// Copyright (c) Facebook, Inc. and its affiliates. // All rights reserved. // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static inline size_t compute_output_dimension( size_t input_dimension, size_t output_padding_dimension, size_t adjustment_dimension, size_t kernel_dimension, size_t dilation_dimension, size_t stride_dimension) { const size_t effective_kernel_dimension = (kernel_dimension - 1) * dilation_dimension + 1; return doz( stride_dimension * (input_dimension - 1) + adjustment_dimension + effective_kernel_dimension, output_padding_dimension); } static enum xnn_status create_deconvolution2d_nhwc( uint32_t output_padding_top, uint32_t output_padding_right, uint32_t output_padding_bottom, uint32_t output_padding_left, uint32_t kernel_height, uint32_t kernel_width, uint32_t stride_height, uint32_t stride_width, uint32_t dilation_height, uint32_t dilation_width, uint32_t groups, size_t group_input_channels, size_t group_output_channels, size_t input_pixel_stride, size_t output_pixel_stride, const void* kernel, const void* bias, uint32_t flags, uint32_t log2_input_element_size, uint32_t log2_filter_element_size, uint32_t bias_element_size, xnn_pack_conv_goki_w_function pack_conv_goki_w, xnn_pack_deconv_goki_w_function pack_deconv_goki_w, const void* packing_params, int input_padding_byte, int packed_weights_padding_byte, const void* params, size_t params_size, const struct gemm_parameters* gemm_parameters, const struct gemm_fused_ukernels* gemm_ukernels, enum xnn_operator_type operator_type, xnn_operator_t* deconvolution_op_out) { xnn_operator_t deconvolution_op = NULL; enum xnn_status status = xnn_status_uninitialized; if ((xnn_params.init_flags & XNN_INIT_FLAG_XNNPACK) == 0) { xnn_log_error("failed to create %s operator: XNNPACK is not initialized", xnn_operator_type_to_string(operator_type)); goto error; } status = xnn_status_invalid_parameter; if (kernel_width == 0 || kernel_height == 0) { xnn_log_error( "failed to create %s operator with %" PRIu32 "x%" PRIu32 " kernel: kernel dimensions must be non-zero", xnn_operator_type_to_string(operator_type), kernel_width, kernel_height); goto error; } if (stride_width == 0 || stride_height == 0) { xnn_log_error( "failed to create %s operator with %" PRIu32 "x%" PRIu32 " stride: stride dimensions must be non-zero", xnn_operator_type_to_string(operator_type), stride_width, stride_height); goto error; } if (dilation_width == 0 || dilation_height == 0) { xnn_log_error( "failed to create %s operator with %" PRIu32 "x%" PRIu32 " dilation: dilation dimensions must be non-zero", xnn_operator_type_to_string(operator_type), dilation_width, dilation_height); goto error; } if (groups == 0) { xnn_log_error( "failed to create %s operator with %" PRIu32 " groups: number of groups must be non-zero", xnn_operator_type_to_string(operator_type), groups); goto error; } if (group_input_channels == 0) { xnn_log_error( "failed to create %s operator with %zu input channels per group: number of channels must be non-zero", xnn_operator_type_to_string(operator_type), group_input_channels); goto error; } if (group_output_channels == 0) { xnn_log_error( "failed to create %s operator with %zu output channels per group: number of channels must be non-zero", xnn_operator_type_to_string(operator_type), group_output_channels); goto error; } const size_t input_channels = groups * group_input_channels; if (input_pixel_stride < input_channels) { xnn_log_error( "failed to create %s operator with input pixel stride of %zu: " "stride must be at least as large as the number of output channels (%" PRIu32 "x%zu)", xnn_operator_type_to_string(operator_type), input_pixel_stride, groups, group_input_channels); goto error; } const size_t output_channels = groups * group_output_channels; if (output_pixel_stride < output_channels) { xnn_log_error( "failed to create %s operator with output pixel stride of %zu: " "stride must be at least as large as the number of output channels (%" PRIu32 "x%zu)", xnn_operator_type_to_string(operator_type), output_pixel_stride, groups, group_output_channels); goto error; } const bool any_padding = (output_padding_left | output_padding_top | output_padding_right | output_padding_bottom) != 0; if (any_padding && (flags & XNN_FLAG_TENSORFLOW_SAME_PADDING) != 0) { xnn_log_error( "failed to create %s operator with %" PRIu32 "+%" PRIu32 "x%" PRIu32 "+%" PRIu32" padding: " "TensorFlow SAME padding can't be combined with explicit padding specification", xnn_operator_type_to_string(operator_type), output_padding_top, output_padding_left, output_padding_bottom, output_padding_right); goto error; } status = xnn_status_out_of_memory; deconvolution_op = xnn_allocate_zero_simd_memory(sizeof(struct xnn_operator)); if (deconvolution_op == NULL) { xnn_log_error( "failed to allocate %zu bytes for %s operator descriptor", sizeof(struct xnn_operator), xnn_operator_type_to_string(operator_type)); goto error; } const uint32_t mr = gemm_parameters->mr; const uint32_t nr = gemm_parameters->nr; const uint32_t kr = UINT32_C(1) << gemm_parameters->log2_kr; const uint32_t sr = UINT32_C(1) << gemm_parameters->log2_sr; const uint32_t n_stride = round_up(group_output_channels, nr); const uint32_t k_stride = round_up_po2(group_input_channels, kr); const uint32_t kernel_size = kernel_height * kernel_width; enum xnn_ukernel_type ukernel_type = xnn_ukernel_type_igemm; size_t packed_group_weights_size = (sizeof(float) * kernel_size * k_stride + sizeof(float)) * n_stride; if (max(stride_height, stride_width) > 1 && max(dilation_height, dilation_width) == 1 && stride_width <= kernel_width && stride_height <= kernel_height) { ukernel_type = xnn_ukernel_type_subconv2d; const size_t subkernels = stride_height * stride_width; packed_group_weights_size = n_stride * (sizeof(float) * kernel_size * k_stride + sizeof(float) * subkernels); const size_t subconvolution_buffer_size = sizeof(struct subconvolution_params) * subkernels; deconvolution_op->subconvolution_buffer = xnn_allocate_zero_memory(subconvolution_buffer_size); if (deconvolution_op->subconvolution_buffer == NULL) { xnn_log_error( "failed to allocate %zu bytes for %s operator subconvolution buffer", subconvolution_buffer_size, xnn_operator_type_to_string(operator_type)); goto error; } struct subconvolution_params* subconvolution_params = deconvolution_op->subconvolution_buffer; for (size_t offset_y = 0; offset_y < stride_height; offset_y++) { for (size_t offset_x = 0; offset_x < stride_width; offset_x++) { const size_t subkernel_height = divide_round_up(kernel_height - offset_y, stride_height); const size_t subkernel_width = divide_round_up(kernel_width - offset_x, stride_width); const size_t subkernel_size = subkernel_height * subkernel_width; subconvolution_params->indirection_x_stride = sizeof(void*) * subkernel_size; subconvolution_params->w_stride = sizeof(float) + k_stride * subkernel_size * sizeof(float); subconvolution_params++; } } } deconvolution_op->packed_weights = xnn_allocate_simd_memory(packed_group_weights_size * groups); if (deconvolution_op->packed_weights == NULL) { xnn_log_error( "failed to allocate %zu bytes for %s operator packed weights", packed_group_weights_size * groups, xnn_operator_type_to_string(operator_type)); goto error; } memset(deconvolution_op->packed_weights, packed_weights_padding_byte, packed_group_weights_size * groups); switch (ukernel_type) { case xnn_ukernel_type_igemm: pack_conv_goki_w( groups, group_output_channels, kernel_size, group_input_channels, nr, kr, sr, kernel, bias, deconvolution_op->packed_weights, packing_params); break; case xnn_ukernel_type_subconv2d: pack_deconv_goki_w( groups, group_output_channels, kernel_height, kernel_width, group_input_channels, stride_height, stride_width, nr, kr, sr, kernel, bias, deconvolution_op->packed_weights, deconvolution_op->subconvolution_buffer, packing_params); break; default: XNN_UNREACHABLE; } const size_t zero_size = (k_stride << log2_input_element_size) + XNN_EXTRA_BYTES; deconvolution_op->zero_buffer = xnn_allocate_simd_memory(zero_size); if (deconvolution_op->zero_buffer == NULL) { xnn_log_error( "failed to allocate %zu bytes for %s operator zero padding", zero_size, xnn_operator_type_to_string(operator_type)); goto error; } memset(deconvolution_op->zero_buffer, input_padding_byte, zero_size); deconvolution_op->padding_top = output_padding_top; deconvolution_op->padding_right = output_padding_right; deconvolution_op->padding_bottom = output_padding_bottom; deconvolution_op->padding_left = output_padding_left; deconvolution_op->kernel_height = kernel_height; deconvolution_op->kernel_width = kernel_width; deconvolution_op->stride_height = stride_height; deconvolution_op->stride_width = stride_width; deconvolution_op->dilation_height = dilation_height; deconvolution_op->dilation_width = dilation_width; deconvolution_op->groups = groups; deconvolution_op->group_input_channels = group_input_channels; deconvolution_op->group_output_channels = group_output_channels; deconvolution_op->input_pixel_stride = input_pixel_stride; deconvolution_op->output_pixel_stride = output_pixel_stride; memcpy(&deconvolution_op->params, params, params_size); deconvolution_op->type = operator_type; deconvolution_op->ukernel.type = ukernel_type; deconvolution_op->ukernel.igemm = (struct xnn_ukernel_igemm) { .general_case = gemm_ukernels->igemm, .gemm_case = gemm_ukernels->gemm, .mr = mr, .nr = nr, .kr = kr, }; if (flags & XNN_FLAG_TENSORFLOW_SAME_PADDING) { if ((stride_height | stride_width) == 1) { // Padding can be computed statically const uint32_t padding_height = (kernel_height - 1) * dilation_height; const uint32_t padding_width = (kernel_width - 1) * dilation_width; const uint32_t padding_top = padding_height / 2; const uint32_t padding_left = padding_width / 2; deconvolution_op->padding_top = padding_top; deconvolution_op->padding_left = padding_left; deconvolution_op->padding_bottom = padding_height - padding_top; deconvolution_op->padding_right = padding_width - padding_left; } else { deconvolution_op->flags = XNN_FLAG_TENSORFLOW_SAME_PADDING; } } deconvolution_op->state = xnn_run_state_invalid; *deconvolution_op_out = deconvolution_op; return xnn_status_success; error: xnn_delete_operator(deconvolution_op); return status; } enum xnn_status xnn_create_deconvolution2d_nhwc_qu8( uint32_t output_padding_top, uint32_t output_padding_right, uint32_t output_padding_bottom, uint32_t output_padding_left, uint32_t kernel_height, uint32_t kernel_width, uint32_t stride_height, uint32_t stride_width, uint32_t dilation_height, uint32_t dilation_width, uint32_t groups, size_t group_input_channels, size_t group_output_channels, size_t input_pixel_stride, size_t output_pixel_stride, uint8_t input_zero_point, float input_scale, uint8_t kernel_zero_point, float kernel_scale, const uint8_t* kernel, const int32_t* bias, uint8_t output_zero_point, float output_scale, uint8_t output_min, uint8_t output_max, uint32_t flags, xnn_operator_t* deconvolution_op_out) { if (input_scale <= 0.0f || !isnormal(input_scale)) { xnn_log_error( "failed to create %s operator with %.7g input scale: scale must be finite, normalized, and positive", xnn_operator_type_to_string(xnn_operator_type_deconvolution_nhwc_qu8), input_scale); return xnn_status_invalid_parameter; } if (kernel_scale <= 0.0f || !isnormal(kernel_scale)) { xnn_log_error( "failed to create %s operator with %.7g kernel scale: scale must be finite, normalized, and positive", xnn_operator_type_to_string(xnn_operator_type_deconvolution_nhwc_qu8), kernel_scale); return xnn_status_invalid_parameter; } if (output_scale <= 0.0f || !isnormal(output_scale)) { xnn_log_error( "failed to create %s operator with %.7g output scale: scale must be finite, normalized, and positive", xnn_operator_type_to_string(xnn_operator_type_deconvolution_nhwc_qu8), output_scale); return xnn_status_invalid_parameter; } if (output_min >= output_max) { xnn_log_error( "failed to create %s operator with [%" PRIu8 ", %" PRIu8 "] output range: range min must be below range max", xnn_operator_type_to_string(xnn_operator_type_deconvolution_nhwc_qu8), output_min, output_max); return xnn_status_invalid_parameter; } const float requantization_scale = input_scale * kernel_scale / output_scale; if (requantization_scale >= 1.0f) { xnn_log_error( "failed to create %s operator with %.7g input scale, %.7g kernel scale, and %.7g output scale: " "requantization scale %.7g is greater or equal to 1.0", xnn_operator_type_to_string(xnn_operator_type_deconvolution_nhwc_qu8), input_scale, kernel_scale, output_scale, requantization_scale); return xnn_status_unsupported_parameter; } const union xnn_qu8_gemm_params params = xnn_init_qu8_gemm_params( kernel_zero_point, requantization_scale, output_zero_point, output_min, output_max); const struct xnn_qu8_packing_params packing_params = { .input_zero_point = input_zero_point, .kernel_zero_point = kernel_zero_point, }; return create_deconvolution2d_nhwc( output_padding_top, output_padding_right, output_padding_bottom, output_padding_left, kernel_height, kernel_width, stride_height, stride_width, dilation_height, dilation_width, groups, group_input_channels, group_output_channels, input_pixel_stride, output_pixel_stride, kernel, bias, flags, 0 /* log2(sizeof(input element)) = log2(sizeof(uint8_t)) */, 0 /* log2(sizeof(filter element)) = log2(sizeof(uint8_t)) */, sizeof(int32_t) /* sizeof(bias element) */, (xnn_pack_conv_goki_w_function) xnn_pack_qu8_conv_goki_w, (xnn_pack_deconv_goki_w_function) xnn_pack_qu8_deconv_goki_w, &packing_params, input_zero_point /* input padding byte */, kernel_zero_point /* packed weights padding byte */, ¶ms, sizeof(params), &xnn_params.qu8.gemm, &xnn_params.qu8.gemm.minmax, xnn_operator_type_deconvolution_nhwc_qu8, deconvolution_op_out); } enum xnn_status xnn_create_deconvolution2d_nhwc_f32( uint32_t output_padding_top, uint32_t output_padding_right, uint32_t output_padding_bottom, uint32_t output_padding_left, uint32_t kernel_height, uint32_t kernel_width, uint32_t stride_height, uint32_t stride_width, uint32_t dilation_height, uint32_t dilation_width, uint32_t groups, size_t group_input_channels, size_t group_output_channels, size_t input_pixel_stride, size_t output_pixel_stride, const float* kernel, const float* bias, float output_min, float output_max, uint32_t flags, xnn_operator_t* deconvolution_op_out) { if (isnan(output_min)) { xnn_log_error( "failed to create %s operator with NaN output lower bound: lower bound must be non-NaN", xnn_operator_type_to_string(xnn_operator_type_deconvolution_nhwc_f32)); return xnn_status_invalid_parameter; } if (isnan(output_max)) { xnn_log_error( "failed to create %s operator with NaN output upper bound: upper bound must be non-NaN", xnn_operator_type_to_string(xnn_operator_type_deconvolution_nhwc_f32)); return xnn_status_invalid_parameter; } if (output_min >= output_max) { xnn_log_error( "failed to create %s operator with [%.7g, %.7g] output range: lower bound must be below upper bound", xnn_operator_type_to_string(xnn_operator_type_deconvolution_nhwc_f32), output_min, output_max); return xnn_status_invalid_parameter; } const struct gemm_parameters* gemm_parameters = &xnn_params.f32.gemm; if (gemm_parameters->nr > group_output_channels) { // Default micro-kernel is suboptimal. Try to find a better micro-kernel. if (xnn_params.f32.gemm2.minmax.igemm.function[XNN_UARCH_DEFAULT] != NULL) { gemm_parameters = &xnn_params.f32.gemm2; } } const struct gemm_fused_ukernels* gemm_ukernels = &gemm_parameters->minmax; const bool linear_activation = (output_max == INFINITY) && (output_min == -output_max); if (linear_activation && gemm_parameters->linear.gemm.function[XNN_UARCH_DEFAULT] != NULL) { gemm_ukernels = &gemm_parameters->linear; } const union xnn_f32_minmax_params params = xnn_init_f32_minmax_params(output_min, output_max); return create_deconvolution2d_nhwc( output_padding_top, output_padding_right, output_padding_bottom, output_padding_left, kernel_height, kernel_width, stride_height, stride_width, dilation_height, dilation_width, groups, group_input_channels, group_output_channels, input_pixel_stride, output_pixel_stride, kernel, bias, flags, 2 /* log2(sizeof(input element)) = log2(sizeof(float)) */, 2 /* log2(sizeof(filter element)) = log2(sizeof(float)) */, sizeof(float) /* sizeof(bias element) */, (xnn_pack_conv_goki_w_function) xnn_pack_f32_conv_goki_w, (xnn_pack_deconv_goki_w_function) xnn_pack_f32_deconv_goki_w, NULL /* packing params */, 0 /* input padding byte */, 0 /* packed weights padding byte */, ¶ms, sizeof(params), gemm_parameters, gemm_ukernels, xnn_operator_type_deconvolution_nhwc_f32, deconvolution_op_out); } static enum xnn_status setup_conv_path( xnn_operator_t deconvolution_op, size_t batch_size, size_t input_height, size_t input_width, const void* input, size_t output_height, size_t output_width, void* output, uint32_t log2_input_element_size, uint32_t log2_filter_element_size, uint32_t bias_element_size, uint32_t log2_output_element_size, const void* params, size_t params_size, size_t num_threads) { assert(deconvolution_op->ukernel.type == xnn_ukernel_type_igemm); const size_t kernel_height = deconvolution_op->kernel_height; const size_t kernel_width = deconvolution_op->kernel_width; const size_t kernel_size = kernel_height * kernel_width; const size_t groups = deconvolution_op->groups; const size_t output_size = output_height * output_width; const size_t mr = deconvolution_op->ukernel.igemm.mr; const size_t tiled_output_size = round_up(output_size, mr); const size_t indirection_buffer_size = sizeof(void*) * kernel_size * tiled_output_size; if (input_height != deconvolution_op->last_input_height || input_width != deconvolution_op->last_input_width) { const void** indirection_buffer = (const void**) xnn_reallocate_memory(deconvolution_op->indirection_buffer, indirection_buffer_size); if (indirection_buffer == NULL) { xnn_log_error( "failed to allocate %zu bytes for %s operator indirection buffer", indirection_buffer_size, xnn_operator_type_to_string(deconvolution_op->type)); return xnn_status_out_of_memory; } deconvolution_op->indirection_buffer = indirection_buffer; deconvolution_op->last_input = input; deconvolution_op->last_input_height = input_height; deconvolution_op->last_input_width = input_width; xnn_indirection_init_deconv2d(deconvolution_op, mr, log2_input_element_size); } const size_t group_input_channels = deconvolution_op->group_input_channels; const size_t group_output_channels = deconvolution_op->group_output_channels; const uint32_t nr = deconvolution_op->ukernel.igemm.nr; const size_t w_stride = bias_element_size + (round_up_po2(group_input_channels, deconvolution_op->ukernel.igemm.kr) * kernel_size << log2_filter_element_size); deconvolution_op->context.igemm = (struct igemm_context) { .ks = kernel_size, .ks_scaled = kernel_size * mr * sizeof(void*), .kc = group_input_channels << log2_input_element_size, .w_stride = w_stride, .indirect_a = deconvolution_op->indirection_buffer, .a_offset = (size_t) ((uintptr_t) input - (uintptr_t) deconvolution_op->last_input), .zero = deconvolution_op->zero_buffer, .packed_w = deconvolution_op->packed_weights, .c = deconvolution_op->output, .cm_stride = deconvolution_op->output_pixel_stride << log2_output_element_size, .cn_stride = nr << log2_output_element_size, .ga_stride = group_input_channels << log2_input_element_size, .gw_stride = w_stride * round_up(group_output_channels, nr), .gc_stride = group_output_channels << log2_output_element_size, .ba_stride = input_height * input_width * deconvolution_op->input_pixel_stride << log2_input_element_size, .bc_stride = output_size * deconvolution_op->output_pixel_stride << log2_output_element_size, .log2_csize = log2_output_element_size, .ukernel = deconvolution_op->ukernel.igemm.general_case, }; if (output_size == 1 && deconvolution_op->ukernel.igemm.mr1_case.function[XNN_UARCH_DEFAULT] != NULL) { deconvolution_op->context.igemm.ukernel = deconvolution_op->ukernel.igemm.mr1_case; } memcpy(&deconvolution_op->context.igemm.params, params, params_size); size_t nc = group_output_channels; if (num_threads > 1) { const size_t num_other_tiles = groups * batch_size * divide_round_up(output_size, mr); const size_t target_tiles_per_thread = 5; const size_t max_nc = divide_round_up(group_output_channels * num_other_tiles, num_threads * target_tiles_per_thread); if (max_nc < nc) { nc = min(nc, divide_round_up(nc, max_nc * nr) * nr); } } if (groups == 1) { if (batch_size > 1) { deconvolution_op->compute.type = xnn_parallelization_type_3d_tile_2d; deconvolution_op->compute.task_3d_tile_2d = (pthreadpool_task_3d_tile_2d_t) xnn_compute_batch_igemm; deconvolution_op->compute.range[0] = batch_size; deconvolution_op->compute.range[1] = output_size; deconvolution_op->compute.range[2] = group_output_channels; } else { deconvolution_op->compute.type = xnn_parallelization_type_2d_tile_2d; deconvolution_op->compute.task_2d_tile_2d = (pthreadpool_task_2d_tile_2d_t) xnn_compute_igemm; deconvolution_op->compute.range[0] = output_size; deconvolution_op->compute.range[1] = group_output_channels; } deconvolution_op->compute.tile[0] = mr; deconvolution_op->compute.tile[1] = nc; } else { if (batch_size > 1) { deconvolution_op->compute.type = xnn_parallelization_type_4d_tile_2d; deconvolution_op->compute.task_4d_tile_2d = (pthreadpool_task_4d_tile_2d_t) xnn_compute_grouped_batch_igemm; deconvolution_op->compute.range[0] = batch_size; deconvolution_op->compute.range[1] = groups; deconvolution_op->compute.range[2] = output_size; deconvolution_op->compute.range[3] = group_output_channels; } else { deconvolution_op->compute.type = xnn_parallelization_type_3d_tile_2d; deconvolution_op->compute.task_3d_tile_2d = (pthreadpool_task_3d_tile_2d_t) xnn_compute_grouped_igemm; deconvolution_op->compute.range[0] = groups; deconvolution_op->compute.range[1] = output_size; deconvolution_op->compute.range[2] = group_output_channels; } deconvolution_op->compute.tile[0] = mr; deconvolution_op->compute.tile[1] = nc; } deconvolution_op->state = xnn_run_state_ready; return xnn_status_success; } static enum xnn_status setup_subconv2d_path( xnn_operator_t deconvolution_op, size_t batch_size, size_t input_height, size_t input_width, const void* input, size_t output_height, size_t output_width, void* output, uint32_t log2_input_element_size, uint32_t log2_filter_element_size, uint32_t bias_element_size, uint32_t log2_output_element_size, const void* params, size_t params_size, size_t num_threads, bool use_gemm) { assert(deconvolution_op->ukernel.type == xnn_ukernel_type_subconv2d); const size_t kernel_height = deconvolution_op->kernel_height; const size_t kernel_width = deconvolution_op->kernel_width; const size_t kernel_size = kernel_height * kernel_width; const size_t stride_height = deconvolution_op->stride_height; const size_t stride_width = deconvolution_op->stride_width; const size_t groups = deconvolution_op->groups; const size_t output_size = output_height * output_width; const size_t mr = deconvolution_op->ukernel.igemm.mr; const size_t input_pixel_stride = deconvolution_op->input_pixel_stride << log2_input_element_size; const size_t output_pixel_stride = deconvolution_op->output_pixel_stride << log2_output_element_size; const bool any_size_change = input_height != deconvolution_op->last_input_height || input_width != deconvolution_op->last_input_width || output_height != deconvolution_op->last_output_height || output_width != deconvolution_op->last_output_width; if (any_size_change || output != deconvolution_op->last_output) { // Initialize subconvolution parameters which depend on output dimensions or MR. struct subconvolution_params* subconvolution_params = deconvolution_op->subconvolution_buffer; const size_t modulo_padding_top = deconvolution_op->padding_top % stride_height; const size_t modulo_padding_left = deconvolution_op->padding_left % stride_width; for (size_t offset_y = 0; offset_y < stride_height; offset_y++) { for (size_t offset_x = 0; offset_x < stride_width; offset_x++) { const size_t output_x_start = subtract_modulo(offset_x, modulo_padding_left, stride_width); const size_t output_y_start = subtract_modulo(offset_y, modulo_padding_top, stride_height); subconvolution_params->scaled_kernel_size = mr * subconvolution_params->indirection_x_stride; subconvolution_params->slice_width = divide_round_up(output_width - output_x_start, stride_width); subconvolution_params->slice_height = divide_round_up(output_height - output_y_start, stride_height); subconvolution_params->output = (void*) ((uintptr_t) output + ((output_y_start * output_width + output_x_start) * output_pixel_stride)); ++subconvolution_params; } } deconvolution_op->last_output = output; } if (any_size_change) { if (!use_gemm) { const size_t indirection_buffer_size = sizeof(void*) * kernel_size * output_height * stride_width * round_up(divide_round_up(output_width, stride_width), mr); const void** indirection_buffer = (const void**) xnn_reallocate_memory(deconvolution_op->indirection_buffer, indirection_buffer_size); if (indirection_buffer == NULL) { xnn_log_error( "failed to allocate %zu bytes for %s operator indirection buffer", indirection_buffer_size, xnn_operator_type_to_string(deconvolution_op->type)); return xnn_status_out_of_memory; } deconvolution_op->indirection_buffer = indirection_buffer; deconvolution_op->last_input = input; xnn_indirection_init_subconv2d(deconvolution_op, mr, log2_input_element_size); } deconvolution_op->last_input_height = input_height; deconvolution_op->last_input_width = input_width; deconvolution_op->last_output_height = output_height; deconvolution_op->last_output_width = output_width; } const size_t group_input_channels = deconvolution_op->group_input_channels; const size_t group_output_channels = deconvolution_op->group_output_channels; const uint32_t nr = deconvolution_op->ukernel.igemm.nr; const uint32_t kr = deconvolution_op->ukernel.igemm.kr; const size_t w_stride = stride_height * stride_width * bias_element_size + (round_up_po2(group_input_channels, kr) * kernel_size << log2_filter_element_size); if (use_gemm) { deconvolution_op->context.subgemm = (struct subgemm_context) { .subconvolution_params = deconvolution_op->subconvolution_buffer, .kc = group_input_channels << log2_input_element_size, .a = input, .ax_stride = input_pixel_stride, .ay_stride = input_width * input_pixel_stride, .cx_stride = stride_width * output_pixel_stride, .cy_stride = stride_height * output_width * output_pixel_stride, .cn_stride = nr << log2_output_element_size, .ga_stride = group_input_channels << log2_input_element_size, .gw_stride = w_stride * round_up(group_output_channels, nr), .gc_stride = group_output_channels << log2_output_element_size, .ba_stride = input_height * input_width * input_pixel_stride, .bc_stride = output_size * output_pixel_stride, .log2_csize = log2_output_element_size, .ukernel = deconvolution_op->ukernel.igemm.gemm_case, }; memcpy(&deconvolution_op->context.subgemm.params, params, params_size); } else { deconvolution_op->context.subconv = (struct subconv_context) { .subconvolution_params = deconvolution_op->subconvolution_buffer, .kc = group_input_channels << log2_input_element_size, .a_offset = (size_t) ((uintptr_t) input - (uintptr_t) deconvolution_op->last_input), .zero = deconvolution_op->zero_buffer, .cx_stride = stride_width * output_pixel_stride, .cy_stride = stride_height * output_width * output_pixel_stride, .cn_stride = nr << log2_output_element_size, .ga_stride = group_input_channels << log2_input_element_size, .gw_stride = w_stride * round_up(group_output_channels, nr), .gc_stride = group_output_channels << log2_output_element_size, .ba_stride = input_height * input_width * input_pixel_stride, .bc_stride = output_size * output_pixel_stride, .log2_csize = log2_output_element_size, .ukernel = deconvolution_op->ukernel.igemm.general_case, }; memcpy(&deconvolution_op->context.subconv.params, params, params_size); } const size_t output_height_positions = divide_round_up(output_height, stride_height); const size_t output_width_positions = divide_round_up(output_width, stride_width); size_t nc = group_output_channels; if (num_threads > 1) { const size_t num_other_tiles = groups * stride_height * stride_width * output_height_positions * divide_round_up(output_width_positions, mr); const size_t target_tiles_per_thread = 5; const size_t max_nc = divide_round_up(group_output_channels * num_other_tiles, num_threads * target_tiles_per_thread); if (max_nc < nc) { nc = min(nc, divide_round_up(nc, max_nc * nr) * nr); } } if (groups == 1) { deconvolution_op->compute.type = xnn_parallelization_type_5d_tile_2d; deconvolution_op->compute.task_5d_tile_2d = use_gemm ? (pthreadpool_task_5d_tile_2d_t) xnn_compute_subgemm2d : (pthreadpool_task_5d_tile_2d_t) xnn_compute_subconv2d; deconvolution_op->compute.range[0] = batch_size; deconvolution_op->compute.range[1] = stride_height * stride_width; deconvolution_op->compute.range[2] = divide_round_up(output_height, stride_height); deconvolution_op->compute.range[3] = divide_round_up(output_width, stride_width); deconvolution_op->compute.range[4] = group_output_channels; deconvolution_op->compute.tile[0] = mr; deconvolution_op->compute.tile[1] = nc; } else { deconvolution_op->compute.type = xnn_parallelization_type_6d_tile_2d; deconvolution_op->compute.task_6d_tile_2d = use_gemm ? (pthreadpool_task_6d_tile_2d_t) xnn_compute_grouped_subgemm2d : (pthreadpool_task_6d_tile_2d_t) xnn_compute_grouped_subconv2d; deconvolution_op->compute.range[0] = batch_size; deconvolution_op->compute.range[1] = groups; deconvolution_op->compute.range[2] = stride_height * stride_width; deconvolution_op->compute.range[3] = divide_round_up(output_height, stride_height); deconvolution_op->compute.range[4] = divide_round_up(output_width, stride_width); deconvolution_op->compute.range[5] = group_output_channels; deconvolution_op->compute.tile[0] = mr; deconvolution_op->compute.tile[1] = nc; } deconvolution_op->state = xnn_run_state_ready; return xnn_status_success; } static enum xnn_status setup_deconvolution2d_nhwc( xnn_operator_t deconvolution_op, size_t batch_size, size_t input_height, size_t input_width, uint32_t adjustment_height, uint32_t adjustment_width, const void* input, void* output, uint32_t log2_input_element_size, uint32_t log2_filter_element_size, uint32_t bias_element_size, uint32_t log2_output_element_size, const void* params, size_t params_size, size_t num_threads) { deconvolution_op->state = xnn_run_state_invalid; if ((xnn_params.init_flags & XNN_INIT_FLAG_XNNPACK) == 0) { xnn_log_error("failed to setup %s operator: XNNPACK is not initialized", xnn_operator_type_to_string(deconvolution_op->type)); return xnn_status_uninitialized; } if (input_width == 0 || input_height == 0) { xnn_log_error( "failed to setup %s operator with %zux%zu input: input dimensions must be non-zero", xnn_operator_type_to_string(deconvolution_op->type), input_width, input_height); return xnn_status_invalid_parameter; } if (adjustment_height >= deconvolution_op->stride_height) { xnn_log_error( "failed to setup %s operator with %" PRIu32 " height adjustment: " "height adjustment must be smaller than height stride (%" PRIu32 ")", xnn_operator_type_to_string(deconvolution_op->type), adjustment_height, deconvolution_op->stride_height); return xnn_status_invalid_parameter; } if (adjustment_width >= deconvolution_op->stride_width) { xnn_log_error( "failed to setup %s operator with %" PRIu32 " width adjustment: " "width adjustment must be smaller than width stride (%" PRIu32 ")", xnn_operator_type_to_string(deconvolution_op->type), adjustment_width, deconvolution_op->stride_width); return xnn_status_invalid_parameter; } if (batch_size == 0) { deconvolution_op->state = xnn_run_state_skip; return xnn_status_success; } deconvolution_op->batch_size = batch_size; deconvolution_op->input_height = input_height; deconvolution_op->input_width = input_width; deconvolution_op->input = input; deconvolution_op->output = output; if (deconvolution_op->flags & XNN_FLAG_TENSORFLOW_SAME_PADDING) { // Recompute padding for the input size. const uint32_t dilated_kernel_height_minus_1 = (deconvolution_op->kernel_height - 1) * deconvolution_op->dilation_height; const uint32_t dilated_kernel_width_minus_1 = (deconvolution_op->kernel_width - 1) * deconvolution_op->dilation_width; const size_t total_padding_height = doz(dilated_kernel_height_minus_1, (input_height - 1) % deconvolution_op->stride_height); const size_t total_padding_width = doz(dilated_kernel_width_minus_1, (input_width - 1) % deconvolution_op->stride_width); const uint32_t padding_top = deconvolution_op->padding_top = total_padding_height / 2; const uint32_t padding_left = deconvolution_op->padding_left = total_padding_width / 2; deconvolution_op->padding_bottom = total_padding_height - padding_top; deconvolution_op->padding_right = total_padding_width - padding_left; } const size_t output_height = deconvolution_op->output_height = compute_output_dimension( input_height, deconvolution_op->padding_top + deconvolution_op->padding_bottom, adjustment_height, deconvolution_op->kernel_height, deconvolution_op->dilation_height, deconvolution_op->stride_height); const size_t output_width = deconvolution_op->output_width = compute_output_dimension( input_width, deconvolution_op->padding_left + deconvolution_op->padding_right, adjustment_width, deconvolution_op->kernel_width, deconvolution_op->dilation_width, deconvolution_op->stride_width); switch (deconvolution_op->ukernel.type) { case xnn_ukernel_type_igemm: return setup_conv_path( deconvolution_op, batch_size, input_height, input_width, input, output_height, output_width, output, log2_input_element_size, log2_filter_element_size, bias_element_size, log2_output_element_size, params, params_size, num_threads); case xnn_ukernel_type_subconv2d: { const bool no_padding = (deconvolution_op->padding_top | deconvolution_op->padding_right | deconvolution_op->padding_bottom | deconvolution_op->padding_left) == 0; const bool no_adjustment = (adjustment_height | adjustment_width) == 0; const bool use_gemm = no_padding && no_adjustment && deconvolution_op->kernel_height == deconvolution_op->stride_height && deconvolution_op->kernel_width == deconvolution_op->stride_width && deconvolution_op->ukernel.igemm.gemm_case.function[XNN_UARCH_DEFAULT] != NULL; return setup_subconv2d_path( deconvolution_op, batch_size, input_height, input_width, input, output_height, output_width, output, log2_input_element_size, log2_filter_element_size, bias_element_size, log2_output_element_size, params, params_size, num_threads, use_gemm); } default: XNN_UNREACHABLE; } } enum xnn_status xnn_setup_deconvolution2d_nhwc_qu8( xnn_operator_t deconvolution_op, size_t batch_size, size_t input_height, size_t input_width, uint32_t adjustment_height, uint32_t adjustment_width, const uint8_t* input, uint8_t* output, pthreadpool_t threadpool) { if (deconvolution_op->type != xnn_operator_type_deconvolution_nhwc_qu8) { xnn_log_error("failed to setup operator: operator type mismatch (expected %s, got %s)", xnn_operator_type_to_string(xnn_operator_type_deconvolution_nhwc_qu8), xnn_operator_type_to_string(deconvolution_op->type)); return xnn_status_invalid_parameter; } return setup_deconvolution2d_nhwc( deconvolution_op, batch_size, input_height, input_width, adjustment_height, adjustment_width, input, output, 0 /* log2(sizeof(input element)) = log2(sizeof(uint8_t)) */, 0 /* log2(sizeof(filter element)) = log2(sizeof(uint8_t)) */, sizeof(int32_t) /* sizeof(bias element) */, 0 /* log2(sizeof(output element)) = log2(sizeof(uint8_t)) */, &deconvolution_op->params.qu8_gemm, sizeof(deconvolution_op->params.qu8_gemm), pthreadpool_get_threads_count(threadpool)); } enum xnn_status xnn_setup_deconvolution2d_nhwc_f32( xnn_operator_t deconvolution_op, size_t batch_size, size_t input_height, size_t input_width, uint32_t adjustment_height, uint32_t adjustment_width, const float* input, float* output, pthreadpool_t threadpool) { if (deconvolution_op->type != xnn_operator_type_deconvolution_nhwc_f32) { xnn_log_error("failed to setup operator: operator type mismatch (expected %s, got %s)", xnn_operator_type_to_string(xnn_operator_type_deconvolution_nhwc_f32), xnn_operator_type_to_string(deconvolution_op->type)); return xnn_status_invalid_parameter; } return setup_deconvolution2d_nhwc( deconvolution_op, batch_size, input_height, input_width, adjustment_height, adjustment_width, input, output, 2 /* log2(sizeof(input element)) = log2(sizeof(float)) */, 2 /* log2(sizeof(filter element)) = log2(sizeof(float)) */, sizeof(float) /* sizeof(bias element) */, 2 /* log2(sizeof(output element)) = log2(sizeof(float)) */, &deconvolution_op->params.f32_minmax, sizeof(deconvolution_op->params.f32_minmax), pthreadpool_get_threads_count(threadpool)); }