask; // Adjust exponent of the value l fetched from the table to get the final s value. const float vs = fp32_from_bits(xnn_table_exp2_k_over_64[vidx] + ve); // Subtract the large number back to get final n := round(x * 64 / log(2)) as a floating-point number. vn -= vmagic_bias; // Compute reduced argument t := x - n * log(2) / 64. // Use Cody-Waite range reduction method (note the two constants representing log(2) / 64) to improve accuracy. float vt = vn * vminus_ln2_o64_hi + vx; vt = vn * vminus_ln2_o64_lo + vt; // Compute degree-2 polynomial approximation for exp(t) on [-log(2)/128, log(2)/128]. float vp = vt * vc2; vp = vp * vt + vt; // Reconstruct the final f value: // f = s * (1 + t * (1 + t * c2)) // = s * (1 + t + t * (t * c2)) // = s + s * (t + t * (t * c2)) // = s + s * p float vf = vp * vs + vs; // For inputs below denormal cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. if XNN_UNPREDICTABLE(vx < vdenorm_cutoff) { vf = 0.0f; } // Store 1 output at a time. *output++ = vf; // Accumulate computed exponents. vacc += vf; } *sum = vacc; }