// Copyright 2020 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include #include #include #include #include // Table of exp2(k / 4) values decremented (as integer) by (k << 21), k = 0..3 extern XNN_INTERNAL const uint32_t xnn_table_exp2minus_k_over_4[4]; void xnn_math_f32_expm1minus__scalar_rr2_lut4_p4( size_t n, const float* input, float* output) { assert(n % (4 * sizeof(float)) == 0); // Large number such that ulp(magic bias) == exp2(-2) const float vmagic_bias = 0x1.800000p21f; const float vlog2e = 0x1.715476p+0f; // Mask for the lowest 2 bits const uint32_t vindex_mask = UINT32_C(0x3); // The largest x for which expm1f(x) is saturated at -1.0f. const float vsat_cutoff = -0x1.154246p+4f; // Last 7 bits are zeroes const float vminus_ln2_hi = -0x1.62E400p-1f; const float vminus_ln2_lo = -0x1.7F7D1Cp-20f; // Coefficient of polynomial approximation // exp(t) - 1 ~ t * (1 + t * (c2 + t * (c3 + t * c4))) // on [-log(2)/8, log(2)/8] const float vc4 = 0x1.554F9Ap-5f; const float vc3 = 0x1.557082p-3f; const float vc2 = 0x1.000002p-1f; const float vone = 1.0f; for (; n != 0; n -= sizeof(float)) { float vx = *input++; // Compute reduced argument n := round(x / log(2), 2). // We do it by adding a large number (magic bias), which cause rounding of the result to 2 fractional bits, then // subtracing the large number back. The trick with adding large number is valid only within certain bounds // (|x / log(2)| <= 2**20, i.e. |x| <= 0x1.62E43p+19 = 726817.5), but that is acceptable, because inputs x are // restricted to [-17.328680, 0]. // Note that addition-subtraction of the large number doesn't cause overflow for inputs in this range. float vn = vx * vlog2e + vmagic_bias; // Create a floating-point number s (scale) such that s := 2**n for valid inputs, i.e. -17.328680 <= x <= 0.0. As n // has 2 fractional bits, we split s == 2**n = 2**int(n) * 2**frac(n). We create s in two steps: // 1. Fetch 2**frac(n) from the table using the 2 low bits of n, as integer. Note that the fetched values are in // the [1.0, 2.0) range, i.e. their floating-point exponent is 0. // 2. Adjust fecthed value by addition of int(n) to its floating-point exponent. The result is always a normalized // number, because for -17.328680 <= x <= 0.0 we have -25 <= int(n) <= 0, and thus the adjusted exponent is not // lower than -25. // // Shift bits 2:10 into 23:31 (position of floating-point exponent). const uint32_t ven = fp32_to_bits(vn) << 21; // Use bits 0:2 bits of n, as integer, as an index for table lookup of l := 2**frac(n). const uint32_t vidx = fp32_to_bits(vn) & vindex_mask; // Adjust exponent of the value l fetched from the table to get the final s value. float vs = fp32_from_bits(xnn_table_exp2minus_k_over_4[vidx] + ven); // Subtract the large number back to get final n := round(x / log(2), 2). vn -= vmagic_bias; // Compute reduced argument t := x - n * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. float vt = vn * vminus_ln2_hi + vx; vt = vn * vminus_ln2_lo + vt; // The function saturates at -1 for large negative inputs: expm1f(x) == -1.0f for x <= sat_cutoff ~= -17.328680. // To guarantee this behaviour, we zero out s (scale) and t (reduced argument) for x <= sat_cutoff. if XNN_UNPREDICTABLE(vx <= vsat_cutoff) { vs = 0.0f; vt = 0.0f; } // Compute degree-4 polynomial approximation for exp(t) - 1 on [-log(2)/8, log(2)/8]. // P(t) = t * (1 + t * (c2 + t * (c3 + t * c4))) = t + t * (t * (c2 + t * (c3 + t * c4))) = t + t * p float vp = vc4 * vt + vc3; vp = vp * vt + vc2; vp *= vt; // Reconstruct the exp(x) - 1 value: // exp(x) - 1 = s * (1 + t * (1 + t * (c2 + t * (c3 + t * c4)))) - 1 // = (s - 1) + s * (t + t * p) // = ((t * s) + (t * s) * p) + (s - 1) vt *= vs; const float vsm1 = vs - vone; vp = vp * vt + vt; const float vf = vp + vsm1; *output++ = vf; } }