// Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #pragma once #include #include #include #include #include #include #include #include #include #include #include #include class VBinOpMicrokernelTester { public: enum class OpType { Add, Div, Max, Min, Mul, Sub, SqrDiff, }; enum class Variant { Native, Scalar, }; inline VBinOpMicrokernelTester& batch_size(size_t batch_size) { assert(batch_size != 0); this->batch_size_ = batch_size; return *this; } inline size_t batch_size() const { return this->batch_size_; } inline VBinOpMicrokernelTester& inplace_a(bool inplace_a) { this->inplace_a_ = inplace_a; return *this; } inline bool inplace_a() const { return this->inplace_a_; } inline VBinOpMicrokernelTester& inplace_b(bool inplace_b) { this->inplace_b_ = inplace_b; return *this; } inline bool inplace_b() const { return this->inplace_b_; } inline VBinOpMicrokernelTester& qmin(uint8_t qmin) { this->qmin_ = qmin; return *this; } inline uint8_t qmin() const { return this->qmin_; } inline VBinOpMicrokernelTester& qmax(uint8_t qmax) { this->qmax_ = qmax; return *this; } inline uint8_t qmax() const { return this->qmax_; } inline VBinOpMicrokernelTester& iterations(size_t iterations) { this->iterations_ = iterations; return *this; } inline size_t iterations() const { return this->iterations_; } void Test(xnn_f16_vbinary_ukernel_function vbinary, OpType op_type) const { std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32rng = std::bind(std::uniform_real_distribution(0.01f, 1.0f), rng); auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng); std::vector a(batch_size() + XNN_EXTRA_BYTES / sizeof(uint16_t)); std::vector b(batch_size() + XNN_EXTRA_BYTES / sizeof(uint16_t)); std::vector y(batch_size() + (inplace_a() || inplace_b() ? XNN_EXTRA_BYTES / sizeof(uint16_t) : 0)); std::vector y_ref(batch_size()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(a.begin(), a.end(), std::ref(f16rng)); std::generate(b.begin(), b.end(), std::ref(f16rng)); if (inplace_a() || inplace_b()) { std::generate(y.begin(), y.end(), std::ref(f16rng)); } else { std::fill(y.begin(), y.end(), nanf("")); } const uint16_t* a_data = inplace_a() ? y.data() : a.data(); const uint16_t* b_data = inplace_b() ? y.data() : b.data(); // Compute reference results. for (size_t i = 0; i < batch_size(); i++) { switch (op_type) { case OpType::Add: y_ref[i] = fp16_ieee_to_fp32_value(a_data[i]) + fp16_ieee_to_fp32_value(b_data[i]); break; case OpType::Div: y_ref[i] = fp16_ieee_to_fp32_value(a_data[i]) / fp16_ieee_to_fp32_value(b_data[i]); break; case OpType::Max: y_ref[i] = std::max(fp16_ieee_to_fp32_value(a_data[i]), fp16_ieee_to_fp32_value(b_data[i])); break; case OpType::Min: y_ref[i] = std::min(fp16_ieee_to_fp32_value(a_data[i]), fp16_ieee_to_fp32_value(b_data[i])); break; case OpType::Mul: y_ref[i] = fp16_ieee_to_fp32_value(a_data[i]) * fp16_ieee_to_fp32_value(b_data[i]); break; case OpType::SqrDiff: { const float diff = fp16_ieee_to_fp32_value(a_data[i]) - fp16_ieee_to_fp32_value(b_data[i]); y_ref[i] = diff * diff; break; } case OpType::Sub: y_ref[i] = fp16_ieee_to_fp32_value(a_data[i]) - fp16_ieee_to_fp32_value(b_data[i]); break; } } // Call optimized micro-kernel. vbinary(batch_size() * sizeof(uint16_t), a_data, b_data, y.data(), nullptr); // Verify results. for (size_t i = 0; i < batch_size(); i++) { ASSERT_NEAR(fp16_ieee_to_fp32_value(y[i]), y_ref[i], std::max(1.0e-4f, std::abs(y_ref[i]) * 1.0e-2f)) << "at " << i << " / " << batch_size(); } } } void Test(xnn_f16_vbinary_minmax_ukernel_function vbinary_minmax, OpType op_type) const { std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32rng = std::bind(std::uniform_real_distribution(0.01f, 1.0f), rng); auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng); std::vector a(batch_size() + XNN_EXTRA_BYTES / sizeof(uint16_t)); std::vector b(batch_size() + XNN_EXTRA_BYTES / sizeof(uint16_t)); std::vector y(batch_size() + (inplace_a() || inplace_b() ? XNN_EXTRA_BYTES / sizeof(uint16_t) : 0)); std::vector y_ref(batch_size()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(a.begin(), a.end(), std::ref(f16rng)); std::generate(b.begin(), b.end(), std::ref(f16rng)); if (inplace_a() || inplace_b()) { std::generate(y.begin(), y.end(), std::ref(f16rng)); } else { std::fill(y.begin(), y.end(), nanf("")); } const uint16_t* a_data = inplace_a() ? y.data() : a.data(); const uint16_t* b_data = inplace_b() ? y.data() : b.data(); // Compute reference results. for (size_t i = 0; i < batch_size(); i++) { switch (op_type) { case OpType::Add: y_ref[i] = fp16_ieee_to_fp32_value(a_data[i]) + fp16_ieee_to_fp32_value(b_data[i]); break; case OpType::Div: y_ref[i] = fp16_ieee_to_fp32_value(a_data[i]) / fp16_ieee_to_fp32_value(b_data[i]); break; case OpType::Max: y_ref[i] = std::max(fp16_ieee_to_fp32_value(a_data[i]), fp16_ieee_to_fp32_value(b_data[i])); break; case OpType::Min: y_ref[i] = std::min(fp16_ieee_to_fp32_value(a_data[i]), fp16_ieee_to_fp32_value(b_data[i])); break; case OpType::Mul: y_ref[i] = fp16_ieee_to_fp32_value(a_data[i]) * fp16_ieee_to_fp32_value(b_data[i]); break; case OpType::SqrDiff: { const float diff = fp16_ieee_to_fp32_value(a_data[i]) - fp16_ieee_to_fp32_value(b_data[i]); y_ref[i] = diff * diff; break; } case OpType::Sub: y_ref[i] = fp16_ieee_to_fp32_value(a_data[i]) - fp16_ieee_to_fp32_value(b_data[i]); break; } } const float accumulated_min = *std::min_element(y_ref.cbegin(), y_ref.cend()); const float accumulated_max = *std::max_element(y_ref.cbegin(), y_ref.cend()); const float accumulated_range = accumulated_max - accumulated_min; const float y_max = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(accumulated_range > 0.0f ? (accumulated_max - accumulated_range / 255.0f * float(255 - qmax())) : +std::numeric_limits::infinity())); const float y_min = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(accumulated_range > 0.0f ? (accumulated_min + accumulated_range / 255.0f * float(qmin())) : -std::numeric_limits::infinity())); for (size_t i = 0; i < batch_size(); i++) { y_ref[i] = std::max(std::min(y_ref[i], y_max), y_min); } // Prepare parameters. xnn_f16_minmax_params params = xnn_init_f16_minmax_params( fp16_ieee_from_fp32_value(y_min), fp16_ieee_from_fp32_value(y_max)); // Call optimized micro-kernel. vbinary_minmax(batch_size() * sizeof(uint16_t), a_data, b_data, y.data(), ¶ms); // Verify results. for (size_t i = 0; i < batch_size(); i++) { ASSERT_NEAR(fp16_ieee_to_fp32_value(y[i]), y_ref[i], std::max(1.0e-4f, std::abs(y_ref[i]) * 1.0e-2f)) << "at " << i << " / " << batch_size(); } } } void Test(xnn_f32_vbinary_ukernel_function vbinary, OpType op_type, Variant variant = Variant::Native) const { std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32rng = std::bind(std::uniform_real_distribution(0.01f, 1.0f), rng); std::vector a(batch_size() + XNN_EXTRA_BYTES / sizeof(float)); std::vector b(batch_size() + XNN_EXTRA_BYTES / sizeof(float)); std::vector y(batch_size() + (inplace_a() || inplace_b() ? XNN_EXTRA_BYTES / sizeof(float) : 0)); std::vector y_ref(batch_size()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(a.begin(), a.end(), std::ref(f32rng)); std::generate(b.begin(), b.end(), std::ref(f32rng)); if (inplace_a() || inplace_b()) { std::generate(y.begin(), y.end(), std::ref(f32rng)); } else { std::fill(y.begin(), y.end(), nanf("")); } const float* a_data = inplace_a() ? y.data() : a.data(); const float* b_data = inplace_b() ? y.data() : b.data(); // Compute reference results. for (size_t i = 0; i < batch_size(); i++) { switch (op_type) { case OpType::Add: y_ref[i] = a_data[i] + b_data[i]; break; case OpType::Div: y_ref[i] = a_data[i] / b_data[i]; break; case OpType::Max: y_ref[i] = std::max(a_data[i], b_data[i]); break; case OpType::Min: y_ref[i] = std::min(a_data[i], b_data[i]); break; case OpType::Mul: y_ref[i] = a_data[i] * b_data[i]; break; case OpType::SqrDiff: { const float diff = a_data[i] - b_data[i]; y_ref[i] = diff * diff; break; } case OpType::Sub: y_ref[i] = a_data[i] - b_data[i]; break; } } // Call optimized micro-kernel. vbinary(batch_size() * sizeof(float), a_data, b_data, y.data(), nullptr); // Verify results. for (size_t i = 0; i < batch_size(); i++) { ASSERT_NEAR(y[i], y_ref[i], std::abs(y_ref[i]) * 1.0e-6f) << "at " << i << " / " << batch_size(); } } } void Test(xnn_f32_vbinary_minmax_ukernel_function vbinary_minmax, OpType op_type, Variant variant = Variant::Native) const { std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32rng = std::bind(std::uniform_real_distribution(0.01f, 1.0f), rng); std::vector a(batch_size() + XNN_EXTRA_BYTES / sizeof(float)); std::vector b(batch_size() + XNN_EXTRA_BYTES / sizeof(float)); std::vector y(batch_size() + (inplace_a() || inplace_b() ? XNN_EXTRA_BYTES / sizeof(float) : 0)); std::vector y_ref(batch_size()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(a.begin(), a.end(), std::ref(f32rng)); std::generate(b.begin(), b.end(), std::ref(f32rng)); if (inplace_a() || inplace_b()) { std::generate(y.begin(), y.end(), std::ref(f32rng)); } else { std::fill(y.begin(), y.end(), nanf("")); } const float* a_data = inplace_a() ? y.data() : a.data(); const float* b_data = inplace_b() ? y.data() : b.data(); // Compute reference results. for (size_t i = 0; i < batch_size(); i++) { switch (op_type) { case OpType::Add: y_ref[i] = a_data[i] + b_data[i]; break; case OpType::Div: y_ref[i] = a_data[i] / b_data[i]; break; case OpType::Max: y_ref[i] = std::max(a_data[i], b_data[i]); break; case OpType::Min: y_ref[i] = std::min(a_data[i], b_data[i]); break; case OpType::Mul: y_ref[i] = a_data[i] * b_data[i]; break; case OpType::SqrDiff: { const float diff = a_data[i] - b_data[i]; y_ref[i] = diff * diff; break; } case OpType::Sub: y_ref[i] = a_data[i] - b_data[i]; break; } } const float accumulated_min = *std::min_element(y_ref.cbegin(), y_ref.cend()); const float accumulated_max = *std::max_element(y_ref.cbegin(), y_ref.cend()); const float accumulated_range = accumulated_max - accumulated_min; const float y_max = accumulated_range > 0.0f ? (accumulated_max - accumulated_range / 255.0f * float(255 - qmax())) : +std::numeric_limits::infinity(); const float y_min = accumulated_range > 0.0f ? (accumulated_min + accumulated_range / 255.0f * float(qmin())) : -std::numeric_limits::infinity(); for (size_t i = 0; i < batch_size(); i++) { y_ref[i] = std::max(std::min(y_ref[i], y_max), y_min); } // Prepare parameters. xnn_f32_minmax_params params = { }; switch (variant) { case Variant::Native: params = xnn_init_f32_minmax_params(y_min, y_max); break; case Variant::Scalar: params = xnn_init_scalar_f32_minmax_params(y_min, y_max); break; } // Call optimized micro-kernel. vbinary_minmax(batch_size() * sizeof(float), a_data, b_data, y.data(), ¶ms); // Verify results. for (size_t i = 0; i < batch_size(); i++) { ASSERT_NEAR(y[i], y_ref[i], std::abs(y_ref[i]) * 1.0e-6f) << "at " << i << " / " << batch_size(); } } } void Test(xnn_f32_vbinary_relu_ukernel_function vbinary_relu, OpType op_type, Variant variant = Variant::Native) const { std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32rng = std::bind(std::uniform_real_distribution(-1.0f, 1.0f), rng); std::vector a(batch_size() + XNN_EXTRA_BYTES / sizeof(float)); std::vector b(batch_size() + XNN_EXTRA_BYTES / sizeof(float)); std::vector y(batch_size() + (inplace_a() || inplace_b() ? XNN_EXTRA_BYTES / sizeof(float) : 0)); std::vector y_ref(batch_size()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(a.begin(), a.end(), std::ref(f32rng)); std::generate(b.begin(), b.end(), std::ref(f32rng)); if (inplace_a() || inplace_b()) { std::generate(y.begin(), y.end(), std::ref(f32rng)); } else { std::fill(y.begin(), y.end(), nanf("")); } const float* a_data = inplace_a() ? y.data() : a.data(); const float* b_data = inplace_b() ? y.data() : b.data(); // Compute reference results. for (size_t i = 0; i < batch_size(); i++) { switch (op_type) { case OpType::Add: y_ref[i] = a_data[i] + b_data[i]; break; case OpType::Div: y_ref[i] = a_data[i] / b_data[i]; break; case OpType::Max: y_ref[i] = std::max(a_data[i], b_data[i]); break; case OpType::Min: y_ref[i] = std::min(a_data[i], b_data[i]); break; case OpType::Mul: y_ref[i] = a_data[i] * b_data[i]; break; case OpType::SqrDiff: { const float diff = a_data[i] - b_data[i]; y_ref[i] = diff * diff; break; } case OpType::Sub: y_ref[i] = a_data[i] - b_data[i]; break; } } for (size_t i = 0; i < batch_size(); i++) { y_ref[i] = std::max(y_ref[i], 0.0f); } // Prepare parameters. xnn_f32_relu_params params = { }; // Call optimized micro-kernel. vbinary_relu(batch_size() * sizeof(float), a_data, b_data, y.data(), ¶ms); // Verify results. for (size_t i = 0; i < batch_size(); i++) { ASSERT_GE(y[i], 0.0f) << "at " << i << " / " << batch_size(); ASSERT_NEAR(y[i], y_ref[i], std::abs(y_ref[i]) * 1.0e-6f) << "at " << i << " / " << batch_size(); } } } private: size_t batch_size_{1}; bool inplace_a_{false}; bool inplace_b_{false}; uint8_t qmin_{0}; uint8_t qmax_{255}; size_t iterations_{15}; };