/*------------------------------------------------------------------------- * drawElements Quality Program Reference Renderer * ----------------------------------------------- * * Copyright 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *//*! * \file * \brief Reference rasterizer *//*--------------------------------------------------------------------*/ #include "rrRasterizer.hpp" #include "deMath.h" #include "tcuVectorUtil.hpp" namespace rr { inline deInt64 toSubpixelCoord (float v, int bits) { return (deInt64)(v * (float)(1 << bits) + (v < 0.f ? -0.5f : 0.5f)); } inline deInt64 toSubpixelCoord (deInt32 v, int bits) { return v << bits; } inline deInt32 ceilSubpixelToPixelCoord (deInt64 coord, int bits, bool fillEdge) { if (coord >= 0) return (deInt32)((coord + ((1ll << bits) - (fillEdge ? 0 : 1))) >> bits); else return (deInt32)((coord + (fillEdge ? 1 : 0)) >> bits); } inline deInt32 floorSubpixelToPixelCoord (deInt64 coord, int bits, bool fillEdge) { if (coord >= 0) return (deInt32)((coord - (fillEdge ? 1 : 0)) >> bits); else return (deInt32)((coord - ((1ll << bits) - (fillEdge ? 0 : 1))) >> bits); } static inline void initEdgeCCW (EdgeFunction& edge, const HorizontalFill horizontalFill, const VerticalFill verticalFill, const deInt64 x0, const deInt64 y0, const deInt64 x1, const deInt64 y1) { // \note See EdgeFunction documentation for details. const deInt64 xd = x1-x0; const deInt64 yd = y1-y0; bool inclusive = false; //!< Inclusive in CCW orientation. if (yd == 0) inclusive = verticalFill == FILL_BOTTOM ? xd >= 0 : xd <= 0; else inclusive = horizontalFill == FILL_LEFT ? yd <= 0 : yd >= 0; edge.a = (y0 - y1); edge.b = (x1 - x0); edge.c = x0*y1 - y0*x1; edge.inclusive = inclusive; //!< \todo [pyry] Swap for CW triangles } static inline void reverseEdge (EdgeFunction& edge) { edge.a = -edge.a; edge.b = -edge.b; edge.c = -edge.c; edge.inclusive = !edge.inclusive; } static inline deInt64 evaluateEdge (const EdgeFunction& edge, const deInt64 x, const deInt64 y) { return edge.a*x + edge.b*y + edge.c; } static inline bool isInsideCCW (const EdgeFunction& edge, const deInt64 edgeVal) { return edge.inclusive ? (edgeVal >= 0) : (edgeVal > 0); } namespace LineRasterUtil { struct SubpixelLineSegment { const tcu::Vector m_v0; const tcu::Vector m_v1; SubpixelLineSegment (const tcu::Vector& v0, const tcu::Vector& v1) : m_v0(v0) , m_v1(v1) { } tcu::Vector direction (void) const { return m_v1 - m_v0; } }; enum LINE_SIDE { LINE_SIDE_INTERSECT = 0, LINE_SIDE_LEFT, LINE_SIDE_RIGHT }; static tcu::Vector toSubpixelVector (const tcu::Vec2& v, int bits) { return tcu::Vector(toSubpixelCoord(v.x(), bits), toSubpixelCoord(v.y(), bits)); } static tcu::Vector toSubpixelVector (const tcu::IVec2& v, int bits) { return tcu::Vector(toSubpixelCoord(v.x(), bits), toSubpixelCoord(v.y(), bits)); } #if defined(DE_DEBUG) static bool isTheCenterOfTheFragment (const tcu::Vector& a, int bits) { const deUint64 pixelSize = 1ll << bits; const deUint64 halfPixel = 1ll << (bits - 1); return ((a.x() & (pixelSize-1)) == halfPixel && (a.y() & (pixelSize-1)) == halfPixel); } static bool inViewport (const tcu::IVec2& p, const tcu::IVec4& viewport) { return p.x() >= viewport.x() && p.y() >= viewport.y() && p.x() < viewport.x() + viewport.z() && p.y() < viewport.y() + viewport.w(); } #endif // DE_DEBUG // returns true if vertex is on the left side of the line static bool vertexOnLeftSideOfLine (const tcu::Vector& p, const SubpixelLineSegment& l) { const tcu::Vector u = l.direction(); const tcu::Vector v = ( p - l.m_v0); const deInt64 crossProduct = (u.x() * v.y() - u.y() * v.x()); return crossProduct < 0; } // returns true if vertex is on the right side of the line static bool vertexOnRightSideOfLine (const tcu::Vector& p, const SubpixelLineSegment& l) { const tcu::Vector u = l.direction(); const tcu::Vector v = ( p - l.m_v0); const deInt64 crossProduct = (u.x() * v.y() - u.y() * v.x()); return crossProduct > 0; } // returns true if vertex is on the line static bool vertexOnLine (const tcu::Vector& p, const SubpixelLineSegment& l) { const tcu::Vector u = l.direction(); const tcu::Vector v = ( p - l.m_v0); const deInt64 crossProduct = (u.x() * v.y() - u.y() * v.x()); return crossProduct == 0; // cross product == 0 } // returns true if vertex is on the line segment static bool vertexOnLineSegment (const tcu::Vector& p, const SubpixelLineSegment& l) { if (!vertexOnLine(p, l)) return false; const tcu::Vector v = l.direction(); const tcu::Vector u1 = ( p - l.m_v0); const tcu::Vector u2 = ( p - l.m_v1); if (v.x() == 0 && v.y() == 0) return false; return tcu::dot( v, u1) >= 0 && tcu::dot(-v, u2) >= 0; // dot (A->B, A->V) >= 0 and dot (B->A, B->V) >= 0 } static LINE_SIDE getVertexSide (const tcu::Vector& v, const SubpixelLineSegment& l) { if (vertexOnLeftSideOfLine(v, l)) return LINE_SIDE_LEFT; else if (vertexOnRightSideOfLine(v, l)) return LINE_SIDE_RIGHT; else if (vertexOnLine(v, l)) return LINE_SIDE_INTERSECT; else { DE_ASSERT(false); return LINE_SIDE_INTERSECT; } } // returns true if angle between line and given cornerExitNormal is in range (-45, 45) bool lineInCornerAngleRange (const SubpixelLineSegment& line, const tcu::Vector& cornerExitNormal) { // v0 -> v1 has angle difference to cornerExitNormal in range (-45, 45) const tcu::Vector v = line.direction(); const deInt64 dotProduct = dot(v, cornerExitNormal); // dotProduct > |v1-v0|*|cornerExitNormal|/sqrt(2) if (dotProduct < 0) return false; return 2 * dotProduct * dotProduct > tcu::lengthSquared(v)*tcu::lengthSquared(cornerExitNormal); } // returns true if angle between line and given cornerExitNormal is in range (-135, 135) bool lineInCornerOutsideAngleRange (const SubpixelLineSegment& line, const tcu::Vector& cornerExitNormal) { // v0 -> v1 has angle difference to cornerExitNormal in range (-135, 135) const tcu::Vector v = line.direction(); const deInt64 dotProduct = dot(v, cornerExitNormal); // dotProduct > -|v1-v0|*|cornerExitNormal|/sqrt(2) if (dotProduct >= 0) return true; return 2 * (-dotProduct) * (-dotProduct) < tcu::lengthSquared(v)*tcu::lengthSquared(cornerExitNormal); } bool doesLineSegmentExitDiamond (const SubpixelLineSegment& line, const tcu::Vector& diamondCenter, int bits) { DE_ASSERT(isTheCenterOfTheFragment(diamondCenter, bits)); // Diamond Center is at diamondCenter in subpixel coords const deInt64 halfPixel = 1ll << (bits - 1); // Reject distant diamonds early { const tcu::Vector u = line.direction(); const tcu::Vector v = (diamondCenter - line.m_v0); const deInt64 crossProduct = (u.x() * v.y() - u.y() * v.x()); // crossProduct = |p| |l| sin(theta) // distanceFromLine = |p| sin(theta) // => distanceFromLine = crossProduct / |l| // // |distanceFromLine| > C // => distanceFromLine^2 > C^2 // => crossProduct^2 / |l|^2 > C^2 // => crossProduct^2 > |l|^2 * C^2 const deInt64 floorSqrtMaxInt64 = 3037000499LL; //!< floor(sqrt(MAX_INT64)) const deInt64 broadRejectDistance = 2 * halfPixel; const deInt64 broadRejectDistanceSquared = broadRejectDistance * broadRejectDistance; const bool crossProductOverflows = (crossProduct > floorSqrtMaxInt64 || crossProduct < -floorSqrtMaxInt64); const deInt64 crossProductSquared = (crossProductOverflows) ? (0) : (crossProduct * crossProduct); // avoid overflow const deInt64 lineLengthSquared = tcu::lengthSquared(u); const bool limitValueCouldOverflow = ((64 - deClz64(lineLengthSquared)) + (64 - deClz64(broadRejectDistanceSquared))) > 63; const deInt64 limitValue = (limitValueCouldOverflow) ? (0) : (lineLengthSquared * broadRejectDistanceSquared); // avoid overflow // only cross overflows if (crossProductOverflows && !limitValueCouldOverflow) return false; // both representable if (!crossProductOverflows && !limitValueCouldOverflow) { if (crossProductSquared > limitValue) return false; } } const struct DiamondBound { tcu::Vector p0; tcu::Vector p1; bool edgeInclusive; // would a point on the bound be inside of the region } bounds[] = { { diamondCenter + tcu::Vector(0, -halfPixel), diamondCenter + tcu::Vector(-halfPixel, 0), false }, { diamondCenter + tcu::Vector(-halfPixel, 0), diamondCenter + tcu::Vector(0, halfPixel), false }, { diamondCenter + tcu::Vector(0, halfPixel), diamondCenter + tcu::Vector(halfPixel, 0), true }, { diamondCenter + tcu::Vector(halfPixel, 0), diamondCenter + tcu::Vector(0, -halfPixel), true }, }; const struct DiamondCorners { enum CORNER_EDGE_CASE_BEHAVIOR { CORNER_EDGE_CASE_NONE, // if the line intersects just a corner, no entering or exiting CORNER_EDGE_CASE_HIT, // if the line intersects just a corner, entering and exit CORNER_EDGE_CASE_HIT_FIRST_QUARTER, // if the line intersects just a corner and the line has either endpoint in (+X,-Y) direction (preturbing moves the line inside) CORNER_EDGE_CASE_HIT_SECOND_QUARTER // if the line intersects just a corner and the line has either endpoint in (+X,+Y) direction (preturbing moves the line inside) }; enum CORNER_START_CASE_BEHAVIOR { CORNER_START_CASE_NONE, // the line starting point is outside, no exiting CORNER_START_CASE_OUTSIDE, // exit, if line does not intersect the region (preturbing moves the start point inside) CORNER_START_CASE_POSITIVE_Y_45, // exit, if line the angle of line vector and X-axis is in range (0, 45] in positive Y side. CORNER_START_CASE_NEGATIVE_Y_45 // exit, if line the angle of line vector and X-axis is in range [0, 45] in negative Y side. }; enum CORNER_END_CASE_BEHAVIOR { CORNER_END_CASE_NONE, // end is inside, no exiting (preturbing moves the line end inside) CORNER_END_CASE_DIRECTION, // exit, if line intersected the region (preturbing moves the line end outside) CORNER_END_CASE_DIRECTION_AND_FIRST_QUARTER, // exit, if line intersected the region, or line originates from (+X,-Y) direction (preturbing moves the line end outside) CORNER_END_CASE_DIRECTION_AND_SECOND_QUARTER // exit, if line intersected the region, or line originates from (+X,+Y) direction (preturbing moves the line end outside) }; tcu::Vector dp; bool pointInclusive; // would a point in this corner intersect with the region CORNER_EDGE_CASE_BEHAVIOR lineBehavior; // would a line segment going through this corner intersect with the region CORNER_START_CASE_BEHAVIOR startBehavior; // how the corner behaves if the start point at the corner CORNER_END_CASE_BEHAVIOR endBehavior; // how the corner behaves if the end point at the corner } corners[] = { { tcu::Vector(0, -halfPixel), false, DiamondCorners::CORNER_EDGE_CASE_HIT_SECOND_QUARTER, DiamondCorners::CORNER_START_CASE_POSITIVE_Y_45, DiamondCorners::CORNER_END_CASE_DIRECTION_AND_SECOND_QUARTER}, { tcu::Vector(-halfPixel, 0), false, DiamondCorners::CORNER_EDGE_CASE_NONE, DiamondCorners::CORNER_START_CASE_NONE, DiamondCorners::CORNER_END_CASE_DIRECTION }, { tcu::Vector(0, halfPixel), false, DiamondCorners::CORNER_EDGE_CASE_HIT_FIRST_QUARTER, DiamondCorners::CORNER_START_CASE_NEGATIVE_Y_45, DiamondCorners::CORNER_END_CASE_DIRECTION_AND_FIRST_QUARTER }, { tcu::Vector(halfPixel, 0), true, DiamondCorners::CORNER_EDGE_CASE_HIT, DiamondCorners::CORNER_START_CASE_OUTSIDE, DiamondCorners::CORNER_END_CASE_NONE }, }; // Corner cases at the corners for (int ndx = 0; ndx < DE_LENGTH_OF_ARRAY(corners); ++ndx) { const tcu::Vector p = diamondCenter + corners[ndx].dp; const bool intersectsAtCorner = LineRasterUtil::vertexOnLineSegment(p, line); if (!intersectsAtCorner) continue; // line segment body intersects with the corner if (p != line.m_v0 && p != line.m_v1) { if (corners[ndx].lineBehavior == DiamondCorners::CORNER_EDGE_CASE_HIT) return true; // endpoint in (+X, -Y) (X or Y may be 0) direction <==> x*y <= 0 if (corners[ndx].lineBehavior == DiamondCorners::CORNER_EDGE_CASE_HIT_FIRST_QUARTER && (line.direction().x() * line.direction().y()) <= 0) return true; // endpoint in (+X, +Y) (Y > 0) direction <==> x*y > 0 if (corners[ndx].lineBehavior == DiamondCorners::CORNER_EDGE_CASE_HIT_SECOND_QUARTER && (line.direction().x() * line.direction().y()) > 0) return true; } // line exits the area at the corner if (lineInCornerAngleRange(line, corners[ndx].dp)) { const bool startIsInside = corners[ndx].pointInclusive || p != line.m_v0; const bool endIsOutside = !corners[ndx].pointInclusive || p != line.m_v1; // starting point is inside the region and end endpoint is outside if (startIsInside && endIsOutside) return true; } // line end is at the corner if (p == line.m_v1) { if (corners[ndx].endBehavior == DiamondCorners::CORNER_END_CASE_DIRECTION || corners[ndx].endBehavior == DiamondCorners::CORNER_END_CASE_DIRECTION_AND_FIRST_QUARTER || corners[ndx].endBehavior == DiamondCorners::CORNER_END_CASE_DIRECTION_AND_SECOND_QUARTER) { // did the line intersect the region if (lineInCornerAngleRange(line, corners[ndx].dp)) return true; } // due to the perturbed endpoint, lines at this the angle will cause and enter-exit pair if (corners[ndx].endBehavior == DiamondCorners::CORNER_END_CASE_DIRECTION_AND_FIRST_QUARTER && line.direction().x() < 0 && line.direction().y() > 0) return true; if (corners[ndx].endBehavior == DiamondCorners::CORNER_END_CASE_DIRECTION_AND_SECOND_QUARTER && line.direction().x() > 0 && line.direction().y() > 0) return true; } // line start is at the corner if (p == line.m_v0) { if (corners[ndx].startBehavior == DiamondCorners::CORNER_START_CASE_OUTSIDE) { // if the line is not going inside, it will exit if (lineInCornerOutsideAngleRange(line, corners[ndx].dp)) return true; } // exit, if line the angle between line vector and X-axis is in range (0, 45] in positive Y side. if (corners[ndx].startBehavior == DiamondCorners::CORNER_START_CASE_POSITIVE_Y_45 && line.direction().x() > 0 && line.direction().y() > 0 && line.direction().y() <= line.direction().x()) return true; // exit, if line the angle between line vector and X-axis is in range [0, 45] in negative Y side. if (corners[ndx].startBehavior == DiamondCorners::CORNER_START_CASE_NEGATIVE_Y_45 && line.direction().x() > 0 && line.direction().y() <= 0 && -line.direction().y() <= line.direction().x()) return true; } } // Does the line intersect boundary at the left == exits the diamond for (int ndx = 0; ndx < DE_LENGTH_OF_ARRAY(bounds); ++ndx) { const bool startVertexInside = LineRasterUtil::vertexOnLeftSideOfLine (line.m_v0, LineRasterUtil::SubpixelLineSegment(bounds[ndx].p0, bounds[ndx].p1)) || (bounds[ndx].edgeInclusive && LineRasterUtil::vertexOnLine (line.m_v0, LineRasterUtil::SubpixelLineSegment(bounds[ndx].p0, bounds[ndx].p1))); const bool endVertexInside = LineRasterUtil::vertexOnLeftSideOfLine (line.m_v1, LineRasterUtil::SubpixelLineSegment(bounds[ndx].p0, bounds[ndx].p1)) || (bounds[ndx].edgeInclusive && LineRasterUtil::vertexOnLine (line.m_v1, LineRasterUtil::SubpixelLineSegment(bounds[ndx].p0, bounds[ndx].p1))); // start must be on inside this half space (left or at the inclusive boundary) if (!startVertexInside) continue; // end must be outside of this half-space (right or at non-inclusive boundary) if (endVertexInside) continue; // Does the line via v0 and v1 intersect the line segment p0-p1 // <==> p0 and p1 are the different sides (LEFT, RIGHT) of the v0-v1 line. // Corners are not allowed, they are checked already LineRasterUtil::LINE_SIDE sideP0 = LineRasterUtil::getVertexSide(bounds[ndx].p0, line); LineRasterUtil::LINE_SIDE sideP1 = LineRasterUtil::getVertexSide(bounds[ndx].p1, line); if (sideP0 != LineRasterUtil::LINE_SIDE_INTERSECT && sideP1 != LineRasterUtil::LINE_SIDE_INTERSECT && sideP0 != sideP1) return true; } return false; } } // LineRasterUtil TriangleRasterizer::TriangleRasterizer (const tcu::IVec4& viewport, const int numSamples, const RasterizationState& state, const int subpixelBits) : m_viewport (viewport) , m_numSamples (numSamples) , m_winding (state.winding) , m_horizontalFill (state.horizontalFill) , m_verticalFill (state.verticalFill) , m_subpixelBits (subpixelBits) , m_face (FACETYPE_LAST) , m_viewportOrientation (state.viewportOrientation) { } /*--------------------------------------------------------------------*//*! * \brief Initialize triangle rasterization * \param v0 Screen-space coordinates (x, y, z) and 1/w for vertex 0. * \param v1 Screen-space coordinates (x, y, z) and 1/w for vertex 1. * \param v2 Screen-space coordinates (x, y, z) and 1/w for vertex 2. *//*--------------------------------------------------------------------*/ void TriangleRasterizer::init (const tcu::Vec4& v0, const tcu::Vec4& v1, const tcu::Vec4& v2) { m_v0 = v0; m_v1 = v1; m_v2 = v2; // Positions in fixed-point coordinates. const deInt64 x0 = toSubpixelCoord(v0.x(), m_subpixelBits); const deInt64 y0 = toSubpixelCoord(v0.y(), m_subpixelBits); const deInt64 x1 = toSubpixelCoord(v1.x(), m_subpixelBits); const deInt64 y1 = toSubpixelCoord(v1.y(), m_subpixelBits); const deInt64 x2 = toSubpixelCoord(v2.x(), m_subpixelBits); const deInt64 y2 = toSubpixelCoord(v2.y(), m_subpixelBits); // Initialize edge functions. if (m_winding == WINDING_CCW) { initEdgeCCW(m_edge01, m_horizontalFill, m_verticalFill, x0, y0, x1, y1); initEdgeCCW(m_edge12, m_horizontalFill, m_verticalFill, x1, y1, x2, y2); initEdgeCCW(m_edge20, m_horizontalFill, m_verticalFill, x2, y2, x0, y0); } else { // Reverse edges initEdgeCCW(m_edge01, m_horizontalFill, m_verticalFill, x1, y1, x0, y0); initEdgeCCW(m_edge12, m_horizontalFill, m_verticalFill, x2, y2, x1, y1); initEdgeCCW(m_edge20, m_horizontalFill, m_verticalFill, x0, y0, x2, y2); } // Determine face. const deInt64 s = evaluateEdge(m_edge01, x2, y2); const bool positiveArea = (m_winding == WINDING_CCW) ? (s > 0) : (s < 0); if (m_viewportOrientation == VIEWPORTORIENTATION_UPPER_LEFT) m_face = positiveArea ? FACETYPE_BACK : FACETYPE_FRONT; else m_face = positiveArea ? FACETYPE_FRONT : FACETYPE_BACK; if (!positiveArea) { // Reverse edges so that we can use CCW area tests & interpolation reverseEdge(m_edge01); reverseEdge(m_edge12); reverseEdge(m_edge20); } // Bounding box const deInt64 xMin = de::min(de::min(x0, x1), x2); const deInt64 xMax = de::max(de::max(x0, x1), x2); const deInt64 yMin = de::min(de::min(y0, y1), y2); const deInt64 yMax = de::max(de::max(y0, y1), y2); m_bboxMin.x() = floorSubpixelToPixelCoord (xMin, m_subpixelBits, m_horizontalFill == FILL_LEFT); m_bboxMin.y() = floorSubpixelToPixelCoord (yMin, m_subpixelBits, m_verticalFill == FILL_BOTTOM); m_bboxMax.x() = ceilSubpixelToPixelCoord (xMax, m_subpixelBits, m_horizontalFill == FILL_RIGHT); m_bboxMax.y() = ceilSubpixelToPixelCoord (yMax, m_subpixelBits, m_verticalFill == FILL_TOP); // Clamp to viewport const int wX0 = m_viewport.x(); const int wY0 = m_viewport.y(); const int wX1 = wX0 + m_viewport.z() - 1; const int wY1 = wY0 + m_viewport.w() -1; m_bboxMin.x() = de::clamp(m_bboxMin.x(), wX0, wX1); m_bboxMin.y() = de::clamp(m_bboxMin.y(), wY0, wY1); m_bboxMax.x() = de::clamp(m_bboxMax.x(), wX0, wX1); m_bboxMax.y() = de::clamp(m_bboxMax.y(), wY0, wY1); m_curPos = m_bboxMin; } void TriangleRasterizer::rasterizeSingleSample (FragmentPacket* const fragmentPackets, float* const depthValues, const int maxFragmentPackets, int& numPacketsRasterized) { DE_ASSERT(maxFragmentPackets > 0); const deUint64 halfPixel = 1ll << (m_subpixelBits - 1); int packetNdx = 0; // For depth interpolation; given barycentrics A, B, C = (1 - A - B) // we can reformulate the usual z = z0*A + z1*B + z2*C into more // stable equation z = A*(z0 - z2) + B*(z1 - z2) + z2. const float za = m_v0.z()-m_v2.z(); const float zb = m_v1.z()-m_v2.z(); const float zc = m_v2.z(); while (m_curPos.y() <= m_bboxMax.y() && packetNdx < maxFragmentPackets) { const int x0 = m_curPos.x(); const int y0 = m_curPos.y(); // Subpixel coords const deInt64 sx0 = toSubpixelCoord(x0, m_subpixelBits) + halfPixel; const deInt64 sx1 = toSubpixelCoord(x0+1, m_subpixelBits) + halfPixel; const deInt64 sy0 = toSubpixelCoord(y0, m_subpixelBits) + halfPixel; const deInt64 sy1 = toSubpixelCoord(y0+1, m_subpixelBits) + halfPixel; const deInt64 sx[4] = { sx0, sx1, sx0, sx1 }; const deInt64 sy[4] = { sy0, sy0, sy1, sy1 }; // Viewport test const bool outX1 = x0+1 == m_viewport.x()+m_viewport.z(); const bool outY1 = y0+1 == m_viewport.y()+m_viewport.w(); DE_ASSERT(x0 < m_viewport.x()+m_viewport.z()); DE_ASSERT(y0 < m_viewport.y()+m_viewport.w()); // Edge values tcu::Vector e01; tcu::Vector e12; tcu::Vector e20; // Coverage deUint64 coverage = 0; // Evaluate edge values for (int i = 0; i < 4; i++) { e01[i] = evaluateEdge(m_edge01, sx[i], sy[i]); e12[i] = evaluateEdge(m_edge12, sx[i], sy[i]); e20[i] = evaluateEdge(m_edge20, sx[i], sy[i]); } // Compute coverage mask coverage = setCoverageValue(coverage, 1, 0, 0, 0, isInsideCCW(m_edge01, e01[0]) && isInsideCCW(m_edge12, e12[0]) && isInsideCCW(m_edge20, e20[0])); coverage = setCoverageValue(coverage, 1, 1, 0, 0, !outX1 && isInsideCCW(m_edge01, e01[1]) && isInsideCCW(m_edge12, e12[1]) && isInsideCCW(m_edge20, e20[1])); coverage = setCoverageValue(coverage, 1, 0, 1, 0, !outY1 && isInsideCCW(m_edge01, e01[2]) && isInsideCCW(m_edge12, e12[2]) && isInsideCCW(m_edge20, e20[2])); coverage = setCoverageValue(coverage, 1, 1, 1, 0, !outX1 && !outY1 && isInsideCCW(m_edge01, e01[3]) && isInsideCCW(m_edge12, e12[3]) && isInsideCCW(m_edge20, e20[3])); // Advance to next location m_curPos.x() += 2; if (m_curPos.x() > m_bboxMax.x()) { m_curPos.y() += 2; m_curPos.x() = m_bboxMin.x(); } if (coverage == 0) continue; // Discard. // Floating-point edge values for barycentrics etc. const tcu::Vec4 e01f = e01.asFloat(); const tcu::Vec4 e12f = e12.asFloat(); const tcu::Vec4 e20f = e20.asFloat(); // Compute depth values. if (depthValues) { const tcu::Vec4 edgeSum = e01f + e12f + e20f; const tcu::Vec4 z0 = e12f / edgeSum; const tcu::Vec4 z1 = e20f / edgeSum; depthValues[packetNdx*4+0] = z0[0]*za + z1[0]*zb + zc; depthValues[packetNdx*4+1] = z0[1]*za + z1[1]*zb + zc; depthValues[packetNdx*4+2] = z0[2]*za + z1[2]*zb + zc; depthValues[packetNdx*4+3] = z0[3]*za + z1[3]*zb + zc; } // Compute barycentrics and write out fragment packet { FragmentPacket& packet = fragmentPackets[packetNdx]; const tcu::Vec4 b0 = e12f * m_v0.w(); const tcu::Vec4 b1 = e20f * m_v1.w(); const tcu::Vec4 b2 = e01f * m_v2.w(); const tcu::Vec4 bSum = b0 + b1 + b2; packet.position = tcu::IVec2(x0, y0); packet.coverage = coverage; packet.barycentric[0] = b0 / bSum; packet.barycentric[1] = b1 / bSum; packet.barycentric[2] = 1.0f - packet.barycentric[0] - packet.barycentric[1]; packetNdx += 1; } } DE_ASSERT(packetNdx <= maxFragmentPackets); numPacketsRasterized = packetNdx; } // Sample positions - ordered as (x, y) list. static const float s_samplePts2[] = { 0.3f, 0.3f, 0.7f, 0.7f }; static const float s_samplePts4[] = { 0.25f, 0.25f, 0.75f, 0.25f, 0.25f, 0.75f, 0.75f, 0.75f }; static const float s_samplePts8[] = { 7.f / 16.f, 9.f / 16.f, 9.f / 16.f, 13.f / 16.f, 11.f / 16.f, 3.f / 16.f, 13.f / 16.f, 11.f / 16.f, 1.f / 16.f, 7.f / 16.f, 5.f / 16.f, 1.f / 16.f, 15.f / 16.f, 5.f / 16.f, 3.f / 16.f, 15.f / 16.f }; static const float s_samplePts16[] = { 1.f / 8.f, 1.f / 8.f, 3.f / 8.f, 1.f / 8.f, 5.f / 8.f, 1.f / 8.f, 7.f / 8.f, 1.f / 8.f, 1.f / 8.f, 3.f / 8.f, 3.f / 8.f, 3.f / 8.f, 5.f / 8.f, 3.f / 8.f, 7.f / 8.f, 3.f / 8.f, 1.f / 8.f, 5.f / 8.f, 3.f / 8.f, 5.f / 8.f, 5.f / 8.f, 5.f / 8.f, 7.f / 8.f, 5.f / 8.f, 1.f / 8.f, 7.f / 8.f, 3.f / 8.f, 7.f / 8.f, 5.f / 8.f, 7.f / 8.f, 7.f / 8.f, 7.f / 8.f }; template void TriangleRasterizer::rasterizeMultiSample (FragmentPacket* const fragmentPackets, float* const depthValues, const int maxFragmentPackets, int& numPacketsRasterized) { DE_ASSERT(maxFragmentPackets > 0); // Big enough to hold maximum multisample count deInt64 samplePos[DE_LENGTH_OF_ARRAY(s_samplePts16)]; const float * samplePts = DE_NULL; const deUint64 halfPixel = 1ll << (m_subpixelBits - 1); int packetNdx = 0; // For depth interpolation, see rasterizeSingleSample const float za = m_v0.z()-m_v2.z(); const float zb = m_v1.z()-m_v2.z(); const float zc = m_v2.z(); switch (NumSamples) { case 2: samplePts = s_samplePts2; break; case 4: samplePts = s_samplePts4; break; case 8: samplePts = s_samplePts8; break; case 16: samplePts = s_samplePts16; break; default: DE_ASSERT(false); } for (int c = 0; c < NumSamples * 2; ++c) samplePos[c] = toSubpixelCoord(samplePts[c], m_subpixelBits); while (m_curPos.y() <= m_bboxMax.y() && packetNdx < maxFragmentPackets) { const int x0 = m_curPos.x(); const int y0 = m_curPos.y(); // Base subpixel coords const deInt64 sx0 = toSubpixelCoord(x0, m_subpixelBits); const deInt64 sx1 = toSubpixelCoord(x0+1, m_subpixelBits); const deInt64 sy0 = toSubpixelCoord(y0, m_subpixelBits); const deInt64 sy1 = toSubpixelCoord(y0+1, m_subpixelBits); const deInt64 sx[4] = { sx0, sx1, sx0, sx1 }; const deInt64 sy[4] = { sy0, sy0, sy1, sy1 }; // Viewport test const bool outX1 = x0+1 == m_viewport.x()+m_viewport.z(); const bool outY1 = y0+1 == m_viewport.y()+m_viewport.w(); DE_ASSERT(x0 < m_viewport.x()+m_viewport.z()); DE_ASSERT(y0 < m_viewport.y()+m_viewport.w()); // Edge values tcu::Vector e01[NumSamples]; tcu::Vector e12[NumSamples]; tcu::Vector e20[NumSamples]; // Coverage deUint64 coverage = 0; // Evaluate edge values at sample positions for (int sampleNdx = 0; sampleNdx < NumSamples; sampleNdx++) { const deInt64 ox = samplePos[sampleNdx*2 + 0]; const deInt64 oy = samplePos[sampleNdx*2 + 1]; for (int fragNdx = 0; fragNdx < 4; fragNdx++) { e01[sampleNdx][fragNdx] = evaluateEdge(m_edge01, sx[fragNdx] + ox, sy[fragNdx] + oy); e12[sampleNdx][fragNdx] = evaluateEdge(m_edge12, sx[fragNdx] + ox, sy[fragNdx] + oy); e20[sampleNdx][fragNdx] = evaluateEdge(m_edge20, sx[fragNdx] + ox, sy[fragNdx] + oy); } } // Compute coverage mask for (int sampleNdx = 0; sampleNdx < NumSamples; sampleNdx++) { coverage = setCoverageValue(coverage, NumSamples, 0, 0, sampleNdx, isInsideCCW(m_edge01, e01[sampleNdx][0]) && isInsideCCW(m_edge12, e12[sampleNdx][0]) && isInsideCCW(m_edge20, e20[sampleNdx][0])); coverage = setCoverageValue(coverage, NumSamples, 1, 0, sampleNdx, !outX1 && isInsideCCW(m_edge01, e01[sampleNdx][1]) && isInsideCCW(m_edge12, e12[sampleNdx][1]) && isInsideCCW(m_edge20, e20[sampleNdx][1])); coverage = setCoverageValue(coverage, NumSamples, 0, 1, sampleNdx, !outY1 && isInsideCCW(m_edge01, e01[sampleNdx][2]) && isInsideCCW(m_edge12, e12[sampleNdx][2]) && isInsideCCW(m_edge20, e20[sampleNdx][2])); coverage = setCoverageValue(coverage, NumSamples, 1, 1, sampleNdx, !outX1 && !outY1 && isInsideCCW(m_edge01, e01[sampleNdx][3]) && isInsideCCW(m_edge12, e12[sampleNdx][3]) && isInsideCCW(m_edge20, e20[sampleNdx][3])); } // Advance to next location m_curPos.x() += 2; if (m_curPos.x() > m_bboxMax.x()) { m_curPos.y() += 2; m_curPos.x() = m_bboxMin.x(); } if (coverage == 0) continue; // Discard. // Compute depth values. if (depthValues) { for (int sampleNdx = 0; sampleNdx < NumSamples; sampleNdx++) { // Floating-point edge values at sample coordinates. const tcu::Vec4& e01f = e01[sampleNdx].asFloat(); const tcu::Vec4& e12f = e12[sampleNdx].asFloat(); const tcu::Vec4& e20f = e20[sampleNdx].asFloat(); const tcu::Vec4 edgeSum = e01f + e12f + e20f; const tcu::Vec4 z0 = e12f / edgeSum; const tcu::Vec4 z1 = e20f / edgeSum; depthValues[(packetNdx*4+0)*NumSamples + sampleNdx] = z0[0]*za + z1[0]*zb + zc; depthValues[(packetNdx*4+1)*NumSamples + sampleNdx] = z0[1]*za + z1[1]*zb + zc; depthValues[(packetNdx*4+2)*NumSamples + sampleNdx] = z0[2]*za + z1[2]*zb + zc; depthValues[(packetNdx*4+3)*NumSamples + sampleNdx] = z0[3]*za + z1[3]*zb + zc; } } // Compute barycentrics and write out fragment packet { FragmentPacket& packet = fragmentPackets[packetNdx]; // Floating-point edge values at pixel center. tcu::Vec4 e01f; tcu::Vec4 e12f; tcu::Vec4 e20f; for (int i = 0; i < 4; i++) { e01f[i] = float(evaluateEdge(m_edge01, sx[i] + halfPixel, sy[i] + halfPixel)); e12f[i] = float(evaluateEdge(m_edge12, sx[i] + halfPixel, sy[i] + halfPixel)); e20f[i] = float(evaluateEdge(m_edge20, sx[i] + halfPixel, sy[i] + halfPixel)); } // Barycentrics & scale. const tcu::Vec4 b0 = e12f * m_v0.w(); const tcu::Vec4 b1 = e20f * m_v1.w(); const tcu::Vec4 b2 = e01f * m_v2.w(); const tcu::Vec4 bSum = b0 + b1 + b2; packet.position = tcu::IVec2(x0, y0); packet.coverage = coverage; packet.barycentric[0] = b0 / bSum; packet.barycentric[1] = b1 / bSum; packet.barycentric[2] = 1.0f - packet.barycentric[0] - packet.barycentric[1]; packetNdx += 1; } } DE_ASSERT(packetNdx <= maxFragmentPackets); numPacketsRasterized = packetNdx; } void TriangleRasterizer::rasterize (FragmentPacket* const fragmentPackets, float* const depthValues, const int maxFragmentPackets, int& numPacketsRasterized) { DE_ASSERT(maxFragmentPackets > 0); switch (m_numSamples) { case 1: rasterizeSingleSample (fragmentPackets, depthValues, maxFragmentPackets, numPacketsRasterized); break; case 2: rasterizeMultiSample<2> (fragmentPackets, depthValues, maxFragmentPackets, numPacketsRasterized); break; case 4: rasterizeMultiSample<4> (fragmentPackets, depthValues, maxFragmentPackets, numPacketsRasterized); break; case 8: rasterizeMultiSample<8> (fragmentPackets, depthValues, maxFragmentPackets, numPacketsRasterized); break; case 16: rasterizeMultiSample<16> (fragmentPackets, depthValues, maxFragmentPackets, numPacketsRasterized); break; default: DE_ASSERT(DE_FALSE); } } SingleSampleLineRasterizer::SingleSampleLineRasterizer (const tcu::IVec4& viewport, const int subpixelBits) : m_viewport (viewport) , m_subpixelBits (subpixelBits) , m_curRowFragment (0) , m_lineWidth (0.0f) , m_stippleCounter (0) { } SingleSampleLineRasterizer::~SingleSampleLineRasterizer (void) { } void SingleSampleLineRasterizer::init (const tcu::Vec4& v0, const tcu::Vec4& v1, float lineWidth, deUint32 stippleFactor, deUint16 stipplePattern) { const bool isXMajor = de::abs((v1 - v0).x()) >= de::abs((v1 - v0).y()); // Bounding box \note: with wide lines, the line is actually moved as in the spec const deInt32 lineWidthPixels = (lineWidth > 1.0f) ? (deInt32)floor(lineWidth + 0.5f) : 1; const tcu::Vector widthOffset = (isXMajor ? tcu::Vector(0, -1) : tcu::Vector(-1, 0)) * (toSubpixelCoord(lineWidthPixels - 1, m_subpixelBits) / 2); const deInt64 x0 = toSubpixelCoord(v0.x(), m_subpixelBits) + widthOffset.x(); const deInt64 y0 = toSubpixelCoord(v0.y(), m_subpixelBits) + widthOffset.y(); const deInt64 x1 = toSubpixelCoord(v1.x(), m_subpixelBits) + widthOffset.x(); const deInt64 y1 = toSubpixelCoord(v1.y(), m_subpixelBits) + widthOffset.y(); // line endpoints might be perturbed, add some margin const deInt64 xMin = de::min(x0, x1) - toSubpixelCoord(1, m_subpixelBits); const deInt64 xMax = de::max(x0, x1) + toSubpixelCoord(1, m_subpixelBits); const deInt64 yMin = de::min(y0, y1) - toSubpixelCoord(1, m_subpixelBits); const deInt64 yMax = de::max(y0, y1) + toSubpixelCoord(1, m_subpixelBits); // Remove invisible area if (isXMajor) { // clamp to viewport in major direction m_bboxMin.x() = de::clamp(floorSubpixelToPixelCoord(xMin, m_subpixelBits, true), m_viewport.x(), m_viewport.x() + m_viewport.z() - 1); m_bboxMax.x() = de::clamp(ceilSubpixelToPixelCoord (xMax, m_subpixelBits, true), m_viewport.x(), m_viewport.x() + m_viewport.z() - 1); // clamp to padded viewport in minor direction (wide lines might bleed over viewport in minor direction) m_bboxMin.y() = de::clamp(floorSubpixelToPixelCoord(yMin, m_subpixelBits, true), m_viewport.y() - lineWidthPixels, m_viewport.y() + m_viewport.w() - 1); m_bboxMax.y() = de::clamp(ceilSubpixelToPixelCoord (yMax, m_subpixelBits, true), m_viewport.y() - lineWidthPixels, m_viewport.y() + m_viewport.w() - 1); } else { // clamp to viewport in major direction m_bboxMin.y() = de::clamp(floorSubpixelToPixelCoord(yMin, m_subpixelBits, true), m_viewport.y(), m_viewport.y() + m_viewport.w() - 1); m_bboxMax.y() = de::clamp(ceilSubpixelToPixelCoord (yMax, m_subpixelBits, true), m_viewport.y(), m_viewport.y() + m_viewport.w() - 1); // clamp to padded viewport in minor direction (wide lines might bleed over viewport in minor direction) m_bboxMin.x() = de::clamp(floorSubpixelToPixelCoord(xMin, m_subpixelBits, true), m_viewport.x() - lineWidthPixels, m_viewport.x() + m_viewport.z() - 1); m_bboxMax.x() = de::clamp(ceilSubpixelToPixelCoord (xMax, m_subpixelBits, true), m_viewport.x() - lineWidthPixels, m_viewport.x() + m_viewport.z() - 1); } m_lineWidth = lineWidth; m_v0 = v0; m_v1 = v1; // Choose direction of traversal and whether to start at bbox min or max. Direction matters // for the stipple counter. int xDelta = (m_v1 - m_v0).x() > 0 ? 1 : -1; int yDelta = (m_v1 - m_v0).y() > 0 ? 1 : -1; m_curPos.x() = xDelta > 0 ? m_bboxMin.x() : m_bboxMax.x(); m_curPos.y() = yDelta > 0 ? m_bboxMin.y() : m_bboxMax.y(); m_curRowFragment = 0; m_stippleFactor = stippleFactor; m_stipplePattern = stipplePattern; } void SingleSampleLineRasterizer::rasterize (FragmentPacket* const fragmentPackets, float* const depthValues, const int maxFragmentPackets, int& numPacketsRasterized) { DE_ASSERT(maxFragmentPackets > 0); const deInt64 halfPixel = 1ll << (m_subpixelBits - 1); const deInt32 lineWidth = (m_lineWidth > 1.0f) ? deFloorFloatToInt32(m_lineWidth + 0.5f) : 1; const bool isXMajor = de::abs((m_v1 - m_v0).x()) >= de::abs((m_v1 - m_v0).y()); const tcu::IVec2 minorDirection = (isXMajor) ? (tcu::IVec2(0, 1)) : (tcu::IVec2(1, 0)); const int minViewportLimit = (isXMajor) ? (m_viewport.y()) : (m_viewport.x()); const int maxViewportLimit = (isXMajor) ? (m_viewport.y() + m_viewport.w()) : (m_viewport.x() + m_viewport.z()); const tcu::Vector widthOffset = -minorDirection.cast() * (toSubpixelCoord(lineWidth - 1, m_subpixelBits) / 2); const tcu::Vector pa = LineRasterUtil::toSubpixelVector(m_v0.xy(), m_subpixelBits) + widthOffset; const tcu::Vector pb = LineRasterUtil::toSubpixelVector(m_v1.xy(), m_subpixelBits) + widthOffset; const LineRasterUtil::SubpixelLineSegment line = LineRasterUtil::SubpixelLineSegment(pa, pb); int packetNdx = 0; int xDelta = (m_v1 - m_v0).x() > 0 ? 1 : -1; int yDelta = (m_v1 - m_v0).y() > 0 ? 1 : -1; while (m_curPos.y() <= m_bboxMax.y() && m_curPos.y() >= m_bboxMin.y() && packetNdx < maxFragmentPackets) { const tcu::Vector diamondPosition = LineRasterUtil::toSubpixelVector(m_curPos, m_subpixelBits) + tcu::Vector(halfPixel,halfPixel); // Should current fragment be drawn? == does the segment exit this diamond? if (LineRasterUtil::doesLineSegmentExitDiamond(line, diamondPosition, m_subpixelBits)) { const tcu::Vector pr = diamondPosition; const float t = tcu::dot((pr - pa).asFloat(), (pb - pa).asFloat()) / tcu::lengthSquared(pb.asFloat() - pa.asFloat()); // Rasterize on only fragments that are would end up in the viewport (i.e. visible) const int fragmentLocation = (isXMajor) ? (m_curPos.y()) : (m_curPos.x()); const int rowFragBegin = de::max(0, minViewportLimit - fragmentLocation); const int rowFragEnd = de::min(maxViewportLimit - fragmentLocation, lineWidth); int stippleBit = (m_stippleCounter / m_stippleFactor) % 16; bool stipplePass = (m_stipplePattern & (1 << stippleBit)) != 0; m_stippleCounter++; if (stipplePass) { // Wide lines require multiple fragments. for (; rowFragBegin + m_curRowFragment < rowFragEnd; m_curRowFragment++) { const int replicationId = rowFragBegin + m_curRowFragment; const tcu::IVec2 fragmentPos = m_curPos + minorDirection * replicationId; // We only rasterize visible area DE_ASSERT(LineRasterUtil::inViewport(fragmentPos, m_viewport)); // Compute depth values. if (depthValues) { const float za = m_v0.z(); const float zb = m_v1.z(); depthValues[packetNdx*4+0] = (1 - t) * za + t * zb; depthValues[packetNdx*4+1] = 0; depthValues[packetNdx*4+2] = 0; depthValues[packetNdx*4+3] = 0; } { // output this fragment // \note In order to make consistent output with multisampled line rasterization, output "barycentric" coordinates FragmentPacket& packet = fragmentPackets[packetNdx]; const tcu::Vec4 b0 = tcu::Vec4(1 - t); const tcu::Vec4 b1 = tcu::Vec4(t); const tcu::Vec4 ooSum = 1.0f / (b0 + b1); packet.position = fragmentPos; packet.coverage = getCoverageBit(1, 0, 0, 0); packet.barycentric[0] = b0 * ooSum; packet.barycentric[1] = b1 * ooSum; packet.barycentric[2] = tcu::Vec4(0.0f); packetNdx += 1; } if (packetNdx == maxFragmentPackets) { m_curRowFragment++; // don't redraw this fragment again next time m_stippleCounter--; // reuse same stipple counter next time numPacketsRasterized = packetNdx; return; } } m_curRowFragment = 0; } } m_curPos.x() += xDelta; if (m_curPos.x() > m_bboxMax.x() || m_curPos.x() < m_bboxMin.x()) { m_curPos.y() += yDelta; m_curPos.x() = xDelta > 0 ? m_bboxMin.x() : m_bboxMax.x(); } } DE_ASSERT(packetNdx <= maxFragmentPackets); numPacketsRasterized = packetNdx; } MultiSampleLineRasterizer::MultiSampleLineRasterizer (const int numSamples, const tcu::IVec4& viewport, const int subpixelBits) : m_numSamples (numSamples) , m_triangleRasterizer0 (viewport, m_numSamples, RasterizationState(), subpixelBits) , m_triangleRasterizer1 (viewport, m_numSamples, RasterizationState(), subpixelBits) { } MultiSampleLineRasterizer::~MultiSampleLineRasterizer () { } void MultiSampleLineRasterizer::init (const tcu::Vec4& v0, const tcu::Vec4& v1, float lineWidth) { // allow creation of single sampled rasterizer objects but do not allow using them DE_ASSERT(m_numSamples > 1); const tcu::Vec2 lineVec = tcu::Vec2(tcu::Vec4(v1).xy()) - tcu::Vec2(tcu::Vec4(v0).xy()); const tcu::Vec2 normal2 = tcu::normalize(tcu::Vec2(-lineVec[1], lineVec[0])); const tcu::Vec4 normal4 = tcu::Vec4(normal2.x(), normal2.y(), 0, 0); const float offset = lineWidth / 2.0f; const tcu::Vec4 p0 = v0 + normal4 * offset; const tcu::Vec4 p1 = v0 - normal4 * offset; const tcu::Vec4 p2 = v1 - normal4 * offset; const tcu::Vec4 p3 = v1 + normal4 * offset; // Edge 0 -> 1 is always along the line and edge 1 -> 2 is in 90 degree angle to the line m_triangleRasterizer0.init(p0, p3, p2); m_triangleRasterizer1.init(p2, p1, p0); } void MultiSampleLineRasterizer::rasterize (FragmentPacket* const fragmentPackets, float* const depthValues, const int maxFragmentPackets, int& numPacketsRasterized) { DE_ASSERT(maxFragmentPackets > 0); m_triangleRasterizer0.rasterize(fragmentPackets, depthValues, maxFragmentPackets, numPacketsRasterized); // Remove 3rd barycentric value and rebalance. Lines do not have non-zero barycentric at index 2 for (int packNdx = 0; packNdx < numPacketsRasterized; ++packNdx) for (int fragNdx = 0; fragNdx < 4; fragNdx++) { float removedValue = fragmentPackets[packNdx].barycentric[2][fragNdx]; fragmentPackets[packNdx].barycentric[2][fragNdx] = 0.0f; fragmentPackets[packNdx].barycentric[1][fragNdx] += removedValue; } // rasterizer 0 filled the whole buffer? if (numPacketsRasterized == maxFragmentPackets) return; { FragmentPacket* const nextFragmentPackets = fragmentPackets + numPacketsRasterized; float* nextDepthValues = (depthValues) ? (depthValues+4*numPacketsRasterized*m_numSamples) : (DE_NULL); int numPacketsRasterized2 = 0; m_triangleRasterizer1.rasterize(nextFragmentPackets, nextDepthValues, maxFragmentPackets - numPacketsRasterized, numPacketsRasterized2); numPacketsRasterized += numPacketsRasterized2; // Fix swapped barycentrics in the second triangle for (int packNdx = 0; packNdx < numPacketsRasterized2; ++packNdx) for (int fragNdx = 0; fragNdx < 4; fragNdx++) { float removedValue = nextFragmentPackets[packNdx].barycentric[2][fragNdx]; nextFragmentPackets[packNdx].barycentric[2][fragNdx] = 0.0f; nextFragmentPackets[packNdx].barycentric[1][fragNdx] += removedValue; // edge has reversed direction std::swap(nextFragmentPackets[packNdx].barycentric[0][fragNdx], nextFragmentPackets[packNdx].barycentric[1][fragNdx]); } } } LineExitDiamondGenerator::LineExitDiamondGenerator (const int subpixelBits) : m_subpixelBits(subpixelBits) { } LineExitDiamondGenerator::~LineExitDiamondGenerator (void) { } void LineExitDiamondGenerator::init (const tcu::Vec4& v0, const tcu::Vec4& v1) { const deInt64 x0 = toSubpixelCoord(v0.x(), m_subpixelBits); const deInt64 y0 = toSubpixelCoord(v0.y(), m_subpixelBits); const deInt64 x1 = toSubpixelCoord(v1.x(), m_subpixelBits); const deInt64 y1 = toSubpixelCoord(v1.y(), m_subpixelBits); // line endpoints might be perturbed, add some margin const deInt64 xMin = de::min(x0, x1) - toSubpixelCoord(1, m_subpixelBits); const deInt64 xMax = de::max(x0, x1) + toSubpixelCoord(1, m_subpixelBits); const deInt64 yMin = de::min(y0, y1) - toSubpixelCoord(1, m_subpixelBits); const deInt64 yMax = de::max(y0, y1) + toSubpixelCoord(1, m_subpixelBits); m_bboxMin.x() = floorSubpixelToPixelCoord(xMin, m_subpixelBits, true); m_bboxMin.y() = floorSubpixelToPixelCoord(yMin, m_subpixelBits, true); m_bboxMax.x() = ceilSubpixelToPixelCoord (xMax, m_subpixelBits, true); m_bboxMax.y() = ceilSubpixelToPixelCoord (yMax, m_subpixelBits, true); m_v0 = v0; m_v1 = v1; m_curPos = m_bboxMin; } void LineExitDiamondGenerator::rasterize (LineExitDiamond* const lineDiamonds, const int maxDiamonds, int& numWritten) { DE_ASSERT(maxDiamonds > 0); const deInt64 halfPixel = 1ll << (m_subpixelBits - 1); const tcu::Vector pa = LineRasterUtil::toSubpixelVector(m_v0.xy(), m_subpixelBits); const tcu::Vector pb = LineRasterUtil::toSubpixelVector(m_v1.xy(), m_subpixelBits); const LineRasterUtil::SubpixelLineSegment line = LineRasterUtil::SubpixelLineSegment(pa, pb); int diamondNdx = 0; while (m_curPos.y() <= m_bboxMax.y() && diamondNdx < maxDiamonds) { const tcu::Vector diamondPosition = LineRasterUtil::toSubpixelVector(m_curPos, m_subpixelBits) + tcu::Vector(halfPixel,halfPixel); if (LineRasterUtil::doesLineSegmentExitDiamond(line, diamondPosition, m_subpixelBits)) { LineExitDiamond& packet = lineDiamonds[diamondNdx]; packet.position = m_curPos; ++diamondNdx; } ++m_curPos.x(); if (m_curPos.x() > m_bboxMax.x()) { ++m_curPos.y(); m_curPos.x() = m_bboxMin.x(); } } DE_ASSERT(diamondNdx <= maxDiamonds); numWritten = diamondNdx; } } // rr