// Auto-generated file. Do not edit! // Template: src/qs8-gavgpool/multipass-sse.c.in // Generator: tools/xngen // // Copyright 2020 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include #include #include #include void xnn_qs8_gavgpool_minmax_ukernel_7p7x__sse41_c8_acc2( size_t rows, size_t channels, const int8_t* input, size_t input_stride, const int8_t* zero, int32_t* buffer, int8_t* output, const union xnn_qs8_avgpool_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_DISABLE_TSAN { assert(rows > 7); assert(channels != 0); const int8_t* i0 = input; const int8_t* i1 = (const int8_t*) ((uintptr_t) i0 + input_stride); const int8_t* i2 = (const int8_t*) ((uintptr_t) i1 + input_stride); const int8_t* i3 = (const int8_t*) ((uintptr_t) i2 + input_stride); const int8_t* i4 = (const int8_t*) ((uintptr_t) i3 + input_stride); const int8_t* i5 = (const int8_t*) ((uintptr_t) i4 + input_stride); const int8_t* i6 = (const int8_t*) ((uintptr_t) i5 + input_stride); const size_t input_increment = 7 * input_stride - round_up_po2(channels, 8); const __m128i vbias = _mm_load_si128((const __m128i*) params->sse2.bias); int32_t* b = buffer; size_t c = channels; for (; c != 0; c = doz(c, 8)) { const __m128i vxi0x01234567 = _mm_cvtepi8_epi16(_mm_loadl_epi64((const __m128i*) i0)); i0 += 8; const __m128i vxi1x01234567 = _mm_cvtepi8_epi16(_mm_loadl_epi64((const __m128i*) i1)); i1 += 8; const __m128i vxi2x01234567 = _mm_cvtepi8_epi16(_mm_loadl_epi64((const __m128i*) i2)); i2 += 8; const __m128i vxi3x01234567 = _mm_cvtepi8_epi16(_mm_loadl_epi64((const __m128i*) i3)); i3 += 8; const __m128i vxi4x01234567 = _mm_cvtepi8_epi16(_mm_loadl_epi64((const __m128i*) i4)); i4 += 8; const __m128i vxi5x01234567 = _mm_cvtepi8_epi16(_mm_loadl_epi64((const __m128i*) i5)); i5 += 8; const __m128i vxi6x01234567 = _mm_cvtepi8_epi16(_mm_loadl_epi64((const __m128i*) i6)); i6 += 8; __m128i vacc0x01234567 = _mm_add_epi16(vxi0x01234567, vxi1x01234567); __m128i vacc1x01234567 = _mm_add_epi16(vxi2x01234567, vxi3x01234567); vacc0x01234567 = _mm_add_epi16(vacc0x01234567, vxi4x01234567); vacc1x01234567 = _mm_add_epi16(vacc1x01234567, vxi5x01234567); vacc0x01234567 = _mm_add_epi16(vacc0x01234567, vxi6x01234567); // Add up all accumulators to vacc0x01234567 vacc0x01234567 = _mm_add_epi16(vacc0x01234567, vacc1x01234567); const __m128i vacc0123 = _mm_add_epi32(vbias, _mm_cvtepi16_epi32(vacc0x01234567)); const __m128i vacc4567 = _mm_add_epi32(vbias, _mm_unpackhi_epi16(vacc0x01234567, _mm_cmpgt_epi16(_mm_setzero_si128(), vacc0x01234567))); _mm_store_si128((__m128i*) b, vacc0123); _mm_store_si128((__m128i*) (b + 4), vacc4567); b += 8; } for (rows -= 7; rows > 7; rows -= 7) { i0 = (const int8_t*) ((uintptr_t) i0 + input_increment); i1 = (const int8_t*) ((uintptr_t) i1 + input_increment); i2 = (const int8_t*) ((uintptr_t) i2 + input_increment); i3 = (const int8_t*) ((uintptr_t) i3 + input_increment); i4 = (const int8_t*) ((uintptr_t) i4 + input_increment); i5 = (const int8_t*) ((uintptr_t) i5 + input_increment); i6 = (const int8_t*) ((uintptr_t) i6 + input_increment); int32_t* b = buffer; size_t c = channels; for (; c != 0; c = doz(c, 8)) { const __m128i vxi0x01234567 = _mm_cvtepi8_epi16(_mm_loadl_epi64((const __m128i*) i0)); i0 += 8; const __m128i vxi1x01234567 = _mm_cvtepi8_epi16(_mm_loadl_epi64((const __m128i*) i1)); i1 += 8; const __m128i vxi2x01234567 = _mm_cvtepi8_epi16(_mm_loadl_epi64((const __m128i*) i2)); i2 += 8; const __m128i vxi3x01234567 = _mm_cvtepi8_epi16(_mm_loadl_epi64((const __m128i*) i3)); i3 += 8; const __m128i vxi4x01234567 = _mm_cvtepi8_epi16(_mm_loadl_epi64((const __m128i*) i4)); i4 += 8; const __m128i vxi5x01234567 = _mm_cvtepi8_epi16(_mm_loadl_epi64((const __m128i*) i5)); i5 += 8; const __m128i vxi6x01234567 = _mm_cvtepi8_epi16(_mm_loadl_epi64((const __m128i*) i6)); i6 += 8; __m128i vacc0x01234567 = _mm_add_epi16(vxi0x01234567, vxi1x01234567); __m128i vacc1x01234567 = _mm_add_epi16(vxi2x01234567, vxi3x01234567); vacc0x01234567 = _mm_add_epi16(vacc0x01234567, vxi4x01234567); vacc1x01234567 = _mm_add_epi16(vacc1x01234567, vxi5x01234567); vacc0x01234567 = _mm_add_epi16(vacc0x01234567, vxi6x01234567); // Add up all accumulators to vacc0x01234567 vacc0x01234567 = _mm_add_epi16(vacc0x01234567, vacc1x01234567); const __m128i vacc0123 = _mm_add_epi32(_mm_cvtepi16_epi32(vacc0x01234567), _mm_load_si128((const __m128i*) (b + 0))); const __m128i vacc4567 = _mm_add_epi32(_mm_unpackhi_epi16(vacc0x01234567, _mm_cmpgt_epi16(_mm_setzero_si128(), vacc0x01234567)), _mm_load_si128((const __m128i*) (b + 4))); _mm_store_si128((__m128i*) b, vacc0123); _mm_store_si128((__m128i*) (b + 4), vacc4567); b += 8; } } i0 = (const int8_t*) ((uintptr_t) i0 + input_increment); i1 = (const int8_t*) ((uintptr_t) i1 + input_increment); if XNN_UNPREDICTABLE(rows < 2) { i1 = zero; } i2 = (const int8_t*) ((uintptr_t) i2 + input_increment); if XNN_UNPREDICTABLE(rows <= 2) { i2 = zero; } i3 = (const int8_t*) ((uintptr_t) i3 + input_increment); if XNN_UNPREDICTABLE(rows < 4) { i3 = zero; } i4 = (const int8_t*) ((uintptr_t) i4 + input_increment); if XNN_UNPREDICTABLE(rows <= 4) { i4 = zero; } i5 = (const int8_t*) ((uintptr_t) i5 + input_increment); if XNN_UNPREDICTABLE(rows < 6) { i5 = zero; } i6 = (const int8_t*) ((uintptr_t) i6 + input_increment); if XNN_UNPREDICTABLE(rows <= 6) { i6 = zero; } const __m128i vmultiplier = _mm_load_si128((const __m128i*) params->sse2.multiplier); const __m128i vrounding = _mm_load_si128((const __m128i*) params->sse2.rounding); const __m128i vshift = _mm_loadl_epi64((const __m128i*) params->sse2.shift); while (channels >= 8) { const __m128i vxi0x01234567 = _mm_cvtepi8_epi16(_mm_loadl_epi64((const __m128i*) i0)); i0 += 8; const __m128i vxi1x01234567 = _mm_cvtepi8_epi16(_mm_loadl_epi64((const __m128i*) i1)); i1 += 8; const __m128i vxi2x01234567 = _mm_cvtepi8_epi16(_mm_loadl_epi64((const __m128i*) i2)); i2 += 8; const __m128i vxi3x01234567 = _mm_cvtepi8_epi16(_mm_loadl_epi64((const __m128i*) i3)); i3 += 8; const __m128i vxi4x01234567 = _mm_cvtepi8_epi16(_mm_loadl_epi64((const __m128i*) i4)); i4 += 8; const __m128i vxi5x01234567 = _mm_cvtepi8_epi16(_mm_loadl_epi64((const __m128i*) i5)); i5 += 8; const __m128i vxi6x01234567 = _mm_cvtepi8_epi16(_mm_loadl_epi64((const __m128i*) i6)); i6 += 8; __m128i vacc0x01234567 = _mm_add_epi16(vxi0x01234567, vxi1x01234567); __m128i vacc1x01234567 = _mm_add_epi16(vxi2x01234567, vxi3x01234567); vacc0x01234567 = _mm_add_epi16(vacc0x01234567, vxi4x01234567); vacc1x01234567 = _mm_add_epi16(vacc1x01234567, vxi5x01234567); vacc0x01234567 = _mm_add_epi16(vacc0x01234567, vxi6x01234567); // Add up all accumulators to vacc0x01234567 vacc0x01234567 = _mm_add_epi16(vacc0x01234567, vacc1x01234567); const __m128i vacc0123 = _mm_add_epi32(_mm_cvtepi16_epi32(vacc0x01234567), _mm_load_si128((const __m128i*) (buffer + 0))); const __m128i vacc4567 = _mm_add_epi32(_mm_unpackhi_epi16(vacc0x01234567, _mm_cmpgt_epi16(_mm_setzero_si128(), vacc0x01234567)), _mm_load_si128((const __m128i*) (buffer + 4))); buffer += 8; const __m128i vabsacc0123 = _mm_abs_epi32(vacc0123); const __m128i vabsacc4567 = _mm_abs_epi32(vacc4567); const __m128i vabsacc13 = _mm_shuffle_epi32(vabsacc0123, _MM_SHUFFLE(3, 3, 1, 1)); const __m128i vabsacc57 = _mm_shuffle_epi32(vabsacc4567, _MM_SHUFFLE(3, 3, 1, 1)); const __m128i vabsprod02 = _mm_mul_epu32(vabsacc0123, vmultiplier); const __m128i vabsprod13 = _mm_mul_epu32(vabsacc13, vmultiplier); const __m128i vabsprod46 = _mm_mul_epu32(vabsacc4567, vmultiplier); const __m128i vabsprod57 = _mm_mul_epu32(vabsacc57, vmultiplier); const __m128i vabsout02 = _mm_srl_epi64(_mm_add_epi64(vabsprod02, vrounding), vshift); const __m128i vabsout13 = _mm_srl_epi64(_mm_add_epi64(vabsprod13, vrounding), vshift); const __m128i vabsout46 = _mm_srl_epi64(_mm_add_epi64(vabsprod46, vrounding), vshift); const __m128i vabsout57 = _mm_srl_epi64(_mm_add_epi64(vabsprod57, vrounding), vshift); const __m128i vabsout0123 = _mm_blend_epi16(vabsout02, _mm_shuffle_epi32(vabsout13, _MM_SHUFFLE(2, 2, 0, 0)), 0xCC); const __m128i vabsout4567 = _mm_blend_epi16(vabsout46, _mm_shuffle_epi32(vabsout57, _MM_SHUFFLE(2, 2, 0, 0)), 0xCC); const __m128i vout0123 = _mm_sign_epi32(vabsout0123, vacc0123); const __m128i vout4567 = _mm_sign_epi32(vabsout4567, vacc4567); const __m128i voutput_zero_point = _mm_load_si128((const __m128i*) params->sse2.output_zero_point); __m128i vout01234567 = _mm_adds_epi16(_mm_packs_epi32(vout0123, vout4567), voutput_zero_point); const __m128i voutput_min = _mm_load_si128((const __m128i*) params->sse2.output_min); const __m128i voutput_max = _mm_load_si128((const __m128i*) params->sse2.output_max); vout01234567 = _mm_min_epi16(_mm_max_epi16(vout01234567, voutput_min), voutput_max); __m128i vout0123456701234567 = _mm_packs_epi16(vout01234567, vout01234567); _mm_storel_epi64((__m128i*) output, vout0123456701234567); output += 8; channels -= 8; } if XNN_UNLIKELY(channels != 0) { { const __m128i vxi0x01234567 = _mm_cvtepi8_epi16(_mm_loadl_epi64((const __m128i*) i0)); i0 += 8; const __m128i vxi1x01234567 = _mm_cvtepi8_epi16(_mm_loadl_epi64((const __m128i*) i1)); i1 += 8; const __m128i vxi2x01234567 = _mm_cvtepi8_epi16(_mm_loadl_epi64((const __m128i*) i2)); i2 += 8; const __m128i vxi3x01234567 = _mm_cvtepi8_epi16(_mm_loadl_epi64((const __m128i*) i3)); i3 += 8; const __m128i vxi4x01234567 = _mm_cvtepi8_epi16(_mm_loadl_epi64((const __m128i*) i4)); i4 += 8; const __m128i vxi5x01234567 = _mm_cvtepi8_epi16(_mm_loadl_epi64((const __m128i*) i5)); i5 += 8; const __m128i vxi6x01234567 = _mm_cvtepi8_epi16(_mm_loadl_epi64((const __m128i*) i6)); i6 += 8; __m128i vacc0x01234567 = _mm_add_epi16(vxi0x01234567, vxi1x01234567); __m128i vacc1x01234567 = _mm_add_epi16(vxi2x01234567, vxi3x01234567); vacc0x01234567 = _mm_add_epi16(vacc0x01234567, vxi4x01234567); vacc1x01234567 = _mm_add_epi16(vacc1x01234567, vxi5x01234567); vacc0x01234567 = _mm_add_epi16(vacc0x01234567, vxi6x01234567); // Add up all accumulators to vacc0x01234567 vacc0x01234567 = _mm_add_epi16(vacc0x01234567, vacc1x01234567); const __m128i vacc0123 = _mm_add_epi32(_mm_cvtepi16_epi32(vacc0x01234567), _mm_load_si128((const __m128i*) buffer)); const __m128i vacc4567 = _mm_add_epi32(_mm_unpackhi_epi16(vacc0x01234567, _mm_cmpgt_epi16(_mm_setzero_si128(), vacc0x01234567)), _mm_load_si128((const __m128i*) (buffer + 4))); buffer += 8; const __m128i vabsacc0123 = _mm_abs_epi32(vacc0123); const __m128i vabsacc4567 = _mm_abs_epi32(vacc4567); const __m128i vabsacc13 = _mm_shuffle_epi32(vabsacc0123, _MM_SHUFFLE(3, 3, 1, 1)); const __m128i vabsacc57 = _mm_shuffle_epi32(vabsacc4567, _MM_SHUFFLE(3, 3, 1, 1)); const __m128i vabsprod02 = _mm_mul_epu32(vabsacc0123, vmultiplier); const __m128i vabsprod13 = _mm_mul_epu32(vabsacc13, vmultiplier); const __m128i vabsprod46 = _mm_mul_epu32(vabsacc4567, vmultiplier); const __m128i vabsprod57 = _mm_mul_epu32(vabsacc57, vmultiplier); const __m128i vabsout02 = _mm_srl_epi64(_mm_add_epi64(vabsprod02, vrounding), vshift); const __m128i vabsout13 = _mm_srl_epi64(_mm_add_epi64(vabsprod13, vrounding), vshift); const __m128i vabsout46 = _mm_srl_epi64(_mm_add_epi64(vabsprod46, vrounding), vshift); const __m128i vabsout57 = _mm_srl_epi64(_mm_add_epi64(vabsprod57, vrounding), vshift); const __m128i vabsout0123 = _mm_blend_epi16(vabsout02, _mm_shuffle_epi32(vabsout13, _MM_SHUFFLE(2, 2, 0, 0)), 0xCC); const __m128i vabsout4567 = _mm_blend_epi16(vabsout46, _mm_shuffle_epi32(vabsout57, _MM_SHUFFLE(2, 2, 0, 0)), 0xCC); const __m128i vout0123 = _mm_sign_epi32(vabsout0123, vacc0123); const __m128i vout4567 = _mm_sign_epi32(vabsout4567, vacc4567); const __m128i voutput_zero_point = _mm_load_si128((const __m128i*) params->sse2.output_zero_point); __m128i vout01234567 = _mm_adds_epi16(_mm_packs_epi32(vout0123, vout4567), voutput_zero_point); const __m128i voutput_min = _mm_load_si128((const __m128i*) params->sse2.output_min); const __m128i voutput_max = _mm_load_si128((const __m128i*) params->sse2.output_max); vout01234567 = _mm_min_epi16(_mm_max_epi16(vout01234567, voutput_min), voutput_max); __m128i vout0123456701234567 = _mm_packs_epi16(vout01234567, vout01234567); if (channels & 4) { *((uint32_t*) output) = (uint32_t) _mm_cvtsi128_si32(vout0123456701234567); vout0123456701234567 = _mm_srli_epi64(vout0123456701234567, 32); output += 4; } if (channels & 2) { *((uint16_t*) output) = (uint16_t) _mm_extract_epi16(vout0123456701234567, 0); vout0123456701234567 = _mm_srli_epi32(vout0123456701234567, 16); output += 2; } if (channels & 1) { *output = (int8_t) _mm_extract_epi8(vout0123456701234567, 0); } } } }