// Copyright 2020 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include #include #include #include void xnn_math_f32_exp__avx512f_rr2_lut16_p3_perm_scalef( size_t n, const float* input, float* output) { assert(n % (16 * sizeof(float)) == 0); const __m512 vmagic_bias = _mm512_set1_ps(0x1.800000p19f); const __m512 vlog2e = _mm512_set1_ps(0x1.715476p0f); const __m512 vminus_ln2_hi = _mm512_set1_ps(-0x1.62e43p-1f); const __m512 vminus_ln2_lo = _mm512_set1_ps(0x1.05c61p-29f); const __m512 vc2 = _mm512_set1_ps(0x1.00021Ep-1f); const __m512 vc3 = _mm512_set1_ps(0x1.55559Ap-3f); const __m512 vtable = _mm512_set_ps( 0x1.EA4AFAp+0f, 0x1.D5818Ep+0f, 0x1.C199BEp+0f, 0x1.AE89FAp+0f, 0x1.9C4918p+0f, 0x1.8ACE54p+0f, 0x1.7A1148p+0f, 0x1.6A09E6p+0f, 0x1.5AB07Ep+0f, 0x1.4BFDAEp+0f, 0x1.3DEA64p+0f, 0x1.306FE0p+0f, 0x1.2387A6p+0f, 0x1.172B84p+0f, 0x1.0B5586p+0f, 0x1.000000p+0f); for (; n != 0; n -= 16 * sizeof(float)) { const __m512 vx = _mm512_loadu_ps(input); // Compute reduced argument n := round(x / log(2), 4). // We do it by adding a large number (magic bias), which cause rounding of result to an 4 fractional bits, then // subtracing the large number back. The first addition is combined with multiplication by log2e into a single // FMA instruction. The trick with adding large number is valid only within certain bounds (|x| <= 2**18), but // thats ok, because inputs outside of [-103.97207, 88.72283] underflow or overflow expf(x) anyway. We fixup // the result for such inputs at the very end of the algorithm. __m512 vn = _mm512_fmadd_ps(vx, vlog2e, vmagic_bias); // Use the low 4 bits of n (as integer) for table lookup. const __m512 vl = _mm512_permutexvar_ps(_mm512_castps_si512(vn), vtable); // Subtract the large number back to get final n := round(x / log(2), 4). vn = _mm512_sub_ps(vn, vmagic_bias); // Compute reduced argument t := x - n * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx); vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt); // Compute degree-3 polynomial approximation for exp(t) on [-log(2)/32, log(2)/32]. // P = l * (1 + t * (1 + t * (c2 + t * c3))) // = l + l * (t + t * (t * (c2 + t * c3))) __m512 vp = _mm512_fmadd_ps(vt, vc3, vc2); vp = _mm512_mul_ps(vp, vt); vp = _mm512_fmadd_ps(vt, vp, vt); vp = _mm512_fmadd_ps(vl, vp, vl); // Reconstruct the final value as f = exp2(floor(n)) * p. const __m512 vf = _mm512_scalef_ps(vp, vn); _mm512_storeu_ps(output, vf); input += 16; output += 16; } }