// Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. $assert BATCH_TILE % 4 == 0 $assert BATCH_TILE >= 4 $ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" $assert OP in ["ADD", "DIV", "RDIV", "MAX", "MIN", "MUL", "SUB", "RSUB", "SQRDIFF"] $assert ACTIVATION in ["LINEAR", "MINMAX"] #include #include #include #include #include $_MM_OP_PS = { $ "ADD": lambda x: "_mm_add_ps(%s, vb)" % x, $ "DIV": lambda x: "_mm_div_ps(%s, vb)" % x, $ "RDIV": lambda x: "_mm_div_ps(vb, %s)" % x, $ "MAX": lambda x: "_mm_max_ps(%s, vb)" % x, $ "MIN": lambda x: "_mm_min_ps(%s, vb)" % x, $ "MUL": lambda x: "_mm_mul_ps(%s, vb)" % x, $ "SUB": lambda x: "_mm_sub_ps(%s, vb)" % x, $ "RSUB": lambda x: "_mm_sub_ps(vb, %s)" % x, $ "SQRDIFF": lambda x: "_mm_sub_ps(%s, vb)" % x, $}[OP] $SUFFIX = {"LINEAR": "", "MINMAX": "_minmax"}[ACTIVATION] $PARAMS = {"LINEAR": "xnn_f32_default_params", "MINMAX": "xnn_f32_minmax_params"}[ACTIVATION] void xnn_f32_v${OP.lower()}c${SUFFIX}_ukernel__sse_x${BATCH_TILE}( size_t n, const float* a, const float* b, float* y, const union ${PARAMS} params[restrict XNN_MIN_ELEMENTS(1)]) XNN_DISABLE_TSAN { assert(n != 0); assert(n % sizeof(float) == 0); assert(a != NULL); assert(b != NULL); assert(y != NULL); $if ACTIVATION == "MINMAX": const __m128 vy_min = _mm_load_ps(params->sse.min); const __m128 vy_max = _mm_load_ps(params->sse.max); const __m128 vb = _mm_load1_ps(b); for (; n >= ${BATCH_TILE} * sizeof(float); n -= ${BATCH_TILE} * sizeof(float)) { const __m128 va${ABC[0:4]} = _mm_loadu_ps(a); $for N in range(4, BATCH_TILE, 4): const __m128 va${ABC[N:N+4]} = _mm_loadu_ps(a + ${N}); a += ${BATCH_TILE}; $for N in range(0, BATCH_TILE, 4): __m128 vy${ABC[N:N+4]} = ${_MM_OP_PS("va" + ABC[N:N+4])}; $if OP == "SQRDIFF": $for N in range(0, BATCH_TILE, 4): vy${ABC[N:N+4]} = _mm_mul_ps(vy${ABC[N:N+4]}, vy${ABC[N:N+4]}); $if ACTIVATION == "MINMAX": $for N in range(0, BATCH_TILE, 4): vy${ABC[N:N+4]} = _mm_max_ps(vy${ABC[N:N+4]}, vy_min); $for N in range(0, BATCH_TILE, 4): vy${ABC[N:N+4]} = _mm_min_ps(vy${ABC[N:N+4]}, vy_max); _mm_storeu_ps(y, vy${ABC[0:4]}); $for N in range(4, BATCH_TILE, 4): _mm_storeu_ps(y + ${N}, vy${ABC[N:N+4]}); y += ${BATCH_TILE}; } $if BATCH_TILE > 4: for (; n >= 4 * sizeof(float); n -= 4 * sizeof(float)) { const __m128 va0123 = _mm_loadu_ps(a); a += 4; __m128 vy0123 = ${_MM_OP_PS("va0123")}; $if OP == "SQRDIFF": vy0123 = _mm_mul_ps(vy0123, vy0123); $if ACTIVATION == "MINMAX": vy0123 = _mm_max_ps(vy0123, vy_min); vy0123 = _mm_min_ps(vy0123, vy_max); _mm_storeu_ps(y, vy0123); y += 4; } if XNN_UNLIKELY(n != 0) { const __m128 va0123 = _mm_loadu_ps(a); __m128 vy0123 = ${_MM_OP_PS("va0123")}; $if OP == "SQRDIFF": vy0123 = _mm_mul_ps(vy0123, vy0123); $if ACTIVATION == "MINMAX": vy0123 = _mm_max_ps(vy0123, vy_min); vy0123 = _mm_min_ps(vy0123, vy_max); if (n & (2 * sizeof(float))) { _mm_storel_pi((__m64*) y, vy0123); vy0123 = _mm_movehl_ps(vy0123, vy0123); y += 2; } if (n & (1 * sizeof(float))) { _mm_store_ss(y, vy0123); } } }