/* * ***************************************************************************** * * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2018-2021 Gavin D. Howard and contributors. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * ***************************************************************************** * * Code for the number type. * */ #include #include #include #include #include #include #include #include #include #include static void bc_num_m(BcNum *a, BcNum *b, BcNum *restrict c, size_t scale); static inline ssize_t bc_num_neg(size_t n, bool neg) { return (((ssize_t) n) ^ -((ssize_t) neg)) + neg; } ssize_t bc_num_cmpZero(const BcNum *n) { return bc_num_neg((n)->len != 0, BC_NUM_NEG(n)); } static inline size_t bc_num_int(const BcNum *n) { return n->len ? n->len - BC_NUM_RDX_VAL(n) : 0; } static void bc_num_expand(BcNum *restrict n, size_t req) { assert(n != NULL); req = req >= BC_NUM_DEF_SIZE ? req : BC_NUM_DEF_SIZE; if (req > n->cap) { BC_SIG_LOCK; n->num = bc_vm_realloc(n->num, BC_NUM_SIZE(req)); n->cap = req; BC_SIG_UNLOCK; } } static void bc_num_setToZero(BcNum *restrict n, size_t scale) { assert(n != NULL); n->scale = scale; n->len = n->rdx = 0; } void bc_num_zero(BcNum *restrict n) { bc_num_setToZero(n, 0); } void bc_num_one(BcNum *restrict n) { bc_num_zero(n); n->len = 1; n->num[0] = 1; } static void bc_num_clean(BcNum *restrict n) { while (BC_NUM_NONZERO(n) && !n->num[n->len - 1]) n->len -= 1; if (BC_NUM_ZERO(n)) n->rdx = 0; else { size_t rdx = BC_NUM_RDX_VAL(n); if (n->len < rdx) n->len = rdx; } } static size_t bc_num_log10(size_t i) { size_t len; for (len = 1; i; i /= BC_BASE, ++len); assert(len - 1 <= BC_BASE_DIGS + 1); return len - 1; } static inline size_t bc_num_zeroDigits(const BcDig *n) { assert(*n >= 0); assert(((size_t) *n) < BC_BASE_POW); return BC_BASE_DIGS - bc_num_log10((size_t) *n); } static size_t bc_num_intDigits(const BcNum *n) { size_t digits = bc_num_int(n) * BC_BASE_DIGS; if (digits > 0) digits -= bc_num_zeroDigits(n->num + n->len - 1); return digits; } static size_t bc_num_nonzeroLen(const BcNum *restrict n) { size_t i, len = n->len; assert(len == BC_NUM_RDX_VAL(n)); for (i = len - 1; i < len && !n->num[i]; --i); assert(i + 1 > 0); return i + 1; } static BcDig bc_num_addDigits(BcDig a, BcDig b, bool *carry) { assert(((BcBigDig) BC_BASE_POW) * 2 == ((BcDig) BC_BASE_POW) * 2); assert(a < BC_BASE_POW); assert(b < BC_BASE_POW); a += b + *carry; *carry = (a >= BC_BASE_POW); if (*carry) a -= BC_BASE_POW; assert(a >= 0); assert(a < BC_BASE_POW); return a; } static BcDig bc_num_subDigits(BcDig a, BcDig b, bool *carry) { assert(a < BC_BASE_POW); assert(b < BC_BASE_POW); b += *carry; *carry = (a < b); if (*carry) a += BC_BASE_POW; assert(a - b >= 0); assert(a - b < BC_BASE_POW); return a - b; } static void bc_num_addArrays(BcDig *restrict a, const BcDig *restrict b, size_t len) { size_t i; bool carry = false; for (i = 0; i < len; ++i) a[i] = bc_num_addDigits(a[i], b[i], &carry); for (; carry; ++i) a[i] = bc_num_addDigits(a[i], 0, &carry); } static void bc_num_subArrays(BcDig *restrict a, const BcDig *restrict b, size_t len) { size_t i; bool carry = false; for (i = 0; i < len; ++i) a[i] = bc_num_subDigits(a[i], b[i], &carry); for (; carry; ++i) a[i] = bc_num_subDigits(a[i], 0, &carry); } static void bc_num_mulArray(const BcNum *restrict a, BcBigDig b, BcNum *restrict c) { size_t i; BcBigDig carry = 0; assert(b <= BC_BASE_POW); if (a->len + 1 > c->cap) bc_num_expand(c, a->len + 1); memset(c->num, 0, BC_NUM_SIZE(c->cap)); for (i = 0; i < a->len; ++i) { BcBigDig in = ((BcBigDig) a->num[i]) * b + carry; c->num[i] = in % BC_BASE_POW; carry = in / BC_BASE_POW; } assert(carry < BC_BASE_POW); c->num[i] = (BcDig) carry; c->len = a->len; c->len += (carry != 0); bc_num_clean(c); assert(!BC_NUM_NEG(c) || BC_NUM_NONZERO(c)); assert(BC_NUM_RDX_VAL(c) <= c->len || !c->len); assert(!c->len || c->num[c->len - 1] || BC_NUM_RDX_VAL(c) == c->len); } static void bc_num_divArray(const BcNum *restrict a, BcBigDig b, BcNum *restrict c, BcBigDig *rem) { size_t i; BcBigDig carry = 0; assert(c->cap >= a->len); for (i = a->len - 1; i < a->len; --i) { BcBigDig in = ((BcBigDig) a->num[i]) + carry * BC_BASE_POW; assert(in / b < BC_BASE_POW); c->num[i] = (BcDig) (in / b); carry = in % b; } c->len = a->len; bc_num_clean(c); *rem = carry; assert(!BC_NUM_NEG(c) || BC_NUM_NONZERO(c)); assert(BC_NUM_RDX_VAL(c) <= c->len || !c->len); assert(!c->len || c->num[c->len - 1] || BC_NUM_RDX_VAL(c) == c->len); } static ssize_t bc_num_compare(const BcDig *restrict a, const BcDig *restrict b, size_t len) { size_t i; BcDig c = 0; for (i = len - 1; i < len && !(c = a[i] - b[i]); --i); return bc_num_neg(i + 1, c < 0); } ssize_t bc_num_cmp(const BcNum *a, const BcNum *b) { size_t i, min, a_int, b_int, diff, ardx, brdx; BcDig *max_num, *min_num; bool a_max, neg = false; ssize_t cmp; assert(a != NULL && b != NULL); if (a == b) return 0; if (BC_NUM_ZERO(a)) return bc_num_neg(b->len != 0, !BC_NUM_NEG(b)); if (BC_NUM_ZERO(b)) return bc_num_cmpZero(a); if (BC_NUM_NEG(a)) { if (BC_NUM_NEG(b)) neg = true; else return -1; } else if (BC_NUM_NEG(b)) return 1; a_int = bc_num_int(a); b_int = bc_num_int(b); a_int -= b_int; if (a_int) return neg ? -((ssize_t) a_int) : (ssize_t) a_int; ardx = BC_NUM_RDX_VAL(a); brdx = BC_NUM_RDX_VAL(b); a_max = (ardx > brdx); if (a_max) { min = brdx; diff = ardx - brdx; max_num = a->num + diff; min_num = b->num; } else { min = ardx; diff = brdx - ardx; max_num = b->num + diff; min_num = a->num; } cmp = bc_num_compare(max_num, min_num, b_int + min); if (cmp) return bc_num_neg((size_t) cmp, !a_max == !neg); for (max_num -= diff, i = diff - 1; i < diff; --i) { if (max_num[i]) return bc_num_neg(1, !a_max == !neg); } return 0; } void bc_num_truncate(BcNum *restrict n, size_t places) { size_t nrdx, places_rdx; if (!places) return; nrdx = BC_NUM_RDX_VAL(n); places_rdx = nrdx ? nrdx - BC_NUM_RDX(n->scale - places) : 0; assert(places <= n->scale && (BC_NUM_ZERO(n) || places_rdx <= n->len)); n->scale -= places; BC_NUM_RDX_SET(n, nrdx - places_rdx); if (BC_NUM_NONZERO(n)) { size_t pow; pow = n->scale % BC_BASE_DIGS; pow = pow ? BC_BASE_DIGS - pow : 0; pow = bc_num_pow10[pow]; n->len -= places_rdx; memmove(n->num, n->num + places_rdx, BC_NUM_SIZE(n->len)); // Clear the lower part of the last digit. if (BC_NUM_NONZERO(n)) n->num[0] -= n->num[0] % (BcDig) pow; bc_num_clean(n); } } void bc_num_extend(BcNum *restrict n, size_t places) { size_t nrdx, places_rdx; if (!places) return; if (BC_NUM_ZERO(n)) { n->scale += places; return; } nrdx = BC_NUM_RDX_VAL(n); places_rdx = BC_NUM_RDX(places + n->scale) - nrdx; if (places_rdx) { bc_num_expand(n, bc_vm_growSize(n->len, places_rdx)); memmove(n->num + places_rdx, n->num, BC_NUM_SIZE(n->len)); memset(n->num, 0, BC_NUM_SIZE(places_rdx)); } BC_NUM_RDX_SET(n, nrdx + places_rdx); n->scale += places; n->len += places_rdx; assert(BC_NUM_RDX_VAL(n) == BC_NUM_RDX(n->scale)); } static void bc_num_retireMul(BcNum *restrict n, size_t scale, bool neg1, bool neg2) { if (n->scale < scale) bc_num_extend(n, scale - n->scale); else bc_num_truncate(n, n->scale - scale); bc_num_clean(n); if (BC_NUM_NONZERO(n)) n->rdx = BC_NUM_NEG_VAL(n, !neg1 != !neg2); } static void bc_num_split(const BcNum *restrict n, size_t idx, BcNum *restrict a, BcNum *restrict b) { assert(BC_NUM_ZERO(a)); assert(BC_NUM_ZERO(b)); if (idx < n->len) { b->len = n->len - idx; a->len = idx; a->scale = b->scale = 0; BC_NUM_RDX_SET(a, 0); BC_NUM_RDX_SET(b, 0); assert(a->cap >= a->len); assert(b->cap >= b->len); memcpy(b->num, n->num + idx, BC_NUM_SIZE(b->len)); memcpy(a->num, n->num, BC_NUM_SIZE(idx)); bc_num_clean(b); } else bc_num_copy(a, n); bc_num_clean(a); } static size_t bc_num_shiftZero(BcNum *restrict n) { size_t i; assert(!BC_NUM_RDX_VAL(n) || BC_NUM_ZERO(n)); for (i = 0; i < n->len && !n->num[i]; ++i); n->len -= i; n->num += i; return i; } static void bc_num_unshiftZero(BcNum *restrict n, size_t places_rdx) { n->len += places_rdx; n->num -= places_rdx; } static void bc_num_shift(BcNum *restrict n, BcBigDig dig) { size_t i, len = n->len; BcBigDig carry = 0, pow; BcDig *ptr = n->num; assert(dig < BC_BASE_DIGS); pow = bc_num_pow10[dig]; dig = bc_num_pow10[BC_BASE_DIGS - dig]; for (i = len - 1; i < len; --i) { BcBigDig in, temp; in = ((BcBigDig) ptr[i]); temp = carry * dig; carry = in % pow; ptr[i] = ((BcDig) (in / pow)) + (BcDig) temp; } assert(!carry); } static void bc_num_shiftLeft(BcNum *restrict n, size_t places) { BcBigDig dig; size_t places_rdx; bool shift; if (!places) return; if (places > n->scale) { size_t size = bc_vm_growSize(BC_NUM_RDX(places - n->scale), n->len); if (size > SIZE_MAX - 1) bc_vm_err(BC_ERR_MATH_OVERFLOW); } if (BC_NUM_ZERO(n)) { if (n->scale >= places) n->scale -= places; else n->scale = 0; return; } dig = (BcBigDig) (places % BC_BASE_DIGS); shift = (dig != 0); places_rdx = BC_NUM_RDX(places); if (n->scale) { size_t nrdx = BC_NUM_RDX_VAL(n); if (nrdx >= places_rdx) { size_t mod = n->scale % BC_BASE_DIGS, revdig; mod = mod ? mod : BC_BASE_DIGS; revdig = dig ? BC_BASE_DIGS - dig : 0; if (mod + revdig > BC_BASE_DIGS) places_rdx = 1; else places_rdx = 0; } else places_rdx -= nrdx; } if (places_rdx) { bc_num_expand(n, bc_vm_growSize(n->len, places_rdx)); memmove(n->num + places_rdx, n->num, BC_NUM_SIZE(n->len)); memset(n->num, 0, BC_NUM_SIZE(places_rdx)); n->len += places_rdx; } if (places > n->scale) { n->scale = 0; BC_NUM_RDX_SET(n, 0); } else { n->scale -= places; BC_NUM_RDX_SET(n, BC_NUM_RDX(n->scale)); } if (shift) bc_num_shift(n, BC_BASE_DIGS - dig); bc_num_clean(n); } void bc_num_shiftRight(BcNum *restrict n, size_t places) { BcBigDig dig; size_t places_rdx, scale, scale_mod, int_len, expand; bool shift; if (!places) return; if (BC_NUM_ZERO(n)) { n->scale += places; bc_num_expand(n, BC_NUM_RDX(n->scale)); return; } dig = (BcBigDig) (places % BC_BASE_DIGS); shift = (dig != 0); scale = n->scale; scale_mod = scale % BC_BASE_DIGS; scale_mod = scale_mod ? scale_mod : BC_BASE_DIGS; int_len = bc_num_int(n); places_rdx = BC_NUM_RDX(places); if (scale_mod + dig > BC_BASE_DIGS) { expand = places_rdx - 1; places_rdx = 1; } else { expand = places_rdx; places_rdx = 0; } if (expand > int_len) expand -= int_len; else expand = 0; bc_num_extend(n, places_rdx * BC_BASE_DIGS); bc_num_expand(n, bc_vm_growSize(expand, n->len)); memset(n->num + n->len, 0, BC_NUM_SIZE(expand)); n->len += expand; n->scale = 0; BC_NUM_RDX_SET(n, 0); if (shift) bc_num_shift(n, dig); n->scale = scale + places; BC_NUM_RDX_SET(n, BC_NUM_RDX(n->scale)); bc_num_clean(n); assert(BC_NUM_RDX_VAL(n) <= n->len && n->len <= n->cap); assert(BC_NUM_RDX_VAL(n) == BC_NUM_RDX(n->scale)); } static void bc_num_inv(BcNum *a, BcNum *b, size_t scale) { BcNum one; BcDig num[2]; assert(BC_NUM_NONZERO(a)); bc_num_setup(&one, num, sizeof(num) / sizeof(BcDig)); bc_num_one(&one); bc_num_div(&one, a, b, scale); } #if BC_ENABLE_EXTRA_MATH static void bc_num_intop(const BcNum *a, const BcNum *b, BcNum *restrict c, BcBigDig *v) { if (BC_ERR(BC_NUM_RDX_VAL(b))) bc_vm_err(BC_ERR_MATH_NON_INTEGER); bc_num_copy(c, a); bc_num_bigdig(b, v); } #endif // BC_ENABLE_EXTRA_MATH static void bc_num_as(BcNum *a, BcNum *b, BcNum *restrict c, size_t sub) { BcDig *ptr_c, *ptr_l, *ptr_r; size_t i, min_rdx, max_rdx, diff, a_int, b_int, min_len, max_len, max_int; size_t len_l, len_r, ardx, brdx; bool b_neg, do_sub, do_rev_sub, carry, c_neg; // Because this function doesn't need to use scale (per the bc spec), // I am hijacking it to say whether it's doing an add or a subtract. // Convert substraction to addition of negative second operand. if (BC_NUM_ZERO(b)) { bc_num_copy(c, a); return; } if (BC_NUM_ZERO(a)) { bc_num_copy(c, b); c->rdx = BC_NUM_NEG_VAL(c, BC_NUM_NEG(b) != sub); return; } // Invert sign of b if it is to be subtracted. This operation must // preced the tests for any of the operands being zero. b_neg = (BC_NUM_NEG(b) != sub); // Actually add the numbers if their signs are equal, else subtract. do_sub = (BC_NUM_NEG(a) != b_neg); a_int = bc_num_int(a); b_int = bc_num_int(b); max_int = BC_MAX(a_int, b_int); ardx = BC_NUM_RDX_VAL(a); brdx = BC_NUM_RDX_VAL(b); min_rdx = BC_MIN(ardx, brdx); max_rdx = BC_MAX(ardx, brdx); diff = max_rdx - min_rdx; max_len = max_int + max_rdx; if (do_sub) { // Check whether b has to be subtracted from a or a from b. if (a_int != b_int) do_rev_sub = (a_int < b_int); else if (ardx > brdx) do_rev_sub = (bc_num_compare(a->num + diff, b->num, b->len) < 0); else do_rev_sub = (bc_num_compare(a->num, b->num + diff, a->len) <= 0); } else { // The result array of the addition might come out one element // longer than the bigger of the operand arrays. max_len += 1; do_rev_sub = (a_int < b_int); } assert(max_len <= c->cap); if (do_rev_sub) { ptr_l = b->num; ptr_r = a->num; len_l = b->len; len_r = a->len; } else { ptr_l = a->num; ptr_r = b->num; len_l = a->len; len_r = b->len; } ptr_c = c->num; carry = false; if (diff) { // If the rdx values of the operands do not match, the result will // have low end elements that are the positive or negative trailing // elements of the operand with higher rdx value. if ((ardx > brdx) != do_rev_sub) { // !do_rev_sub && ardx > brdx || do_rev_sub && brdx > ardx // The left operand has BcDig values that need to be copied, // either from a or from b (in case of a reversed subtraction). memcpy(ptr_c, ptr_l, BC_NUM_SIZE(diff)); ptr_l += diff; len_l -= diff; } else { // The right operand has BcDig values that need to be copied // or subtracted from zero (in case of a subtraction). if (do_sub) { // do_sub (do_rev_sub && ardx > brdx || // !do_rev_sub && brdx > ardx) for (i = 0; i < diff; i++) ptr_c[i] = bc_num_subDigits(0, ptr_r[i], &carry); } else { // !do_sub && brdx > ardx memcpy(ptr_c, ptr_r, BC_NUM_SIZE(diff)); } ptr_r += diff; len_r -= diff; } ptr_c += diff; } min_len = BC_MIN(len_l, len_r); // After dealing with possible low array elements that depend on only one // operand, the actual add or subtract can be performed as if the rdx of // both operands was the same. // Inlining takes care of eliminating constant zero arguments to // addDigit/subDigit (checked in disassembly of resulting bc binary // compiled with gcc and clang). if (do_sub) { for (i = 0; i < min_len; ++i) ptr_c[i] = bc_num_subDigits(ptr_l[i], ptr_r[i], &carry); for (; i < len_l; ++i) ptr_c[i] = bc_num_subDigits(ptr_l[i], 0, &carry); } else { for (i = 0; i < min_len; ++i) ptr_c[i] = bc_num_addDigits(ptr_l[i], ptr_r[i], &carry); for (; i < len_l; ++i) ptr_c[i] = bc_num_addDigits(ptr_l[i], 0, &carry); ptr_c[i] = bc_num_addDigits(0, 0, &carry); } assert(carry == false); // The result has the same sign as a, unless the operation was a // reverse subtraction (b - a). c_neg = BC_NUM_NEG(a) != (do_sub && do_rev_sub); BC_NUM_RDX_SET_NEG(c, max_rdx, c_neg); c->len = max_len; c->scale = BC_MAX(a->scale, b->scale); bc_num_clean(c); } static void bc_num_m_simp(const BcNum *a, const BcNum *b, BcNum *restrict c) { size_t i, alen = a->len, blen = b->len, clen; BcDig *ptr_a = a->num, *ptr_b = b->num, *ptr_c; BcBigDig sum = 0, carry = 0; assert(sizeof(sum) >= sizeof(BcDig) * 2); assert(!BC_NUM_RDX_VAL(a) && !BC_NUM_RDX_VAL(b)); clen = bc_vm_growSize(alen, blen); bc_num_expand(c, bc_vm_growSize(clen, 1)); ptr_c = c->num; memset(ptr_c, 0, BC_NUM_SIZE(c->cap)); for (i = 0; i < clen; ++i) { ssize_t sidx = (ssize_t) (i - blen + 1); size_t j = (size_t) BC_MAX(0, sidx), k = BC_MIN(i, blen - 1); for (; j < alen && k < blen; ++j, --k) { sum += ((BcBigDig) ptr_a[j]) * ((BcBigDig) ptr_b[k]); if (sum >= ((BcBigDig) BC_BASE_POW) * BC_BASE_POW) { carry += sum / BC_BASE_POW; sum %= BC_BASE_POW; } } if (sum >= BC_BASE_POW) { carry += sum / BC_BASE_POW; sum %= BC_BASE_POW; } ptr_c[i] = (BcDig) sum; assert(ptr_c[i] < BC_BASE_POW); sum = carry; carry = 0; } // This should always be true because there should be no carry on the last // digit; multiplication never goes above the sum of both lengths. assert(!sum); c->len = clen; } static void bc_num_shiftAddSub(BcNum *restrict n, const BcNum *restrict a, size_t shift, BcNumShiftAddOp op) { assert(n->len >= shift + a->len); assert(!BC_NUM_RDX_VAL(n) && !BC_NUM_RDX_VAL(a)); op(n->num + shift, a->num, a->len); } static void bc_num_k(BcNum *a, BcNum *b, BcNum *restrict c) { size_t max, max2, total; BcNum l1, h1, l2, h2, m2, m1, z0, z1, z2, temp; BcDig *digs, *dig_ptr; BcNumShiftAddOp op; bool aone = BC_NUM_ONE(a); assert(BC_NUM_ZERO(c)); if (BC_NUM_ZERO(a) || BC_NUM_ZERO(b)) return; if (aone || BC_NUM_ONE(b)) { bc_num_copy(c, aone ? b : a); if ((aone && BC_NUM_NEG(a)) || BC_NUM_NEG(b)) BC_NUM_NEG_TGL(c); return; } if (a->len < BC_NUM_KARATSUBA_LEN || b->len < BC_NUM_KARATSUBA_LEN) { bc_num_m_simp(a, b, c); return; } max = BC_MAX(a->len, b->len); max = BC_MAX(max, BC_NUM_DEF_SIZE); max2 = (max + 1) / 2; total = bc_vm_arraySize(BC_NUM_KARATSUBA_ALLOCS, max); BC_SIG_LOCK; digs = dig_ptr = bc_vm_malloc(BC_NUM_SIZE(total)); bc_num_setup(&l1, dig_ptr, max); dig_ptr += max; bc_num_setup(&h1, dig_ptr, max); dig_ptr += max; bc_num_setup(&l2, dig_ptr, max); dig_ptr += max; bc_num_setup(&h2, dig_ptr, max); dig_ptr += max; bc_num_setup(&m1, dig_ptr, max); dig_ptr += max; bc_num_setup(&m2, dig_ptr, max); max = bc_vm_growSize(max, 1); bc_num_init(&z0, max); bc_num_init(&z1, max); bc_num_init(&z2, max); max = bc_vm_growSize(max, max) + 1; bc_num_init(&temp, max); BC_SETJMP_LOCKED(err); BC_SIG_UNLOCK; bc_num_split(a, max2, &l1, &h1); bc_num_split(b, max2, &l2, &h2); bc_num_expand(c, max); c->len = max; memset(c->num, 0, BC_NUM_SIZE(c->len)); bc_num_sub(&h1, &l1, &m1, 0); bc_num_sub(&l2, &h2, &m2, 0); if (BC_NUM_NONZERO(&h1) && BC_NUM_NONZERO(&h2)) { assert(BC_NUM_RDX_VALID_NP(h1)); assert(BC_NUM_RDX_VALID_NP(h2)); bc_num_m(&h1, &h2, &z2, 0); bc_num_clean(&z2); bc_num_shiftAddSub(c, &z2, max2 * 2, bc_num_addArrays); bc_num_shiftAddSub(c, &z2, max2, bc_num_addArrays); } if (BC_NUM_NONZERO(&l1) && BC_NUM_NONZERO(&l2)) { assert(BC_NUM_RDX_VALID_NP(l1)); assert(BC_NUM_RDX_VALID_NP(l2)); bc_num_m(&l1, &l2, &z0, 0); bc_num_clean(&z0); bc_num_shiftAddSub(c, &z0, max2, bc_num_addArrays); bc_num_shiftAddSub(c, &z0, 0, bc_num_addArrays); } if (BC_NUM_NONZERO(&m1) && BC_NUM_NONZERO(&m2)) { assert(BC_NUM_RDX_VALID_NP(m1)); assert(BC_NUM_RDX_VALID_NP(m1)); bc_num_m(&m1, &m2, &z1, 0); bc_num_clean(&z1); op = (BC_NUM_NEG_NP(m1) != BC_NUM_NEG_NP(m2)) ? bc_num_subArrays : bc_num_addArrays; bc_num_shiftAddSub(c, &z1, max2, op); } err: BC_SIG_MAYLOCK; free(digs); bc_num_free(&temp); bc_num_free(&z2); bc_num_free(&z1); bc_num_free(&z0); BC_LONGJMP_CONT; } static void bc_num_m(BcNum *a, BcNum *b, BcNum *restrict c, size_t scale) { BcNum cpa, cpb; size_t ascale, bscale, ardx, brdx, azero = 0, bzero = 0, zero, len, rscale; assert(BC_NUM_RDX_VALID(a)); assert(BC_NUM_RDX_VALID(b)); bc_num_zero(c); ascale = a->scale; bscale = b->scale; scale = BC_MAX(scale, ascale); scale = BC_MAX(scale, bscale); rscale = ascale + bscale; scale = BC_MIN(rscale, scale); if ((a->len == 1 || b->len == 1) && !a->rdx && !b->rdx) { BcNum *operand; BcBigDig dig; if (a->len == 1) { dig = (BcBigDig) a->num[0]; operand = b; } else { dig = (BcBigDig) b->num[0]; operand = a; } bc_num_mulArray(operand, dig, c); if (BC_NUM_NONZERO(c)) c->rdx = BC_NUM_NEG_VAL(c, BC_NUM_NEG(a) != BC_NUM_NEG(b)); return; } assert(BC_NUM_RDX_VALID(a)); assert(BC_NUM_RDX_VALID(b)); BC_SIG_LOCK; bc_num_init(&cpa, a->len + BC_NUM_RDX_VAL(a)); bc_num_init(&cpb, b->len + BC_NUM_RDX_VAL(b)); BC_SETJMP_LOCKED(err); BC_SIG_UNLOCK; bc_num_copy(&cpa, a); bc_num_copy(&cpb, b); assert(BC_NUM_RDX_VALID_NP(cpa)); assert(BC_NUM_RDX_VALID_NP(cpb)); BC_NUM_NEG_CLR_NP(cpa); BC_NUM_NEG_CLR_NP(cpb); assert(BC_NUM_RDX_VALID_NP(cpa)); assert(BC_NUM_RDX_VALID_NP(cpb)); ardx = BC_NUM_RDX_VAL_NP(cpa) * BC_BASE_DIGS; bc_num_shiftLeft(&cpa, ardx); brdx = BC_NUM_RDX_VAL_NP(cpb) * BC_BASE_DIGS; bc_num_shiftLeft(&cpb, brdx); // We need to reset the jump here because azero and bzero are used in the // cleanup, and local variables are not guaranteed to be the same after a // jump. BC_SIG_LOCK; BC_UNSETJMP; azero = bc_num_shiftZero(&cpa); bzero = bc_num_shiftZero(&cpb); BC_SETJMP_LOCKED(err); BC_SIG_UNLOCK; bc_num_clean(&cpa); bc_num_clean(&cpb); bc_num_k(&cpa, &cpb, c); zero = bc_vm_growSize(azero, bzero); len = bc_vm_growSize(c->len, zero); bc_num_expand(c, len); bc_num_shiftLeft(c, (len - c->len) * BC_BASE_DIGS); bc_num_shiftRight(c, ardx + brdx); bc_num_retireMul(c, scale, BC_NUM_NEG(a), BC_NUM_NEG(b)); err: BC_SIG_MAYLOCK; bc_num_unshiftZero(&cpb, bzero); bc_num_free(&cpb); bc_num_unshiftZero(&cpa, azero); bc_num_free(&cpa); BC_LONGJMP_CONT; } static bool bc_num_nonZeroDig(BcDig *restrict a, size_t len) { size_t i; bool nonzero = false; for (i = len - 1; !nonzero && i < len; --i) nonzero = (a[i] != 0); return nonzero; } static ssize_t bc_num_divCmp(const BcDig *a, const BcNum *b, size_t len) { ssize_t cmp; if (b->len > len && a[len]) cmp = bc_num_compare(a, b->num, len + 1); else if (b->len <= len) { if (a[len]) cmp = 1; else cmp = bc_num_compare(a, b->num, len); } else cmp = -1; return cmp; } static void bc_num_divExtend(BcNum *restrict a, BcNum *restrict b, BcBigDig divisor) { size_t pow; assert(divisor < BC_BASE_POW); pow = BC_BASE_DIGS - bc_num_log10((size_t) divisor); bc_num_shiftLeft(a, pow); bc_num_shiftLeft(b, pow); } static void bc_num_d_long(BcNum *restrict a, BcNum *restrict b, BcNum *restrict c, size_t scale) { BcBigDig divisor; size_t len, end, i, rdx; BcNum cpb; bool nonzero = false; assert(b->len < a->len); len = b->len; end = a->len - len; assert(len >= 1); bc_num_expand(c, a->len); memset(c->num, 0, c->cap * sizeof(BcDig)); BC_NUM_RDX_SET(c, BC_NUM_RDX_VAL(a)); c->scale = a->scale; c->len = a->len; divisor = (BcBigDig) b->num[len - 1]; if (len > 1 && bc_num_nonZeroDig(b->num, len - 1)) { nonzero = (divisor > 1 << ((10 * BC_BASE_DIGS) / 6 + 1)); if (!nonzero) { bc_num_divExtend(a, b, divisor); len = BC_MAX(a->len, b->len); bc_num_expand(a, len + 1); if (len + 1 > a->len) a->len = len + 1; len = b->len; end = a->len - len; divisor = (BcBigDig) b->num[len - 1]; nonzero = bc_num_nonZeroDig(b->num, len - 1); } } divisor += nonzero; bc_num_expand(c, a->len); memset(c->num, 0, BC_NUM_SIZE(c->cap)); assert(c->scale >= scale); rdx = BC_NUM_RDX_VAL(c) - BC_NUM_RDX(scale); BC_SIG_LOCK; bc_num_init(&cpb, len + 1); BC_SETJMP_LOCKED(err); BC_SIG_UNLOCK; i = end - 1; for (; i < end && i >= rdx && BC_NUM_NONZERO(a); --i) { ssize_t cmp; BcDig *n; BcBigDig result; n = a->num + i; assert(n >= a->num); result = 0; cmp = bc_num_divCmp(n, b, len); while (cmp >= 0) { BcBigDig n1, dividend, q; n1 = (BcBigDig) n[len]; dividend = n1 * BC_BASE_POW + (BcBigDig) n[len - 1]; q = (dividend / divisor); if (q <= 1) { q = 1; bc_num_subArrays(n, b->num, len); } else { assert(q <= BC_BASE_POW); bc_num_mulArray(b, (BcBigDig) q, &cpb); bc_num_subArrays(n, cpb.num, cpb.len); } result += q; assert(result <= BC_BASE_POW); if (nonzero) cmp = bc_num_divCmp(n, b, len); else cmp = -1; } assert(result < BC_BASE_POW); c->num[i] = (BcDig) result; } err: BC_SIG_MAYLOCK; bc_num_free(&cpb); BC_LONGJMP_CONT; } static void bc_num_d(BcNum *a, BcNum *b, BcNum *restrict c, size_t scale) { size_t len, cpardx; BcNum cpa, cpb; if (BC_NUM_ZERO(b)) bc_vm_err(BC_ERR_MATH_DIVIDE_BY_ZERO); if (BC_NUM_ZERO(a)) { bc_num_setToZero(c, scale); return; } if (BC_NUM_ONE(b)) { bc_num_copy(c, a); bc_num_retireMul(c, scale, BC_NUM_NEG(a), BC_NUM_NEG(b)); return; } if (!BC_NUM_RDX_VAL(a) && !BC_NUM_RDX_VAL(b) && b->len == 1 && !scale) { BcBigDig rem; bc_num_divArray(a, (BcBigDig) b->num[0], c, &rem); bc_num_retireMul(c, scale, BC_NUM_NEG(a), BC_NUM_NEG(b)); return; } len = bc_num_divReq(a, b, scale); BC_SIG_LOCK; bc_num_init(&cpa, len); bc_num_copy(&cpa, a); bc_num_createCopy(&cpb, b); BC_SETJMP_LOCKED(err); BC_SIG_UNLOCK; len = b->len; if (len > cpa.len) { bc_num_expand(&cpa, bc_vm_growSize(len, 2)); bc_num_extend(&cpa, (len - cpa.len) * BC_BASE_DIGS); } cpardx = BC_NUM_RDX_VAL_NP(cpa); cpa.scale = cpardx * BC_BASE_DIGS; bc_num_extend(&cpa, b->scale); cpardx = BC_NUM_RDX_VAL_NP(cpa) - BC_NUM_RDX(b->scale); BC_NUM_RDX_SET_NP(cpa, cpardx); cpa.scale = cpardx * BC_BASE_DIGS; if (scale > cpa.scale) { bc_num_extend(&cpa, scale); cpardx = BC_NUM_RDX_VAL_NP(cpa); cpa.scale = cpardx * BC_BASE_DIGS; } if (cpa.cap == cpa.len) bc_num_expand(&cpa, bc_vm_growSize(cpa.len, 1)); // We want an extra zero in front to make things simpler. cpa.num[cpa.len++] = 0; if (cpardx == cpa.len) cpa.len = bc_num_nonzeroLen(&cpa); if (BC_NUM_RDX_VAL_NP(cpb) == cpb.len) cpb.len = bc_num_nonzeroLen(&cpb); cpb.scale = 0; BC_NUM_RDX_SET_NP(cpb, 0); bc_num_d_long(&cpa, &cpb, c, scale); bc_num_retireMul(c, scale, BC_NUM_NEG(a), BC_NUM_NEG(b)); err: BC_SIG_MAYLOCK; bc_num_free(&cpb); bc_num_free(&cpa); BC_LONGJMP_CONT; } static void bc_num_r(BcNum *a, BcNum *b, BcNum *restrict c, BcNum *restrict d, size_t scale, size_t ts) { BcNum temp; bool neg; if (BC_NUM_ZERO(b)) bc_vm_err(BC_ERR_MATH_DIVIDE_BY_ZERO); if (BC_NUM_ZERO(a)) { bc_num_setToZero(c, ts); bc_num_setToZero(d, ts); return; } BC_SIG_LOCK; bc_num_init(&temp, d->cap); BC_SETJMP_LOCKED(err); BC_SIG_UNLOCK; bc_num_d(a, b, c, scale); if (scale) scale = ts + 1; assert(BC_NUM_RDX_VALID(c)); assert(BC_NUM_RDX_VALID(b)); bc_num_m(c, b, &temp, scale); bc_num_sub(a, &temp, d, scale); if (ts > d->scale && BC_NUM_NONZERO(d)) bc_num_extend(d, ts - d->scale); neg = BC_NUM_NEG(d); bc_num_retireMul(d, ts, BC_NUM_NEG(a), BC_NUM_NEG(b)); d->rdx = BC_NUM_NEG_VAL(d, BC_NUM_NONZERO(d) ? neg : false); err: BC_SIG_MAYLOCK; bc_num_free(&temp); BC_LONGJMP_CONT; } static void bc_num_rem(BcNum *a, BcNum *b, BcNum *restrict c, size_t scale) { BcNum c1; size_t ts; ts = bc_vm_growSize(scale, b->scale); ts = BC_MAX(ts, a->scale); BC_SIG_LOCK; bc_num_init(&c1, bc_num_mulReq(a, b, ts)); BC_SETJMP_LOCKED(err); BC_SIG_UNLOCK; bc_num_r(a, b, &c1, c, scale, ts); err: BC_SIG_MAYLOCK; bc_num_free(&c1); BC_LONGJMP_CONT; } static void bc_num_p(BcNum *a, BcNum *b, BcNum *restrict c, size_t scale) { BcNum copy; BcBigDig pow = 0; size_t i, powrdx, resrdx; bool neg, zero; if (BC_ERR(BC_NUM_RDX_VAL(b))) bc_vm_err(BC_ERR_MATH_NON_INTEGER); if (BC_NUM_ZERO(b)) { bc_num_one(c); return; } if (BC_NUM_ZERO(a)) { if (BC_NUM_NEG(b)) bc_vm_err(BC_ERR_MATH_DIVIDE_BY_ZERO); bc_num_setToZero(c, scale); return; } if (BC_NUM_ONE(b)) { if (!BC_NUM_NEG(b)) bc_num_copy(c, a); else bc_num_inv(a, c, scale); return; } BC_SIG_LOCK; neg = BC_NUM_NEG(b); BC_NUM_NEG_CLR(b); bc_num_bigdig(b, &pow); b->rdx = BC_NUM_NEG_VAL(b, neg); bc_num_createCopy(©, a); BC_SETJMP_LOCKED(err); BC_SIG_UNLOCK; if (!neg) { size_t max = BC_MAX(scale, a->scale), scalepow = a->scale * pow; scale = BC_MIN(scalepow, max); } for (powrdx = a->scale; !(pow & 1); pow >>= 1) { powrdx <<= 1; assert(BC_NUM_RDX_VALID_NP(copy)); bc_num_mul(©, ©, ©, powrdx); } bc_num_copy(c, ©); resrdx = powrdx; while (pow >>= 1) { powrdx <<= 1; assert(BC_NUM_RDX_VALID_NP(copy)); bc_num_mul(©, ©, ©, powrdx); if (pow & 1) { resrdx += powrdx; assert(BC_NUM_RDX_VALID(c)); assert(BC_NUM_RDX_VALID_NP(copy)); bc_num_mul(c, ©, c, resrdx); } } if (neg) bc_num_inv(c, c, scale); if (c->scale > scale) bc_num_truncate(c, c->scale - scale); // We can't use bc_num_clean() here. for (zero = true, i = 0; zero && i < c->len; ++i) zero = !c->num[i]; if (zero) bc_num_setToZero(c, scale); err: BC_SIG_MAYLOCK; bc_num_free(©); BC_LONGJMP_CONT; } #if BC_ENABLE_EXTRA_MATH static void bc_num_place(BcNum *a, BcNum *b, BcNum *restrict c, size_t scale) { BcBigDig val = 0; BC_UNUSED(scale); bc_num_intop(a, b, c, &val); if (val < c->scale) bc_num_truncate(c, c->scale - val); else if (val > c->scale) bc_num_extend(c, val - c->scale); } static void bc_num_left(BcNum *a, BcNum *b, BcNum *restrict c, size_t scale) { BcBigDig val = 0; BC_UNUSED(scale); bc_num_intop(a, b, c, &val); bc_num_shiftLeft(c, (size_t) val); } static void bc_num_right(BcNum *a, BcNum *b, BcNum *restrict c, size_t scale) { BcBigDig val = 0; BC_UNUSED(scale); bc_num_intop(a, b, c, &val); if (BC_NUM_ZERO(c)) return; bc_num_shiftRight(c, (size_t) val); } #endif // BC_ENABLE_EXTRA_MATH static void bc_num_binary(BcNum *a, BcNum *b, BcNum *c, size_t scale, BcNumBinOp op, size_t req) { BcNum *ptr_a, *ptr_b, num2; bool init = false; assert(a != NULL && b != NULL && c != NULL && op != NULL); assert(BC_NUM_RDX_VALID(a)); assert(BC_NUM_RDX_VALID(b)); BC_SIG_LOCK; if (c == a) { ptr_a = &num2; memcpy(ptr_a, c, sizeof(BcNum)); init = true; } else { ptr_a = a; } if (c == b) { ptr_b = &num2; if (c != a) { memcpy(ptr_b, c, sizeof(BcNum)); init = true; } } else { ptr_b = b; } if (init) { bc_num_init(c, req); BC_SETJMP_LOCKED(err); BC_SIG_UNLOCK; } else { BC_SIG_UNLOCK; bc_num_expand(c, req); } op(ptr_a, ptr_b, c, scale); assert(!BC_NUM_NEG(c) || BC_NUM_NONZERO(c)); assert(BC_NUM_RDX_VAL(c) <= c->len || !c->len); assert(BC_NUM_RDX_VALID(c)); assert(!c->len || c->num[c->len - 1] || BC_NUM_RDX_VAL(c) == c->len); err: if (init) { BC_SIG_MAYLOCK; bc_num_free(&num2); BC_LONGJMP_CONT; } } #if !defined(NDEBUG) || BC_ENABLE_LIBRARY bool bc_num_strValid(const char *restrict val) { bool radix = false; size_t i, len = strlen(val); if (!len) return true; for (i = 0; i < len; ++i) { BcDig c = val[i]; if (c == '.') { if (radix) return false; radix = true; continue; } if (!(isdigit(c) || isupper(c))) return false; } return true; } #endif // !defined(NDEBUG) || BC_ENABLE_LIBRARY static BcBigDig bc_num_parseChar(char c, size_t base_t) { if (isupper(c)) { c = BC_NUM_NUM_LETTER(c); c = ((size_t) c) >= base_t ? (char) base_t - 1 : c; } else c -= '0'; return (BcBigDig) (uchar) c; } static void bc_num_parseDecimal(BcNum *restrict n, const char *restrict val) { size_t len, i, temp, mod; const char *ptr; bool zero = true, rdx; for (i = 0; val[i] == '0'; ++i); val += i; assert(!val[0] || isalnum(val[0]) || val[0] == '.'); // All 0's. We can just return, since this // procedure expects a virgin (already 0) BcNum. if (!val[0]) return; len = strlen(val); ptr = strchr(val, '.'); rdx = (ptr != NULL); for (i = 0; i < len && (zero = (val[i] == '0' || val[i] == '.')); ++i); n->scale = (size_t) (rdx * (((uintptr_t) (val + len)) - (((uintptr_t) ptr) + 1))); BC_NUM_RDX_SET(n, BC_NUM_RDX(n->scale)); i = len - (ptr == val ? 0 : i) - rdx; temp = BC_NUM_ROUND_POW(i); mod = n->scale % BC_BASE_DIGS; i = mod ? BC_BASE_DIGS - mod : 0; n->len = ((temp + i) / BC_BASE_DIGS); bc_num_expand(n, n->len); memset(n->num, 0, BC_NUM_SIZE(n->len)); if (zero) { // I think I can set rdx directly to zero here because n should be a // new number with sign set to false. n->len = n->rdx = 0; } else { BcBigDig exp, pow; assert(i <= BC_NUM_BIGDIG_MAX); exp = (BcBigDig) i; pow = bc_num_pow10[exp]; for (i = len - 1; i < len; --i, ++exp) { char c = val[i]; if (c == '.') exp -= 1; else { size_t idx = exp / BC_BASE_DIGS; if (isupper(c)) c = '9'; n->num[idx] += (((BcBigDig) c) - '0') * pow; if ((exp + 1) % BC_BASE_DIGS == 0) pow = 1; else pow *= BC_BASE; } } } } static void bc_num_parseBase(BcNum *restrict n, const char *restrict val, BcBigDig base) { BcNum temp, mult1, mult2, result1, result2, *m1, *m2, *ptr; char c = 0; bool zero = true; BcBigDig v; size_t i, digs, len = strlen(val); for (i = 0; zero && i < len; ++i) zero = (val[i] == '.' || val[i] == '0'); if (zero) return; BC_SIG_LOCK; bc_num_init(&temp, BC_NUM_BIGDIG_LOG10); bc_num_init(&mult1, BC_NUM_BIGDIG_LOG10); BC_SETJMP_LOCKED(int_err); BC_SIG_UNLOCK; for (i = 0; i < len && (c = val[i]) && c != '.'; ++i) { v = bc_num_parseChar(c, base); bc_num_mulArray(n, base, &mult1); bc_num_bigdig2num(&temp, v); bc_num_add(&mult1, &temp, n, 0); } if (i == len && !val[i]) goto int_err; assert(val[i] == '.'); BC_SIG_LOCK; BC_UNSETJMP; bc_num_init(&mult2, BC_NUM_BIGDIG_LOG10); bc_num_init(&result1, BC_NUM_DEF_SIZE); bc_num_init(&result2, BC_NUM_DEF_SIZE); bc_num_one(&mult1); BC_SETJMP_LOCKED(err); BC_SIG_UNLOCK; m1 = &mult1; m2 = &mult2; for (i += 1, digs = 0; i < len && (c = val[i]); ++i, ++digs) { size_t rdx; v = bc_num_parseChar(c, base); bc_num_mulArray(&result1, base, &result2); bc_num_bigdig2num(&temp, v); bc_num_add(&result2, &temp, &result1, 0); bc_num_mulArray(m1, base, m2); rdx = BC_NUM_RDX_VAL(m2); if (m2->len < rdx) m2->len = rdx; ptr = m1; m1 = m2; m2 = ptr; } // This one cannot be a divide by 0 because mult starts out at 1, then is // multiplied by base, and base cannot be 0, so mult cannot be 0. bc_num_div(&result1, m1, &result2, digs * 2); bc_num_truncate(&result2, digs); bc_num_add(n, &result2, n, digs); if (BC_NUM_NONZERO(n)) { if (n->scale < digs) bc_num_extend(n, digs - n->scale); } else bc_num_zero(n); err: BC_SIG_MAYLOCK; bc_num_free(&result2); bc_num_free(&result1); bc_num_free(&mult2); int_err: BC_SIG_MAYLOCK; bc_num_free(&mult1); bc_num_free(&temp); BC_LONGJMP_CONT; } static inline void bc_num_printNewline(void) { #if !BC_ENABLE_LIBRARY if (vm.nchars >= vm.line_len - 1) { bc_vm_putchar('\\', bc_flush_none); bc_vm_putchar('\n', bc_flush_err); } #endif // !BC_ENABLE_LIBRARY } static void bc_num_putchar(int c) { if (c != '\n') bc_num_printNewline(); bc_vm_putchar(c, bc_flush_save); } #if DC_ENABLED && !BC_ENABLE_LIBRARY static void bc_num_printChar(size_t n, size_t len, bool rdx) { BC_UNUSED(rdx); BC_UNUSED(len); assert(len == 1); bc_vm_putchar((uchar) n, bc_flush_save); } #endif // DC_ENABLED && !BC_ENABLE_LIBRARY static void bc_num_printDigits(size_t n, size_t len, bool rdx) { size_t exp, pow; bc_num_putchar(rdx ? '.' : ' '); for (exp = 0, pow = 1; exp < len - 1; ++exp, pow *= BC_BASE); for (exp = 0; exp < len; pow /= BC_BASE, ++exp) { size_t dig = n / pow; n -= dig * pow; bc_num_putchar(((uchar) dig) + '0'); } } static void bc_num_printHex(size_t n, size_t len, bool rdx) { BC_UNUSED(len); assert(len == 1); if (rdx) bc_num_putchar('.'); bc_num_putchar(bc_num_hex_digits[n]); } static void bc_num_printDecimal(const BcNum *restrict n) { size_t i, j, rdx = BC_NUM_RDX_VAL(n); bool zero = true; size_t buffer[BC_BASE_DIGS]; if (BC_NUM_NEG(n)) bc_num_putchar('-'); for (i = n->len - 1; i < n->len; --i) { BcDig n9 = n->num[i]; size_t temp; bool irdx = (i == rdx - 1); zero = (zero & !irdx); temp = n->scale % BC_BASE_DIGS; temp = i || !temp ? 0 : BC_BASE_DIGS - temp; memset(buffer, 0, BC_BASE_DIGS * sizeof(size_t)); for (j = 0; n9 && j < BC_BASE_DIGS; ++j) { buffer[j] = ((size_t) n9) % BC_BASE; n9 /= BC_BASE; } for (j = BC_BASE_DIGS - 1; j < BC_BASE_DIGS && j >= temp; --j) { bool print_rdx = (irdx & (j == BC_BASE_DIGS - 1)); zero = (zero && buffer[j] == 0); if (!zero) bc_num_printHex(buffer[j], 1, print_rdx); } } } #if BC_ENABLE_EXTRA_MATH static void bc_num_printExponent(const BcNum *restrict n, bool eng) { size_t places, mod, nrdx = BC_NUM_RDX_VAL(n); bool neg = (n->len <= nrdx); BcNum temp, exp; BcDig digs[BC_NUM_BIGDIG_LOG10]; BC_SIG_LOCK; bc_num_createCopy(&temp, n); BC_SETJMP_LOCKED(exit); BC_SIG_UNLOCK; if (neg) { size_t i, idx = bc_num_nonzeroLen(n) - 1; places = 1; for (i = BC_BASE_DIGS - 1; i < BC_BASE_DIGS; --i) { if (bc_num_pow10[i] > (BcBigDig) n->num[idx]) places += 1; else break; } places += (nrdx - (idx + 1)) * BC_BASE_DIGS; mod = places % 3; if (eng && mod != 0) places += 3 - mod; bc_num_shiftLeft(&temp, places); } else { places = bc_num_intDigits(n) - 1; mod = places % 3; if (eng && mod != 0) places -= 3 - (3 - mod); bc_num_shiftRight(&temp, places); } bc_num_printDecimal(&temp); bc_num_putchar('e'); if (!places) { bc_num_printHex(0, 1, false); goto exit; } if (neg) bc_num_putchar('-'); bc_num_setup(&exp, digs, BC_NUM_BIGDIG_LOG10); bc_num_bigdig2num(&exp, (BcBigDig) places); bc_num_printDecimal(&exp); exit: BC_SIG_MAYLOCK; bc_num_free(&temp); BC_LONGJMP_CONT; } #endif // BC_ENABLE_EXTRA_MATH static void bc_num_printFixup(BcNum *restrict n, BcBigDig rem, BcBigDig pow, size_t idx) { size_t i, len = n->len - idx; BcBigDig acc; BcDig *a = n->num + idx; if (len < 2) return; for (i = len - 1; i > 0; --i) { acc = ((BcBigDig) a[i]) * rem + ((BcBigDig) a[i - 1]); a[i - 1] = (BcDig) (acc % pow); acc /= pow; acc += (BcBigDig) a[i]; if (acc >= BC_BASE_POW) { if (i == len - 1) { len = bc_vm_growSize(len, 1); bc_num_expand(n, bc_vm_growSize(len, idx)); a = n->num + idx; a[len - 1] = 0; } a[i + 1] += acc / BC_BASE_POW; acc %= BC_BASE_POW; } assert(acc < BC_BASE_POW); a[i] = (BcDig) acc; } n->len = len + idx; } static void bc_num_printPrepare(BcNum *restrict n, BcBigDig rem, BcBigDig pow) { size_t i; for (i = 0; i < n->len; ++i) bc_num_printFixup(n, rem, pow, i); for (i = 0; i < n->len; ++i) { assert(pow == ((BcBigDig) ((BcDig) pow))); if (n->num[i] >= (BcDig) pow) { if (i + 1 == n->len) { n->len = bc_vm_growSize(n->len, 1); bc_num_expand(n, n->len); n->num[i + 1] = 0; } assert(pow < BC_BASE_POW); n->num[i + 1] += n->num[i] / ((BcDig) pow); n->num[i] %= (BcDig) pow; } } } static void bc_num_printNum(BcNum *restrict n, BcBigDig base, size_t len, BcNumDigitOp print) { BcVec stack; BcNum intp, fracp1, fracp2, digit, flen1, flen2, *n1, *n2, *temp; BcBigDig dig = 0, *ptr, acc, exp; size_t i, j, nrdx; bool radix; BcDig digit_digs[BC_NUM_BIGDIG_LOG10 + 1]; assert(base > 1); if (BC_NUM_ZERO(n)) { print(0, len, false); return; } // This function uses an algorithm that Stefan Esser came // up with to print the integer part of a number. What it does is convert // intp into a number of the specified base, but it does it directly, // instead of just doing a series of divisions and printing the remainders // in reverse order. // // Let me explain in a bit more detail: // // The algorithm takes the current least significant digit (after intp has // been converted to an integer) and the next to least significant digit, // and it converts the least significant digit into one of the specified // base, putting any overflow into the next to least significant digit. It // iterates through the whole number, from least significant to most // significant, doing this conversion. At the end of that iteration, the // least significant digit is converted, but the others are not, so it // iterates again, starting at the next to least significant digit. It keeps // doing that conversion, skipping one more digit than the last time, until // all digits have been converted. Then it prints them in reverse order. // // That is the gist of the algorithm. It leaves out several things, such as // the fact that digits are not always converted into the specified base, // but into something close, basically a power of the specified base. In // Stefan's words, "You could consider BcDigs to be of base 10^BC_BASE_DIGS // in the normal case and obase^N for the largest value of N that satisfies // obase^N <= 10^BC_BASE_DIGS. [This means that] the result is not in base // "obase", but in base "obase^N", which happens to be printable as a number // of base "obase" without consideration for neighbouring BcDigs." This fact // is what necessitates the existence of the loop later in this function. // // The conversion happens in bc_num_printPrepare() where the outer loop // happens and bc_num_printFixup() where the inner loop, or actual // conversion, happens. nrdx = BC_NUM_RDX_VAL(n); BC_SIG_LOCK; bc_vec_init(&stack, sizeof(BcBigDig), NULL); bc_num_init(&fracp1, nrdx); bc_num_createCopy(&intp, n); BC_SETJMP_LOCKED(err); BC_SIG_UNLOCK; bc_num_truncate(&intp, intp.scale); bc_num_sub(n, &intp, &fracp1, 0); if (base != vm.last_base) { vm.last_pow = 1; vm.last_exp = 0; while (vm.last_pow * base <= BC_BASE_POW) { vm.last_pow *= base; vm.last_exp += 1; } vm.last_rem = BC_BASE_POW - vm.last_pow; vm.last_base = base; } exp = vm.last_exp; if (vm.last_rem != 0) bc_num_printPrepare(&intp, vm.last_rem, vm.last_pow); for (i = 0; i < intp.len; ++i) { acc = (BcBigDig) intp.num[i]; for (j = 0; j < exp && (i < intp.len - 1 || acc != 0); ++j) { if (j != exp - 1) { dig = acc % base; acc /= base; } else { dig = acc; acc = 0; } assert(dig < base); bc_vec_push(&stack, &dig); } assert(acc == 0); } for (i = 0; i < stack.len; ++i) { ptr = bc_vec_item_rev(&stack, i); assert(ptr != NULL); print(*ptr, len, false); } if (!n->scale) goto err; BC_SIG_LOCK; BC_UNSETJMP; bc_num_init(&fracp2, nrdx); bc_num_setup(&digit, digit_digs, sizeof(digit_digs) / sizeof(BcDig)); bc_num_init(&flen1, BC_NUM_BIGDIG_LOG10); bc_num_init(&flen2, BC_NUM_BIGDIG_LOG10); BC_SETJMP_LOCKED(frac_err); BC_SIG_UNLOCK; bc_num_one(&flen1); radix = true; n1 = &flen1; n2 = &flen2; fracp2.scale = n->scale; BC_NUM_RDX_SET_NP(fracp2, BC_NUM_RDX(fracp2.scale)); while (bc_num_intDigits(n1) < n->scale + 1) { bc_num_expand(&fracp2, fracp1.len + 1); bc_num_mulArray(&fracp1, base, &fracp2); nrdx = BC_NUM_RDX_VAL_NP(fracp2); if (fracp2.len < nrdx) fracp2.len = nrdx; // fracp is guaranteed to be non-negative and small enough. bc_num_bigdig2(&fracp2, &dig); bc_num_bigdig2num(&digit, dig); bc_num_sub(&fracp2, &digit, &fracp1, 0); print(dig, len, radix); bc_num_mulArray(n1, base, n2); radix = false; temp = n1; n1 = n2; n2 = temp; } frac_err: BC_SIG_MAYLOCK; bc_num_free(&flen2); bc_num_free(&flen1); bc_num_free(&fracp2); err: BC_SIG_MAYLOCK; bc_num_free(&fracp1); bc_num_free(&intp); bc_vec_free(&stack); BC_LONGJMP_CONT; } static void bc_num_printBase(BcNum *restrict n, BcBigDig base) { size_t width; BcNumDigitOp print; bool neg = BC_NUM_NEG(n); if (neg) bc_num_putchar('-'); BC_NUM_NEG_CLR(n); if (base <= BC_NUM_MAX_POSIX_IBASE) { width = 1; print = bc_num_printHex; } else { assert(base <= BC_BASE_POW); width = bc_num_log10(base - 1); print = bc_num_printDigits; } bc_num_printNum(n, base, width, print); n->rdx = BC_NUM_NEG_VAL(n, neg); } #if DC_ENABLED && !BC_ENABLE_LIBRARY void bc_num_stream(BcNum *restrict n, BcBigDig base) { bc_num_printNum(n, base, 1, bc_num_printChar); } #endif // DC_ENABLED && !BC_ENABLE_LIBRARY void bc_num_setup(BcNum *restrict n, BcDig *restrict num, size_t cap) { assert(n != NULL); n->num = num; n->cap = cap; bc_num_zero(n); } void bc_num_init(BcNum *restrict n, size_t req) { BcDig *num; BC_SIG_ASSERT_LOCKED; assert(n != NULL); req = req >= BC_NUM_DEF_SIZE ? req : BC_NUM_DEF_SIZE; if (req == BC_NUM_DEF_SIZE && vm.temps.len) { BcNum *nptr = bc_vec_top(&vm.temps); num = nptr->num; bc_vec_pop(&vm.temps); } else num = bc_vm_malloc(BC_NUM_SIZE(req)); bc_num_setup(n, num, req); } void bc_num_clear(BcNum *restrict n) { n->num = NULL; n->cap = 0; } void bc_num_free(void *num) { BcNum *n = (BcNum*) num; BC_SIG_ASSERT_LOCKED; assert(n != NULL); if (n->cap == BC_NUM_DEF_SIZE) bc_vec_push(&vm.temps, n); else free(n->num); } void bc_num_copy(BcNum *d, const BcNum *s) { assert(d != NULL && s != NULL); if (d == s) return; bc_num_expand(d, s->len); d->len = s->len; // I can just copy directly here. d->rdx = s->rdx; d->scale = s->scale; memcpy(d->num, s->num, BC_NUM_SIZE(d->len)); } void bc_num_createCopy(BcNum *d, const BcNum *s) { BC_SIG_ASSERT_LOCKED; bc_num_init(d, s->len); bc_num_copy(d, s); } void bc_num_createFromBigdig(BcNum *n, BcBigDig val) { BC_SIG_ASSERT_LOCKED; bc_num_init(n, BC_NUM_BIGDIG_LOG10); bc_num_bigdig2num(n, val); } size_t bc_num_scale(const BcNum *restrict n) { return n->scale; } size_t bc_num_len(const BcNum *restrict n) { size_t len = n->len; if (BC_NUM_ZERO(n)) return n->scale ? n->scale : 1; if (BC_NUM_RDX_VAL(n) == len) { size_t zero, scale; len = bc_num_nonzeroLen(n); scale = n->scale % BC_BASE_DIGS; scale = scale ? scale : BC_BASE_DIGS; zero = bc_num_zeroDigits(n->num + len - 1); len = len * BC_BASE_DIGS - zero - (BC_BASE_DIGS - scale); } else len = bc_num_intDigits(n) + n->scale; return len; } void bc_num_parse(BcNum *restrict n, const char *restrict val, BcBigDig base) { assert(n != NULL && val != NULL && base); assert(base >= BC_NUM_MIN_BASE && base <= vm.maxes[BC_PROG_GLOBALS_IBASE]); assert(bc_num_strValid(val)); if (!val[1]) { BcBigDig dig = bc_num_parseChar(val[0], BC_NUM_MAX_LBASE); bc_num_bigdig2num(n, dig); } else if (base == BC_BASE) bc_num_parseDecimal(n, val); else bc_num_parseBase(n, val, base); assert(BC_NUM_RDX_VALID(n)); } void bc_num_print(BcNum *restrict n, BcBigDig base, bool newline) { assert(n != NULL); assert(BC_ENABLE_EXTRA_MATH || base >= BC_NUM_MIN_BASE); bc_num_printNewline(); if (BC_NUM_ZERO(n)) bc_num_printHex(0, 1, false); else if (base == BC_BASE) bc_num_printDecimal(n); #if BC_ENABLE_EXTRA_MATH else if (base == 0 || base == 1) bc_num_printExponent(n, base != 0); #endif // BC_ENABLE_EXTRA_MATH else bc_num_printBase(n, base); if (newline) bc_num_putchar('\n'); } void bc_num_bigdig2(const BcNum *restrict n, BcBigDig *result) { // This function returns no errors because it's guaranteed to succeed if // its preconditions are met. Those preconditions include both parameters // being non-NULL, n being non-negative, and n being less than vm.max. If // all of that is true, then we can just convert without worrying about // negative errors or overflow. BcBigDig r = 0; size_t nrdx = BC_NUM_RDX_VAL(n); assert(n != NULL && result != NULL); assert(!BC_NUM_NEG(n)); assert(bc_num_cmp(n, &vm.max) < 0); assert(n->len - nrdx <= 3); // There is a small speed win from unrolling the loop here, and since it // only adds 53 bytes, I decided that it was worth it. switch (n->len - nrdx) { case 3: { r = (BcBigDig) n->num[nrdx + 2]; } // Fallthrough. BC_FALLTHROUGH case 2: { r = r * BC_BASE_POW + (BcBigDig) n->num[nrdx + 1]; } // Fallthrough. BC_FALLTHROUGH case 1: { r = r * BC_BASE_POW + (BcBigDig) n->num[nrdx]; } } *result = r; } void bc_num_bigdig(const BcNum *restrict n, BcBigDig *result) { assert(n != NULL && result != NULL); if (BC_ERR(BC_NUM_NEG(n))) bc_vm_err(BC_ERR_MATH_NEGATIVE); if (BC_ERR(bc_num_cmp(n, &vm.max) >= 0)) bc_vm_err(BC_ERR_MATH_OVERFLOW); bc_num_bigdig2(n, result); } void bc_num_bigdig2num(BcNum *restrict n, BcBigDig val) { BcDig *ptr; size_t i; assert(n != NULL); bc_num_zero(n); if (!val) return; bc_num_expand(n, BC_NUM_BIGDIG_LOG10); for (ptr = n->num, i = 0; val; ++i, val /= BC_BASE_POW) ptr[i] = val % BC_BASE_POW; n->len = i; } #if BC_ENABLE_EXTRA_MATH && BC_ENABLE_RAND void bc_num_rng(const BcNum *restrict n, BcRNG *rng) { BcNum temp, temp2, intn, frac; BcRand state1, state2, inc1, inc2; size_t nrdx = BC_NUM_RDX_VAL(n); BC_SIG_LOCK; bc_num_init(&temp, n->len); bc_num_init(&temp2, n->len); bc_num_init(&frac, nrdx); bc_num_init(&intn, bc_num_int(n)); BC_SETJMP_LOCKED(err); BC_SIG_UNLOCK; assert(BC_NUM_RDX_VALID_NP(vm.max)); memcpy(frac.num, n->num, BC_NUM_SIZE(nrdx)); frac.len = nrdx; BC_NUM_RDX_SET_NP(frac, nrdx); frac.scale = n->scale; assert(BC_NUM_RDX_VALID_NP(frac)); assert(BC_NUM_RDX_VALID_NP(vm.max2)); bc_num_mul(&frac, &vm.max2, &temp, 0); bc_num_truncate(&temp, temp.scale); bc_num_copy(&frac, &temp); memcpy(intn.num, n->num + nrdx, BC_NUM_SIZE(bc_num_int(n))); intn.len = bc_num_int(n); // This assert is here because it has to be true. It is also here to justify // the use of BC_ERR_SIGNAL_ONLY() on each of the divmod's and mod's below. assert(BC_NUM_NONZERO(&vm.max)); if (BC_NUM_NONZERO(&frac)) { bc_num_divmod(&frac, &vm.max, &temp, &temp2, 0); // frac is guaranteed to be smaller than vm.max * vm.max (pow). // This means that when dividing frac by vm.max, as above, the // quotient and remainder are both guaranteed to be less than vm.max, // which means we can use bc_num_bigdig2() here and not worry about // overflow. bc_num_bigdig2(&temp2, (BcBigDig*) &state1); bc_num_bigdig2(&temp, (BcBigDig*) &state2); } else state1 = state2 = 0; if (BC_NUM_NONZERO(&intn)) { bc_num_divmod(&intn, &vm.max, &temp, &temp2, 0); // Because temp2 is the mod of vm.max, from above, it is guaranteed // to be small enough to use bc_num_bigdig2(). bc_num_bigdig2(&temp2, (BcBigDig*) &inc1); if (bc_num_cmp(&temp, &vm.max) >= 0) { bc_num_copy(&temp2, &temp); bc_num_mod(&temp2, &vm.max, &temp, 0); } // The if statement above ensures that temp is less than vm.max, which // means that we can use bc_num_bigdig2() here. bc_num_bigdig2(&temp, (BcBigDig*) &inc2); } else inc1 = inc2 = 0; bc_rand_seed(rng, state1, state2, inc1, inc2); err: BC_SIG_MAYLOCK; bc_num_free(&intn); bc_num_free(&frac); bc_num_free(&temp2); bc_num_free(&temp); BC_LONGJMP_CONT; } void bc_num_createFromRNG(BcNum *restrict n, BcRNG *rng) { BcRand s1, s2, i1, i2; BcNum conv, temp1, temp2, temp3; BcDig temp1_num[BC_RAND_NUM_SIZE], temp2_num[BC_RAND_NUM_SIZE]; BcDig conv_num[BC_NUM_BIGDIG_LOG10]; BC_SIG_LOCK; bc_num_init(&temp3, 2 * BC_RAND_NUM_SIZE); BC_SETJMP_LOCKED(err); BC_SIG_UNLOCK; bc_num_setup(&temp1, temp1_num, sizeof(temp1_num) / sizeof(BcDig)); bc_num_setup(&temp2, temp2_num, sizeof(temp2_num) / sizeof(BcDig)); bc_num_setup(&conv, conv_num, sizeof(conv_num) / sizeof(BcDig)); // This assert is here because it has to be true. It is also here to justify // the assumption that vm.max2 is not zero. assert(BC_NUM_NONZERO(&vm.max)); // Because this is true, we can just use BC_ERR_SIGNAL_ONLY() below when // dividing by vm.max2. assert(BC_NUM_NONZERO(&vm.max2)); bc_rand_getRands(rng, &s1, &s2, &i1, &i2); bc_num_bigdig2num(&conv, (BcBigDig) s2); assert(BC_NUM_RDX_VALID_NP(conv)); bc_num_mul(&conv, &vm.max, &temp1, 0); bc_num_bigdig2num(&conv, (BcBigDig) s1); bc_num_add(&conv, &temp1, &temp2, 0); bc_num_div(&temp2, &vm.max2, &temp3, BC_RAND_STATE_BITS); bc_num_bigdig2num(&conv, (BcBigDig) i2); assert(BC_NUM_RDX_VALID_NP(conv)); bc_num_mul(&conv, &vm.max, &temp1, 0); bc_num_bigdig2num(&conv, (BcBigDig) i1); bc_num_add(&conv, &temp1, &temp2, 0); bc_num_add(&temp2, &temp3, n, 0); assert(BC_NUM_RDX_VALID(n)); err: BC_SIG_MAYLOCK; bc_num_free(&temp3); BC_LONGJMP_CONT; } void bc_num_irand(const BcNum *restrict a, BcNum *restrict b, BcRNG *restrict rng) { BcRand r; BcBigDig modl; BcNum pow, pow2, cp, cp2, mod, temp1, temp2, rand; BcNum *p1, *p2, *t1, *t2, *c1, *c2, *tmp; BcDig rand_num[BC_NUM_BIGDIG_LOG10]; bool carry; ssize_t cmp; assert(a != b); if (BC_ERR(BC_NUM_NEG(a))) bc_vm_err(BC_ERR_MATH_NEGATIVE); if (BC_ERR(BC_NUM_RDX_VAL(a))) bc_vm_err(BC_ERR_MATH_NON_INTEGER); if (BC_NUM_ZERO(a) || BC_NUM_ONE(a)) return; cmp = bc_num_cmp(a, &vm.max); if (cmp <= 0) { BcRand bits = 0; if (cmp < 0) bc_num_bigdig2(a, (BcBigDig*) &bits); // This condition means that bits is a power of 2. In that case, we // can just grab a full-size int and mask out the unneeded bits. // Also, this condition says that 0 is a power of 2, which works for // us, since a value of 0 means a == rng->max. The bitmask will mask // nothing in that case as well. if (!(bits & (bits - 1))) r = bc_rand_int(rng) & (bits - 1); else r = bc_rand_bounded(rng, bits); // We made sure that r is less than vm.max, // so we can use bc_num_bigdig2() here. bc_num_bigdig2num(b, r); return; } // In the case where a is less than rng->max, we have to make sure we have // an exclusive bound. This ensures that it happens. (See below.) carry = (cmp < 0); BC_SIG_LOCK; bc_num_createCopy(&cp, a); bc_num_init(&cp2, cp.len); bc_num_init(&mod, BC_NUM_BIGDIG_LOG10); bc_num_init(&temp1, BC_NUM_DEF_SIZE); bc_num_init(&temp2, BC_NUM_DEF_SIZE); bc_num_init(&pow2, BC_NUM_DEF_SIZE); bc_num_init(&pow, BC_NUM_DEF_SIZE); bc_num_one(&pow); bc_num_setup(&rand, rand_num, sizeof(rand_num) / sizeof(BcDig)); BC_SETJMP_LOCKED(err); BC_SIG_UNLOCK; p1 = &pow; p2 = &pow2; t1 = &temp1; t2 = &temp2; c1 = &cp; c2 = &cp2; // This assert is here because it has to be true. It is also here to justify // the use of BC_ERR_SIGNAL_ONLY() on each of the divmod's and mod's below. assert(BC_NUM_NONZERO(&vm.max)); while (BC_NUM_NONZERO(c1)) { bc_num_divmod(c1, &vm.max, c2, &mod, 0); // Because mod is the mod of vm.max, it is guaranteed to be smaller, // which means we can use bc_num_bigdig2() here. bc_num_bigdig(&mod, &modl); if (bc_num_cmp(c1, &vm.max) < 0) { // In this case, if there is no carry, then we know we can generate // an integer *equal* to modl. Thus, we add one if there is no // carry. Otherwise, we add zero, and we are still bounded properly. // Since the last portion is guaranteed to be greater than 1, we // know modl isn't 0 unless there is no carry. modl += !carry; if (modl == 1) r = 0; else if (!modl) r = bc_rand_int(rng); else r = bc_rand_bounded(rng, (BcRand) modl); } else { if (modl) modl -= carry; r = bc_rand_int(rng); carry = (r >= (BcRand) modl); } bc_num_bigdig2num(&rand, r); assert(BC_NUM_RDX_VALID_NP(rand)); assert(BC_NUM_RDX_VALID(p1)); bc_num_mul(&rand, p1, p2, 0); bc_num_add(p2, t1, t2, 0); if (BC_NUM_NONZERO(c2)) { assert(BC_NUM_RDX_VALID_NP(vm.max)); assert(BC_NUM_RDX_VALID(p1)); bc_num_mul(&vm.max, p1, p2, 0); tmp = p1; p1 = p2; p2 = tmp; tmp = c1; c1 = c2; c2 = tmp; } else c1 = c2; tmp = t1; t1 = t2; t2 = tmp; } bc_num_copy(b, t1); bc_num_clean(b); assert(BC_NUM_RDX_VALID(b)); err: BC_SIG_MAYLOCK; bc_num_free(&pow); bc_num_free(&pow2); bc_num_free(&temp2); bc_num_free(&temp1); bc_num_free(&mod); bc_num_free(&cp2); bc_num_free(&cp); BC_LONGJMP_CONT; } #endif // BC_ENABLE_EXTRA_MATH && BC_ENABLE_RAND size_t bc_num_addReq(const BcNum *a, const BcNum *b, size_t scale) { size_t aint, bint, ardx, brdx; BC_UNUSED(scale); ardx = BC_NUM_RDX_VAL(a); aint = bc_num_int(a); assert(aint <= a->len && ardx <= a->len); brdx = BC_NUM_RDX_VAL(b); bint = bc_num_int(b); assert(bint <= b->len && brdx <= b->len); ardx = BC_MAX(ardx, brdx); aint = BC_MAX(aint, bint); return bc_vm_growSize(bc_vm_growSize(ardx, aint), 1); } size_t bc_num_mulReq(const BcNum *a, const BcNum *b, size_t scale) { size_t max, rdx; rdx = bc_vm_growSize(BC_NUM_RDX_VAL(a), BC_NUM_RDX_VAL(b)); max = BC_NUM_RDX(scale); max = bc_vm_growSize(BC_MAX(max, rdx), 1); rdx = bc_vm_growSize(bc_vm_growSize(bc_num_int(a), bc_num_int(b)), max); return rdx; } size_t bc_num_divReq(const BcNum *a, const BcNum *b, size_t scale) { size_t max, rdx; rdx = bc_vm_growSize(BC_NUM_RDX_VAL(a), BC_NUM_RDX_VAL(b)); max = BC_NUM_RDX(scale); max = bc_vm_growSize(BC_MAX(max, rdx), 1); rdx = bc_vm_growSize(bc_num_int(a), max); return rdx; } size_t bc_num_powReq(const BcNum *a, const BcNum *b, size_t scale) { BC_UNUSED(scale); return bc_vm_growSize(bc_vm_growSize(a->len, b->len), 1); } #if BC_ENABLE_EXTRA_MATH size_t bc_num_placesReq(const BcNum *a, const BcNum *b, size_t scale) { BC_UNUSED(scale); return a->len + b->len - BC_NUM_RDX_VAL(a) - BC_NUM_RDX_VAL(b); } #endif // BC_ENABLE_EXTRA_MATH void bc_num_add(BcNum *a, BcNum *b, BcNum *c, size_t scale) { assert(BC_NUM_RDX_VALID(a)); assert(BC_NUM_RDX_VALID(b)); bc_num_binary(a, b, c, false, bc_num_as, bc_num_addReq(a, b, scale)); } void bc_num_sub(BcNum *a, BcNum *b, BcNum *c, size_t scale) { assert(BC_NUM_RDX_VALID(a)); assert(BC_NUM_RDX_VALID(b)); bc_num_binary(a, b, c, true, bc_num_as, bc_num_addReq(a, b, scale)); } void bc_num_mul(BcNum *a, BcNum *b, BcNum *c, size_t scale) { assert(BC_NUM_RDX_VALID(a)); assert(BC_NUM_RDX_VALID(b)); bc_num_binary(a, b, c, scale, bc_num_m, bc_num_mulReq(a, b, scale)); } void bc_num_div(BcNum *a, BcNum *b, BcNum *c, size_t scale) { assert(BC_NUM_RDX_VALID(a)); assert(BC_NUM_RDX_VALID(b)); bc_num_binary(a, b, c, scale, bc_num_d, bc_num_divReq(a, b, scale)); } void bc_num_mod(BcNum *a, BcNum *b, BcNum *c, size_t scale) { assert(BC_NUM_RDX_VALID(a)); assert(BC_NUM_RDX_VALID(b)); bc_num_binary(a, b, c, scale, bc_num_rem, bc_num_divReq(a, b, scale)); } void bc_num_pow(BcNum *a, BcNum *b, BcNum *c, size_t scale) { assert(BC_NUM_RDX_VALID(a)); assert(BC_NUM_RDX_VALID(b)); bc_num_binary(a, b, c, scale, bc_num_p, bc_num_powReq(a, b, scale)); } #if BC_ENABLE_EXTRA_MATH void bc_num_places(BcNum *a, BcNum *b, BcNum *c, size_t scale) { assert(BC_NUM_RDX_VALID(a)); assert(BC_NUM_RDX_VALID(b)); bc_num_binary(a, b, c, scale, bc_num_place, bc_num_placesReq(a, b, scale)); } void bc_num_lshift(BcNum *a, BcNum *b, BcNum *c, size_t scale) { assert(BC_NUM_RDX_VALID(a)); assert(BC_NUM_RDX_VALID(b)); bc_num_binary(a, b, c, scale, bc_num_left, bc_num_placesReq(a, b, scale)); } void bc_num_rshift(BcNum *a, BcNum *b, BcNum *c, size_t scale) { assert(BC_NUM_RDX_VALID(a)); assert(BC_NUM_RDX_VALID(b)); bc_num_binary(a, b, c, scale, bc_num_right, bc_num_placesReq(a, b, scale)); } #endif // BC_ENABLE_EXTRA_MATH void bc_num_sqrt(BcNum *restrict a, BcNum *restrict b, size_t scale) { BcNum num1, num2, half, f, fprime, *x0, *x1, *temp; size_t pow, len, rdx, req, resscale; BcDig half_digs[1]; assert(a != NULL && b != NULL && a != b); if (BC_ERR(BC_NUM_NEG(a))) bc_vm_err(BC_ERR_MATH_NEGATIVE); if (a->scale > scale) scale = a->scale; len = bc_vm_growSize(bc_num_intDigits(a), 1); rdx = BC_NUM_RDX(scale); req = bc_vm_growSize(BC_MAX(rdx, BC_NUM_RDX_VAL(a)), len >> 1); BC_SIG_LOCK; bc_num_init(b, bc_vm_growSize(req, 1)); BC_SIG_UNLOCK; assert(a != NULL && b != NULL && a != b); assert(a->num != NULL && b->num != NULL); if (BC_NUM_ZERO(a)) { bc_num_setToZero(b, scale); return; } if (BC_NUM_ONE(a)) { bc_num_one(b); bc_num_extend(b, scale); return; } rdx = BC_NUM_RDX(scale); rdx = BC_MAX(rdx, BC_NUM_RDX_VAL(a)); len = bc_vm_growSize(a->len, rdx); BC_SIG_LOCK; bc_num_init(&num1, len); bc_num_init(&num2, len); bc_num_setup(&half, half_digs, sizeof(half_digs) / sizeof(BcDig)); bc_num_one(&half); half.num[0] = BC_BASE_POW / 2; half.len = 1; BC_NUM_RDX_SET_NP(half, 1); half.scale = 1; bc_num_init(&f, len); bc_num_init(&fprime, len); BC_SETJMP_LOCKED(err); BC_SIG_UNLOCK; x0 = &num1; x1 = &num2; bc_num_one(x0); pow = bc_num_intDigits(a); if (pow) { if (pow & 1) x0->num[0] = 2; else x0->num[0] = 6; pow -= 2 - (pow & 1); bc_num_shiftLeft(x0, pow / 2); } // I can set the rdx here directly because neg should be false. x0->scale = x0->rdx = 0; resscale = (scale + BC_BASE_DIGS) + 2; while (bc_num_cmp(x1, x0)) { assert(BC_NUM_NONZERO(x0)); bc_num_div(a, x0, &f, resscale); bc_num_add(x0, &f, &fprime, resscale); assert(BC_NUM_RDX_VALID_NP(fprime)); assert(BC_NUM_RDX_VALID_NP(half)); bc_num_mul(&fprime, &half, x1, resscale); temp = x0; x0 = x1; x1 = temp; } bc_num_copy(b, x0); if (b->scale > scale) bc_num_truncate(b, b->scale - scale); assert(!BC_NUM_NEG(b) || BC_NUM_NONZERO(b)); assert(BC_NUM_RDX_VALID(b)); assert(BC_NUM_RDX_VAL(b) <= b->len || !b->len); assert(!b->len || b->num[b->len - 1] || BC_NUM_RDX_VAL(b) == b->len); err: BC_SIG_MAYLOCK; bc_num_free(&fprime); bc_num_free(&f); bc_num_free(&num2); bc_num_free(&num1); BC_LONGJMP_CONT; } void bc_num_divmod(BcNum *a, BcNum *b, BcNum *c, BcNum *d, size_t scale) { size_t ts, len; BcNum *ptr_a, num2; bool init = false; ts = BC_MAX(scale + b->scale, a->scale); len = bc_num_mulReq(a, b, ts); assert(a != NULL && b != NULL && c != NULL && d != NULL); assert(c != d && a != d && b != d && b != c); if (c == a) { memcpy(&num2, c, sizeof(BcNum)); ptr_a = &num2; BC_SIG_LOCK; bc_num_init(c, len); init = true; BC_SETJMP_LOCKED(err); BC_SIG_UNLOCK; } else { ptr_a = a; bc_num_expand(c, len); } if (BC_NUM_NONZERO(a) && !BC_NUM_RDX_VAL(a) && !BC_NUM_RDX_VAL(b) && b->len == 1 && !scale) { BcBigDig rem; bc_num_divArray(ptr_a, (BcBigDig) b->num[0], c, &rem); assert(rem < BC_BASE_POW); d->num[0] = (BcDig) rem; d->len = (rem != 0); } else bc_num_r(ptr_a, b, c, d, scale, ts); assert(!BC_NUM_NEG(c) || BC_NUM_NONZERO(c)); assert(BC_NUM_RDX_VALID(c)); assert(BC_NUM_RDX_VAL(c) <= c->len || !c->len); assert(!c->len || c->num[c->len - 1] || BC_NUM_RDX_VAL(c) == c->len); assert(!BC_NUM_NEG(d) || BC_NUM_NONZERO(d)); assert(BC_NUM_RDX_VALID(d)); assert(BC_NUM_RDX_VAL(d) <= d->len || !d->len); assert(!d->len || d->num[d->len - 1] || BC_NUM_RDX_VAL(d) == d->len); err: if (init) { BC_SIG_MAYLOCK; bc_num_free(&num2); BC_LONGJMP_CONT; } } #if DC_ENABLED void bc_num_modexp(BcNum *a, BcNum *b, BcNum *c, BcNum *restrict d) { BcNum base, exp, two, temp; BcDig two_digs[2]; assert(a != NULL && b != NULL && c != NULL && d != NULL); assert(a != d && b != d && c != d); if (BC_ERR(BC_NUM_ZERO(c))) bc_vm_err(BC_ERR_MATH_DIVIDE_BY_ZERO); if (BC_ERR(BC_NUM_NEG(b))) bc_vm_err(BC_ERR_MATH_NEGATIVE); if (BC_ERR(BC_NUM_RDX_VAL(a) || BC_NUM_RDX_VAL(b) || BC_NUM_RDX_VAL(c))) bc_vm_err(BC_ERR_MATH_NON_INTEGER); bc_num_expand(d, c->len); BC_SIG_LOCK; bc_num_init(&base, c->len); bc_num_setup(&two, two_digs, sizeof(two_digs) / sizeof(BcDig)); bc_num_init(&temp, b->len + 1); bc_num_createCopy(&exp, b); BC_SETJMP_LOCKED(err); BC_SIG_UNLOCK; bc_num_one(&two); two.num[0] = 2; bc_num_one(d); // We already checked for 0. bc_num_rem(a, c, &base, 0); while (BC_NUM_NONZERO(&exp)) { // Num two cannot be 0, so no errors. bc_num_divmod(&exp, &two, &exp, &temp, 0); if (BC_NUM_ONE(&temp) && !BC_NUM_NEG_NP(temp)) { assert(BC_NUM_RDX_VALID(d)); assert(BC_NUM_RDX_VALID_NP(base)); bc_num_mul(d, &base, &temp, 0); // We already checked for 0. bc_num_rem(&temp, c, d, 0); } assert(BC_NUM_RDX_VALID_NP(base)); bc_num_mul(&base, &base, &temp, 0); // We already checked for 0. bc_num_rem(&temp, c, &base, 0); } err: BC_SIG_MAYLOCK; bc_num_free(&exp); bc_num_free(&temp); bc_num_free(&base); BC_LONGJMP_CONT; assert(!BC_NUM_NEG(d) || d->len); assert(BC_NUM_RDX_VALID(d)); assert(!d->len || d->num[d->len - 1] || BC_NUM_RDX_VAL(d) == d->len); } #endif // DC_ENABLED #if BC_DEBUG_CODE void bc_num_printDebug(const BcNum *n, const char *name, bool emptyline) { bc_file_puts(&vm.fout, bc_flush_none, name); bc_file_puts(&vm.fout, bc_flush_none, ": "); bc_num_printDecimal(n); bc_file_putchar(&vm.fout, bc_flush_err, '\n'); if (emptyline) bc_file_putchar(&vm.fout, bc_flush_err, '\n'); vm.nchars = 0; } void bc_num_printDigs(const BcDig *n, size_t len, bool emptyline) { size_t i; for (i = len - 1; i < len; --i) bc_file_printf(&vm.fout, " %lu", (unsigned long) n[i]); bc_file_putchar(&vm.fout, bc_flush_err, '\n'); if (emptyline) bc_file_putchar(&vm.fout, bc_flush_err, '\n'); vm.nchars = 0; } void bc_num_printWithDigs(const BcNum *n, const char *name, bool emptyline) { bc_file_puts(&vm.fout, bc_flush_none, name); bc_file_printf(&vm.fout, " len: %zu, rdx: %zu, scale: %zu\n", name, n->len, BC_NUM_RDX_VAL(n), n->scale); bc_num_printDigs(n->num, n->len, emptyline); } void bc_num_dump(const char *varname, const BcNum *n) { ulong i, scale = n->scale; bc_file_printf(&vm.ferr, "\n%s = %s", varname, n->len ? (BC_NUM_NEG(n) ? "-" : "+") : "0 "); for (i = n->len - 1; i < n->len; --i) { if (i + 1 == BC_NUM_RDX_VAL(n)) bc_file_puts(&vm.ferr, bc_flush_none, ". "); if (scale / BC_BASE_DIGS != BC_NUM_RDX_VAL(n) - i - 1) bc_file_printf(&vm.ferr, "%lu ", (unsigned long) n->num[i]); else { int mod = scale % BC_BASE_DIGS; int d = BC_BASE_DIGS - mod; BcDig div; if (mod != 0) { div = n->num[i] / ((BcDig) bc_num_pow10[(ulong) d]); bc_file_printf(&vm.ferr, "%lu", (unsigned long) div); } div = n->num[i] % ((BcDig) bc_num_pow10[(ulong) d]); bc_file_printf(&vm.ferr, " ' %lu ", (unsigned long) div); } } bc_file_printf(&vm.ferr, "(%zu | %zu.%zu / %zu) %lu\n", n->scale, n->len, BC_NUM_RDX_VAL(n), n->cap, (unsigned long) (void*) n->num); bc_file_flush(&vm.ferr, bc_flush_err); } #endif // BC_DEBUG_CODE