// Copyright (c) Facebook, Inc. and its affiliates. // All rights reserved. // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include #include #include #include #include void xnn_qs8_requantize_fp32__sse2( size_t n, const int32_t* input, float scale, int8_t zero_point, int8_t qmin, int8_t qmax, int8_t* output) { assert(n % 16 == 0); assert(scale < 1.0f); assert(scale >= 0x1.0p-32f); const __m128 vscale = _mm_set1_ps(scale); const __m128i vzero_point = _mm_set1_epi16((short) (uint16_t) zero_point); const __m128i vqmin = _mm_set1_epi8((char) qmin); const __m128i vqmax = _mm_set1_epi8((char) qmax); for (; n != 0; n -= 16) { const __m128i x = _mm_loadu_si128((const __m128i*) input); const __m128i y = _mm_loadu_si128((const __m128i*) (input + 4)); const __m128i z = _mm_loadu_si128((const __m128i*) (input + 8)); const __m128i w = _mm_loadu_si128((const __m128i*) (input + 12)); input += 16; // Convert int32_t input to FP32 and multiply by FP32 scale. // Both operations involve statistically unbiased roundings (with default MXCSR rounding mode): // - Large int32_t values can't be exactly represented as FP32. CVTDQ2PS instruction on x86 would round it // according to nearest FP32 value with ties to even (assuming default MXCSR rounding mode). // - Product of two FP32 values is generally not exactly representation as an FP32 value, and will be rounded // to nearest FP32 value with ties to even with default MXCSR rounding mode. const __m128 x_scaled = _mm_mul_ps(_mm_cvtepi32_ps(x), vscale); const __m128 y_scaled = _mm_mul_ps(_mm_cvtepi32_ps(y), vscale); const __m128 z_scaled = _mm_mul_ps(_mm_cvtepi32_ps(z), vscale); const __m128 w_scaled = _mm_mul_ps(_mm_cvtepi32_ps(w), vscale); // Convert scaled FP32 result to int32_t using CVTPS2DQ instruction from x86 SSE2. CVTPS2DQ instruction rounds // result according to nearest FP32 value with ties to even (assuming default MXCSR rounding mode). // However, when conversion overflows, it produces INT32_MIN as a result. For large positive inputs the result // of conversion can become negative, which affects the final requantization result. Note that on x86 SSE2 we // have e.g. int32_t(float(INT32_MAX)) == INT32_MIN! This happens because float(INT32_MAX) rounds to 2**31, // which overflows int32_t when it is converted back to integer. // // Thankfully, we can prove that overflow never happens in this requantization scheme. The largest positive // input is INT32_MAX (2**31 - 1), which turns into 2**31 when converted to float. The largest scale value // is 0x1.FFFFFEp-1. When multiplied together, the result is 2147483520 (compare to INT32_MAX = 2147483647), // which fits into int32_t without overflow. const __m128i x_rounded = _mm_cvtps_epi32(x_scaled); const __m128i y_rounded = _mm_cvtps_epi32(y_scaled); const __m128i z_rounded = _mm_cvtps_epi32(z_scaled); const __m128i w_rounded = _mm_cvtps_epi32(w_scaled); // Standard final sequence on x86 SSE2: // - Pack to int16_t and saturate // - Add zero point // - Clamp between qmin and qmax // - Pack to int8_t and saturate const __m128i xy_packed = _mm_adds_epi16(_mm_packs_epi32(x_rounded, y_rounded), vzero_point); const __m128i zw_packed = _mm_adds_epi16(_mm_packs_epi32(z_rounded, w_rounded), vzero_point); const __m128i xy_clamped = _mm_max_epi16(_mm_min_epi16(xy_packed, vqmax), vqmin); const __m128i zw_clamped = _mm_max_epi16(_mm_min_epi16(zw_packed, vqmax), vqmin); const __m128i xyzw_clamped = _mm_packs_epi16(xy_clamped, zw_clamped); // 4x CVTDQ2PS // 4x MULPS // 4x CVTPS2DQ // 2x PACKSSDW // 2x PADDSW // 2x PMAXSW // 2x PMINSW // 1x PACKSSWB // --------------------- // 21 instructions total _mm_storeu_si128((__m128i*) output, xyzw_clamped); output += 16; } }