// Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include #include #include #include void xnn_math_f32_sigmoid__neonfma_rr2_p5_nr2fma( size_t n, const float* input, float* output) { assert(n % (4 * sizeof(float)) == 0); // Large number such that ulp(magic bias) == 1 and magic bias === 127 mod 2**22. const float32x4_t vmagic_bias = vmovq_n_f32(0x1.8000FEp23f); const float32x4_t vminus_log2e = vmovq_n_f32(-0x1.715476p+0f); const float32x4_t vln2_hi = vmovq_n_f32(0x1.62E43p-1f); const float32x4_t vln2_lo = vmovq_n_f32(-0x1.05C61p-29f); // Coefficient of polynomial approximation of // exp(-t) ~ 1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) on [-log(2)/2, log(2)/2] const float32x4_t vc5 = vmovq_n_f32(-0x1.0F9F9Cp-7f); const float32x4_t vc4 = vmovq_n_f32(0x1.573A1Ap-5f); const float32x4_t vc3 = vmovq_n_f32(-0x1.555A80p-3f); const float32x4_t vc2 = vmovq_n_f32(0x1.FFFDC6p-2f); const float32x4_t vc1 = vmovq_n_f32(-0x1.FFFFF6p-1f); const float32x4_t vone = vmovq_n_f32(1.0f); // The largest z for which sigmoidf(-z) is normalized. // This number is also the largest z for which expf(-z) is normalized. const float32x4_t vdenorm_cutoff = vmovq_n_f32(-0x1.5D589Ep+6f); for (; n != 0; n -= 4 * sizeof(float)) { const float32x4_t vx = vld1q_f32(input); input += 4; // General structure of the algorithm: // // / exp(x) / (1 + exp(x)) if x <= 0 // f[x] := // \ 1 - f[-x] if x >= 0 // // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x), // then replace result with 1 - f[-z] if x >= 0. const float32x4_t vz = vabsq_f32(vx); // Compute reduced argument n := round(-z / log(2)). // We do it by adding a large number (magic bias), which cause rounding of the result to integer, then subtracing // the large number back. The trick with adding large number is valid only within certain bounds // (|-z / log(2)| <= 2**22, i.e. |z| <= 0x1.62E43p+22 = 5814540.0), but that is acceptable, because inputs x // outside of [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup // the result for such inputs at the very end of the algorithm. float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e); // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e. // -87.336544 <= -z <= 0.0, and -126 <= n <= 0 accordingly. const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23)); // Subtract the large number back to get the final n := round(-z / log(2)) as a floating-point number. vn = vsubq_f32(vn, vmagic_bias); // Compute reduced argument t := z + n * log(2). Note that -t = -z - n * log(2). // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy. float32x4_t vt = vfmaq_f32(vz, vn, vln2_hi); vt = vfmaq_f32(vt, vn, vln2_lo); // Compute degree-5 polynomial approximation for exp(-t) on [-log(2)/2, log(2)/2]: // P(t) = 1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))) = 1 + t * p float32x4_t vp = vfmaq_f32(vc4, vc5, vt); vp = vfmaq_f32(vc3, vp, vt); vp = vfmaq_f32(vc2, vp, vt); vp = vfmaq_f32(vc1, vp, vt); // Reconstruct the exp(-z) value: // e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) // = s * (1 + t * p) // = s + (t * s) * p vt = vmulq_f32(vt, vs); float32x4_t ve = vfmaq_f32(vs, vp, vt); // Denominator of the sigmoid fraction: 1.0 + exp(-z) float32x4_t vd = vaddq_f32(ve, vone); // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator. // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0. // Thus the reciprocal of the denominator never overflows. float32x4_t vr = vrecpeq_f32(vd); vr = vfmaq_f32(vr, vr, vfmsq_f32(vone, vr, vd)); vr = vfmaq_f32(vr, vr, vfmsq_f32(vone, vr, vd)); // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z)) float32x4_t vf = vmulq_f32(ve, vr); // For inputs below denormal cutoff, replace output with +0.0f. // Note that for NaN inputs, comparison result is false, and outputs are left unchanged. vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff))); // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z) const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f)); vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf)); vst1q_f32(output, vf); output += 4; } }