// // Copyright 2016 The ANGLE Project Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // // ContextVk.h: // Defines the class interface for ContextVk, implementing ContextImpl. // #ifndef LIBANGLE_RENDERER_VULKAN_CONTEXTVK_H_ #define LIBANGLE_RENDERER_VULKAN_CONTEXTVK_H_ #include #include "common/PackedEnums.h" #include "common/vulkan/vk_headers.h" #include "libANGLE/renderer/ContextImpl.h" #include "libANGLE/renderer/renderer_utils.h" #include "libANGLE/renderer/vulkan/DisplayVk.h" #include "libANGLE/renderer/vulkan/OverlayVk.h" #include "libANGLE/renderer/vulkan/PersistentCommandPool.h" #include "libANGLE/renderer/vulkan/RendererVk.h" #include "libANGLE/renderer/vulkan/vk_helpers.h" namespace angle { struct FeaturesVk; } // namespace angle namespace rx { class ProgramExecutableVk; class RendererVk; class WindowSurfaceVk; class ShareGroupVk; static constexpr uint32_t kMaxGpuEventNameLen = 32; using EventName = std::array; enum class PipelineType { Graphics = 0, Compute = 1, InvalidEnum = 2, EnumCount = 2, }; using ContextVkDescriptorSetList = angle::PackedEnumMap; struct ContextVkPerfCounters { ContextVkDescriptorSetList descriptorSetsAllocated; }; enum class GraphicsEventCmdBuf { NotInQueryCmd = 0, InOutsideCmdBufQueryCmd = 1, InRenderPassCmdBufQueryCmd = 2, InvalidEnum = 3, EnumCount = 3, }; class ContextVk : public ContextImpl, public vk::Context, public MultisampleTextureInitializer { public: ContextVk(const gl::State &state, gl::ErrorSet *errorSet, RendererVk *renderer); ~ContextVk() override; angle::Result initialize() override; void onDestroy(const gl::Context *context) override; // Flush and finish. angle::Result flush(const gl::Context *context) override; angle::Result finish(const gl::Context *context) override; // Drawing methods. angle::Result drawArrays(const gl::Context *context, gl::PrimitiveMode mode, GLint first, GLsizei count) override; angle::Result drawArraysInstanced(const gl::Context *context, gl::PrimitiveMode mode, GLint first, GLsizei count, GLsizei instanceCount) override; angle::Result drawArraysInstancedBaseInstance(const gl::Context *context, gl::PrimitiveMode mode, GLint first, GLsizei count, GLsizei instanceCount, GLuint baseInstance) override; angle::Result drawElements(const gl::Context *context, gl::PrimitiveMode mode, GLsizei count, gl::DrawElementsType type, const void *indices) override; angle::Result drawElementsBaseVertex(const gl::Context *context, gl::PrimitiveMode mode, GLsizei count, gl::DrawElementsType type, const void *indices, GLint baseVertex) override; angle::Result drawElementsInstanced(const gl::Context *context, gl::PrimitiveMode mode, GLsizei count, gl::DrawElementsType type, const void *indices, GLsizei instanceCount) override; angle::Result drawElementsInstancedBaseVertex(const gl::Context *context, gl::PrimitiveMode mode, GLsizei count, gl::DrawElementsType type, const void *indices, GLsizei instanceCount, GLint baseVertex) override; angle::Result drawElementsInstancedBaseVertexBaseInstance(const gl::Context *context, gl::PrimitiveMode mode, GLsizei count, gl::DrawElementsType type, const void *indices, GLsizei instances, GLint baseVertex, GLuint baseInstance) override; angle::Result drawRangeElements(const gl::Context *context, gl::PrimitiveMode mode, GLuint start, GLuint end, GLsizei count, gl::DrawElementsType type, const void *indices) override; angle::Result drawRangeElementsBaseVertex(const gl::Context *context, gl::PrimitiveMode mode, GLuint start, GLuint end, GLsizei count, gl::DrawElementsType type, const void *indices, GLint baseVertex) override; angle::Result drawArraysIndirect(const gl::Context *context, gl::PrimitiveMode mode, const void *indirect) override; angle::Result drawElementsIndirect(const gl::Context *context, gl::PrimitiveMode mode, gl::DrawElementsType type, const void *indirect) override; angle::Result multiDrawArrays(const gl::Context *context, gl::PrimitiveMode mode, const GLint *firsts, const GLsizei *counts, GLsizei drawcount) override; angle::Result multiDrawArraysInstanced(const gl::Context *context, gl::PrimitiveMode mode, const GLint *firsts, const GLsizei *counts, const GLsizei *instanceCounts, GLsizei drawcount) override; angle::Result multiDrawElements(const gl::Context *context, gl::PrimitiveMode mode, const GLsizei *counts, gl::DrawElementsType type, const GLvoid *const *indices, GLsizei drawcount) override; angle::Result multiDrawElementsInstanced(const gl::Context *context, gl::PrimitiveMode mode, const GLsizei *counts, gl::DrawElementsType type, const GLvoid *const *indices, const GLsizei *instanceCounts, GLsizei drawcount) override; angle::Result multiDrawArraysInstancedBaseInstance(const gl::Context *context, gl::PrimitiveMode mode, const GLint *firsts, const GLsizei *counts, const GLsizei *instanceCounts, const GLuint *baseInstances, GLsizei drawcount) override; angle::Result multiDrawElementsInstancedBaseVertexBaseInstance(const gl::Context *context, gl::PrimitiveMode mode, const GLsizei *counts, gl::DrawElementsType type, const GLvoid *const *indices, const GLsizei *instanceCounts, const GLint *baseVertices, const GLuint *baseInstances, GLsizei drawcount) override; // ShareGroup ShareGroupVk *getShareGroupVk() { return mShareGroupVk; } PipelineLayoutCache &getPipelineLayoutCache() { return mShareGroupVk->getPipelineLayoutCache(); } DescriptorSetLayoutCache &getDescriptorSetLayoutCache() { return mShareGroupVk->getDescriptorSetLayoutCache(); } // Device loss gl::GraphicsResetStatus getResetStatus() override; // EXT_debug_marker angle::Result insertEventMarker(GLsizei length, const char *marker) override; angle::Result pushGroupMarker(GLsizei length, const char *marker) override; angle::Result popGroupMarker() override; // KHR_debug angle::Result pushDebugGroup(const gl::Context *context, GLenum source, GLuint id, const std::string &message) override; angle::Result popDebugGroup(const gl::Context *context) override; // Record GL API calls for debuggers void logEvent(const char *eventString); void endEventLog(angle::EntryPoint entryPoint, PipelineType pipelineType); void endEventLogForClearOrQuery(); bool isViewportFlipEnabledForDrawFBO() const; bool isViewportFlipEnabledForReadFBO() const; // When the device/surface is rotated such that the surface's aspect ratio is different than // the native device (e.g. 90 degrees), the width and height of the viewport, scissor, and // render area must be swapped. bool isRotatedAspectRatioForDrawFBO() const; bool isRotatedAspectRatioForReadFBO() const; SurfaceRotation getRotationDrawFramebuffer() const; SurfaceRotation getRotationReadFramebuffer() const; // View port (x, y, w, h) will be determined by a combination of - // 1. clip space origin // 2. isViewportFlipEnabledForDrawFBO // For userdefined FBOs it will be based on the value of isViewportFlipEnabledForDrawFBO. // For default FBOs it will be XOR of ClipOrigin and isViewportFlipEnabledForDrawFBO. // isYFlipEnabledForDrawFBO indicates the rendered image is upside-down. ANGLE_INLINE bool isYFlipEnabledForDrawFBO() const { return mState.getClipSpaceOrigin() == gl::ClipSpaceOrigin::UpperLeft ? !isViewportFlipEnabledForDrawFBO() : isViewportFlipEnabledForDrawFBO(); } void invalidateProgramBindingHelper(const gl::State &glState); angle::Result invalidateProgramExecutableHelper(const gl::Context *context); // State sync with dirty bits. angle::Result syncState(const gl::Context *context, const gl::State::DirtyBits &dirtyBits, const gl::State::DirtyBits &bitMask) override; // Disjoint timer queries GLint getGPUDisjoint() override; GLint64 getTimestamp() override; // Context switching angle::Result onMakeCurrent(const gl::Context *context) override; angle::Result onUnMakeCurrent(const gl::Context *context) override; // Native capabilities, unmodified by gl::Context. gl::Caps getNativeCaps() const override; const gl::TextureCapsMap &getNativeTextureCaps() const override; const gl::Extensions &getNativeExtensions() const override; const gl::Limitations &getNativeLimitations() const override; // Shader creation CompilerImpl *createCompiler() override; ShaderImpl *createShader(const gl::ShaderState &state) override; ProgramImpl *createProgram(const gl::ProgramState &state) override; // Framebuffer creation FramebufferImpl *createFramebuffer(const gl::FramebufferState &state) override; // Texture creation TextureImpl *createTexture(const gl::TextureState &state) override; // Renderbuffer creation RenderbufferImpl *createRenderbuffer(const gl::RenderbufferState &state) override; // Buffer creation BufferImpl *createBuffer(const gl::BufferState &state) override; // Vertex Array creation VertexArrayImpl *createVertexArray(const gl::VertexArrayState &state) override; // Query and Fence creation QueryImpl *createQuery(gl::QueryType type) override; FenceNVImpl *createFenceNV() override; SyncImpl *createSync() override; // Transform Feedback creation TransformFeedbackImpl *createTransformFeedback( const gl::TransformFeedbackState &state) override; // Sampler object creation SamplerImpl *createSampler(const gl::SamplerState &state) override; // Program Pipeline object creation ProgramPipelineImpl *createProgramPipeline(const gl::ProgramPipelineState &data) override; // Memory object creation. MemoryObjectImpl *createMemoryObject() override; // Semaphore creation. SemaphoreImpl *createSemaphore() override; // Overlay creation. OverlayImpl *createOverlay(const gl::OverlayState &state) override; angle::Result dispatchCompute(const gl::Context *context, GLuint numGroupsX, GLuint numGroupsY, GLuint numGroupsZ) override; angle::Result dispatchComputeIndirect(const gl::Context *context, GLintptr indirect) override; angle::Result memoryBarrier(const gl::Context *context, GLbitfield barriers) override; angle::Result memoryBarrierByRegion(const gl::Context *context, GLbitfield barriers) override; ANGLE_INLINE void invalidateTexture(gl::TextureType target) override {} // EXT_shader_framebuffer_fetch_non_coherent void framebufferFetchBarrier() override; VkDevice getDevice() const; egl::ContextPriority getPriority() const { return mContextPriority; } bool hasProtectedContent() const { return mState.hasProtectedContent(); } ANGLE_INLINE const angle::FeaturesVk &getFeatures() const { return mRenderer->getFeatures(); } ANGLE_INLINE void invalidateVertexAndIndexBuffers() { mGraphicsDirtyBits |= kIndexAndVertexDirtyBits; } angle::Result onVertexBufferChange(const vk::BufferHelper *vertexBuffer); angle::Result onVertexAttributeChange(size_t attribIndex, GLuint stride, GLuint divisor, angle::FormatID format, bool compressed, GLuint relativeOffset, const vk::BufferHelper *vertexBuffer); void invalidateDefaultAttribute(size_t attribIndex); void invalidateDefaultAttributes(const gl::AttributesMask &dirtyMask); angle::Result onFramebufferChange(FramebufferVk *framebufferVk); void onDrawFramebufferRenderPassDescChange(FramebufferVk *framebufferVk, bool *renderPassDescChangedOut); void onHostVisibleBufferWrite() { mIsAnyHostVisibleBufferWritten = true; } void invalidateCurrentTransformFeedbackBuffers(); void onTransformFeedbackStateChanged(); angle::Result onBeginTransformFeedback( size_t bufferCount, const gl::TransformFeedbackBuffersArray &buffers, const gl::TransformFeedbackBuffersArray &counterBuffers); void onEndTransformFeedback(); angle::Result onPauseTransformFeedback(); void pauseTransformFeedbackIfActiveUnpaused(); // When UtilsVk issues draw or dispatch calls, it binds a new pipeline and descriptor sets that // the context is not aware of. These functions are called to make sure the pipeline and // affected descriptor set bindings are dirtied for the next application draw/dispatch call. void invalidateGraphicsPipelineBinding(); void invalidateComputePipelineBinding(); void invalidateGraphicsDescriptorSet(DescriptorSetIndex usedDescriptorSet); void invalidateComputeDescriptorSet(DescriptorSetIndex usedDescriptorSet); void invalidateViewportAndScissor(); void optimizeRenderPassForPresent(VkFramebuffer framebufferHandle); vk::DynamicQueryPool *getQueryPool(gl::QueryType queryType); const VkClearValue &getClearColorValue() const; const VkClearValue &getClearDepthStencilValue() const; gl::BlendStateExt::ColorMaskStorage::Type getClearColorMasks() const; const VkRect2D &getScissor() const { return mScissor; } angle::Result getIncompleteTexture(const gl::Context *context, gl::TextureType type, gl::SamplerFormat format, gl::Texture **textureOut); void updateColorMasks(const gl::BlendStateExt &blendStateExt); void updateSampleMaskWithRasterizationSamples(const uint32_t rasterizationSamples); void handleError(VkResult errorCode, const char *file, const char *function, unsigned int line) override; const gl::ActiveTextureArray &getActiveTextures() const { return mActiveTextures; } const gl::ActiveTextureArray &getActiveImages() const { return mActiveImages; } angle::Result onIndexBufferChange(const vk::BufferHelper *currentIndexBuffer); angle::Result flushImpl(const vk::Semaphore *semaphore); angle::Result finishImpl(); void addWaitSemaphore(VkSemaphore semaphore, VkPipelineStageFlags stageMask); const vk::CommandPool &getCommandPool() const; Serial getCurrentQueueSerial() const { return mRenderer->getCurrentQueueSerial(); } Serial getLastSubmittedQueueSerial() const { return mRenderer->getLastSubmittedQueueSerial(); } Serial getLastCompletedQueueSerial() const { return mRenderer->getLastCompletedQueueSerial(); } bool isSerialInUse(Serial serial) const; template void addGarbage(T *object) { if (object->valid()) { mCurrentGarbage.emplace_back(vk::GetGarbage(object)); } } // It would be nice if we didn't have to expose this for QueryVk::getResult. angle::Result checkCompletedCommands(); // Wait for completion of batches until (at least) batch with given serial is finished. angle::Result finishToSerial(Serial serial); angle::Result getCompatibleRenderPass(const vk::RenderPassDesc &desc, vk::RenderPass **renderPassOut); angle::Result getRenderPassWithOps(const vk::RenderPassDesc &desc, const vk::AttachmentOpsArray &ops, vk::RenderPass **renderPassOut); vk::ShaderLibrary &getShaderLibrary() { return mShaderLibrary; } UtilsVk &getUtils() { return mUtils; } angle::Result getTimestamp(uint64_t *timestampOut); // Create Begin/End/Instant GPU trace events, which take their timestamps from GPU queries. // The events are queued until the query results are available. Possible values for `phase` // are TRACE_EVENT_PHASE_* ANGLE_INLINE angle::Result traceGpuEvent(vk::CommandBuffer *commandBuffer, char phase, const EventName &name) { if (mGpuEventsEnabled) return traceGpuEventImpl(commandBuffer, phase, name); return angle::Result::Continue; } RenderPassCache &getRenderPassCache() { return mRenderPassCache; } vk::DescriptorSetLayoutDesc getDriverUniformsDescriptorSetDesc( VkShaderStageFlags shaderStages) const; void updateScissor(const gl::State &glState); void updateDepthStencil(const gl::State &glState); bool emulateSeamfulCubeMapSampling() const { return mEmulateSeamfulCubeMapSampling; } const gl::Debug &getDebug() const { return mState.getDebug(); } const gl::OverlayType *getOverlay() const { return mState.getOverlay(); } vk::ResourceUseList &getResourceUseList() { return mResourceUseList; } angle::Result onBufferReleaseToExternal(const vk::BufferHelper &buffer); angle::Result onImageReleaseToExternal(const vk::ImageHelper &image); void onImageRenderPassRead(VkImageAspectFlags aspectFlags, vk::ImageLayout imageLayout, vk::ImageHelper *image) { ASSERT(mRenderPassCommands->started()); mRenderPassCommands->imageRead(this, aspectFlags, imageLayout, image); } void onImageRenderPassWrite(gl::LevelIndex level, uint32_t layerStart, uint32_t layerCount, VkImageAspectFlags aspectFlags, vk::ImageLayout imageLayout, vk::ImageHelper *image) { ASSERT(mRenderPassCommands->started()); mRenderPassCommands->imageWrite(this, level, layerStart, layerCount, aspectFlags, imageLayout, vk::AliasingMode::Allowed, image); } void onColorDraw(vk::ImageHelper *image, vk::ImageHelper *resolveImage, vk::PackedAttachmentIndex packedAttachmentIndex) { ASSERT(mRenderPassCommands->started()); mRenderPassCommands->colorImagesDraw(&mResourceUseList, image, resolveImage, packedAttachmentIndex); } void onDepthStencilDraw(gl::LevelIndex level, uint32_t layerStart, uint32_t layerCount, vk::ImageHelper *image, vk::ImageHelper *resolveImage) { ASSERT(mRenderPassCommands->started()); mRenderPassCommands->depthStencilImagesDraw(&mResourceUseList, level, layerStart, layerCount, image, resolveImage); } void finalizeImageLayout(const vk::ImageHelper *image) { if (mRenderPassCommands->started()) { mRenderPassCommands->finalizeImageLayout(this, image); } } angle::Result getOutsideRenderPassCommandBuffer(const vk::CommandBufferAccess &access, vk::CommandBuffer **commandBufferOut) { ASSERT(!mOutsideRenderPassCommands->hasRenderPass()); ANGLE_TRY(onResourceAccess(access)); *commandBufferOut = &mOutsideRenderPassCommands->getCommandBuffer(); return angle::Result::Continue; } angle::Result beginNewRenderPass(const vk::Framebuffer &framebuffer, const gl::Rectangle &renderArea, const vk::RenderPassDesc &renderPassDesc, const vk::AttachmentOpsArray &renderPassAttachmentOps, const vk::PackedAttachmentCount colorAttachmentCount, const vk::PackedAttachmentIndex depthStencilAttachmentIndex, const vk::PackedClearValuesArray &clearValues, vk::CommandBuffer **commandBufferOut); // Only returns true if we have a started RP and we've run setupDraw. bool hasStartedRenderPass() const { // Checking mRenderPassCommandBuffer ensures we've called setupDraw. return mRenderPassCommandBuffer && mRenderPassCommands->started(); } bool hasStartedRenderPassWithFramebuffer(vk::Framebuffer *framebuffer) { return hasStartedRenderPass() && mRenderPassCommands->getFramebufferHandle() == framebuffer->getHandle(); } bool hasStartedRenderPassWithCommands() const { return hasStartedRenderPass() && !mRenderPassCommands->getCommandBuffer().empty(); } vk::CommandBufferHelper &getStartedRenderPassCommands() { ASSERT(mRenderPassCommands->started()); return *mRenderPassCommands; } // TODO(https://anglebug.com/4968): Support multiple open render passes. void restoreFinishedRenderPass(vk::Framebuffer *framebuffer); uint32_t getCurrentSubpassIndex() const; uint32_t getCurrentViewCount() const; egl::ContextPriority getContextPriority() const override { return mContextPriority; } angle::Result startRenderPass(gl::Rectangle renderArea, vk::CommandBuffer **commandBufferOut, bool *renderPassDescChangedOut); void startNextSubpass(); angle::Result flushCommandsAndEndRenderPass(); angle::Result syncExternalMemory(); void addCommandBufferDiagnostics(const std::string &commandBufferDiagnostics); VkIndexType getVkIndexType(gl::DrawElementsType glIndexType) const; size_t getVkIndexTypeSize(gl::DrawElementsType glIndexType) const; bool shouldConvertUint8VkIndexType(gl::DrawElementsType glIndexType) const; ANGLE_INLINE bool isBresenhamEmulationEnabled(const gl::PrimitiveMode mode) { return getFeatures().basicGLLineRasterization.enabled && gl::IsLineMode(mode); } const ProgramExecutableVk *getExecutable() const { return mExecutable; } ProgramExecutableVk *getExecutable() { return mExecutable; } bool isRobustResourceInitEnabled() const; // Queries that begin and end automatically with render pass start and end angle::Result beginRenderPassQuery(QueryVk *queryVk); angle::Result endRenderPassQuery(QueryVk *queryVk); void pauseRenderPassQueriesIfActive(); angle::Result resumeRenderPassQueriesIfActive(); bool doesPrimitivesGeneratedQuerySupportRasterizerDiscard() const; bool isEmulatingRasterizerDiscardDuringPrimitivesGeneratedQuery( bool isPrimitivesGeneratedQueryActive) const; // Used by QueryVk to share query helpers between transform feedback queries. QueryVk *getActiveRenderPassQuery(gl::QueryType queryType) const; void syncObjectPerfCounters(); void updateOverlayOnPresent(); void addOverlayUsedBuffersCount(vk::CommandBufferHelper *commandBuffer); // DescriptorSet writes VkDescriptorBufferInfo *allocDescriptorBufferInfos(size_t count); VkDescriptorImageInfo *allocDescriptorImageInfos(size_t count); VkWriteDescriptorSet *allocWriteDescriptorSets(size_t count); VkDescriptorBufferInfo &allocDescriptorBufferInfo() { return *allocDescriptorBufferInfos(1); } VkDescriptorImageInfo &allocDescriptorImageInfo() { return *allocDescriptorImageInfos(1); } VkWriteDescriptorSet &allocWriteDescriptorSet() { return *allocWriteDescriptorSets(1); } vk::DynamicBuffer *getDefaultUniformStorage() { return &mDefaultUniformStorage; } // For testing only. void setDefaultUniformBlocksMinSizeForTesting(size_t minSize); vk::BufferHelper &getEmptyBuffer() { return mEmptyBuffer; } vk::DynamicBuffer *getStagingBuffer() { return &mStagingBuffer; } const vk::PerfCounters &getPerfCounters() const { return mPerfCounters; } vk::PerfCounters &getPerfCounters() { return mPerfCounters; } void onSyncHelperInitialize() { getShareGroupVk()->setSyncObjectPendingFlush(); } void onEGLSyncHelperInitialize() { mEGLSyncObjectPendingFlush = true; } // Implementation of MultisampleTextureInitializer angle::Result initializeMultisampleTextureToBlack(const gl::Context *context, gl::Texture *glTexture) override; // TODO(http://anglebug.com/5624): rework updateActiveTextures(), createPipelineLayout(), // handleDirtyGraphicsPipeline(), and ProgramPipelineVk::link(). void resetCurrentGraphicsPipeline() { mCurrentGraphicsPipeline = nullptr; } void onProgramExecutableReset(ProgramExecutableVk *executableVk); angle::Result handleGraphicsEventLog(GraphicsEventCmdBuf queryEventType); private: // Dirty bits. enum DirtyBitType : size_t { // A glMemoryBarrier has been called and command buffers may need flushing. DIRTY_BIT_MEMORY_BARRIER, // Dirty bits that must be processed before the render pass is started. The handlers for // these dirty bits don't record any commands. DIRTY_BIT_DEFAULT_ATTRIBS, // The pipeline has changed and needs to be recreated. This dirty bit may close the render // pass. DIRTY_BIT_PIPELINE_DESC, // Start the render pass. DIRTY_BIT_RENDER_PASS, // Dirty bits that must be processed after the render pass is started. Their handlers // record commands. DIRTY_BIT_EVENT_LOG, // Pipeline needs to rebind because a new command buffer has been allocated, or UtilsVk has // changed the binding. The pipeline itself doesn't need to be recreated. DIRTY_BIT_PIPELINE_BINDING, DIRTY_BIT_TEXTURES, DIRTY_BIT_VERTEX_BUFFERS, DIRTY_BIT_INDEX_BUFFER, DIRTY_BIT_DRIVER_UNIFORMS, DIRTY_BIT_DRIVER_UNIFORMS_BINDING, // Shader resources excluding textures, which are handled separately. DIRTY_BIT_SHADER_RESOURCES, DIRTY_BIT_TRANSFORM_FEEDBACK_BUFFERS, DIRTY_BIT_TRANSFORM_FEEDBACK_RESUME, DIRTY_BIT_DESCRIPTOR_SETS, DIRTY_BIT_FRAMEBUFFER_FETCH_BARRIER, // Dynamic viewport/scissor DIRTY_BIT_VIEWPORT, DIRTY_BIT_SCISSOR, DIRTY_BIT_MAX, }; using DirtyBits = angle::BitSet; using GraphicsDirtyBitHandler = angle::Result ( ContextVk::*)(DirtyBits::Iterator *dirtyBitsIterator, DirtyBits dirtyBitMask); using ComputeDirtyBitHandler = angle::Result (ContextVk::*)(); struct DriverUniformsDescriptorSet { vk::DynamicBuffer dynamicBuffer; VkDescriptorSet descriptorSet; uint32_t dynamicOffset; vk::BindingPointer descriptorSetLayout; vk::RefCountedDescriptorPoolBinding descriptorPoolBinding; DriverUniformsDescriptorSetCache descriptorSetCache; DriverUniformsDescriptorSet(); ~DriverUniformsDescriptorSet(); void init(RendererVk *rendererVk); void destroy(RendererVk *rendererVk); }; // The GpuEventQuery struct holds together a timestamp query and enough data to create a // trace event based on that. Use traceGpuEvent to insert such queries. They will be readback // when the results are available, without inserting a GPU bubble. // // - eventName will be the reported name of the event // - phase is either 'B' (duration begin), 'E' (duration end) or 'i' (instant // event). // See Google's "Trace Event Format": // https://docs.google.com/document/d/1CvAClvFfyA5R-PhYUmn5OOQtYMH4h6I0nSsKchNAySU // - serial is the serial of the batch the query was submitted on. Until the batch is // submitted, the query is not checked to avoid incuring a flush. struct GpuEventQuery final { EventName name; char phase; vk::QueryHelper queryHelper; }; // Once a query result is available, the timestamp is read and a GpuEvent object is kept until // the next clock sync, at which point the clock drift is compensated in the results before // handing them off to the application. struct GpuEvent final { uint64_t gpuTimestampCycles; std::array name; char phase; }; struct GpuClockSyncInfo { double gpuTimestampS; double cpuTimestampS; }; class ScopedDescriptorSetUpdates; angle::Result setupDraw(const gl::Context *context, gl::PrimitiveMode mode, GLint firstVertexOrInvalid, GLsizei vertexOrIndexCount, GLsizei instanceCount, gl::DrawElementsType indexTypeOrInvalid, const void *indices, DirtyBits dirtyBitMask); angle::Result setupIndexedDraw(const gl::Context *context, gl::PrimitiveMode mode, GLsizei indexCount, GLsizei instanceCount, gl::DrawElementsType indexType, const void *indices); angle::Result setupIndirectDraw(const gl::Context *context, gl::PrimitiveMode mode, DirtyBits dirtyBitMask, vk::BufferHelper *indirectBuffer, VkDeviceSize indirectBufferOffset); angle::Result setupIndexedIndirectDraw(const gl::Context *context, gl::PrimitiveMode mode, gl::DrawElementsType indexType, vk::BufferHelper *indirectBuffer, VkDeviceSize indirectBufferOffset); angle::Result setupLineLoopIndexedIndirectDraw(const gl::Context *context, gl::PrimitiveMode mode, gl::DrawElementsType indexType, vk::BufferHelper *srcIndirectBuf, VkDeviceSize indirectBufferOffset, vk::BufferHelper **indirectBufferOut, VkDeviceSize *indirectBufferOffsetOut); angle::Result setupLineLoopIndirectDraw(const gl::Context *context, gl::PrimitiveMode mode, vk::BufferHelper *indirectBuffer, VkDeviceSize indirectBufferOffset, vk::BufferHelper **indirectBufferOut, VkDeviceSize *indirectBufferOffsetOut); angle::Result setupLineLoopDraw(const gl::Context *context, gl::PrimitiveMode mode, GLint firstVertex, GLsizei vertexOrIndexCount, gl::DrawElementsType indexTypeOrInvalid, const void *indices, uint32_t *numIndicesOut); angle::Result setupDispatch(const gl::Context *context); gl::Rectangle getCorrectedViewport(const gl::Rectangle &viewport) const; void updateViewport(FramebufferVk *framebufferVk, const gl::Rectangle &viewport, float nearPlane, float farPlane); void updateDepthRange(float nearPlane, float farPlane); void updateFlipViewportDrawFramebuffer(const gl::State &glState); void updateFlipViewportReadFramebuffer(const gl::State &glState); void updateSurfaceRotationDrawFramebuffer(const gl::State &glState); void updateSurfaceRotationReadFramebuffer(const gl::State &glState); angle::Result updateActiveTextures(const gl::Context *context); angle::Result updateActiveImages(vk::CommandBufferHelper *commandBufferHelper); angle::Result updateDefaultAttribute(size_t attribIndex); ANGLE_INLINE void invalidateCurrentGraphicsPipeline() { // Note: DIRTY_BIT_PIPELINE_BINDING will be automatically set if pipeline bind is necessary. mGraphicsDirtyBits.set(DIRTY_BIT_PIPELINE_DESC); } ANGLE_INLINE void invalidateCurrentComputePipeline() { mComputeDirtyBits |= kPipelineDescAndBindingDirtyBits; mCurrentComputePipeline = nullptr; } void invalidateCurrentDefaultUniforms(); angle::Result invalidateCurrentTextures(const gl::Context *context); angle::Result invalidateCurrentShaderResources(); void invalidateGraphicsDriverUniforms(); void invalidateDriverUniforms(); angle::Result handleNoopDrawEvent() override; // Handlers for graphics pipeline dirty bits. angle::Result handleDirtyGraphicsMemoryBarrier(DirtyBits::Iterator *dirtyBitsIterator, DirtyBits dirtyBitMask); angle::Result handleDirtyGraphicsEventLog(DirtyBits::Iterator *dirtyBitsIterator, DirtyBits dirtyBitMask); angle::Result handleDirtyGraphicsDefaultAttribs(DirtyBits::Iterator *dirtyBitsIterator, DirtyBits dirtyBitMask); angle::Result handleDirtyGraphicsPipelineDesc(DirtyBits::Iterator *dirtyBitsIterator, DirtyBits dirtyBitMask); angle::Result handleDirtyGraphicsRenderPass(DirtyBits::Iterator *dirtyBitsIterator, DirtyBits dirtyBitMask); angle::Result handleDirtyGraphicsPipelineBinding(DirtyBits::Iterator *dirtyBitsIterator, DirtyBits dirtyBitMask); angle::Result handleDirtyGraphicsTextures(DirtyBits::Iterator *dirtyBitsIterator, DirtyBits dirtyBitMask); angle::Result handleDirtyGraphicsVertexBuffers(DirtyBits::Iterator *dirtyBitsIterator, DirtyBits dirtyBitMask); angle::Result handleDirtyGraphicsIndexBuffer(DirtyBits::Iterator *dirtyBitsIterator, DirtyBits dirtyBitMask); angle::Result handleDirtyGraphicsDriverUniforms(DirtyBits::Iterator *dirtyBitsIterator, DirtyBits dirtyBitMask); angle::Result handleDirtyGraphicsDriverUniformsBinding(DirtyBits::Iterator *dirtyBitsIterator, DirtyBits dirtyBitMask); angle::Result handleDirtyGraphicsShaderResources(DirtyBits::Iterator *dirtyBitsIterator, DirtyBits dirtyBitMask); angle::Result handleDirtyGraphicsFramebufferFetchBarrier(DirtyBits::Iterator *dirtyBitsIterator, DirtyBits dirtyBitMask); angle::Result handleDirtyGraphicsTransformFeedbackBuffersEmulation( DirtyBits::Iterator *dirtyBitsIterator, DirtyBits dirtyBitMask); angle::Result handleDirtyGraphicsTransformFeedbackBuffersExtension( DirtyBits::Iterator *dirtyBitsIterator, DirtyBits dirtyBitMask); angle::Result handleDirtyGraphicsTransformFeedbackResume(DirtyBits::Iterator *dirtyBitsIterator, DirtyBits dirtyBitMask); angle::Result handleDirtyGraphicsDescriptorSets(DirtyBits::Iterator *dirtyBitsIterator, DirtyBits dirtyBitMask); angle::Result handleDirtyGraphicsViewport(DirtyBits::Iterator *dirtyBitsIterator, DirtyBits dirtyBitMask); angle::Result handleDirtyGraphicsScissor(DirtyBits::Iterator *dirtyBitsIterator, DirtyBits dirtyBitMask); // Handlers for compute pipeline dirty bits. angle::Result handleDirtyComputeMemoryBarrier(); angle::Result handleDirtyComputeEventLog(); angle::Result handleDirtyComputePipelineDesc(); angle::Result handleDirtyComputePipelineBinding(); angle::Result handleDirtyComputeTextures(); angle::Result handleDirtyComputeDriverUniforms(); angle::Result handleDirtyComputeDriverUniformsBinding(); angle::Result handleDirtyComputeShaderResources(); angle::Result handleDirtyComputeDescriptorSets(); // Common parts of the common dirty bit handlers. angle::Result handleDirtyMemoryBarrierImpl(DirtyBits::Iterator *dirtyBitsIterator, DirtyBits dirtyBitMask); angle::Result handleDirtyEventLogImpl(vk::CommandBuffer *commandBuffer); angle::Result handleDirtyTexturesImpl(vk::CommandBufferHelper *commandBufferHelper); angle::Result handleDirtyShaderResourcesImpl(vk::CommandBufferHelper *commandBufferHelper); void handleDirtyDriverUniformsBindingImpl(vk::CommandBuffer *commandBuffer, VkPipelineBindPoint bindPoint, DriverUniformsDescriptorSet *driverUniforms); angle::Result handleDirtyDescriptorSetsImpl(vk::CommandBuffer *commandBuffer); void handleDirtyGraphicsScissorImpl(bool isPrimitivesGeneratedQueryActive); angle::Result allocateDriverUniforms(size_t driverUniformsSize, DriverUniformsDescriptorSet *driverUniforms, uint8_t **ptrOut, bool *newBufferOut); angle::Result updateDriverUniformsDescriptorSet(bool newBuffer, size_t driverUniformsSize, DriverUniformsDescriptorSet *driverUniforms); void writeAtomicCounterBufferDriverUniformOffsets(uint32_t *offsetsOut, size_t offsetsSize); angle::Result submitFrame(const vk::Semaphore *signalSemaphore); angle::Result synchronizeCpuGpuTime(); angle::Result traceGpuEventImpl(vk::CommandBuffer *commandBuffer, char phase, const EventName &name); angle::Result checkCompletedGpuEvents(); void flushGpuEvents(double nextSyncGpuTimestampS, double nextSyncCpuTimestampS); void handleDeviceLost(); bool shouldEmulateSeamfulCubeMapSampling() const; void clearAllGarbage(); bool hasRecordedCommands(); void dumpCommandStreamDiagnostics(); angle::Result flushOutsideRenderPassCommands(); // Flush commands and end render pass without setting any dirty bits. // flushCommandsAndEndRenderPass() and flushDirtyGraphicsRenderPass() will set the dirty bits // directly or through the iterator respectively. Outside those two functions, this shouldn't // be called directly. angle::Result flushCommandsAndEndRenderPassImpl(); angle::Result flushDirtyGraphicsRenderPass(DirtyBits::Iterator *dirtyBitsIterator, DirtyBits dirtyBitMask); void flushDescriptorSetUpdates(); void onRenderPassFinished(); void initIndexTypeMap(); // Read-after-write hazards are generally handled with |glMemoryBarrier| when the source of // write is storage output. When the write is outside render pass, the natural placement of the // render pass after the current outside render pass commands ensures that the memory barriers // and image layout transitions automatically take care of such synchronizations. // // There are a number of read-after-write cases that require breaking the render pass however to // preserve the order of operations: // // - Transform feedback write (in render pass), then vertex/index read (in render pass) // - Transform feedback write (in render pass), then ubo read (outside render pass) // - Framebuffer attachment write (in render pass), then texture sample (outside render pass) // * Note that texture sampling inside render pass would cause a feedback loop // angle::Result endRenderPassIfTransformFeedbackBuffer(const vk::BufferHelper *buffer); angle::Result endRenderPassIfComputeReadAfterTransformFeedbackWrite(); angle::Result endRenderPassIfComputeReadAfterAttachmentWrite(); void populateTransformFeedbackBufferSet( size_t bufferCount, const gl::TransformFeedbackBuffersArray &buffers); // DescriptorSet writes template T *allocDescriptorInfos(std::vector *descriptorVector, size_t count); template void growDesciptorCapacity(std::vector *descriptorVector, size_t newSize); angle::Result updateRenderPassDepthStencilAccess(); bool shouldSwitchToReadOnlyDepthFeedbackLoopMode(const gl::Context *context, gl::Texture *texture) const; angle::Result onResourceAccess(const vk::CommandBufferAccess &access); angle::Result flushCommandBuffersIfNecessary(const vk::CommandBufferAccess &access); bool renderPassUsesStorageResources() const; void outputCumulativePerfCounters(); void updateSampleShadingWithRasterizationSamples(const uint32_t rasterizationSamples); void updateRasterizationSamples(const uint32_t rasterizationSamples); void updateRasterizerDiscardEnabled(bool isPrimitivesGeneratedQueryActive); SpecConstUsageBits getCurrentProgramSpecConstUsageBits() const; void updateGraphicsPipelineDescWithSpecConstUsageBits(SpecConstUsageBits usageBits); ContextVkPerfCounters getAndResetObjectPerfCounters(); std::array mGraphicsDirtyBitHandlers; std::array mComputeDirtyBitHandlers; vk::CommandBuffer *mRenderPassCommandBuffer; vk::PipelineHelper *mCurrentGraphicsPipeline; vk::PipelineAndSerial *mCurrentComputePipeline; gl::PrimitiveMode mCurrentDrawMode; WindowSurfaceVk *mCurrentWindowSurface; // Records the current rotation of the surface (draw/read) framebuffer, derived from // mCurrentWindowSurface->getPreTransform(). SurfaceRotation mCurrentRotationDrawFramebuffer; SurfaceRotation mCurrentRotationReadFramebuffer; // Keep a cached pipeline description structure that can be used to query the pipeline cache. // Kept in a pointer so allocations can be aligned, and structs can be portably packed. std::unique_ptr mGraphicsPipelineDesc; vk::GraphicsPipelineTransitionBits mGraphicsPipelineTransition; // These pools are externally sychronized, so cannot be accessed from different // threads simultaneously. Hence, we keep them in the ContextVk instead of the RendererVk. // Note that this implementation would need to change in shared resource scenarios. Likely // we'd instead share a single set of pools between the share groups. angle::PackedEnumMap mDriverUniformsDescriptorPools; gl::QueryTypeMap mQueryPools; // Queries that need to be closed and reopened with the render pass: // // - Occlusion queries // - Transform feedback queries, if not emulated gl::QueryTypeMap mActiveRenderPassQueries; // Dirty bits. DirtyBits mGraphicsDirtyBits; DirtyBits mComputeDirtyBits; DirtyBits mNonIndexedDirtyBitsMask; DirtyBits mIndexedDirtyBitsMask; DirtyBits mNewGraphicsCommandBufferDirtyBits; DirtyBits mNewComputeCommandBufferDirtyBits; static constexpr DirtyBits kIndexAndVertexDirtyBits{DIRTY_BIT_VERTEX_BUFFERS, DIRTY_BIT_INDEX_BUFFER}; static constexpr DirtyBits kPipelineDescAndBindingDirtyBits{DIRTY_BIT_PIPELINE_DESC, DIRTY_BIT_PIPELINE_BINDING}; static constexpr DirtyBits kTexturesAndDescSetDirtyBits{DIRTY_BIT_TEXTURES, DIRTY_BIT_DESCRIPTOR_SETS}; static constexpr DirtyBits kResourcesAndDescSetDirtyBits{DIRTY_BIT_SHADER_RESOURCES, DIRTY_BIT_DESCRIPTOR_SETS}; static constexpr DirtyBits kXfbBuffersAndDescSetDirtyBits{DIRTY_BIT_TRANSFORM_FEEDBACK_BUFFERS, DIRTY_BIT_DESCRIPTOR_SETS}; static constexpr DirtyBits kDriverUniformsAndBindingDirtyBits{ DIRTY_BIT_DRIVER_UNIFORMS, DIRTY_BIT_DRIVER_UNIFORMS_BINDING}; // Cached back-end objects. VertexArrayVk *mVertexArray; FramebufferVk *mDrawFramebuffer; ProgramVk *mProgram; ProgramPipelineVk *mProgramPipeline; ProgramExecutableVk *mExecutable; // The offset we had the last time we bound the index buffer. const GLvoid *mLastIndexBufferOffset; VkDeviceSize mCurrentIndexBufferOffset; gl::DrawElementsType mCurrentDrawElementsType; angle::PackedEnumMap mIndexTypeMap; // Cache the current draw call's firstVertex to be passed to // TransformFeedbackVk::getBufferOffsets. Unfortunately, gl_BaseVertex support in Vulkan is // not yet ubiquitous, which would have otherwise removed the need for this value to be passed // as a uniform. GLint mXfbBaseVertex; // Cache the current draw call's vertex count as well to support instanced draw calls GLuint mXfbVertexCountPerInstance; // Cached clear value/mask for color and depth/stencil. VkClearValue mClearColorValue; VkClearValue mClearDepthStencilValue; gl::BlendStateExt::ColorMaskStorage::Type mClearColorMasks; IncompleteTextureSet mIncompleteTextures; // If the current surface bound to this context wants to have all rendering flipped vertically. // Updated on calls to onMakeCurrent. bool mFlipYForCurrentSurface; bool mFlipViewportForDrawFramebuffer; bool mFlipViewportForReadFramebuffer; // If any host-visible buffer is written by the GPU since last submission, a barrier is inserted // at the end of the command buffer to make that write available to the host. bool mIsAnyHostVisibleBufferWritten; // Whether this context should do seamful cube map sampling emulation. bool mEmulateSeamfulCubeMapSampling; angle::PackedEnumMap mDriverUniforms; // This cache should also probably include the texture index (shader location) and array // index (also in the shader). This info is used in the descriptor update step. gl::ActiveTextureArray mActiveTextures; // We use textureSerial to optimize texture binding updates. Each permutation of a // {VkImage/VkSampler} generates a unique serial. These object ids are combined to form a unique // signature for each descriptor set. This allows us to keep a cache of descriptor sets and // avoid calling vkAllocateDesctiporSets each texture update. vk::TextureDescriptorDesc mActiveTexturesDesc; vk::ShaderBuffersDescriptorDesc mShaderBuffersDescriptorDesc; gl::ActiveTextureArray mActiveImages; // "Current Value" aka default vertex attribute state. gl::AttributesMask mDirtyDefaultAttribsMask; gl::AttribArray mDefaultAttribBuffers; // We use a single pool for recording commands. We also keep a free list for pool recycling. vk::CommandPool mCommandPool; vk::GarbageList mCurrentGarbage; RenderPassCache mRenderPassCache; vk::CommandBufferHelper *mOutsideRenderPassCommands; vk::CommandBufferHelper *mRenderPassCommands; // The following is used when creating debug-util markers for graphics debuggers (e.g. AGI). A // given gl{Begin|End}Query command may result in commands being submitted to the outside or // render-pass command buffer. The ContextVk::handleGraphicsEventLog() method records the // appropriate command buffer for use by ContextVk::endEventLogForQuery(). The knowledge of // which command buffer to use depends on the particular type of query (e.g. samples // vs. timestamp), and is only known by the query code, which is what calls // ContextVk::handleGraphicsEventLog(). After all back-end processing of the gl*Query command // is complete, the front-end calls ContextVk::endEventLogForQuery(), which needs to know which // command buffer to call endDebugUtilsLabelEXT() for. GraphicsEventCmdBuf mQueryEventType; // Transform feedback buffers. angle::FastUnorderedSet mCurrentTransformFeedbackBuffers; // Internal shader library. vk::ShaderLibrary mShaderLibrary; UtilsVk mUtils; bool mGpuEventsEnabled; vk::DynamicQueryPool mGpuEventQueryPool; // A list of queries that have yet to be turned into an event (their result is not yet // available). std::vector mInFlightGpuEventQueries; // A list of gpu events since the last clock sync. std::vector mGpuEvents; // Track SyncHelper object been added into secondary command buffer that has not been flushed to // vulkan. bool mEGLSyncObjectPendingFlush; bool mHasDeferredFlush; // GL_EXT_shader_framebuffer_fetch_non_coherent bool mLastProgramUsesFramebufferFetch; // Semaphores that must be waited on in the next submission. std::vector mWaitSemaphores; std::vector mWaitSemaphoreStageMasks; // Hold information from the last gpu clock sync for future gpu-to-cpu timestamp conversions. GpuClockSyncInfo mGpuClockSync; // The very first timestamp queried for a GPU event is used as origin, so event timestamps would // have a value close to zero, to avoid losing 12 bits when converting these 64 bit values to // double. uint64_t mGpuEventTimestampOrigin; // A mix of per-frame and per-run counters. vk::PerfCounters mPerfCounters; ContextVkPerfCounters mContextPerfCounters; ContextVkPerfCounters mCumulativeContextPerfCounters; gl::State::DirtyBits mPipelineDirtyBitsMask; // List of all resources currently being used by this ContextVk's recorded commands. vk::ResourceUseList mResourceUseList; egl::ContextPriority mContextPriority; // Storage for vkUpdateDescriptorSets std::vector mDescriptorBufferInfos; std::vector mDescriptorImageInfos; std::vector mWriteDescriptorSets; ShareGroupVk *mShareGroupVk; // This is a special "empty" placeholder buffer for use when we just need a placeholder buffer // but not the data. Examples are shader that has no uniform or doesn't use all slots in the // atomic counter buffer array, or places where there is no vertex buffer since Vulkan does not // allow binding a null vertex buffer. vk::BufferHelper mEmptyBuffer; // Storage for default uniforms of ProgramVks and ProgramPipelineVks. vk::DynamicBuffer mDefaultUniformStorage; // All staging buffer support is provided by a DynamicBuffer. vk::DynamicBuffer mStagingBuffer; std::vector mCommandBufferDiagnostics; // Record GL API calls for debuggers std::vector mEventLog; // Viewport and scissor are handled as dynamic state. VkViewport mViewport; VkRect2D mScissor; }; ANGLE_INLINE angle::Result ContextVk::endRenderPassIfTransformFeedbackBuffer( const vk::BufferHelper *buffer) { if (!buffer || !mCurrentTransformFeedbackBuffers.contains(buffer)) { return angle::Result::Continue; } return flushCommandsAndEndRenderPass(); } ANGLE_INLINE angle::Result ContextVk::onIndexBufferChange( const vk::BufferHelper *currentIndexBuffer) { mGraphicsDirtyBits.set(DIRTY_BIT_INDEX_BUFFER); mLastIndexBufferOffset = reinterpret_cast(angle::DirtyPointer); return endRenderPassIfTransformFeedbackBuffer(currentIndexBuffer); } ANGLE_INLINE angle::Result ContextVk::onVertexBufferChange(const vk::BufferHelper *vertexBuffer) { mGraphicsDirtyBits.set(DIRTY_BIT_VERTEX_BUFFERS); return endRenderPassIfTransformFeedbackBuffer(vertexBuffer); } ANGLE_INLINE angle::Result ContextVk::onVertexAttributeChange(size_t attribIndex, GLuint stride, GLuint divisor, angle::FormatID format, bool compressed, GLuint relativeOffset, const vk::BufferHelper *vertexBuffer) { invalidateCurrentGraphicsPipeline(); // Set divisor to 1 for attribs with emulated divisor mGraphicsPipelineDesc->updateVertexInput( &mGraphicsPipelineTransition, static_cast(attribIndex), stride, divisor > mRenderer->getMaxVertexAttribDivisor() ? 1 : divisor, format, compressed, relativeOffset); return onVertexBufferChange(vertexBuffer); } } // namespace rx #endif // LIBANGLE_RENDERER_VULKAN_CONTEXTVK_H_