// Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #pragma once #include #include #include #include #include #include #include #include #include #include class UnpoolingOperatorTester { public: inline UnpoolingOperatorTester& padding(uint32_t padding) { this->padding_top_ = padding; this->padding_right_ = padding; this->padding_bottom_ = padding; this->padding_left_ = padding; return *this; } inline UnpoolingOperatorTester& padding(uint32_t padding_height, uint32_t padding_width) { this->padding_top_ = padding_height; this->padding_right_ = padding_width; this->padding_bottom_ = padding_height; this->padding_left_ = padding_width; return *this; } inline UnpoolingOperatorTester& padding_height(uint32_t padding_height) { this->padding_top_ = padding_height; this->padding_bottom_ = padding_height; return *this; } inline UnpoolingOperatorTester& padding_width(uint32_t padding_width) { this->padding_right_ = padding_width; this->padding_left_ = padding_width; return *this; } inline UnpoolingOperatorTester& padding_top(uint32_t padding_top) { this->padding_top_ = padding_top; return *this; } inline uint32_t padding_top() const { return this->padding_top_; } inline UnpoolingOperatorTester& padding_right(uint32_t padding_right) { this->padding_right_ = padding_right; return *this; } inline uint32_t padding_right() const { return this->padding_right_; } inline UnpoolingOperatorTester& padding_bottom(uint32_t padding_bottom) { this->padding_bottom_ = padding_bottom; return *this; } inline uint32_t padding_bottom() const { return this->padding_bottom_; } inline UnpoolingOperatorTester& padding_left(uint32_t padding_left) { this->padding_left_ = padding_left; return *this; } inline uint32_t padding_left() const { return this->padding_left_; } inline UnpoolingOperatorTester& input_size(size_t input_height, size_t input_width) { assert(input_height >= 1); assert(input_width >= 1); this->input_height_ = input_height; this->input_width_ = input_width; return *this; } inline UnpoolingOperatorTester& input_height(size_t input_height) { assert(input_height >= 1); this->input_height_ = input_height; return *this; } inline size_t input_height() const { return this->input_height_; } inline UnpoolingOperatorTester& input_width(size_t input_width) { assert(input_width >= 1); this->input_width_ = input_width; return *this; } inline size_t input_width() const { return this->input_width_; } inline UnpoolingOperatorTester& channels(size_t channels) { assert(channels != 0); this->channels_ = channels; return *this; } inline size_t channels() const { return this->channels_; } inline UnpoolingOperatorTester& batch_size(size_t batch_size) { assert(batch_size != 0); this->batch_size_ = batch_size; return *this; } inline size_t batch_size() const { return this->batch_size_; } inline UnpoolingOperatorTester& pooling_size(uint32_t pooling_size) { assert(pooling_size >= 1); this->pooling_height_ = pooling_size; this->pooling_width_ = pooling_size; return *this; } inline UnpoolingOperatorTester& pooling_size(uint32_t pooling_height, uint32_t pooling_width) { assert(pooling_height >= 1); assert(pooling_width >= 1); this->pooling_height_ = pooling_height; this->pooling_width_ = pooling_width; return *this; } inline UnpoolingOperatorTester& pooling_height(uint32_t pooling_height) { assert(pooling_height >= 1); this->pooling_height_ = pooling_height; return *this; } inline uint32_t pooling_height() const { return this->pooling_height_; } inline UnpoolingOperatorTester& pooling_width(uint32_t pooling_width) { assert(pooling_width >= 1); this->pooling_width_ = pooling_width; return *this; } inline uint32_t pooling_width() const { return this->pooling_width_; } inline size_t output_height() const { const size_t padding_height = padding_top() + padding_bottom(); return std::max(input_height() * pooling_height(), padding_height) - padding_height; } inline size_t output_width() const { const size_t padding_width = padding_left() + padding_right(); return std::max(input_width() * pooling_width(), padding_width) - padding_width; } inline UnpoolingOperatorTester& input_pixel_stride(size_t input_pixel_stride) { assert(input_pixel_stride != 0); this->input_pixel_stride_ = input_pixel_stride; return *this; } inline size_t input_pixel_stride() const { if (this->input_pixel_stride_ == 0) { return channels(); } else { assert(this->input_pixel_stride_ >= channels()); return this->input_pixel_stride_; } } inline UnpoolingOperatorTester& output_pixel_stride(size_t output_pixel_stride) { assert(output_pixel_stride != 0); this->output_pixel_stride_ = output_pixel_stride; return *this; } inline size_t output_pixel_stride() const { if (this->output_pixel_stride_ == 0) { return channels(); } else { assert(this->output_pixel_stride_ >= channels()); return this->output_pixel_stride_; } } inline UnpoolingOperatorTester& next_input_size(uint32_t next_input_height, uint32_t next_input_width) { assert(next_input_height >= 1); assert(next_input_width >= 1); this->next_input_height_ = next_input_height; this->next_input_width_ = next_input_width; return *this; } inline UnpoolingOperatorTester& next_input_height(uint32_t next_input_height) { assert(next_input_height >= 1); this->next_input_height_ = next_input_height; return *this; } inline uint32_t next_input_height() const { if (this->next_input_height_ == 0) { return input_height(); } else { return this->next_input_height_; } } inline UnpoolingOperatorTester& next_input_width(uint32_t next_input_width) { assert(next_input_width >= 1); this->next_input_width_ = next_input_width; return *this; } inline uint32_t next_input_width() const { if (this->next_input_width_ == 0) { return input_width(); } else { return this->next_input_width_; } } inline size_t next_output_height() const { const size_t padding_height = padding_top() + padding_bottom(); return std::max(next_input_height() * pooling_height(), padding_height) - padding_height; } inline size_t next_output_width() const { const size_t padding_width = padding_left() + padding_right(); return std::max(next_input_width() * pooling_width(), padding_width) - padding_width; } inline UnpoolingOperatorTester& next_batch_size(size_t next_batch_size) { assert(next_batch_size >= 1); this->next_batch_size_ = next_batch_size; return *this; } inline size_t next_batch_size() const { if (this->next_batch_size_ == 0) { return batch_size(); } else { return this->next_batch_size_; } } inline UnpoolingOperatorTester& iterations(size_t iterations) { this->iterations_ = iterations; return *this; } inline size_t iterations() const { return this->iterations_; } void TestX32() const { std::random_device random_device; auto rng = std::mt19937(random_device()); auto u32rng = std::bind(std::uniform_int_distribution(), std::ref(rng)); auto idx_rng = std::bind(std::uniform_int_distribution(0, pooling_height() * pooling_width() - 1), std::ref(rng)); std::vector input((batch_size() * input_height() * input_width() - 1) * input_pixel_stride() + channels()); std::vector index(batch_size() * input_height() * input_width() * channels()); std::vector output((batch_size() * output_height() * output_width() - 1) * output_pixel_stride() + channels()); std::vector output_ref(batch_size() * output_height() * output_width() * channels()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(input.begin(), input.end(), std::ref(u32rng)); std::generate(index.begin(), index.end(), std::ref(idx_rng)); std::generate(output.begin(), output.end(), std::ref(u32rng)); // Compute reference results. std::fill(output_ref.begin(), output_ref.end(), 0); for (size_t i = 0; i < batch_size(); i++) { for (size_t iy = 0; iy < input_height(); iy++) { for (size_t ix = 0; ix < input_width(); ix++) { for (size_t c = 0; c < channels(); c++) { const uint32_t pooling_index = index[((i * input_height() + iy) * input_width() + ix) * channels() + c]; const uint32_t py = pooling_index % pooling_height(); const uint32_t px = pooling_index / pooling_height(); const size_t oy = std::min(std::max(iy * pooling_height() + py, padding_top()) - padding_top(), output_height() - 1); const size_t ox = std::min(std::max(ix * pooling_width() + px, padding_left()) - padding_left(), output_width() - 1); output_ref[((i * output_height() + oy) * output_width() + ox) * channels() + c] = input[((i * input_height() + iy) * input_width() + ix) * input_pixel_stride() + c]; } } } } // Create, setup, run, and destroy Unpooling operator. ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */)); xnn_operator_t unpooling_op = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_unpooling2d_nhwc_x32( padding_top(), padding_right(), padding_bottom(), padding_left(), pooling_height(), pooling_width(), channels(), input_pixel_stride(), output_pixel_stride(), 0, &unpooling_op)); ASSERT_NE(nullptr, unpooling_op); // Smart pointer to automatically delete unpooling_op. std::unique_ptr auto_unpooling_op(unpooling_op, xnn_delete_operator); ASSERT_EQ(xnn_status_success, xnn_setup_unpooling2d_nhwc_x32( unpooling_op, batch_size(), input_height(), input_width(), input.data(), index.data(), output.data(), nullptr /* thread pool */)); ASSERT_EQ(xnn_status_success, xnn_run_operator(unpooling_op, nullptr /* thread pool */)); // Verify results. for (size_t i = 0; i < batch_size(); i++) { for (size_t c = 0; c < channels(); c++) { for (size_t y = 0; y < output_height(); y++) { for (size_t x = 0; x < output_width(); x++) { EXPECT_EQ(output_ref[((i * output_height() + y) * output_width() + x) * channels() + c], output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + c]) << "in batch index " << i << ", pixel (" << y << ", " << x << "), channel " << c; } } } } } } void TestSetupX32() const { std::random_device random_device; auto rng = std::mt19937(random_device()); auto u32rng = std::bind(std::uniform_int_distribution(), std::ref(rng)); auto idx_rng = std::bind(std::uniform_int_distribution(0, pooling_height() * pooling_width() - 1), std::ref(rng)); std::vector input(std::max( (batch_size() * input_height() * input_width() - 1) * input_pixel_stride() + channels(), (next_batch_size() * next_input_height() * next_input_width() - 1) * input_pixel_stride() + channels())); std::vector index(std::max( batch_size() * input_height() * input_width() * channels(), next_batch_size() * next_input_height() * next_input_width() * channels())); std::vector output(std::max( (batch_size() * output_height() * output_width() - 1) * output_pixel_stride() + channels(), (next_batch_size() * next_output_height() * next_output_width() - 1) * output_pixel_stride() * channels())); std::vector output_ref(batch_size() * output_height() * output_width() * channels()); std::vector next_output_ref(next_batch_size() * next_output_height() * next_output_width() * channels()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(input.begin(), input.end(), std::ref(u32rng)); std::generate(index.begin(), index.end(), std::ref(idx_rng)); std::generate(output.begin(), output.end(), std::ref(u32rng)); // Compute reference results. std::fill(output_ref.begin(), output_ref.end(), 0); for (size_t i = 0; i < batch_size(); i++) { for (size_t iy = 0; iy < input_height(); iy++) { for (size_t ix = 0; ix < input_width(); ix++) { for (size_t c = 0; c < channels(); c++) { const uint32_t pooling_index = index[((i * input_height() + iy) * input_width() + ix) * channels() + c]; const uint32_t py = pooling_index % pooling_height(); const uint32_t px = pooling_index / pooling_height(); const size_t oy = std::min(std::max(iy * pooling_height() + py, padding_top()) - padding_top(), output_height() - 1); const size_t ox = std::min(std::max(ix * pooling_width() + px, padding_left()) - padding_left(), output_width() - 1); output_ref[((i * output_height() + oy) * output_width() + ox) * channels() + c] = input[((i * input_height() + iy) * input_width() + ix) * input_pixel_stride() + c]; } } } } // Create, setup, and run Unpooling operator once. ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */)); xnn_operator_t unpooling_op = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_unpooling2d_nhwc_x32( padding_top(), padding_right(), padding_bottom(), padding_left(), pooling_height(), pooling_width(), channels(), input_pixel_stride(), output_pixel_stride(), 0, &unpooling_op)); ASSERT_NE(nullptr, unpooling_op); // Smart pointer to automatically delete unpooling_op. std::unique_ptr auto_unpooling_op(unpooling_op, xnn_delete_operator); ASSERT_EQ(xnn_status_success, xnn_setup_unpooling2d_nhwc_x32( unpooling_op, batch_size(), input_height(), input_width(), input.data(), index.data(), output.data(), nullptr /* thread pool */)); ASSERT_EQ(xnn_status_success, xnn_run_operator(unpooling_op, nullptr /* thread pool */)); // Verify results of the first run. for (size_t i = 0; i < batch_size(); i++) { for (size_t c = 0; c < channels(); c++) { for (size_t y = 0; y < output_height(); y++) { for (size_t x = 0; x < output_width(); x++) { EXPECT_EQ(output_ref[((i * output_height() + y) * output_width() + x) * channels() + c], output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + c]) << "in batch index " << i << ", pixel (" << y << ", " << x << "), channel " << c; } } } } // Re-generate data for the second run. std::generate(input.begin(), input.end(), std::ref(u32rng)); std::generate(index.begin(), index.end(), std::ref(idx_rng)); std::generate(output.begin(), output.end(), std::ref(u32rng)); // Compute reference results for the second run, including clamping. std::fill(next_output_ref.begin(), next_output_ref.end(), 0); for (size_t i = 0; i < next_batch_size(); i++) { for (size_t iy = 0; iy < next_input_height(); iy++) { for (size_t ix = 0; ix < next_input_width(); ix++) { for (size_t c = 0; c < channels(); c++) { const uint32_t pooling_index = index[((i * next_input_height() + iy) * next_input_width() + ix) * channels() + c]; const uint32_t py = pooling_index % pooling_height(); const uint32_t px = pooling_index / pooling_height(); const size_t oy = std::min(std::max(iy * pooling_height() + py, padding_top()) - padding_top(), next_output_height() - 1); const size_t ox = std::min(std::max(ix * pooling_width() + px, padding_left()) - padding_left(), next_output_width() - 1); next_output_ref[((i * next_output_height() + oy) * next_output_width() + ox) * channels() + c] = input[((i * next_input_height() + iy) * next_input_width() + ix) * input_pixel_stride() + c]; } } } } // Setup and run Max Pooling operator the second time, and destroy the operator. ASSERT_EQ(xnn_status_success, xnn_setup_unpooling2d_nhwc_x32( unpooling_op, next_batch_size(), next_input_height(), next_input_width(), input.data(), index.data(), output.data(), nullptr /* thread pool */)); ASSERT_EQ(xnn_status_success, xnn_run_operator(unpooling_op, nullptr /* thread pool */)); // Verify results of the second run. for (size_t i = 0; i < next_batch_size(); i++) { for (size_t c = 0; c < channels(); c++) { for (size_t y = 0; y < next_output_height(); y++) { for (size_t x = 0; x < next_output_width(); x++) { EXPECT_EQ(next_output_ref[((i * next_output_height() + y) * next_output_width() + x) * channels() + c], output[((i * next_output_height() + y) * next_output_width() + x) * output_pixel_stride() + c]) << "in batch index " << i << ", pixel (" << y << ", " << x << "), channel " << c; } } } } } } private: uint32_t padding_top_{0}; uint32_t padding_right_{0}; uint32_t padding_bottom_{0}; uint32_t padding_left_{0}; size_t input_height_{1}; size_t input_width_{1}; size_t channels_{1}; size_t batch_size_{1}; size_t input_pixel_stride_{0}; size_t output_pixel_stride_{0}; uint32_t pooling_height_{1}; uint32_t pooling_width_{1}; size_t next_input_height_{0}; size_t next_input_width_{0}; size_t next_batch_size_{0}; size_t iterations_{1}; };