// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package runner import ( "crypto" "crypto/hmac" "crypto/md5" "crypto/sha1" "crypto/sha256" "hash" "golang.org/x/crypto/hkdf" ) // Split a premaster secret in two as specified in RFC 4346, section 5. func splitPreMasterSecret(secret []byte) (s1, s2 []byte) { s1 = secret[0 : (len(secret)+1)/2] s2 = secret[len(secret)/2:] return } // pHash implements the P_hash function, as defined in RFC 4346, section 5. func pHash(result, secret, seed []byte, hash func() hash.Hash) { h := hmac.New(hash, secret) h.Write(seed) a := h.Sum(nil) j := 0 for j < len(result) { h.Reset() h.Write(a) h.Write(seed) b := h.Sum(nil) todo := len(b) if j+todo > len(result) { todo = len(result) - j } copy(result[j:j+todo], b) j += todo h.Reset() h.Write(a) a = h.Sum(nil) } } // prf10 implements the TLS 1.0 pseudo-random function, as defined in RFC 2246, section 5. func prf10(result, secret, label, seed []byte) { hashSHA1 := sha1.New hashMD5 := md5.New labelAndSeed := make([]byte, len(label)+len(seed)) copy(labelAndSeed, label) copy(labelAndSeed[len(label):], seed) s1, s2 := splitPreMasterSecret(secret) pHash(result, s1, labelAndSeed, hashMD5) result2 := make([]byte, len(result)) pHash(result2, s2, labelAndSeed, hashSHA1) for i, b := range result2 { result[i] ^= b } } // prf12 implements the TLS 1.2 pseudo-random function, as defined in RFC 5246, section 5. func prf12(hashFunc func() hash.Hash) func(result, secret, label, seed []byte) { return func(result, secret, label, seed []byte) { labelAndSeed := make([]byte, len(label)+len(seed)) copy(labelAndSeed, label) copy(labelAndSeed[len(label):], seed) pHash(result, secret, labelAndSeed, hashFunc) } } // prf30 implements the SSL 3.0 pseudo-random function, as defined in // www.mozilla.org/projects/security/pki/nss/ssl/draft302.txt section 6. func prf30(result, secret, label, seed []byte) { hashSHA1 := sha1.New() hashMD5 := md5.New() done := 0 i := 0 // RFC5246 section 6.3 says that the largest PRF output needed is 128 // bytes. Since no more ciphersuites will be added to SSLv3, this will // remain true. Each iteration gives us 16 bytes so 10 iterations will // be sufficient. var b [11]byte for done < len(result) { for j := 0; j <= i; j++ { b[j] = 'A' + byte(i) } hashSHA1.Reset() hashSHA1.Write(b[:i+1]) hashSHA1.Write(secret) hashSHA1.Write(seed) digest := hashSHA1.Sum(nil) hashMD5.Reset() hashMD5.Write(secret) hashMD5.Write(digest) done += copy(result[done:], hashMD5.Sum(nil)) i++ } } const ( tlsRandomLength = 32 // Length of a random nonce in TLS 1.1. masterSecretLength = 48 // Length of a master secret in TLS 1.1. finishedVerifyLength = 12 // Length of verify_data in a Finished message. ) var masterSecretLabel = []byte("master secret") var extendedMasterSecretLabel = []byte("extended master secret") var keyExpansionLabel = []byte("key expansion") var clientFinishedLabel = []byte("client finished") var serverFinishedLabel = []byte("server finished") var finishedLabel = []byte("finished") var channelIDLabel = []byte("TLS Channel ID signature\x00") var channelIDResumeLabel = []byte("Resumption\x00") func prfForVersion(version uint16, suite *cipherSuite) func(result, secret, label, seed []byte) { switch version { case VersionSSL30: return prf30 case VersionTLS10, VersionTLS11: return prf10 case VersionTLS12: return prf12(suite.hash().New) } panic("unknown version") } // masterFromPreMasterSecret generates the master secret from the pre-master // secret. See http://tools.ietf.org/html/rfc5246#section-8.1 func masterFromPreMasterSecret(version uint16, suite *cipherSuite, preMasterSecret, clientRandom, serverRandom []byte) []byte { var seed [tlsRandomLength * 2]byte copy(seed[0:len(clientRandom)], clientRandom) copy(seed[len(clientRandom):], serverRandom) masterSecret := make([]byte, masterSecretLength) prfForVersion(version, suite)(masterSecret, preMasterSecret, masterSecretLabel, seed[0:]) return masterSecret } // extendedMasterFromPreMasterSecret generates the master secret from the // pre-master secret when the Triple Handshake fix is in effect. See // https://tools.ietf.org/html/rfc7627 func extendedMasterFromPreMasterSecret(version uint16, suite *cipherSuite, preMasterSecret []byte, h finishedHash) []byte { masterSecret := make([]byte, masterSecretLength) prfForVersion(version, suite)(masterSecret, preMasterSecret, extendedMasterSecretLabel, h.Sum()) return masterSecret } // keysFromMasterSecret generates the connection keys from the master // secret, given the lengths of the MAC key, cipher key and IV, as defined in // RFC 2246, section 6.3. func keysFromMasterSecret(version uint16, suite *cipherSuite, masterSecret, clientRandom, serverRandom []byte, macLen, keyLen, ivLen int) (clientMAC, serverMAC, clientKey, serverKey, clientIV, serverIV []byte) { var seed [tlsRandomLength * 2]byte copy(seed[0:len(clientRandom)], serverRandom) copy(seed[len(serverRandom):], clientRandom) n := 2*macLen + 2*keyLen + 2*ivLen keyMaterial := make([]byte, n) prfForVersion(version, suite)(keyMaterial, masterSecret, keyExpansionLabel, seed[0:]) clientMAC = keyMaterial[:macLen] keyMaterial = keyMaterial[macLen:] serverMAC = keyMaterial[:macLen] keyMaterial = keyMaterial[macLen:] clientKey = keyMaterial[:keyLen] keyMaterial = keyMaterial[keyLen:] serverKey = keyMaterial[:keyLen] keyMaterial = keyMaterial[keyLen:] clientIV = keyMaterial[:ivLen] keyMaterial = keyMaterial[ivLen:] serverIV = keyMaterial[:ivLen] return } func newFinishedHash(wireVersion uint16, isDTLS bool, cipherSuite *cipherSuite) finishedHash { var ret finishedHash version, ok := wireToVersion(wireVersion, isDTLS) if !ok { panic("unknown version") } if version >= VersionTLS12 { ret.hash = cipherSuite.hash() ret.client = ret.hash.New() ret.server = ret.hash.New() if version == VersionTLS12 { ret.prf = prf12(ret.hash.New) } else { ret.secret = make([]byte, ret.hash.Size()) } } else { ret.hash = crypto.MD5SHA1 ret.client = sha1.New() ret.server = sha1.New() ret.clientMD5 = md5.New() ret.serverMD5 = md5.New() ret.prf = prf10 } ret.buffer = []byte{} ret.version = version ret.wireVersion = wireVersion return ret } // A finishedHash calculates the hash of a set of handshake messages suitable // for including in a Finished message. type finishedHash struct { hash crypto.Hash client hash.Hash server hash.Hash // Prior to TLS 1.2, an additional MD5 hash is required. clientMD5 hash.Hash serverMD5 hash.Hash // In TLS 1.2 (and SSL 3 for implementation convenience), a // full buffer is required. buffer []byte version uint16 wireVersion uint16 prf func(result, secret, label, seed []byte) // secret, in TLS 1.3, is the running input secret. secret []byte } func (h *finishedHash) UpdateForHelloRetryRequest() (err error) { data := newByteBuilder() data.addU8(typeMessageHash) data.addU24(h.hash.Size()) data.addBytes(h.Sum()) h.client = h.hash.New() h.server = h.hash.New() if h.buffer != nil { h.buffer = []byte{} } h.Write(data.finish()) return nil } func (h *finishedHash) Write(msg []byte) (n int, err error) { h.client.Write(msg) h.server.Write(msg) if h.version < VersionTLS12 { h.clientMD5.Write(msg) h.serverMD5.Write(msg) } if h.buffer != nil { h.buffer = append(h.buffer, msg...) } return len(msg), nil } func (h finishedHash) Sum() []byte { if h.version >= VersionTLS12 { return h.client.Sum(nil) } out := make([]byte, 0, md5.Size+sha1.Size) out = h.clientMD5.Sum(out) return h.client.Sum(out) } // finishedSum30 calculates the contents of the verify_data member of a SSLv3 // Finished message given the MD5 and SHA1 hashes of a set of handshake // messages. func finishedSum30(md5, sha1 hash.Hash, masterSecret []byte, magic []byte) []byte { md5.Write(magic) md5.Write(masterSecret) md5.Write(ssl30Pad1[:]) md5Digest := md5.Sum(nil) md5.Reset() md5.Write(masterSecret) md5.Write(ssl30Pad2[:]) md5.Write(md5Digest) md5Digest = md5.Sum(nil) sha1.Write(magic) sha1.Write(masterSecret) sha1.Write(ssl30Pad1[:40]) sha1Digest := sha1.Sum(nil) sha1.Reset() sha1.Write(masterSecret) sha1.Write(ssl30Pad2[:40]) sha1.Write(sha1Digest) sha1Digest = sha1.Sum(nil) ret := make([]byte, len(md5Digest)+len(sha1Digest)) copy(ret, md5Digest) copy(ret[len(md5Digest):], sha1Digest) return ret } var ssl3ClientFinishedMagic = [4]byte{0x43, 0x4c, 0x4e, 0x54} var ssl3ServerFinishedMagic = [4]byte{0x53, 0x52, 0x56, 0x52} // clientSum returns the contents of the verify_data member of a client's // Finished message. func (h finishedHash) clientSum(baseKey []byte) []byte { if h.version == VersionSSL30 { return finishedSum30(h.clientMD5, h.client, baseKey, ssl3ClientFinishedMagic[:]) } if h.version < VersionTLS13 { out := make([]byte, finishedVerifyLength) h.prf(out, baseKey, clientFinishedLabel, h.Sum()) return out } clientFinishedKey := hkdfExpandLabel(h.hash, baseKey, finishedLabel, nil, h.hash.Size()) finishedHMAC := hmac.New(h.hash.New, clientFinishedKey) finishedHMAC.Write(h.appendContextHashes(nil)) return finishedHMAC.Sum(nil) } // serverSum returns the contents of the verify_data member of a server's // Finished message. func (h finishedHash) serverSum(baseKey []byte) []byte { if h.version == VersionSSL30 { return finishedSum30(h.serverMD5, h.server, baseKey, ssl3ServerFinishedMagic[:]) } if h.version < VersionTLS13 { out := make([]byte, finishedVerifyLength) h.prf(out, baseKey, serverFinishedLabel, h.Sum()) return out } serverFinishedKey := hkdfExpandLabel(h.hash, baseKey, finishedLabel, nil, h.hash.Size()) finishedHMAC := hmac.New(h.hash.New, serverFinishedKey) finishedHMAC.Write(h.appendContextHashes(nil)) return finishedHMAC.Sum(nil) } // hashForClientCertificateSSL3 returns the hash to be signed for client // certificates in SSL 3.0. func (h finishedHash) hashForClientCertificateSSL3(masterSecret []byte) []byte { md5Hash := md5.New() md5Hash.Write(h.buffer) sha1Hash := sha1.New() sha1Hash.Write(h.buffer) return finishedSum30(md5Hash, sha1Hash, masterSecret, nil) } // hashForChannelID returns the hash to be signed for TLS Channel // ID. If a resumption, resumeHash has the previous handshake // hash. Otherwise, it is nil. func (h finishedHash) hashForChannelID(resumeHash []byte) []byte { hash := sha256.New() hash.Write(channelIDLabel) if resumeHash != nil { hash.Write(channelIDResumeLabel) hash.Write(resumeHash) } hash.Write(h.Sum()) return hash.Sum(nil) } // discardHandshakeBuffer is called when there is no more need to // buffer the entirety of the handshake messages. func (h *finishedHash) discardHandshakeBuffer() { h.buffer = nil } // zeroSecretTLS13 returns the default all zeros secret for TLS 1.3, used when a // given secret is not available in the handshake. See RFC 8446, section 7.1. func (h *finishedHash) zeroSecret() []byte { return make([]byte, h.hash.Size()) } // addEntropy incorporates ikm into the running TLS 1.3 secret with HKDF-Expand. func (h *finishedHash) addEntropy(ikm []byte) { h.secret = hkdf.Extract(h.hash.New, ikm, h.secret) } func (h *finishedHash) nextSecret() { h.secret = hkdfExpandLabel(h.hash, h.secret, []byte("derived"), h.hash.New().Sum(nil), h.hash.Size()) } // hkdfExpandLabel implements TLS 1.3's HKDF-Expand-Label function, as defined // in section 7.1 of RFC 8446. func hkdfExpandLabel(hash crypto.Hash, secret, label, hashValue []byte, length int) []byte { if len(label) > 255 || len(hashValue) > 255 { panic("hkdfExpandLabel: label or hashValue too long") } versionLabel := []byte("tls13 ") hkdfLabel := make([]byte, 3+len(versionLabel)+len(label)+1+len(hashValue)) x := hkdfLabel x[0] = byte(length >> 8) x[1] = byte(length) x[2] = byte(len(versionLabel) + len(label)) x = x[3:] copy(x, versionLabel) x = x[len(versionLabel):] copy(x, label) x = x[len(label):] x[0] = byte(len(hashValue)) copy(x[1:], hashValue) ret := make([]byte, length) if n, err := hkdf.Expand(hash.New, secret, hkdfLabel).Read(ret); err != nil || n != length { panic("hkdfExpandLabel: hkdf.Expand unexpectedly failed") } return ret } // appendContextHashes returns the concatenation of the handshake hash and the // resumption context hash, as used in TLS 1.3. func (h *finishedHash) appendContextHashes(b []byte) []byte { b = h.client.Sum(b) return b } // The following are labels for traffic secret derivation in TLS 1.3. var ( externalPSKBinderLabel = []byte("ext binder") resumptionPSKBinderLabel = []byte("res binder") earlyTrafficLabel = []byte("c e traffic") clientHandshakeTrafficLabel = []byte("c hs traffic") serverHandshakeTrafficLabel = []byte("s hs traffic") clientApplicationTrafficLabel = []byte("c ap traffic") serverApplicationTrafficLabel = []byte("s ap traffic") applicationTrafficLabel = []byte("traffic upd") earlyExporterLabel = []byte("e exp master") exporterLabel = []byte("exp master") resumptionLabel = []byte("res master") resumptionPSKLabel = []byte("resumption") ) // deriveSecret implements TLS 1.3's Derive-Secret function, as defined in // section 7.1 of draft ietf-tls-tls13-16. func (h *finishedHash) deriveSecret(label []byte) []byte { return hkdfExpandLabel(h.hash, h.secret, label, h.appendContextHashes(nil), h.hash.Size()) } // deriveSecretPeek is the same as deriveSecret, but it enables the caller to // tentatively append messages to the transcript. The |extraMessages| parameter // contains the bytes of these tentative messages. func (h *finishedHash) deriveSecretPeek(label []byte, extraMessages []byte) []byte { hashPeek := h.hash.New() hashPeek.Write(h.buffer) hashPeek.Write(extraMessages) return hkdfExpandLabel(h.hash, h.secret, label, hashPeek.Sum(nil), h.hash.Size()) } // The following are context strings for CertificateVerify in TLS 1.3. var ( clientCertificateVerifyContextTLS13 = []byte("TLS 1.3, client CertificateVerify") serverCertificateVerifyContextTLS13 = []byte("TLS 1.3, server CertificateVerify") channelIDContextTLS13 = []byte("TLS 1.3, Channel ID") ) // certificateVerifyMessage returns the input to be signed for CertificateVerify // in TLS 1.3. func (h *finishedHash) certificateVerifyInput(context []byte) []byte { const paddingLen = 64 b := make([]byte, paddingLen, paddingLen+len(context)+1+2*h.hash.Size()) for i := 0; i < paddingLen; i++ { b[i] = 32 } b = append(b, context...) b = append(b, 0) b = h.appendContextHashes(b) return b } type trafficDirection int const ( clientWrite trafficDirection = iota serverWrite ) var ( keyTLS13 = []byte("key") ivTLS13 = []byte("iv") ) // deriveTrafficAEAD derives traffic keys and constructs an AEAD given a traffic // secret. func deriveTrafficAEAD(version uint16, suite *cipherSuite, secret []byte, side trafficDirection) interface{} { key := hkdfExpandLabel(suite.hash(), secret, keyTLS13, nil, suite.keyLen) iv := hkdfExpandLabel(suite.hash(), secret, ivTLS13, nil, suite.ivLen(version)) return suite.aead(version, key, iv) } func updateTrafficSecret(hash crypto.Hash, version uint16, secret []byte) []byte { return hkdfExpandLabel(hash, secret, applicationTrafficLabel, nil, hash.Size()) } func computePSKBinder(psk []byte, version uint16, label []byte, cipherSuite *cipherSuite, clientHello, helloRetryRequest, truncatedHello []byte) []byte { finishedHash := newFinishedHash(version, false, cipherSuite) finishedHash.addEntropy(psk) binderKey := finishedHash.deriveSecret(label) finishedHash.Write(clientHello) if len(helloRetryRequest) != 0 { finishedHash.UpdateForHelloRetryRequest() } finishedHash.Write(helloRetryRequest) finishedHash.Write(truncatedHello) return finishedHash.clientSum(binderKey) } func deriveSessionPSK(suite *cipherSuite, version uint16, masterSecret []byte, nonce []byte) []byte { hash := suite.hash() return hkdfExpandLabel(hash, masterSecret, resumptionPSKLabel, nonce, hash.Size()) }