// Copyright 2020 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. $assert BATCH_TILE % 8 == 0 $assert BATCH_TILE >= 8 $SIMD_TILE = BATCH_TILE // 8 #include #include #include #include static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0}; void xnn_f32_velu_ukernel__avx2_rr1_lut8_p4_perm_x${BATCH_TILE}( size_t n, const float* x, float* y, const union xnn_f32_elu_params params[restrict XNN_MIN_ELEMENTS(1)]) { assert(n % sizeof(float) == 0); const __m256 vprescale = _mm256_broadcast_ps((const __m128*) params->sse.prescale); const __m256 valpha = _mm256_broadcast_ps((const __m128*) params->sse.alpha); const __m256 vbeta = _mm256_broadcast_ps((const __m128*) params->sse.beta); const __m256 vsat_cutoff = _mm256_set1_ps(-0x1.154246p+4f); const __m256 vmagic_bias = _mm256_set1_ps(0x1.800000p20f); const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f); const __m256i vtable = _mm256_set_epi32( 0x3F7AC0C7, 0x3F7744FD, 0x3F75672A, 0x3F7504F3, 0x3F75FED7, 0x3F7837F0, 0x3F7B95C2, 0x3F800000); const __m256 vminus_ln2 = _mm256_set1_ps(-0x1.62E43p-1f); const __m256 vc4 = _mm256_set1_ps(0x1.5558ECp-5f); const __m256 vc3 = _mm256_set1_ps(0x1.555C20p-3f); const __m256 vc2 = _mm256_set1_ps(0x1.000000p-1f); $if BATCH_TILE > 8: for (; n >= ${BATCH_TILE} * sizeof(float); n -= ${BATCH_TILE} * sizeof(float)) { __m256 vx0 = _mm256_loadu_ps(x); $for N in range(1, SIMD_TILE): __m256 vx${N} = _mm256_loadu_ps(x + ${N * 8}); x += ${BATCH_TILE}; $for N in range(SIMD_TILE): const __m256 vz${N} = _mm256_max_ps(vsat_cutoff, _mm256_mul_ps(vx${N}, vprescale)); $for N in range(SIMD_TILE): __m256 vn${N} = _mm256_fmadd_ps(vz${N}, vlog2e, vmagic_bias); $for N in range(SIMD_TILE): const __m256i ven${N} = _mm256_slli_epi32(_mm256_castps_si256(vn${N}), 20); const __m256i vl${N} = _mm256_permutevar8x32_epi32(vtable, _mm256_castps_si256(vn${N})); vn${N} = _mm256_sub_ps(vn${N}, vmagic_bias); $for N in range(SIMD_TILE): __m256 vs${N} = _mm256_castsi256_ps(_mm256_add_epi32(vl${N}, ven${N})); __m256 vt${N} = _mm256_fmadd_ps(vn${N}, vminus_ln2, vz${N}); $for N in range(SIMD_TILE): __m256 vp${N} = _mm256_fmadd_ps(vc4, vt${N}, vc3); $for N in range(SIMD_TILE): vp${N} = _mm256_fmadd_ps(vp${N}, vt${N}, vc2); $for N in range(SIMD_TILE): vp${N} = _mm256_mul_ps(vp${N}, vt${N}); vt${N} = _mm256_mul_ps(vt${N}, vs${N}); $for N in range(SIMD_TILE): vs${N} = _mm256_fmsub_ps(vs${N}, valpha, valpha); vp${N} = _mm256_fmadd_ps(vp${N}, vt${N}, vt${N}); $for N in range(SIMD_TILE): const __m256 ve${N} = _mm256_fmadd_ps(vp${N}, valpha, vs${N}); vx${N} = _mm256_mul_ps(vx${N}, vbeta); $for N in range(SIMD_TILE): const __m256 vy${N} = _mm256_blendv_ps(vx${N}, ve${N}, vx${N}); _mm256_storeu_ps(y, vy0); $for N in range(1, SIMD_TILE): _mm256_storeu_ps(y + ${N * 8}, vy${N}); y += ${BATCH_TILE}; } for (; n >= 8 * sizeof(float); n -= 8 * sizeof(float)) { __m256 vx = _mm256_loadu_ps(x); x += 8; const __m256 vz = _mm256_max_ps(vsat_cutoff, _mm256_mul_ps(vx, vprescale)); __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias); const __m256i ven = _mm256_slli_epi32(_mm256_castps_si256(vn), 20); const __m256i vl = _mm256_permutevar8x32_epi32(vtable, _mm256_castps_si256(vn)); __m256 vs = _mm256_castsi256_ps(_mm256_add_epi32(vl, ven)); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz); __m256 vp = _mm256_fmadd_ps(vc4, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_mul_ps(vp, vt); vt = _mm256_mul_ps(vt, vs); vs = _mm256_fmsub_ps(vs, valpha, valpha); vp = _mm256_fmadd_ps(vp, vt, vt); const __m256 ve = _mm256_fmadd_ps(vp, valpha, vs); vx = _mm256_mul_ps(vx, vbeta); const __m256 vy = _mm256_blendv_ps(vx, ve, vx); _mm256_storeu_ps(y, vy); y += 8; } if XNN_UNLIKELY(n != 0) { assert(n >= 1 * sizeof(float)); assert(n <= 7 * sizeof(float)); __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - n)); __m256 vx = _mm256_maskload_ps(x, vmask); const __m256 vz = _mm256_max_ps(vsat_cutoff, _mm256_mul_ps(vx, vprescale)); __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias); const __m256i ven = _mm256_slli_epi32(_mm256_castps_si256(vn), 20); const __m256i vl = _mm256_permutevar8x32_epi32(vtable, _mm256_castps_si256(vn)); __m256 vs = _mm256_castsi256_ps(_mm256_add_epi32(vl, ven)); vn = _mm256_sub_ps(vn, vmagic_bias); __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz); __m256 vp = _mm256_fmadd_ps(vc4, vt, vc3); vp = _mm256_fmadd_ps(vp, vt, vc2); vp = _mm256_mul_ps(vp, vt); vt = _mm256_mul_ps(vt, vs); vs = _mm256_fmsub_ps(vs, valpha, valpha); vp = _mm256_fmadd_ps(vp, vt, vt); const __m256 ve = _mm256_fmadd_ps(vp, valpha, vs); vx = _mm256_mul_ps(vx, vbeta); const __m256 vy = _mm256_blendv_ps(vx, ve, vx); // _mm256_maskstore_ps(y, vmask, vf) could be used here, but triggers msan failures (probably an msan bug). __m128 vy_lo = _mm256_castps256_ps128(vy); if (n & (4 * sizeof(float))) { _mm_storeu_ps(y, vy_lo); vy_lo = _mm256_extractf128_ps(vy, 1); y += 4; } if (n & (2 * sizeof(float))) { _mm_storel_pi((__m64*) y, vy_lo); vy_lo = _mm_movehl_ps(vy_lo, vy_lo); y += 2; } if (n & (1 * sizeof(float))) { _mm_store_ss(y, vy_lo); } } }