/*------------------------------------------------------------------------- * drawElements Quality Program OpenGL ES 3.1 Module * ------------------------------------------------- * * Copyright 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *//*! * \file * \brief Geometry shader tests. *//*--------------------------------------------------------------------*/ #include "es31fGeometryShaderTests.hpp" #include "gluRenderContext.hpp" #include "gluTextureUtil.hpp" #include "gluObjectWrapper.hpp" #include "gluPixelTransfer.hpp" #include "gluContextInfo.hpp" #include "gluCallLogWrapper.hpp" #include "tcuRenderTarget.hpp" #include "tcuTestLog.hpp" #include "tcuVectorUtil.hpp" #include "tcuImageCompare.hpp" #include "tcuTextureUtil.hpp" #include "tcuStringTemplate.hpp" #include "glsStateQueryUtil.hpp" #include "gluStrUtil.hpp" #include "deStringUtil.hpp" #include "deUniquePtr.hpp" #include "deMemory.h" #include "sglrContext.hpp" #include "sglrReferenceContext.hpp" #include "sglrGLContext.hpp" #include "sglrReferenceUtils.hpp" #include "glwDefs.hpp" #include "glwEnums.hpp" #include "glwFunctions.hpp" #include using namespace glw; namespace deqp { namespace gles31 { namespace Functional { namespace { using namespace gls::StateQueryUtil; const int TEST_CANVAS_SIZE = 256; static const char* const s_commonShaderSourceVertex = "${GLSL_VERSION_DECL}\n" "in highp vec4 a_position;\n" "in highp vec4 a_color;\n" "out highp vec4 v_geom_FragColor;\n" "void main (void)\n" "{\n" " gl_Position = a_position;\n" " gl_PointSize = 1.0;\n" " v_geom_FragColor = a_color;\n" "}\n"; static const char* const s_commonShaderSourceFragment = "${GLSL_VERSION_DECL}\n" "layout(location = 0) out mediump vec4 fragColor;\n" "in mediump vec4 v_frag_FragColor;\n" "void main (void)\n" "{\n" " fragColor = v_frag_FragColor;\n" "}\n"; static const char* const s_expandShaderSourceGeometryBody = "in highp vec4 v_geom_FragColor[];\n" "out highp vec4 v_frag_FragColor;\n" "\n" "void main (void)\n" "{\n" " const highp vec4 offset0 = vec4(-0.07, -0.01, 0.0, 0.0);\n" " const highp vec4 offset1 = vec4( 0.03, -0.03, 0.0, 0.0);\n" " const highp vec4 offset2 = vec4(-0.01, 0.08, 0.0, 0.0);\n" " highp vec4 yoffset = float(gl_PrimitiveIDIn) * vec4(0.02, 0.1, 0.0, 0.0);\n" "\n" " for (highp int ndx = 0; ndx < gl_in.length(); ndx++)\n" " {\n" " gl_Position = gl_in[ndx].gl_Position + offset0 + yoffset;\n" " gl_PrimitiveID = gl_PrimitiveIDIn;\n" " v_frag_FragColor = v_geom_FragColor[ndx];\n" " EmitVertex();\n" "\n" " gl_Position = gl_in[ndx].gl_Position + offset1 + yoffset;\n" " gl_PrimitiveID = gl_PrimitiveIDIn;\n" " v_frag_FragColor = v_geom_FragColor[ndx];\n" " EmitVertex();\n" "\n" " gl_Position = gl_in[ndx].gl_Position + offset2 + yoffset;\n" " gl_PrimitiveID = gl_PrimitiveIDIn;\n" " v_frag_FragColor = v_geom_FragColor[ndx];\n" " EmitVertex();\n" " EndPrimitive();\n" " }\n" "}\n"; static std::string specializeShader (const std::string& shaderSource, const glu::ContextType& contextType) { const bool supportsES32 = glu::contextSupports(contextType, glu::ApiType::es(3, 2)); std::map args; args["GLSL_VERSION_DECL"] = glu::getGLSLVersionDeclaration(glu::getContextTypeGLSLVersion(contextType)); args["GLSL_EXT_GEOMETRY_SHADER"] = supportsES32 ? "" : "#extension GL_EXT_geometry_shader : require\n"; args["GLSL_OES_TEXTURE_STORAGE_MULTISAMPLE"]= supportsES32 ? "" : "#extension GL_OES_texture_storage_multisample_2d_array : require\n"; return tcu::StringTemplate(shaderSource).specialize(args); } std::string inputTypeToGLString (rr::GeometryShaderInputType inputType) { switch (inputType) { case rr::GEOMETRYSHADERINPUTTYPE_POINTS: return "points"; case rr::GEOMETRYSHADERINPUTTYPE_LINES: return "lines"; case rr::GEOMETRYSHADERINPUTTYPE_LINES_ADJACENCY: return "lines_adjacency"; case rr::GEOMETRYSHADERINPUTTYPE_TRIANGLES: return "triangles"; case rr::GEOMETRYSHADERINPUTTYPE_TRIANGLES_ADJACENCY: return "triangles_adjacency"; default: DE_ASSERT(DE_FALSE); return "error"; } } std::string outputTypeToGLString (rr::GeometryShaderOutputType outputType) { switch (outputType) { case rr::GEOMETRYSHADEROUTPUTTYPE_POINTS: return "points"; case rr::GEOMETRYSHADEROUTPUTTYPE_LINE_STRIP: return "line_strip"; case rr::GEOMETRYSHADEROUTPUTTYPE_TRIANGLE_STRIP: return "triangle_strip"; default: DE_ASSERT(DE_FALSE); return "error"; } } std::string primitiveTypeToString (GLenum primitive) { switch (primitive) { case GL_POINTS: return "points"; case GL_LINES: return "lines"; case GL_LINE_LOOP: return "line_loop"; case GL_LINE_STRIP: return "line_strip"; case GL_LINES_ADJACENCY: return "lines_adjacency"; case GL_LINE_STRIP_ADJACENCY: return "line_strip_adjacency"; case GL_TRIANGLES: return "triangles"; case GL_TRIANGLE_STRIP: return "triangle_strip"; case GL_TRIANGLE_FAN: return "triangle_fan"; case GL_TRIANGLES_ADJACENCY: return "triangles_adjacency"; case GL_TRIANGLE_STRIP_ADJACENCY: return "triangle_strip_adjacency"; default: DE_ASSERT(DE_FALSE); return "error"; } } struct OutputCountPatternSpec { OutputCountPatternSpec (int count); OutputCountPatternSpec (int count0, int count1); std::vector pattern; }; OutputCountPatternSpec::OutputCountPatternSpec (int count) { pattern.push_back(count); } OutputCountPatternSpec::OutputCountPatternSpec (int count0, int count1) { pattern.push_back(count0); pattern.push_back(count1); } class VertexExpanderShader : public sglr::ShaderProgram { public: VertexExpanderShader (const glu::ContextType& contextType, rr::GeometryShaderInputType inputType, rr::GeometryShaderOutputType outputType); void shadeVertices (const rr::VertexAttrib* inputs, rr::VertexPacket* const* packets, const int numPackets) const; void shadeFragments (rr::FragmentPacket* packets, const int numPackets, const rr::FragmentShadingContext& context) const; void shadePrimitives (rr::GeometryEmitter& output, int verticesIn, const rr::PrimitivePacket* packets, const int numPackets, int invocationID) const; private: size_t calcOutputVertices (rr::GeometryShaderInputType inputType) const; std::string genGeometrySource (const glu::ContextType& contextType, rr::GeometryShaderInputType inputType, rr::GeometryShaderOutputType outputType) const; }; VertexExpanderShader::VertexExpanderShader (const glu::ContextType& contextType, rr::GeometryShaderInputType inputType, rr::GeometryShaderOutputType outputType) : sglr::ShaderProgram(sglr::pdec::ShaderProgramDeclaration() << sglr::pdec::VertexAttribute("a_position", rr::GENERICVECTYPE_FLOAT) << sglr::pdec::VertexAttribute("a_color", rr::GENERICVECTYPE_FLOAT) << sglr::pdec::VertexToGeometryVarying(rr::GENERICVECTYPE_FLOAT) << sglr::pdec::GeometryToFragmentVarying(rr::GENERICVECTYPE_FLOAT) << sglr::pdec::FragmentOutput(rr::GENERICVECTYPE_FLOAT) << sglr::pdec::VertexSource(specializeShader(s_commonShaderSourceVertex, contextType)) << sglr::pdec::FragmentSource(specializeShader(s_commonShaderSourceFragment, contextType)) << sglr::pdec::GeometryShaderDeclaration(inputType, outputType, calcOutputVertices(inputType)) << sglr::pdec::GeometrySource(genGeometrySource(contextType, inputType, outputType))) { } void VertexExpanderShader::shadeVertices (const rr::VertexAttrib* inputs, rr::VertexPacket* const* packets, const int numPackets) const { for (int ndx = 0; ndx < numPackets; ++ndx) { packets[ndx]->position = rr::readVertexAttribFloat(inputs[0], packets[ndx]->instanceNdx, packets[ndx]->vertexNdx); packets[ndx]->pointSize = 1.0f; packets[ndx]->outputs[0] = rr::readVertexAttribFloat(inputs[1], packets[ndx]->instanceNdx, packets[ndx]->vertexNdx); } } void VertexExpanderShader::shadeFragments (rr::FragmentPacket* packets, const int numPackets, const rr::FragmentShadingContext& context) const { for (int packetNdx = 0; packetNdx < numPackets; ++packetNdx) for (int fragNdx = 0; fragNdx < 4; ++fragNdx) rr::writeFragmentOutput(context, packetNdx, fragNdx, 0, rr::readVarying(packets[packetNdx], context, 0, fragNdx)); } void VertexExpanderShader::shadePrimitives (rr::GeometryEmitter& output, int verticesIn, const rr::PrimitivePacket* packets, const int numPackets, int invocationID) const { DE_UNREF(invocationID); for (int ndx = 0; ndx < numPackets; ++ndx) for (int verticeNdx = 0; verticeNdx < verticesIn; ++verticeNdx) { const tcu::Vec4 offsets[] = { tcu::Vec4(-0.07f, -0.01f, 0.0f, 0.0f), tcu::Vec4( 0.03f, -0.03f, 0.0f, 0.0f), tcu::Vec4(-0.01f, 0.08f, 0.0f, 0.0f) }; const tcu::Vec4 yoffset = float(packets[ndx].primitiveIDIn) * tcu::Vec4(0.02f, 0.1f, 0, 0); // Create new primitive at every input vertice const rr::VertexPacket* vertex = packets[ndx].vertices[verticeNdx]; output.EmitVertex(vertex->position + offsets[0] + yoffset, vertex->pointSize, vertex->outputs, packets[ndx].primitiveIDIn); output.EmitVertex(vertex->position + offsets[1] + yoffset, vertex->pointSize, vertex->outputs, packets[ndx].primitiveIDIn); output.EmitVertex(vertex->position + offsets[2] + yoffset, vertex->pointSize, vertex->outputs, packets[ndx].primitiveIDIn); output.EndPrimitive(); } } size_t VertexExpanderShader::calcOutputVertices (rr::GeometryShaderInputType inputType) const { switch (inputType) { case rr::GEOMETRYSHADERINPUTTYPE_POINTS: return 1 * 3; case rr::GEOMETRYSHADERINPUTTYPE_LINES: return 2 * 3; case rr::GEOMETRYSHADERINPUTTYPE_LINES_ADJACENCY: return 4 * 3; case rr::GEOMETRYSHADERINPUTTYPE_TRIANGLES: return 3 * 3; case rr::GEOMETRYSHADERINPUTTYPE_TRIANGLES_ADJACENCY: return 6 * 3; default: DE_ASSERT(DE_FALSE); return 0; } } std::string VertexExpanderShader::genGeometrySource (const glu::ContextType& contextType, rr::GeometryShaderInputType inputType, rr::GeometryShaderOutputType outputType) const { std::ostringstream str; str << "${GLSL_VERSION_DECL}\n"; str << "${GLSL_EXT_GEOMETRY_SHADER}"; str << "layout(" << inputTypeToGLString(inputType) << ") in;\n"; str << "layout(" << outputTypeToGLString(outputType) << ", max_vertices = " << calcOutputVertices(inputType) << ") out;"; str << "\n"; str << s_expandShaderSourceGeometryBody; return specializeShader(str.str(), contextType); } class VertexEmitterShader : public sglr::ShaderProgram { public: VertexEmitterShader (const glu::ContextType& contextType, int emitCountA, int endCountA, int emitCountB, int endCountB, rr::GeometryShaderOutputType outputType); void shadeVertices (const rr::VertexAttrib* inputs, rr::VertexPacket* const* packets, const int numPackets) const; void shadeFragments (rr::FragmentPacket* packets, const int numPackets, const rr::FragmentShadingContext& context) const; void shadePrimitives (rr::GeometryEmitter& output, int verticesIn, const rr::PrimitivePacket* packets, const int numPackets, int invocationID) const; private: std::string genGeometrySource (const glu::ContextType& contextType, int emitCountA, int endCountA, int emitCountB, int endCountB, rr::GeometryShaderOutputType outputType) const; int m_emitCountA; int m_endCountA; int m_emitCountB; int m_endCountB; }; VertexEmitterShader::VertexEmitterShader (const glu::ContextType& contextType, int emitCountA, int endCountA, int emitCountB, int endCountB, rr::GeometryShaderOutputType outputType) : sglr::ShaderProgram(sglr::pdec::ShaderProgramDeclaration() << sglr::pdec::VertexAttribute("a_position", rr::GENERICVECTYPE_FLOAT) << sglr::pdec::VertexAttribute("a_color", rr::GENERICVECTYPE_FLOAT) << sglr::pdec::VertexToGeometryVarying(rr::GENERICVECTYPE_FLOAT) << sglr::pdec::GeometryToFragmentVarying(rr::GENERICVECTYPE_FLOAT) << sglr::pdec::FragmentOutput(rr::GENERICVECTYPE_FLOAT) << sglr::pdec::VertexSource(specializeShader(s_commonShaderSourceVertex, contextType)) << sglr::pdec::FragmentSource(specializeShader(s_commonShaderSourceFragment, contextType)) << sglr::pdec::GeometryShaderDeclaration(rr::GEOMETRYSHADERINPUTTYPE_POINTS, outputType, emitCountA + emitCountB) << sglr::pdec::GeometrySource(genGeometrySource(contextType, emitCountA, endCountA, emitCountB, endCountB, outputType))) , m_emitCountA (emitCountA) , m_endCountA (endCountA) , m_emitCountB (emitCountB) , m_endCountB (endCountB) { } void VertexEmitterShader::shadeVertices (const rr::VertexAttrib* inputs, rr::VertexPacket* const* packets, const int numPackets) const { for (int ndx = 0; ndx < numPackets; ++ndx) { packets[ndx]->position = rr::readVertexAttribFloat(inputs[0], packets[ndx]->instanceNdx, packets[ndx]->vertexNdx); packets[ndx]->pointSize = 1.0f; packets[ndx]->outputs[0] = rr::readVertexAttribFloat(inputs[1], packets[ndx]->instanceNdx, packets[ndx]->vertexNdx); } } void VertexEmitterShader::shadeFragments (rr::FragmentPacket* packets, const int numPackets, const rr::FragmentShadingContext& context) const { for (int packetNdx = 0; packetNdx < numPackets; ++packetNdx) for (int fragNdx = 0; fragNdx < 4; ++fragNdx) rr::writeFragmentOutput(context, packetNdx, fragNdx, 0, rr::readVarying(packets[packetNdx], context, 0, fragNdx)); } void VertexEmitterShader::shadePrimitives (rr::GeometryEmitter& output, int verticesIn, const rr::PrimitivePacket* packets, const int numPackets, int invocationID) const { DE_UNREF(verticesIn); DE_UNREF(invocationID); for (int ndx = 0; ndx < numPackets; ++ndx) { const tcu::Vec4 positions[] = { tcu::Vec4(-0.5f, 0.5f, 0.0f, 0.0f), tcu::Vec4( 0.0f, 0.1f, 0.0f, 0.0f), tcu::Vec4( 0.5f, 0.5f, 0.0f, 0.0f), tcu::Vec4( 0.7f, -0.2f, 0.0f, 0.0f), tcu::Vec4( 0.2f, 0.2f, 0.0f, 0.0f), tcu::Vec4( 0.4f, -0.3f, 0.0f, 0.0f), }; // Create new primitive at this point const rr::VertexPacket* vertex = packets[ndx].vertices[0]; for (int i = 0; i < m_emitCountA; ++i) output.EmitVertex(vertex->position + positions[i], vertex->pointSize, vertex->outputs, packets[ndx].primitiveIDIn); for (int i = 0; i < m_endCountA; ++i) output.EndPrimitive(); for (int i = 0; i < m_emitCountB; ++i) output.EmitVertex(vertex->position + positions[m_emitCountA + i], vertex->pointSize, vertex->outputs, packets[ndx].primitiveIDIn); for (int i = 0; i < m_endCountB; ++i) output.EndPrimitive(); } } std::string VertexEmitterShader::genGeometrySource (const glu::ContextType& contextType, int emitCountA, int endCountA, int emitCountB, int endCountB, rr::GeometryShaderOutputType outputType) const { std::ostringstream str; str << "${GLSL_VERSION_DECL}\n"; str << "${GLSL_EXT_GEOMETRY_SHADER}"; str << "layout(points) in;\n"; str << "layout(" << outputTypeToGLString(outputType) << ", max_vertices = " << (emitCountA+emitCountB) << ") out;"; str << "\n"; str << "in highp vec4 v_geom_FragColor[];\n" "out highp vec4 v_frag_FragColor;\n" "\n" "void main (void)\n" "{\n" " const highp vec4 position0 = vec4(-0.5, 0.5, 0.0, 0.0);\n" " const highp vec4 position1 = vec4( 0.0, 0.1, 0.0, 0.0);\n" " const highp vec4 position2 = vec4( 0.5, 0.5, 0.0, 0.0);\n" " const highp vec4 position3 = vec4( 0.7, -0.2, 0.0, 0.0);\n" " const highp vec4 position4 = vec4( 0.2, 0.2, 0.0, 0.0);\n" " const highp vec4 position5 = vec4( 0.4, -0.3, 0.0, 0.0);\n" "\n"; for (int i = 0; i < emitCountA; ++i) str << " gl_Position = gl_in[0].gl_Position + position" << i << ";\n" " gl_PrimitiveID = gl_PrimitiveIDIn;\n" " v_frag_FragColor = v_geom_FragColor[0];\n" " EmitVertex();\n" "\n"; for (int i = 0; i < endCountA; ++i) str << " EndPrimitive();\n"; for (int i = 0; i < emitCountB; ++i) str << " gl_Position = gl_in[0].gl_Position + position" << (emitCountA + i) << ";\n" " gl_PrimitiveID = gl_PrimitiveIDIn;\n" " v_frag_FragColor = v_geom_FragColor[0];\n" " EmitVertex();\n" "\n"; for (int i = 0; i < endCountB; ++i) str << " EndPrimitive();\n"; str << "}\n"; return specializeShader(str.str(), contextType); } class VertexVaryingShader : public sglr::ShaderProgram { public: VertexVaryingShader (const glu::ContextType& contextType, int vertexOut, int geometryOut); void shadeVertices (const rr::VertexAttrib* inputs, rr::VertexPacket* const* packets, const int numPackets) const; void shadeFragments (rr::FragmentPacket* packets, const int numPackets, const rr::FragmentShadingContext& context) const; void shadePrimitives (rr::GeometryEmitter& output, int verticesIn, const rr::PrimitivePacket* packets, const int numPackets, int invocationID) const; private: static sglr::pdec::ShaderProgramDeclaration genProgramDeclaration (const glu::ContextType& contextType, int vertexOut, int geometryOut); const int m_vertexOut; const int m_geometryOut; }; VertexVaryingShader::VertexVaryingShader (const glu::ContextType& contextType, int vertexOut, int geometryOut) : sglr::ShaderProgram (genProgramDeclaration(contextType, vertexOut, geometryOut)) , m_vertexOut (vertexOut) , m_geometryOut (geometryOut) { } void VertexVaryingShader::shadeVertices (const rr::VertexAttrib* inputs, rr::VertexPacket* const* packets, const int numPackets) const { // vertex shader is no-op if (m_vertexOut == -1) return; for (int ndx = 0; ndx < numPackets; ++ndx) { const tcu::Vec4 color = rr::readVertexAttribFloat(inputs[1], packets[ndx]->instanceNdx, packets[ndx]->vertexNdx); packets[ndx]->position = rr::readVertexAttribFloat(inputs[0], packets[ndx]->instanceNdx, packets[ndx]->vertexNdx); packets[ndx]->pointSize = 1.0f; switch (m_vertexOut) { case 0: break; case 1: packets[ndx]->outputs[0] = color; break; case 2: packets[ndx]->outputs[0] = color * 0.5f; packets[ndx]->outputs[1] = color.swizzle(2,1,0,3) * 0.5f; break; default: DE_ASSERT(DE_FALSE); } } } void VertexVaryingShader::shadeFragments (rr::FragmentPacket* packets, const int numPackets, const rr::FragmentShadingContext& context) const { for (int packetNdx = 0; packetNdx < numPackets; ++packetNdx) { switch (m_geometryOut) { case 0: for (int fragNdx = 0; fragNdx < 4; ++fragNdx) rr::writeFragmentOutput(context, packetNdx, fragNdx, 0, tcu::Vec4(1.0f, 0.0f, 0.0f, 1.0f)); break; case 1: for (int fragNdx = 0; fragNdx < 4; ++fragNdx) rr::writeFragmentOutput(context, packetNdx, fragNdx, 0, rr::readTriangleVarying(packets[packetNdx], context, 0, fragNdx)); break; case 2: for (int fragNdx = 0; fragNdx < 4; ++fragNdx) rr::writeFragmentOutput(context, packetNdx, fragNdx, 0, rr::readTriangleVarying(packets[packetNdx], context, 0, fragNdx) + rr::readTriangleVarying(packets[packetNdx], context, 1, fragNdx).swizzle(1, 0, 2, 3)); break; default: DE_ASSERT(DE_FALSE); } } } void VertexVaryingShader::shadePrimitives (rr::GeometryEmitter& output, int verticesIn, const rr::PrimitivePacket* packets, const int numPackets, int invocationID) const { DE_UNREF(invocationID); const tcu::Vec4 vertexOffset(-0.2f, -0.2f, 0, 0); if (m_vertexOut == -1) { // vertex is a no-op const tcu::Vec4 inputColor = tcu::Vec4(1.0f, 0.0f, 0.0f, 1.0f); rr::GenericVec4 outputs[2]; // output color switch (m_geometryOut) { case 0: break; case 1: outputs[0] = inputColor; break; case 2: outputs[0] = inputColor * 0.5f; outputs[1] = inputColor.swizzle(1, 0, 2, 3) * 0.5f; break; default: DE_ASSERT(DE_FALSE); } for (int ndx = 0; ndx < numPackets; ++ndx) { output.EmitVertex(tcu::Vec4(0.0f, 0.0f, 0.0f, 1.0f) + vertexOffset, 1.0f, outputs, packets[ndx].primitiveIDIn); output.EmitVertex(tcu::Vec4(1.0f, 0.0f, 0.0f, 1.0f) + vertexOffset, 1.0f, outputs, packets[ndx].primitiveIDIn); output.EmitVertex(tcu::Vec4(1.0f, 1.0f, 0.0f, 1.0f) + vertexOffset, 1.0f, outputs, packets[ndx].primitiveIDIn); output.EndPrimitive(); } } else { // vertex is not a no-op for (int ndx = 0; ndx < numPackets; ++ndx) { for (int verticeNdx = 0; verticeNdx < verticesIn; ++verticeNdx) { tcu::Vec4 inputColor; rr::GenericVec4 outputs[2]; // input color switch (m_vertexOut) { case 0: inputColor = tcu::Vec4(1.0f, 0.0f, 0.0f, 1.0f); break; case 1: inputColor = packets[ndx].vertices[verticeNdx]->outputs[0].get(); break; case 2: inputColor = (packets[ndx].vertices[verticeNdx]->outputs[0].get() * 0.5f) + (packets[ndx].vertices[verticeNdx]->outputs[1].get().swizzle(2, 1, 0, 3) * 0.5f); break; default: DE_ASSERT(DE_FALSE); } // output color switch (m_geometryOut) { case 0: break; case 1: outputs[0] = inputColor; break; case 2: outputs[0] = inputColor * 0.5f; outputs[1] = inputColor.swizzle(1, 0, 2, 3) * 0.5f; break; default: DE_ASSERT(DE_FALSE); } output.EmitVertex(packets[ndx].vertices[verticeNdx]->position + vertexOffset, packets[ndx].vertices[verticeNdx]->pointSize, outputs, packets[ndx].primitiveIDIn); } output.EndPrimitive(); } } } sglr::pdec::ShaderProgramDeclaration VertexVaryingShader::genProgramDeclaration (const glu::ContextType& contextType, int vertexOut, int geometryOut) { sglr::pdec::ShaderProgramDeclaration decl; std::ostringstream vertexSource; std::ostringstream fragmentSource; std::ostringstream geometrySource; decl << sglr::pdec::VertexAttribute("a_position", rr::GENERICVECTYPE_FLOAT) << sglr::pdec::VertexAttribute("a_color", rr::GENERICVECTYPE_FLOAT); for (int i = 0; i < vertexOut; ++i) decl << sglr::pdec::VertexToGeometryVarying(rr::GENERICVECTYPE_FLOAT); for (int i = 0; i < geometryOut; ++i) decl << sglr::pdec::GeometryToFragmentVarying(rr::GENERICVECTYPE_FLOAT); decl << sglr::pdec::FragmentOutput(rr::GENERICVECTYPE_FLOAT) << sglr::pdec::GeometryShaderDeclaration(rr::GEOMETRYSHADERINPUTTYPE_TRIANGLES, rr::GEOMETRYSHADEROUTPUTTYPE_TRIANGLE_STRIP, 3); // vertexSource vertexSource << "${GLSL_VERSION_DECL}\n" "in highp vec4 a_position;\n" "in highp vec4 a_color;\n"; // no-op case? if (vertexOut == -1) { vertexSource << "void main (void)\n" "{\n" "}\n"; } else { for (int i = 0; i < vertexOut; ++i) vertexSource << "out highp vec4 v_geom_" << i << ";\n"; vertexSource << "void main (void)\n" "{\n" "\tgl_Position = a_position;\n" "\tgl_PointSize = 1.0;\n"; switch (vertexOut) { case 0: break; case 1: vertexSource << "\tv_geom_0 = a_color;\n"; break; case 2: vertexSource << "\tv_geom_0 = a_color * 0.5;\n"; vertexSource << "\tv_geom_1 = a_color.zyxw * 0.5;\n"; break; default: DE_ASSERT(DE_FALSE); } vertexSource << "}\n"; } // fragmentSource fragmentSource << "${GLSL_VERSION_DECL}\n" "layout(location = 0) out mediump vec4 fragColor;\n"; for (int i = 0; i < geometryOut; ++i) fragmentSource << "in mediump vec4 v_frag_" << i << ";\n"; fragmentSource << "void main (void)\n" "{\n"; switch (geometryOut) { case 0: fragmentSource << "\tfragColor = vec4(1.0, 0.0, 0.0, 1.0);\n"; break; case 1: fragmentSource << "\tfragColor = v_frag_0;\n"; break; case 2: fragmentSource << "\tfragColor = v_frag_0 + v_frag_1.yxzw;\n"; break; default: DE_ASSERT(DE_FALSE); } fragmentSource << "}\n"; // geometrySource geometrySource << "${GLSL_VERSION_DECL}\n" "${GLSL_EXT_GEOMETRY_SHADER}" "layout(triangles) in;\n" "layout(triangle_strip, max_vertices = 3) out;\n"; for (int i = 0; i < vertexOut; ++i) geometrySource << "in highp vec4 v_geom_" << i << "[];\n"; for (int i = 0; i < geometryOut; ++i) geometrySource << "out highp vec4 v_frag_" << i << ";\n"; geometrySource << "void main (void)\n" "{\n" "\thighp vec4 offset = vec4(-0.2, -0.2, 0.0, 0.0);\n" "\thighp vec4 inputColor;\n\n"; for (int vertexNdx = 0; vertexNdx < 3; ++vertexNdx) { if (vertexOut == -1) { // vertex is a no-op geometrySource << "\tinputColor = vec4(1.0, 0.0, 0.0, 1.0);\n" "\tgl_Position = vec4(" << ((vertexNdx==0) ? ("0.0, 0.0") : ((vertexNdx==1) ? ("1.0, 0.0") : ("1.0, 1.0"))) << ", 0.0, 1.0) + offset;\n" "\tgl_PrimitiveID = gl_PrimitiveIDIn;\n"; } else { switch (vertexOut) { case 0: geometrySource << "\tinputColor = vec4(1.0, 0.0, 0.0, 1.0);\n"; break; case 1: geometrySource << "\tinputColor = v_geom_0[" << vertexNdx << "];\n"; break; case 2: geometrySource << "\tinputColor = v_geom_0[" << vertexNdx << "] * 0.5 + v_geom_1[" << vertexNdx << "].zyxw * 0.5;\n"; break; default: DE_ASSERT(DE_FALSE); } geometrySource << "\tgl_Position = gl_in[" << vertexNdx << "].gl_Position + offset;\n" "\tgl_PrimitiveID = gl_PrimitiveIDIn;\n"; } switch (geometryOut) { case 0: break; case 1: geometrySource << "\tv_frag_0 = inputColor;\n"; break; case 2: geometrySource << "\tv_frag_0 = inputColor * 0.5;\n"; geometrySource << "\tv_frag_1 = inputColor.yxzw * 0.5;\n"; break; default: DE_ASSERT(DE_FALSE); } geometrySource << "\tEmitVertex();\n\n"; } geometrySource << "\tEndPrimitive();\n" "}\n"; decl << sglr::pdec::VertexSource(specializeShader(vertexSource.str(), contextType)) << sglr::pdec::FragmentSource(specializeShader(fragmentSource.str(), contextType)) << sglr::pdec::GeometrySource(specializeShader(geometrySource.str(), contextType)); return decl; } class OutputCountShader : public sglr::ShaderProgram { public: OutputCountShader (const glu::ContextType& contextType, const OutputCountPatternSpec& spec); void shadeVertices (const rr::VertexAttrib* inputs, rr::VertexPacket* const* packets, const int numPackets) const; void shadeFragments (rr::FragmentPacket* packets, const int numPackets, const rr::FragmentShadingContext& context) const; void shadePrimitives (rr::GeometryEmitter& output, int verticesIn, const rr::PrimitivePacket* packets, const int numPackets, int invocationID) const; private: std::string genGeometrySource (const glu::ContextType& contextType, const OutputCountPatternSpec& spec) const; size_t getPatternEmitCount (const OutputCountPatternSpec& spec) const; const int m_patternLength; const int m_patternMaxEmitCount; const OutputCountPatternSpec m_spec; }; OutputCountShader::OutputCountShader (const glu::ContextType& contextType, const OutputCountPatternSpec& spec) : sglr::ShaderProgram (sglr::pdec::ShaderProgramDeclaration() << sglr::pdec::VertexAttribute("a_position", rr::GENERICVECTYPE_FLOAT) << sglr::pdec::VertexAttribute("a_color", rr::GENERICVECTYPE_FLOAT) << sglr::pdec::VertexToGeometryVarying(rr::GENERICVECTYPE_FLOAT) << sglr::pdec::GeometryToFragmentVarying(rr::GENERICVECTYPE_FLOAT) << sglr::pdec::FragmentOutput(rr::GENERICVECTYPE_FLOAT) << sglr::pdec::VertexSource(specializeShader(s_commonShaderSourceVertex, contextType)) << sglr::pdec::FragmentSource(specializeShader(s_commonShaderSourceFragment, contextType)) << sglr::pdec::GeometryShaderDeclaration(rr::GEOMETRYSHADERINPUTTYPE_POINTS, rr::GEOMETRYSHADEROUTPUTTYPE_TRIANGLE_STRIP, getPatternEmitCount(spec)) << sglr::pdec::GeometrySource(genGeometrySource(contextType, spec))) , m_patternLength ((int)spec.pattern.size()) , m_patternMaxEmitCount ((int)getPatternEmitCount(spec)) , m_spec (spec) { } void OutputCountShader::shadeVertices (const rr::VertexAttrib* inputs, rr::VertexPacket* const* packets, const int numPackets) const { for (int ndx = 0; ndx < numPackets; ++ndx) { packets[ndx]->position = rr::readVertexAttribFloat(inputs[0], packets[ndx]->instanceNdx, packets[ndx]->vertexNdx); packets[ndx]->pointSize = 1.0f; packets[ndx]->outputs[0] = rr::readVertexAttribFloat(inputs[1], packets[ndx]->instanceNdx, packets[ndx]->vertexNdx); } } void OutputCountShader::shadeFragments (rr::FragmentPacket* packets, const int numPackets, const rr::FragmentShadingContext& context) const { for (int packetNdx = 0; packetNdx < numPackets; ++packetNdx) for (int fragNdx = 0; fragNdx < 4; ++fragNdx) rr::writeFragmentOutput(context, packetNdx, fragNdx, 0, rr::readVarying(packets[packetNdx], context, 0, fragNdx)); } void OutputCountShader::shadePrimitives (rr::GeometryEmitter& output, int verticesIn, const rr::PrimitivePacket* packets, const int numPackets, int invocationID) const { DE_UNREF(verticesIn); DE_UNREF(invocationID); const float rowHeight = 2.0f / (float)m_patternLength; const float colWidth = 2.0f / (float)m_patternMaxEmitCount; for (int packetNdx = 0; packetNdx < numPackets; ++packetNdx) { // Create triangle strip at this point const rr::VertexPacket* vertex = packets[packetNdx].vertices[0]; const int emitCount = m_spec.pattern[packets[packetNdx].primitiveIDIn]; for (int ndx = 0; ndx < emitCount / 2; ++ndx) { output.EmitVertex(vertex->position + tcu::Vec4(2 * (float)ndx * colWidth, 0.0, 0.0, 0.0), vertex->pointSize, vertex->outputs, packets[packetNdx].primitiveIDIn); output.EmitVertex(vertex->position + tcu::Vec4(2 * (float)ndx * colWidth, rowHeight, 0.0, 0.0), vertex->pointSize, vertex->outputs, packets[packetNdx].primitiveIDIn); } output.EndPrimitive(); } } std::string OutputCountShader::genGeometrySource (const glu::ContextType& contextType, const OutputCountPatternSpec& spec) const { std::ostringstream str; // draw row with a triangle strip, always make rectangles for (int ndx = 0; ndx < (int)spec.pattern.size(); ++ndx) DE_ASSERT(spec.pattern[ndx] % 2 == 0); str << "${GLSL_VERSION_DECL}\n"; str << "${GLSL_EXT_GEOMETRY_SHADER}"; str << "layout(points) in;\n"; str << "layout(triangle_strip, max_vertices = " << getPatternEmitCount(spec) << ") out;"; str << "\n"; str << "in highp vec4 v_geom_FragColor[];\n" "out highp vec4 v_frag_FragColor;\n" "\n" "void main (void)\n" "{\n" " const highp float rowHeight = 2.0 / float(" << spec.pattern.size() << ");\n" " const highp float colWidth = 2.0 / float(" << getPatternEmitCount(spec) << ");\n" "\n"; str << " highp int emitCount = "; for (int ndx = 0; ndx < (int)spec.pattern.size() - 1; ++ndx) str << "(gl_PrimitiveIDIn == " << ndx << ") ? (" << spec.pattern[ndx] << ") : ("; str << spec.pattern[(int)spec.pattern.size() - 1] << ((spec.pattern.size() == 1) ? ("") : (")")) << ";\n"; str << " for (highp int ndx = 0; ndx < emitCount / 2; ndx++)\n" " {\n" " gl_Position = gl_in[0].gl_Position + vec4(float(ndx) * 2.0 * colWidth, 0.0, 0.0, 0.0);\n" " v_frag_FragColor = v_geom_FragColor[0];\n" " EmitVertex();\n" "\n" " gl_Position = gl_in[0].gl_Position + vec4(float(ndx) * 2.0 * colWidth, rowHeight, 0.0, 0.0);\n" " v_frag_FragColor = v_geom_FragColor[0];\n" " EmitVertex();\n" " }\n" "}\n"; return specializeShader(str.str(), contextType); } size_t OutputCountShader::getPatternEmitCount (const OutputCountPatternSpec& spec) const { return *std::max_element(spec.pattern.begin(), spec.pattern.end()); } class BuiltinVariableShader : public sglr::ShaderProgram { public: enum VariableTest { TEST_POINT_SIZE = 0, TEST_PRIMITIVE_ID_IN, TEST_PRIMITIVE_ID, TEST_LAST }; BuiltinVariableShader (const glu::ContextType& contextType, VariableTest test); void shadeVertices (const rr::VertexAttrib* inputs, rr::VertexPacket* const* packets, const int numPackets) const; void shadeFragments (rr::FragmentPacket* packets, const int numPackets, const rr::FragmentShadingContext& context) const; void shadePrimitives (rr::GeometryEmitter& output, int verticesIn, const rr::PrimitivePacket* packets, const int numPackets, int invocationID) const; static const char* getTestAttributeName (VariableTest test); private: std::string genGeometrySource (const glu::ContextType& contextType, VariableTest test) const; std::string genVertexSource (const glu::ContextType& contextType, VariableTest test) const; std::string genFragmentSource (const glu::ContextType& contextType, VariableTest test) const; const VariableTest m_test; }; BuiltinVariableShader::BuiltinVariableShader (const glu::ContextType& contextType, VariableTest test) : sglr::ShaderProgram (sglr::pdec::ShaderProgramDeclaration() << sglr::pdec::VertexAttribute("a_position", rr::GENERICVECTYPE_FLOAT) << sglr::pdec::VertexAttribute(getTestAttributeName(test), rr::GENERICVECTYPE_FLOAT) << sglr::pdec::VertexToGeometryVarying(rr::GENERICVECTYPE_FLOAT) << sglr::pdec::GeometryToFragmentVarying(rr::GENERICVECTYPE_FLOAT) << sglr::pdec::FragmentOutput(rr::GENERICVECTYPE_FLOAT) << sglr::pdec::VertexSource(genVertexSource(contextType, test)) << sglr::pdec::FragmentSource(genFragmentSource(contextType, test)) << sglr::pdec::GeometryShaderDeclaration(rr::GEOMETRYSHADERINPUTTYPE_POINTS, ((test == TEST_POINT_SIZE) ? (rr::GEOMETRYSHADEROUTPUTTYPE_POINTS) : (rr::GEOMETRYSHADEROUTPUTTYPE_TRIANGLE_STRIP)), ((test == TEST_POINT_SIZE) ? (1) : (3))) << sglr::pdec::GeometrySource(genGeometrySource(contextType, test))) , m_test (test) { } void BuiltinVariableShader::shadeVertices (const rr::VertexAttrib* inputs, rr::VertexPacket* const* packets, const int numPackets) const { for (int ndx = 0; ndx < numPackets; ++ndx) { packets[ndx]->position = rr::readVertexAttribFloat(inputs[0], packets[ndx]->instanceNdx, packets[ndx]->vertexNdx); packets[ndx]->pointSize = 1.0f; packets[ndx]->outputs[0] = rr::readVertexAttribFloat(inputs[1], packets[ndx]->instanceNdx, packets[ndx]->vertexNdx); } } void BuiltinVariableShader::shadeFragments (rr::FragmentPacket* packets, const int numPackets, const rr::FragmentShadingContext& context) const { const tcu::Vec4 red = tcu::Vec4(1.0f, 0.0f, 0.0f, 1.0f); const tcu::Vec4 green = tcu::Vec4(0.0f, 1.0f, 0.0f, 1.0f); const tcu::Vec4 blue = tcu::Vec4(0.0f, 0.0f, 1.0f, 1.0f); const tcu::Vec4 yellow = tcu::Vec4(1.0f, 1.0f, 0.0f, 1.0f); const tcu::Vec4 colors[4] = { yellow, red, green, blue }; if (m_test == TEST_POINT_SIZE || m_test == TEST_PRIMITIVE_ID_IN) { for (int packetNdx = 0; packetNdx < numPackets; ++packetNdx) for (int fragNdx = 0; fragNdx < 4; ++fragNdx) rr::writeFragmentOutput(context, packetNdx, fragNdx, 0, rr::readVarying(packets[packetNdx], context, 0, fragNdx)); } else if (m_test == TEST_PRIMITIVE_ID) { const tcu::Vec4 color = colors[context.primitiveID % 4]; for (int packetNdx = 0; packetNdx < numPackets; ++packetNdx) for (int fragNdx = 0; fragNdx < 4; ++fragNdx) rr::writeFragmentOutput(context, packetNdx, fragNdx, 0, color); } else DE_ASSERT(DE_FALSE); } void BuiltinVariableShader::shadePrimitives (rr::GeometryEmitter& output, int verticesIn, const rr::PrimitivePacket* packets, const int numPackets, int invocationID) const { DE_UNREF(verticesIn); DE_UNREF(invocationID); const tcu::Vec4 red = tcu::Vec4(1.0f, 0.0f, 0.0f, 1.0f); const tcu::Vec4 green = tcu::Vec4(0.0f, 1.0f, 0.0f, 1.0f); const tcu::Vec4 blue = tcu::Vec4(0.0f, 0.0f, 1.0f, 1.0f); const tcu::Vec4 yellow = tcu::Vec4(1.0f, 1.0f, 0.0f, 1.0f); const tcu::Vec4 colors[4] = { red, green, blue, yellow }; for (int packetNdx = 0; packetNdx < numPackets; ++packetNdx) { const rr::VertexPacket* vertex = packets[packetNdx].vertices[0]; if (m_test == TEST_POINT_SIZE) { rr::GenericVec4 fragColor; const float pointSize = vertex->outputs[0].get().x() + 1.0f; fragColor = tcu::Vec4(1.0f, 1.0f, 1.0f, 1.0f); output.EmitVertex(vertex->position, pointSize, &fragColor, packets[packetNdx].primitiveIDIn); } else if (m_test == TEST_PRIMITIVE_ID_IN) { rr::GenericVec4 fragColor; fragColor = colors[packets[packetNdx].primitiveIDIn % 4]; output.EmitVertex(vertex->position + tcu::Vec4(0.05f, 0.0f, 0.0f, 0.0f), 1.0f, &fragColor, packets[packetNdx].primitiveIDIn); output.EmitVertex(vertex->position - tcu::Vec4(0.05f, 0.0f, 0.0f, 0.0f), 1.0f, &fragColor, packets[packetNdx].primitiveIDIn); output.EmitVertex(vertex->position + tcu::Vec4(0.0f, 0.05f, 0.0f, 0.0f), 1.0f, &fragColor, packets[packetNdx].primitiveIDIn); } else if (m_test == TEST_PRIMITIVE_ID) { const int primitiveID = (int)deFloatFloor(vertex->outputs[0].get().x()) + 3; output.EmitVertex(vertex->position + tcu::Vec4(0.05f, 0.0f, 0.0f, 0.0f), 1.0f, vertex->outputs, primitiveID); output.EmitVertex(vertex->position - tcu::Vec4(0.05f, 0.0f, 0.0f, 0.0f), 1.0f, vertex->outputs, primitiveID); output.EmitVertex(vertex->position + tcu::Vec4(0.0f, 0.05f, 0.0f, 0.0f), 1.0f, vertex->outputs, primitiveID); } else DE_ASSERT(DE_FALSE); output.EndPrimitive(); } } const char* BuiltinVariableShader::getTestAttributeName (VariableTest test) { switch (test) { case TEST_POINT_SIZE: return "a_pointSize"; case TEST_PRIMITIVE_ID_IN: return ""; case TEST_PRIMITIVE_ID: return "a_primitiveID"; default: DE_ASSERT(DE_FALSE); return ""; } } std::string BuiltinVariableShader::genGeometrySource (const glu::ContextType& contextType, VariableTest test) const { std::ostringstream buf; buf << "${GLSL_VERSION_DECL}\n" "${GLSL_EXT_GEOMETRY_SHADER}"; if (test == TEST_POINT_SIZE) buf << "#extension GL_EXT_geometry_point_size : require\n"; buf << "layout(points) in;\n"; if (test == TEST_POINT_SIZE) buf << "layout(points, max_vertices = 1) out;\n"; else buf << "layout(triangle_strip, max_vertices = 3) out;\n"; if (test == TEST_POINT_SIZE) buf << "in highp vec4 v_geom_pointSize[];\n"; else if (test == TEST_PRIMITIVE_ID) buf << "in highp vec4 v_geom_primitiveID[];\n"; if (test != TEST_PRIMITIVE_ID) buf << "out highp vec4 v_frag_FragColor;\n"; buf << "\n" "void main (void)\n" "{\n"; if (test == TEST_POINT_SIZE) { buf << " gl_Position = gl_in[0].gl_Position;\n" " gl_PointSize = v_geom_pointSize[0].x + 1.0;\n" " v_frag_FragColor = vec4(1.0, 1.0, 1.0, 1.0);\n" " EmitVertex();\n"; } else if (test == TEST_PRIMITIVE_ID_IN) { buf << " const highp vec4 red = vec4(1.0, 0.0, 0.0, 1.0);\n" " const highp vec4 green = vec4(0.0, 1.0, 0.0, 1.0);\n" " const highp vec4 blue = vec4(0.0, 0.0, 1.0, 1.0);\n" " const highp vec4 yellow = vec4(1.0, 1.0, 0.0, 1.0);\n" " const highp vec4 colors[4] = vec4[4](red, green, blue, yellow);\n" "\n" " gl_Position = gl_in[0].gl_Position + vec4(0.05, 0.0, 0.0, 0.0);\n" " v_frag_FragColor = colors[gl_PrimitiveIDIn % 4];\n" " EmitVertex();\n" "\n" " gl_Position = gl_in[0].gl_Position - vec4(0.05, 0.0, 0.0, 0.0);\n" " v_frag_FragColor = colors[gl_PrimitiveIDIn % 4];\n" " EmitVertex();\n" "\n" " gl_Position = gl_in[0].gl_Position + vec4(0.0, 0.05, 0.0, 0.0);\n" " v_frag_FragColor = colors[gl_PrimitiveIDIn % 4];\n" " EmitVertex();\n"; } else if (test == TEST_PRIMITIVE_ID) { buf << " gl_Position = gl_in[0].gl_Position + vec4(0.05, 0.0, 0.0, 0.0);\n" " gl_PrimitiveID = int(floor(v_geom_primitiveID[0].x)) + 3;\n" " EmitVertex();\n" "\n" " gl_Position = gl_in[0].gl_Position - vec4(0.05, 0.0, 0.0, 0.0);\n" " gl_PrimitiveID = int(floor(v_geom_primitiveID[0].x)) + 3;\n" " EmitVertex();\n" "\n" " gl_Position = gl_in[0].gl_Position + vec4(0.0, 0.05, 0.0, 0.0);\n" " gl_PrimitiveID = int(floor(v_geom_primitiveID[0].x)) + 3;\n" " EmitVertex();\n" "\n"; } else DE_ASSERT(DE_FALSE); buf << "}\n"; return specializeShader(buf.str(), contextType); } std::string BuiltinVariableShader::genVertexSource (const glu::ContextType& contextType, VariableTest test) const { std::ostringstream buf; buf << "${GLSL_VERSION_DECL}\n" "in highp vec4 a_position;\n"; if (test == TEST_POINT_SIZE) buf << "in highp vec4 a_pointSize;\n"; else if (test == TEST_PRIMITIVE_ID) buf << "in highp vec4 a_primitiveID;\n"; if (test == TEST_POINT_SIZE) buf << "out highp vec4 v_geom_pointSize;\n"; else if (test == TEST_PRIMITIVE_ID) buf << "out highp vec4 v_geom_primitiveID;\n"; buf << "void main (void)\n" "{\n" " gl_Position = a_position;\n" " gl_PointSize = 1.0;\n"; if (test == TEST_POINT_SIZE) buf << " v_geom_pointSize = a_pointSize;\n"; else if (test == TEST_PRIMITIVE_ID) buf << " v_geom_primitiveID = a_primitiveID;\n"; buf << "}\n"; return specializeShader(buf.str(), contextType); } std::string BuiltinVariableShader::genFragmentSource (const glu::ContextType& contextType, VariableTest test) const { std::ostringstream buf; if (test == TEST_POINT_SIZE || test == TEST_PRIMITIVE_ID_IN) return specializeShader(s_commonShaderSourceFragment, contextType); else if (test == TEST_PRIMITIVE_ID) { buf << "${GLSL_VERSION_DECL}\n" "${GLSL_EXT_GEOMETRY_SHADER}" "layout(location = 0) out mediump vec4 fragColor;\n" "void main (void)\n" "{\n" " const mediump vec4 red = vec4(1.0, 0.0, 0.0, 1.0);\n" " const mediump vec4 green = vec4(0.0, 1.0, 0.0, 1.0);\n" " const mediump vec4 blue = vec4(0.0, 0.0, 1.0, 1.0);\n" " const mediump vec4 yellow = vec4(1.0, 1.0, 0.0, 1.0);\n" " const mediump vec4 colors[4] = vec4[4](yellow, red, green, blue);\n" " fragColor = colors[gl_PrimitiveID % 4];\n" "}\n"; return specializeShader(buf.str(), contextType); } else { DE_ASSERT(DE_FALSE); return DE_NULL; } } class VaryingOutputCountShader : public sglr::ShaderProgram { public: enum VaryingSource { READ_ATTRIBUTE = 0, READ_UNIFORM, READ_TEXTURE, READ_LAST }; enum { EMIT_COUNT_VERTEX_0 = 6, EMIT_COUNT_VERTEX_1 = 0, EMIT_COUNT_VERTEX_2 = -1, EMIT_COUNT_VERTEX_3 = 10, }; VaryingOutputCountShader (const glu::ContextType& contextType, VaryingSource source, int maxEmitCount, bool instanced); void shadeVertices (const rr::VertexAttrib* inputs, rr::VertexPacket* const* packets, const int numPackets) const; void shadeFragments (rr::FragmentPacket* packets, const int numPackets, const rr::FragmentShadingContext& context) const; void shadePrimitives (rr::GeometryEmitter& output, int verticesIn, const rr::PrimitivePacket* packets, const int numPackets, int invocationID) const; static const char* getAttributeName (VaryingSource test); private: static std::string genGeometrySource (const glu::ContextType& contextType, VaryingSource test, int maxEmitCount, bool instanced); static std::string genVertexSource (const glu::ContextType& contextType, VaryingSource test); const VaryingSource m_test; const sglr::UniformSlot& m_sampler; const sglr::UniformSlot& m_emitCount; const int m_maxEmitCount; const bool m_instanced; }; VaryingOutputCountShader::VaryingOutputCountShader (const glu::ContextType& contextType, VaryingSource source, int maxEmitCount, bool instanced) : sglr::ShaderProgram (sglr::pdec::ShaderProgramDeclaration() << sglr::pdec::Uniform("u_sampler", glu::TYPE_SAMPLER_2D) << sglr::pdec::Uniform("u_emitCount", glu::TYPE_INT_VEC4) << sglr::pdec::VertexAttribute("a_position", rr::GENERICVECTYPE_FLOAT) << sglr::pdec::VertexAttribute(getAttributeName(source), rr::GENERICVECTYPE_FLOAT) << sglr::pdec::VertexToGeometryVarying(rr::GENERICVECTYPE_FLOAT) << sglr::pdec::GeometryToFragmentVarying(rr::GENERICVECTYPE_FLOAT) << sglr::pdec::FragmentOutput(rr::GENERICVECTYPE_FLOAT) << sglr::pdec::VertexSource(genVertexSource(contextType, source)) << sglr::pdec::FragmentSource(specializeShader(s_commonShaderSourceFragment, contextType)) << sglr::pdec::GeometryShaderDeclaration(rr::GEOMETRYSHADERINPUTTYPE_POINTS, rr::GEOMETRYSHADEROUTPUTTYPE_TRIANGLE_STRIP, maxEmitCount, (instanced) ? (4) : (1)) << sglr::pdec::GeometrySource(genGeometrySource(contextType, source, maxEmitCount, instanced))) , m_test (source) , m_sampler (getUniformByName("u_sampler")) , m_emitCount (getUniformByName("u_emitCount")) , m_maxEmitCount (maxEmitCount) , m_instanced (instanced) { } void VaryingOutputCountShader::shadeVertices (const rr::VertexAttrib* inputs, rr::VertexPacket* const* packets, const int numPackets) const { for (int ndx = 0; ndx < numPackets; ++ndx) { packets[ndx]->position = rr::readVertexAttribFloat(inputs[0], packets[ndx]->instanceNdx, packets[ndx]->vertexNdx); packets[ndx]->outputs[0] = rr::readVertexAttribFloat(inputs[1], packets[ndx]->instanceNdx, packets[ndx]->vertexNdx); } } void VaryingOutputCountShader::shadeFragments (rr::FragmentPacket* packets, const int numPackets, const rr::FragmentShadingContext& context) const { for (int packetNdx = 0; packetNdx < numPackets; ++packetNdx) for (int fragNdx = 0; fragNdx < 4; ++fragNdx) rr::writeFragmentOutput(context, packetNdx, fragNdx, 0, rr::readVarying(packets[packetNdx], context, 0, fragNdx)); } void VaryingOutputCountShader::shadePrimitives (rr::GeometryEmitter& output, int verticesIn, const rr::PrimitivePacket* packets, const int numPackets, int invocationID) const { DE_UNREF(verticesIn); const tcu::Vec4 red = tcu::Vec4(1.0f, 0.0f, 0.0f, 1.0f); const tcu::Vec4 green = tcu::Vec4(0.0f, 1.0f, 0.0f, 1.0f); const tcu::Vec4 blue = tcu::Vec4(0.0f, 0.0f, 1.0f, 1.0f); const tcu::Vec4 yellow = tcu::Vec4(1.0f, 1.0f, 0.0f, 1.0f); const tcu::Vec4 colors[4] = { red, green, blue, yellow }; for (int packetNdx = 0; packetNdx < numPackets; ++packetNdx) { const rr::VertexPacket* vertex = packets[packetNdx].vertices[0]; int emitCount = 0; tcu::Vec4 color = tcu::Vec4(0.0f, 0.0f, 0.0f, 0.0f); if (m_test == READ_ATTRIBUTE) { emitCount = (int)vertex->outputs[0].get()[(m_instanced) ? (invocationID) : (0)]; color = tcu::Vec4((emitCount < 10) ? (0.0f) : (1.0f), (emitCount > 10) ? (0.0f) : (1.0f), 1.0f, 1.0f); } else if (m_test == READ_UNIFORM) { const int primitiveNdx = (m_instanced) ? (invocationID) : ((int)vertex->outputs[0].get().x()); DE_ASSERT(primitiveNdx >= 0); DE_ASSERT(primitiveNdx < 4); emitCount = m_emitCount.value.i4[primitiveNdx]; color = colors[primitiveNdx]; } else if (m_test == READ_TEXTURE) { const int primitiveNdx = (m_instanced) ? (invocationID) : ((int)vertex->outputs[0].get().x()); const tcu::Vec2 texCoord = tcu::Vec2(1.0f / 8.0f + (float)primitiveNdx / 4.0f, 0.5f); const tcu::Vec4 texColor = m_sampler.sampler.tex2D->sample(texCoord.x(), texCoord.y(), 0.0f); DE_ASSERT(primitiveNdx >= 0); DE_ASSERT(primitiveNdx < 4); color = colors[primitiveNdx]; emitCount = 0; if (texColor.x() > 0.0f) emitCount += (EMIT_COUNT_VERTEX_0 == -1) ? (m_maxEmitCount) : (EMIT_COUNT_VERTEX_0); if (texColor.y() > 0.0f) emitCount += (EMIT_COUNT_VERTEX_1 == -1) ? (m_maxEmitCount) : (EMIT_COUNT_VERTEX_1); if (texColor.z() > 0.0f) emitCount += (EMIT_COUNT_VERTEX_2 == -1) ? (m_maxEmitCount) : (EMIT_COUNT_VERTEX_2); if (texColor.w() > 0.0f) emitCount += (EMIT_COUNT_VERTEX_3 == -1) ? (m_maxEmitCount) : (EMIT_COUNT_VERTEX_3); } else DE_ASSERT(DE_FALSE); for (int ndx = 0; ndx < (int)emitCount / 2; ++ndx) { const float angle = (float(ndx) + 0.5f) / float(emitCount / 2) * 3.142f; const tcu::Vec4 basePosition = (m_instanced) ? (vertex->position + tcu::Vec4(deFloatCos(float(invocationID)), deFloatSin(float(invocationID)), 0.0f, 0.0f) * 0.5f) : (vertex->position); const tcu::Vec4 position0 = basePosition + tcu::Vec4(deFloatCos(angle), deFloatSin(angle), 0.0f, 0.0f) * 0.15f; const tcu::Vec4 position1 = basePosition + tcu::Vec4(deFloatCos(angle), -deFloatSin(angle), 0.0f, 0.0f) * 0.15f; rr::GenericVec4 fragColor; fragColor = color; output.EmitVertex(position0, 0.0f, &fragColor, packets[packetNdx].primitiveIDIn); output.EmitVertex(position1, 0.0f, &fragColor, packets[packetNdx].primitiveIDIn); } output.EndPrimitive(); } } const char* VaryingOutputCountShader::getAttributeName (VaryingSource test) { switch (test) { case READ_ATTRIBUTE: return "a_emitCount"; case READ_UNIFORM: return "a_vertexNdx"; case READ_TEXTURE: return "a_vertexNdx"; default: DE_ASSERT(DE_FALSE); return ""; } } std::string VaryingOutputCountShader::genGeometrySource (const glu::ContextType& contextType, VaryingSource test, int maxEmitCount, bool instanced) { std::ostringstream buf; buf << "${GLSL_VERSION_DECL}\n" "${GLSL_EXT_GEOMETRY_SHADER}" "layout(points" << ((instanced) ? (",invocations=4") : ("")) << ") in;\n" "layout(triangle_strip, max_vertices = " << maxEmitCount << ") out;\n"; if (test == READ_ATTRIBUTE) buf << "in highp vec4 v_geom_emitCount[];\n"; else if (test == READ_UNIFORM) buf << "in highp vec4 v_geom_vertexNdx[];\n" "uniform highp ivec4 u_emitCount;\n"; else buf << "in highp vec4 v_geom_vertexNdx[];\n" "uniform highp sampler2D u_sampler;\n"; buf << "out highp vec4 v_frag_FragColor;\n" "\n" "void main (void)\n" "{\n"; // emit count if (test == READ_ATTRIBUTE) { buf << " highp vec4 attrEmitCounts = v_geom_emitCount[0];\n" " mediump int emitCount = int(attrEmitCounts[" << ((instanced) ? ("gl_InvocationID") : ("0")) << "]);\n"; } else if (test == READ_UNIFORM) { buf << " mediump int primitiveNdx = " << ((instanced) ? ("gl_InvocationID") : ("int(v_geom_vertexNdx[0].x)")) << ";\n" " mediump int emitCount = u_emitCount[primitiveNdx];\n"; } else if (test == READ_TEXTURE) { buf << " highp float primitiveNdx = " << ((instanced) ? ("float(gl_InvocationID)") : ("v_geom_vertexNdx[0].x")) << ";\n" " highp vec2 texCoord = vec2(1.0 / 8.0 + primitiveNdx / 4.0, 0.5);\n" " highp vec4 texColor = texture(u_sampler, texCoord);\n" " mediump int emitCount = 0;\n" " if (texColor.x > 0.0)\n" " emitCount += " << ((EMIT_COUNT_VERTEX_0 == -1) ? (maxEmitCount) : (EMIT_COUNT_VERTEX_0)) << ";\n" " if (texColor.y > 0.0)\n" " emitCount += " << ((EMIT_COUNT_VERTEX_1 == -1) ? (maxEmitCount) : (EMIT_COUNT_VERTEX_1)) << ";\n" " if (texColor.z > 0.0)\n" " emitCount += " << ((EMIT_COUNT_VERTEX_2 == -1) ? (maxEmitCount) : (EMIT_COUNT_VERTEX_2)) << ";\n" " if (texColor.w > 0.0)\n" " emitCount += " << ((EMIT_COUNT_VERTEX_3 == -1) ? (maxEmitCount) : (EMIT_COUNT_VERTEX_3)) << ";\n"; } else DE_ASSERT(DE_FALSE); // color if (test == READ_ATTRIBUTE) { // We don't want color to be compile time constant buf << " highp vec4 color = vec4((emitCount < 10) ? (0.0) : (1.0), (emitCount > 10) ? (0.0) : (1.0), 1.0, 1.0);\n"; } else if (test == READ_UNIFORM || test == READ_TEXTURE) { buf << "\n" " const highp vec4 red = vec4(1.0, 0.0, 0.0, 1.0);\n" " const highp vec4 green = vec4(0.0, 1.0, 0.0, 1.0);\n" " const highp vec4 blue = vec4(0.0, 0.0, 1.0, 1.0);\n" " const highp vec4 yellow = vec4(1.0, 1.0, 0.0, 1.0);\n" " const highp vec4 colors[4] = vec4[4](red, green, blue, yellow);\n" " highp vec4 color = colors[int(primitiveNdx)];\n"; } else DE_ASSERT(DE_FALSE); buf << "\n" " highp vec4 basePos = " << ((instanced) ? ("gl_in[0].gl_Position + 0.5 * vec4(cos(float(gl_InvocationID)), sin(float(gl_InvocationID)), 0.0, 0.0)") : ("gl_in[0].gl_Position")) << ";\n" " for (mediump int i = 0; i < emitCount / 2; i++)\n" " {\n" " highp float angle = (float(i) + 0.5) / float(emitCount / 2) * 3.142;\n" " gl_Position = basePos + vec4(cos(angle), sin(angle), 0.0, 0.0) * 0.15;\n" " v_frag_FragColor = color;\n" " EmitVertex();\n" " gl_Position = basePos + vec4(cos(angle), -sin(angle), 0.0, 0.0) * 0.15;\n" " v_frag_FragColor = color;\n" " EmitVertex();\n" " }" "}\n"; return specializeShader(buf.str(), contextType); } std::string VaryingOutputCountShader::genVertexSource (const glu::ContextType& contextType, VaryingSource test) { std::ostringstream buf; buf << "${GLSL_VERSION_DECL}\n" "in highp vec4 a_position;\n"; if (test == READ_ATTRIBUTE) { buf << "in highp vec4 a_emitCount;\n"; buf << "out highp vec4 v_geom_emitCount;\n"; } else if (test == READ_UNIFORM || test == READ_TEXTURE) { buf << "in highp vec4 a_vertexNdx;\n"; buf << "out highp vec4 v_geom_vertexNdx;\n"; } buf << "void main (void)\n" "{\n" " gl_Position = a_position;\n"; if (test == READ_ATTRIBUTE) buf << " v_geom_emitCount = a_emitCount;\n"; else if (test == READ_UNIFORM || test == READ_TEXTURE) buf << " v_geom_vertexNdx = a_vertexNdx;\n"; buf << "}\n"; return specializeShader(buf.str(), contextType); } class InvocationCountShader : public sglr::ShaderProgram { public: enum OutputCase { CASE_FIXED_OUTPUT_COUNTS = 0, CASE_DIFFERENT_OUTPUT_COUNTS, CASE_LAST }; InvocationCountShader (const glu::ContextType& contextType, int numInvocations, OutputCase testCase); private: void shadeVertices (const rr::VertexAttrib* inputs, rr::VertexPacket* const* packets, const int numPackets) const; void shadeFragments (rr::FragmentPacket* packets, const int numPackets, const rr::FragmentShadingContext& context) const; void shadePrimitives (rr::GeometryEmitter& output, int verticesIn, const rr::PrimitivePacket* packets, const int numPackets, int invocationID) const; static std::string genGeometrySource (const glu::ContextType& contextType, int numInvocations, OutputCase testCase); static size_t getNumVertices (int numInvocations, OutputCase testCase); const int m_numInvocations; const OutputCase m_testCase; }; InvocationCountShader::InvocationCountShader (const glu::ContextType& contextType, int numInvocations, OutputCase testCase) : sglr::ShaderProgram (sglr::pdec::ShaderProgramDeclaration() << sglr::pdec::VertexAttribute("a_position", rr::GENERICVECTYPE_FLOAT) << sglr::pdec::VertexAttribute("a_color", rr::GENERICVECTYPE_FLOAT) << sglr::pdec::VertexToGeometryVarying(rr::GENERICVECTYPE_FLOAT) << sglr::pdec::GeometryToFragmentVarying(rr::GENERICVECTYPE_FLOAT) << sglr::pdec::FragmentOutput(rr::GENERICVECTYPE_FLOAT) << sglr::pdec::VertexSource(specializeShader(s_commonShaderSourceVertex, contextType)) << sglr::pdec::FragmentSource(specializeShader(s_commonShaderSourceFragment, contextType)) << sglr::pdec::GeometryShaderDeclaration(rr::GEOMETRYSHADERINPUTTYPE_POINTS, rr::GEOMETRYSHADEROUTPUTTYPE_TRIANGLE_STRIP, getNumVertices(numInvocations, testCase), numInvocations) << sglr::pdec::GeometrySource(genGeometrySource(contextType, numInvocations, testCase))) , m_numInvocations (numInvocations) , m_testCase (testCase) { } void InvocationCountShader::shadeVertices (const rr::VertexAttrib* inputs, rr::VertexPacket* const* packets, const int numPackets) const { for (int ndx = 0; ndx < numPackets; ++ndx) { packets[ndx]->position = rr::readVertexAttribFloat(inputs[0], packets[ndx]->instanceNdx, packets[ndx]->vertexNdx); packets[ndx]->outputs[0] = rr::readVertexAttribFloat(inputs[1], packets[ndx]->instanceNdx, packets[ndx]->vertexNdx); } } void InvocationCountShader::shadeFragments (rr::FragmentPacket* packets, const int numPackets, const rr::FragmentShadingContext& context) const { for (int packetNdx = 0; packetNdx < numPackets; ++packetNdx) for (int fragNdx = 0; fragNdx < 4; ++fragNdx) rr::writeFragmentOutput(context, packetNdx, fragNdx, 0, rr::readVarying(packets[packetNdx], context, 0, fragNdx)); } void InvocationCountShader::shadePrimitives (rr::GeometryEmitter& output, int verticesIn, const rr::PrimitivePacket* packets, const int numPackets, int invocationID) const { DE_UNREF(verticesIn); for (int packetNdx = 0; packetNdx < numPackets; ++packetNdx) { const float l_angle = float(invocationID) / float(m_numInvocations) * 5.5f; const float l_radius = 0.6f; const rr::VertexPacket* vertex = packets[packetNdx].vertices[0]; if (m_testCase == CASE_FIXED_OUTPUT_COUNTS) { const tcu::Vec4 position0 = vertex->position + tcu::Vec4(deFloatCos(l_angle) * (l_radius - 0.1f), deFloatSin(l_angle) * (l_radius - 0.1f), 0.0f, 0.0f); const tcu::Vec4 position1 = vertex->position + tcu::Vec4(deFloatCos(l_angle+0.1f) * l_radius, deFloatSin(l_angle+0.1f) * l_radius, 0.0f, 0.0f); const tcu::Vec4 position2 = vertex->position + tcu::Vec4(deFloatCos(l_angle-0.1f) * l_radius, deFloatSin(l_angle-0.1f) * l_radius, 0.0f, 0.0f); rr::GenericVec4 tipColor; rr::GenericVec4 baseColor; tipColor = tcu::Vec4(1.0, 1.0, 0.0, 1.0) * packets[packetNdx].vertices[0]->outputs[0].get(); baseColor = tcu::Vec4(1.0, 0.0, 0.0, 1.0) * packets[packetNdx].vertices[0]->outputs[0].get(); output.EmitVertex(position0, 0.0f, &tipColor, packets[packetNdx].primitiveIDIn); output.EmitVertex(position1, 0.0f, &baseColor, packets[packetNdx].primitiveIDIn); output.EmitVertex(position2, 0.0f, &baseColor, packets[packetNdx].primitiveIDIn); output.EndPrimitive(); } else if (m_testCase == CASE_DIFFERENT_OUTPUT_COUNTS) { const tcu::Vec4 color = tcu::Vec4(float(invocationID % 2), (((invocationID / 2) % 2) == 0) ? (1.0f) : (0.0f), 1.0f, 1.0f); const tcu::Vec4 basePosition = vertex->position + tcu::Vec4(deFloatCos(l_angle) * l_radius, deFloatSin(l_angle) * l_radius, 0.0f, 0.0f); const int numNgonVtx = invocationID + 3; rr::GenericVec4 outColor; outColor = color; for (int ndx = 0; ndx + 1 < numNgonVtx; ndx += 2) { const float subAngle = (float(ndx) + 1.0f) / float(numNgonVtx) * 3.141f; output.EmitVertex(basePosition + tcu::Vec4(deFloatCos(subAngle) * 0.1f, deFloatSin(subAngle) * 0.1f, 0.0f, 0.0f), 0.0f, &outColor, packets[packetNdx].primitiveIDIn); output.EmitVertex(basePosition + tcu::Vec4(deFloatCos(subAngle) * 0.1f, deFloatSin(subAngle) * -0.1f, 0.0f, 0.0f), 0.0f, &outColor, packets[packetNdx].primitiveIDIn); } if ((numNgonVtx % 2) == 1) output.EmitVertex(basePosition + tcu::Vec4(-0.1f, 0.0f, 0.0f, 0.0f), 0.0f, &outColor, packets[packetNdx].primitiveIDIn); output.EndPrimitive(); } } } std::string InvocationCountShader::genGeometrySource (const glu::ContextType& contextType, int numInvocations, OutputCase testCase) { const int maxVertices = (int)getNumVertices(numInvocations, testCase); std::ostringstream buf; buf << "${GLSL_VERSION_DECL}\n" "${GLSL_EXT_GEOMETRY_SHADER}" "layout(points, invocations = " << numInvocations << ") in;\n" "layout(triangle_strip, max_vertices = " << maxVertices << ") out;\n" "\n" "in highp vec4 v_geom_FragColor[];\n" "out highp vec4 v_frag_FragColor;\n" "\n" "void main ()\n" "{\n" " highp float l_angle = float(gl_InvocationID) / float(" << numInvocations << ") * 5.5;\n" " highp float l_radius = 0.6;\n" "\n"; if (testCase == CASE_FIXED_OUTPUT_COUNTS) { buf << " v_frag_FragColor = vec4(1.0, 1.0, 0.0, 1.0) * v_geom_FragColor[0];\n" " gl_Position = gl_in[0].gl_Position + vec4(cos(l_angle) * (l_radius - 0.1), sin(l_angle) * (l_radius - 0.1), 0.0, 0.0);\n" " EmitVertex();\n" "\n" " v_frag_FragColor = vec4(1.0, 0.0, 0.0, 1.0) * v_geom_FragColor[0];\n" " gl_Position = gl_in[0].gl_Position + vec4(cos(l_angle+0.1) * l_radius, sin(l_angle+0.1) * l_radius, 0.0, 0.0);\n" " EmitVertex();\n" "\n" " v_frag_FragColor = vec4(1.0, 0.0, 0.0, 1.0) * v_geom_FragColor[0];\n" " gl_Position = gl_in[0].gl_Position + vec4(cos(l_angle-0.1) * l_radius, sin(l_angle-0.1) * l_radius, 0.0, 0.0);\n" " EmitVertex();\n"; } else if (testCase == CASE_DIFFERENT_OUTPUT_COUNTS) { buf << " highp vec4 l_color = vec4(float(gl_InvocationID % 2), (((gl_InvocationID / 2) % 2) == 0) ? (1.0) : (0.0), 1.0, 1.0);\n" " highp vec4 basePosition = gl_in[0].gl_Position + vec4(cos(l_angle) * l_radius, sin(l_angle) * l_radius, 0.0, 0.0);\n" " mediump int numNgonVtx = gl_InvocationID + 3;\n" "\n" " for (int ndx = 0; ndx + 1 < numNgonVtx; ndx += 2)\n" " {\n" " highp float sub_angle = (float(ndx) + 1.0) / float(numNgonVtx) * 3.141;\n" "\n" " v_frag_FragColor = l_color;\n" " gl_Position = basePosition + vec4(cos(sub_angle) * 0.1, sin(sub_angle) * 0.1, 0.0, 0.0);\n" " EmitVertex();\n" "\n" " v_frag_FragColor = l_color;\n" " gl_Position = basePosition + vec4(cos(sub_angle) * 0.1, sin(sub_angle) * -0.1, 0.0, 0.0);\n" " EmitVertex();\n" " }\n" " if ((numNgonVtx % 2) == 1)\n" " {\n" " v_frag_FragColor = l_color;\n" " gl_Position = basePosition + vec4(-0.1, 0.0, 0.0, 0.0);\n" " EmitVertex();\n" " }\n"; } else DE_ASSERT(false); buf << "}\n"; return specializeShader(buf.str(), contextType); } size_t InvocationCountShader::getNumVertices (int numInvocations, OutputCase testCase) { switch (testCase) { case CASE_FIXED_OUTPUT_COUNTS: return 3; case CASE_DIFFERENT_OUTPUT_COUNTS: return (size_t)(2 + numInvocations); default: DE_ASSERT(false); return 0; } } class InstancedExpansionShader : public sglr::ShaderProgram { public: InstancedExpansionShader (const glu::ContextType& contextType, int numInvocations); private: void shadeVertices (const rr::VertexAttrib* inputs, rr::VertexPacket* const* packets, const int numPackets) const; void shadeFragments (rr::FragmentPacket* packets, const int numPackets, const rr::FragmentShadingContext& context) const; void shadePrimitives (rr::GeometryEmitter& output, int verticesIn, const rr::PrimitivePacket* packets, const int numPackets, int invocationID) const; static std::string genVertexSource (const glu::ContextType& contextType); static std::string genFragmentSource (const glu::ContextType& contextType); static std::string genGeometrySource (const glu::ContextType& contextType, int numInvocations); const int m_numInvocations; }; InstancedExpansionShader::InstancedExpansionShader (const glu::ContextType& contextType, int numInvocations) : sglr::ShaderProgram (sglr::pdec::ShaderProgramDeclaration() << sglr::pdec::VertexAttribute("a_position", rr::GENERICVECTYPE_FLOAT) << sglr::pdec::VertexAttribute("a_offset", rr::GENERICVECTYPE_FLOAT) << sglr::pdec::FragmentOutput(rr::GENERICVECTYPE_FLOAT) << sglr::pdec::VertexSource(genVertexSource(contextType)) << sglr::pdec::FragmentSource(genFragmentSource(contextType)) << sglr::pdec::GeometryShaderDeclaration(rr::GEOMETRYSHADERINPUTTYPE_POINTS, rr::GEOMETRYSHADEROUTPUTTYPE_TRIANGLE_STRIP, 4, numInvocations) << sglr::pdec::GeometrySource(genGeometrySource(contextType, numInvocations))) , m_numInvocations (numInvocations) { } void InstancedExpansionShader::shadeVertices (const rr::VertexAttrib* inputs, rr::VertexPacket* const* packets, const int numPackets) const { for (int ndx = 0; ndx < numPackets; ++ndx) { packets[ndx]->position = rr::readVertexAttribFloat(inputs[0], packets[ndx]->instanceNdx, packets[ndx]->vertexNdx) + rr::readVertexAttribFloat(inputs[1], packets[ndx]->instanceNdx, packets[ndx]->vertexNdx); } } void InstancedExpansionShader::shadeFragments (rr::FragmentPacket* packets, const int numPackets, const rr::FragmentShadingContext& context) const { DE_UNREF(packets); for (int packetNdx = 0; packetNdx < numPackets; ++packetNdx) for (int fragNdx = 0; fragNdx < 4; ++fragNdx) rr::writeFragmentOutput(context, packetNdx, fragNdx, 0, tcu::Vec4(1.0f, 1.0f, 1.0f, 1.0f)); } void InstancedExpansionShader::shadePrimitives (rr::GeometryEmitter& output, int verticesIn, const rr::PrimitivePacket* packets, const int numPackets, int invocationID) const { DE_UNREF(verticesIn); for (int packetNdx = 0; packetNdx < numPackets; ++packetNdx) { const rr::VertexPacket* vertex = packets[packetNdx].vertices[0]; const tcu::Vec4 basePosition = vertex->position; const float phase = float(invocationID) / float(m_numInvocations) * 6.3f; const tcu::Vec4 centerPosition = basePosition + tcu::Vec4(deFloatCos(phase), deFloatSin(phase), 0.0f, 0.0f) * 0.1f; output.EmitVertex(centerPosition + tcu::Vec4( 0.0f, -0.1f, 0.0f, 0.0f), 0.0f, DE_NULL, packets[packetNdx].primitiveIDIn); output.EmitVertex(centerPosition + tcu::Vec4(-0.05f, 0.0f, 0.0f, 0.0f), 0.0f, DE_NULL, packets[packetNdx].primitiveIDIn); output.EmitVertex(centerPosition + tcu::Vec4( 0.05f, 0.0f, 0.0f, 0.0f), 0.0f, DE_NULL, packets[packetNdx].primitiveIDIn); output.EndPrimitive(); } } std::string InstancedExpansionShader::genVertexSource (const glu::ContextType& contextType) { std::ostringstream buf; buf << "${GLSL_VERSION_DECL}\n" "in highp vec4 a_position;\n" "in highp vec4 a_offset;\n" "void main (void)\n" "{\n" " gl_Position = a_position + a_offset;\n" "}\n"; return specializeShader(buf.str(), contextType); } std::string InstancedExpansionShader::genFragmentSource (const glu::ContextType& contextType) { std::ostringstream buf; buf << "${GLSL_VERSION_DECL}\n" "layout(location = 0) out mediump vec4 fragColor;\n" "void main (void)\n" "{\n" " fragColor = vec4(1.0, 1.0, 1.0, 1.0);\n" "}\n"; return specializeShader(buf.str(), contextType); } std::string InstancedExpansionShader::genGeometrySource (const glu::ContextType& contextType, int numInvocations) { std::ostringstream buf; buf << "${GLSL_VERSION_DECL}\n" "${GLSL_EXT_GEOMETRY_SHADER}" "layout(points,invocations=" << numInvocations << ") in;\n" "layout(triangle_strip, max_vertices = 3) out;\n" "\n" "void main (void)\n" "{\n" " highp vec4 basePosition = gl_in[0].gl_Position;\n" " highp float phase = float(gl_InvocationID) / float(" << numInvocations << ") * 6.3;\n" " highp vec4 centerPosition = basePosition + 0.1 * vec4(cos(phase), sin(phase), 0.0, 0.0);\n" "\n" " gl_Position = centerPosition + vec4( 0.00, -0.1, 0.0, 0.0);\n" " EmitVertex();\n" " gl_Position = centerPosition + vec4(-0.05, 0.0, 0.0, 0.0);\n" " EmitVertex();\n" " gl_Position = centerPosition + vec4( 0.05, 0.0, 0.0, 0.0);\n" " EmitVertex();\n" "}\n"; return specializeShader(buf.str(), contextType); } class GeometryShaderRenderTest : public TestCase { public: enum Flag { FLAG_DRAW_INSTANCED = 1, FLAG_USE_INDICES = 2, FLAG_USE_RESTART_INDEX = 4, }; GeometryShaderRenderTest (Context& context, const char* name, const char* desc, GLenum inputPrimitives, GLenum outputPrimitives, const char* dataAttributeName, int flags = 0); virtual ~GeometryShaderRenderTest (void); void init (void); void deinit (void); IterateResult iterate (void); bool compare (void); virtual sglr::ShaderProgram& getProgram (void) = 0; protected: virtual void genVertexAttribData (void); void renderWithContext (sglr::Context& ctx, sglr::ShaderProgram& program, tcu::Surface& dstSurface); virtual void preRender (sglr::Context& ctx, GLuint programID); virtual void postRender (sglr::Context& ctx, GLuint programID); int m_numDrawVertices; int m_numDrawInstances; int m_vertexAttrDivisor; const GLenum m_inputPrimitives; const GLenum m_outputPrimitives; const char* const m_dataAttributeName; const int m_flags; tcu::IVec2 m_viewportSize; int m_interationCount; tcu::Surface* m_glResult; tcu::Surface* m_refResult; sglr::ReferenceContextBuffers* m_refBuffers; sglr::ReferenceContext* m_refContext; sglr::Context* m_glContext; std::vector m_vertexPosData; std::vector m_vertexAttrData; std::vector m_indices; }; GeometryShaderRenderTest::GeometryShaderRenderTest (Context& context, const char* name, const char* desc, GLenum inputPrimitives, GLenum outputPrimitives, const char* dataAttributeName, int flags) : TestCase (context, name, desc) , m_numDrawVertices (0) , m_numDrawInstances (0) , m_vertexAttrDivisor (0) , m_inputPrimitives (inputPrimitives) , m_outputPrimitives (outputPrimitives) , m_dataAttributeName (dataAttributeName) , m_flags (flags) , m_viewportSize (TEST_CANVAS_SIZE, TEST_CANVAS_SIZE) , m_interationCount (0) , m_glResult (DE_NULL) , m_refResult (DE_NULL) , m_refBuffers (DE_NULL) , m_refContext (DE_NULL) , m_glContext (DE_NULL) { // Disallow instanced drawElements DE_ASSERT(((m_flags & FLAG_DRAW_INSTANCED) == 0) || ((m_flags & FLAG_USE_INDICES) == 0)); // Disallow restart without indices DE_ASSERT(!(((m_flags & FLAG_USE_RESTART_INDEX) != 0) && ((m_flags & FLAG_USE_INDICES) == 0))); } GeometryShaderRenderTest::~GeometryShaderRenderTest (void) { deinit(); } void GeometryShaderRenderTest::init (void) { // requirements if (!glu::contextSupports(m_context.getRenderContext().getType(), glu::ApiType::es(3, 2)) && !m_context.getContextInfo().isExtensionSupported("GL_EXT_geometry_shader")) TCU_THROW(NotSupportedError, "Tests require GL_EXT_geometry_shader extension or higher context version."); // gen resources { sglr::ReferenceContextLimits limits; m_glResult = new tcu::Surface(m_viewportSize.x(), m_viewportSize.y()); m_refResult = new tcu::Surface(m_viewportSize.x(), m_viewportSize.y()); m_refBuffers = new sglr::ReferenceContextBuffers(m_context.getRenderTarget().getPixelFormat(), m_context.getRenderTarget().getDepthBits(), 0, m_viewportSize.x(), m_viewportSize.y()); m_refContext = new sglr::ReferenceContext(limits, m_refBuffers->getColorbuffer(), m_refBuffers->getDepthbuffer(), m_refBuffers->getStencilbuffer()); m_glContext = new sglr::GLContext(m_context.getRenderContext(), m_testCtx.getLog(), sglr::GLCONTEXT_LOG_CALLS | sglr::GLCONTEXT_LOG_PROGRAMS, tcu::IVec4(0, 0, m_viewportSize.x(), m_viewportSize.y())); } } void GeometryShaderRenderTest::deinit (void) { delete m_glResult; delete m_refResult; m_glResult = DE_NULL; m_refResult = DE_NULL; delete m_refContext; delete m_glContext; delete m_refBuffers; m_refBuffers = DE_NULL; m_refContext = DE_NULL; m_glContext = DE_NULL; } tcu::TestCase::IterateResult GeometryShaderRenderTest::iterate (void) { // init() must be called DE_ASSERT(m_glContext); DE_ASSERT(m_refContext); const int iteration = m_interationCount++; if (iteration == 0) { // Check requirements const int width = m_context.getRenderTarget().getWidth(); const int height = m_context.getRenderTarget().getHeight(); if (width < m_viewportSize.x() || height < m_viewportSize.y()) throw tcu::NotSupportedError(std::string("Render target size must be at least ") + de::toString(m_viewportSize.x()) + "x" + de::toString(m_viewportSize.y())); // Gen data genVertexAttribData(); return CONTINUE; } else if (iteration == 1) { // Render sglr::ShaderProgram& program = getProgram(); renderWithContext(*m_glContext, program, *m_glResult); renderWithContext(*m_refContext, program, *m_refResult); return CONTINUE; } else { if (compare()) m_testCtx.setTestResult(QP_TEST_RESULT_PASS, "Pass"); else m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "Image comparison failed"); return STOP; } } bool GeometryShaderRenderTest::compare (void) { using tcu::TestLog; if (m_context.getRenderTarget().getNumSamples() > 1) { return tcu::fuzzyCompare(m_testCtx.getLog(), "Compare Results", "Compare Results", m_refResult->getAccess(), m_glResult->getAccess(), 0.02f, tcu::COMPARE_LOG_RESULT); } else { tcu::Surface errorMask (m_viewportSize.x(), m_viewportSize.y()); const tcu::RGBA green (0, 255, 0, 255); const tcu::RGBA red (255, 0, 0, 255); const int colorComponentThreshold = 20; bool testResult = true; for (int x = 0; x < m_viewportSize.x(); ++x) for (int y = 0; y < m_viewportSize.y(); ++y) { if (x == 0 || y == 0 || x + 1 == m_viewportSize.x() || y + 1 == m_viewportSize.y()) { // Mark edge pixels as correct since their neighbourhood is undefined errorMask.setPixel(x, y, green); } else { const tcu::RGBA refcolor = m_refResult->getPixel(x, y); bool found = false; // Got to find similar pixel near this pixel (3x3 kernel) for (int dx = -1; dx <= 1; ++dx) for (int dy = -1; dy <= 1; ++dy) { const tcu::RGBA testColor = m_glResult->getPixel(x + dx, y + dy); const tcu::IVec4 colDiff = tcu::abs(testColor.toIVec() - refcolor.toIVec()); const int maxColDiff = de::max(de::max(colDiff.x(), colDiff.y()), colDiff.z()); // check RGB channels if (maxColDiff <= colorComponentThreshold) found = true; } if (!found) testResult = false; errorMask.setPixel(x, y, (found) ? (green) : (red)); } } if (testResult) { m_testCtx.getLog() << TestLog::ImageSet("Compare result", "Result of rendering") << TestLog::Image("Result", "Result", *m_glResult) << TestLog::EndImageSet; m_testCtx.getLog() << TestLog::Message << "Image compare ok." << TestLog::EndMessage; } else { m_testCtx.getLog() << TestLog::ImageSet("Compare result", "Result of rendering") << TestLog::Image("Result", "Result", *m_glResult) << TestLog::Image("Reference", "Reference", *m_refResult) << TestLog::Image("ErrorMask", "Error mask", errorMask) << TestLog::EndImageSet; m_testCtx.getLog() << TestLog::Message << "Image compare failed." << TestLog::EndMessage; } return testResult; } } void GeometryShaderRenderTest::genVertexAttribData (void) { // Create 1 X 2 grid in triangle strip adjacent - order const float scale = 0.3f; const tcu::Vec4 offset(-0.5f, -0.2f, 0.0f, 1.0f); m_vertexPosData.resize(12); m_vertexPosData[ 0] = tcu::Vec4( 0, 0, 0.0f, 0.0f) * scale + offset; m_vertexPosData[ 1] = tcu::Vec4(-1, -1, 0.0f, 0.0f) * scale + offset; m_vertexPosData[ 2] = tcu::Vec4( 0, -1, 0.0f, 0.0f) * scale + offset; m_vertexPosData[ 3] = tcu::Vec4( 1, 1, 0.0f, 0.0f) * scale + offset; m_vertexPosData[ 4] = tcu::Vec4( 1, 0, 0.0f, 0.0f) * scale + offset; m_vertexPosData[ 5] = tcu::Vec4( 0, -2, 0.0f, 0.0f) * scale + offset; m_vertexPosData[ 6] = tcu::Vec4( 1, -1, 0.0f, 0.0f) * scale + offset; m_vertexPosData[ 7] = tcu::Vec4( 2, 1, 0.0f, 0.0f) * scale + offset; m_vertexPosData[ 8] = tcu::Vec4( 2, 0, 0.0f, 0.0f) * scale + offset; m_vertexPosData[ 9] = tcu::Vec4( 1, -2, 0.0f, 0.0f) * scale + offset; m_vertexPosData[10] = tcu::Vec4( 2, -1, 0.0f, 0.0f) * scale + offset; m_vertexPosData[11] = tcu::Vec4( 3, 0, 0.0f, 0.0f) * scale + offset; // Red and white m_vertexAttrData.resize(12); for (int i = 0; i < 12; ++i) m_vertexAttrData[i] = (i % 2 == 0) ? tcu::Vec4(1, 1, 1, 1) : tcu::Vec4(1, 0, 0, 1); m_numDrawVertices = 12; } void GeometryShaderRenderTest::renderWithContext (sglr::Context& ctx, sglr::ShaderProgram& program, tcu::Surface& dstSurface) { #define CHECK_GL_CTX_ERRORS() glu::checkError(ctx.getError(), DE_NULL, __FILE__, __LINE__) const GLuint programId = ctx.createProgram(&program); const GLint attrPosLoc = ctx.getAttribLocation(programId, "a_position"); const GLint attrColLoc = ctx.getAttribLocation(programId, m_dataAttributeName); GLuint vaoId = 0; GLuint vertexPosBuf = 0; GLuint vertexAttrBuf = 0; GLuint elementArrayBuf = 0; ctx.genVertexArrays(1, &vaoId); ctx.bindVertexArray(vaoId); if (attrPosLoc != -1) { ctx.genBuffers(1, &vertexPosBuf); ctx.bindBuffer(GL_ARRAY_BUFFER, vertexPosBuf); ctx.bufferData(GL_ARRAY_BUFFER, m_vertexPosData.size() * sizeof(tcu::Vec4), &m_vertexPosData[0], GL_STATIC_DRAW); ctx.vertexAttribPointer(attrPosLoc, 4, GL_FLOAT, GL_FALSE, 0, DE_NULL); ctx.enableVertexAttribArray(attrPosLoc); } if (attrColLoc != -1) { ctx.genBuffers(1, &vertexAttrBuf); ctx.bindBuffer(GL_ARRAY_BUFFER, vertexAttrBuf); ctx.bufferData(GL_ARRAY_BUFFER, m_vertexAttrData.size() * sizeof(tcu::Vec4), &m_vertexAttrData[0], GL_STATIC_DRAW); ctx.vertexAttribPointer(attrColLoc, 4, GL_FLOAT, GL_FALSE, 0, DE_NULL); ctx.enableVertexAttribArray(attrColLoc); if (m_vertexAttrDivisor) ctx.vertexAttribDivisor(attrColLoc, m_vertexAttrDivisor); } if (m_flags & FLAG_USE_INDICES) { ctx.genBuffers(1, &elementArrayBuf); ctx.bindBuffer(GL_ELEMENT_ARRAY_BUFFER, elementArrayBuf); ctx.bufferData(GL_ELEMENT_ARRAY_BUFFER, m_indices.size() * sizeof(deUint16), &m_indices[0], GL_STATIC_DRAW); } ctx.clearColor(0, 0, 0, 1); ctx.clear(GL_COLOR_BUFFER_BIT); ctx.viewport(0, 0, m_viewportSize.x(), m_viewportSize.y()); CHECK_GL_CTX_ERRORS(); ctx.useProgram(programId); CHECK_GL_CTX_ERRORS(); preRender(ctx, programId); CHECK_GL_CTX_ERRORS(); if (m_flags & FLAG_USE_RESTART_INDEX) { ctx.enable(GL_PRIMITIVE_RESTART_FIXED_INDEX); CHECK_GL_CTX_ERRORS(); } if (m_flags & FLAG_USE_INDICES) ctx.drawElements(m_inputPrimitives, m_numDrawVertices, GL_UNSIGNED_SHORT, DE_NULL); else if (m_flags & FLAG_DRAW_INSTANCED) ctx.drawArraysInstanced(m_inputPrimitives, 0, m_numDrawVertices, m_numDrawInstances); else ctx.drawArrays(m_inputPrimitives, 0, m_numDrawVertices); CHECK_GL_CTX_ERRORS(); if (m_flags & FLAG_USE_RESTART_INDEX) { ctx.disable(GL_PRIMITIVE_RESTART_FIXED_INDEX); CHECK_GL_CTX_ERRORS(); } postRender(ctx, programId); CHECK_GL_CTX_ERRORS(); ctx.useProgram(0); if (attrPosLoc != -1) ctx.disableVertexAttribArray(attrPosLoc); if (attrColLoc != -1) ctx.disableVertexAttribArray(attrColLoc); if (vertexPosBuf) ctx.deleteBuffers(1, &vertexPosBuf); if (vertexAttrBuf) ctx.deleteBuffers(1, &vertexAttrBuf); if (elementArrayBuf) ctx.deleteBuffers(1, &elementArrayBuf); ctx.deleteVertexArrays(1, &vaoId); CHECK_GL_CTX_ERRORS(); ctx.finish(); ctx.readPixels(dstSurface, 0, 0, m_viewportSize.x(), m_viewportSize.y()); #undef CHECK_GL_CTX_ERRORS } void GeometryShaderRenderTest::preRender (sglr::Context& ctx, GLuint programID) { DE_UNREF(ctx); DE_UNREF(programID); } void GeometryShaderRenderTest::postRender (sglr::Context& ctx, GLuint programID) { DE_UNREF(ctx); DE_UNREF(programID); } class GeometryExpanderRenderTest : public GeometryShaderRenderTest { public: GeometryExpanderRenderTest (Context& context, const char* name, const char* desc, GLenum inputPrimitives, GLenum outputPrimitives); virtual ~GeometryExpanderRenderTest (void); sglr::ShaderProgram& getProgram (void); private: void init (void); void deinit (void); VertexExpanderShader* m_program; }; GeometryExpanderRenderTest::GeometryExpanderRenderTest (Context& context, const char* name, const char* desc, GLenum inputPrimitives, GLenum outputPrimitives) : GeometryShaderRenderTest (context, name, desc, inputPrimitives, outputPrimitives, "a_color") , m_program (DE_NULL) { } GeometryExpanderRenderTest::~GeometryExpanderRenderTest (void) { } void GeometryExpanderRenderTest::init (void) { m_program = new VertexExpanderShader(m_context.getRenderContext().getType(), sglr::rr_util::mapGLGeometryShaderInputType(m_inputPrimitives), sglr::rr_util::mapGLGeometryShaderOutputType(m_outputPrimitives)); GeometryShaderRenderTest::init(); } void GeometryExpanderRenderTest::deinit (void) { if (m_program) { delete m_program; m_program = DE_NULL; } GeometryShaderRenderTest::deinit(); } sglr::ShaderProgram& GeometryExpanderRenderTest::getProgram (void) { return *m_program; } class EmitTest : public GeometryShaderRenderTest { public: EmitTest (Context& context, const char* name, const char* desc, int emitCountA, int endCountA, int emitCountB, int endCountB, GLenum outputType); sglr::ShaderProgram& getProgram (void); private: void init (void); void deinit (void); void genVertexAttribData (void); VertexEmitterShader* m_program; int m_emitCountA; int m_endCountA; int m_emitCountB; int m_endCountB; GLenum m_outputType; }; EmitTest::EmitTest (Context& context, const char* name, const char* desc, int emitCountA, int endCountA, int emitCountB, int endCountB, GLenum outputType) : GeometryShaderRenderTest (context, name, desc, GL_POINTS, outputType, "a_color") , m_program (DE_NULL) , m_emitCountA (emitCountA) , m_endCountA (endCountA) , m_emitCountB (emitCountB) , m_endCountB (endCountB) , m_outputType (outputType) { } void EmitTest::init(void) { m_program = new VertexEmitterShader(m_context.getRenderContext().getType(), m_emitCountA, m_endCountA, m_emitCountB, m_endCountB, sglr::rr_util::mapGLGeometryShaderOutputType(m_outputType)); GeometryShaderRenderTest::init(); } void EmitTest::deinit (void) { if (m_program) { delete m_program; m_program = DE_NULL; } GeometryShaderRenderTest::deinit(); } sglr::ShaderProgram& EmitTest::getProgram (void) { return *m_program; } void EmitTest::genVertexAttribData (void) { m_vertexPosData.resize(1); m_vertexPosData[0] = tcu::Vec4(0, 0, 0, 1); m_vertexAttrData.resize(1); m_vertexAttrData[0] = tcu::Vec4(1, 1, 1, 1); m_numDrawVertices = 1; } class VaryingTest : public GeometryShaderRenderTest { public: VaryingTest (Context& context, const char* name, const char* desc, int vertexOut, int geometryOut); sglr::ShaderProgram& getProgram (void); private: void init (void); void deinit (void); void genVertexAttribData (void); VertexVaryingShader* m_program; int m_vertexOut; int m_geometryOut; }; VaryingTest::VaryingTest (Context& context, const char* name, const char* desc, int vertexOut, int geometryOut) : GeometryShaderRenderTest (context, name, desc, GL_TRIANGLES, GL_TRIANGLE_STRIP, "a_color") , m_program (DE_NULL) , m_vertexOut (vertexOut) , m_geometryOut (geometryOut) { } void VaryingTest::init (void) { m_program = new VertexVaryingShader(m_context.getRenderContext().getType(), m_vertexOut, m_geometryOut); GeometryShaderRenderTest::init(); } void VaryingTest::deinit (void) { if (m_program) { delete m_program; m_program = DE_NULL; } GeometryShaderRenderTest::deinit(); } sglr::ShaderProgram& VaryingTest::getProgram (void) { return *m_program; } void VaryingTest::genVertexAttribData (void) { m_vertexPosData.resize(3); m_vertexPosData[0] = tcu::Vec4(0.5f, 0.0f, 0.0f, 1.0f); m_vertexPosData[1] = tcu::Vec4(0.0f, 0.5f, 0.0f, 1.0f); m_vertexPosData[2] = tcu::Vec4(0.1f, 0.0f, 0.0f, 1.0f); m_vertexAttrData.resize(3); m_vertexAttrData[0] = tcu::Vec4(0.7f, 0.4f, 0.6f, 1.0f); m_vertexAttrData[1] = tcu::Vec4(0.9f, 0.2f, 0.5f, 1.0f); m_vertexAttrData[2] = tcu::Vec4(0.1f, 0.8f, 0.3f, 1.0f); m_numDrawVertices = 3; } class TriangleStripAdjacencyVertexCountTest : public GeometryExpanderRenderTest { public: TriangleStripAdjacencyVertexCountTest (Context& context, const char* name, const char* desc, int numInputVertices); private: void genVertexAttribData (void); int m_numInputVertices; }; TriangleStripAdjacencyVertexCountTest::TriangleStripAdjacencyVertexCountTest (Context& context, const char* name, const char* desc, int numInputVertices) : GeometryExpanderRenderTest (context, name, desc, GL_TRIANGLE_STRIP_ADJACENCY, GL_TRIANGLE_STRIP) , m_numInputVertices (numInputVertices) { } void TriangleStripAdjacencyVertexCountTest::genVertexAttribData (void) { this->GeometryShaderRenderTest::genVertexAttribData(); m_numDrawVertices = m_numInputVertices; } class NegativeDrawCase : public TestCase { public: NegativeDrawCase (Context& context, const char* name, const char* desc, GLenum inputType, GLenum inputPrimitives); ~NegativeDrawCase (void); void init (void); void deinit (void); IterateResult iterate (void); private: sglr::Context* m_ctx; VertexExpanderShader* m_program; GLenum m_inputType; GLenum m_inputPrimitives; }; NegativeDrawCase::NegativeDrawCase (Context& context, const char* name, const char* desc, GLenum inputType, GLenum inputPrimitives) : TestCase (context, name, desc) , m_ctx (DE_NULL) , m_program (DE_NULL) , m_inputType (inputType) , m_inputPrimitives (inputPrimitives) { } NegativeDrawCase::~NegativeDrawCase (void) { deinit(); } void NegativeDrawCase::init (void) { if (!glu::contextSupports(m_context.getRenderContext().getType(), glu::ApiType::es(3, 2)) && !m_context.getContextInfo().isExtensionSupported("GL_EXT_geometry_shader")) TCU_THROW(NotSupportedError, "Tests require GL_EXT_geometry_shader extension or higher context version."); m_ctx = new sglr::GLContext(m_context.getRenderContext(), m_testCtx.getLog(), sglr::GLCONTEXT_LOG_CALLS | sglr::GLCONTEXT_LOG_PROGRAMS, tcu::IVec4(0, 0, 1, 1)); m_program = new VertexExpanderShader(m_context.getRenderContext().getType() , sglr::rr_util::mapGLGeometryShaderInputType(m_inputType), rr::GEOMETRYSHADEROUTPUTTYPE_POINTS); } void NegativeDrawCase::deinit (void) { delete m_ctx; delete m_program; m_ctx = NULL; m_program = DE_NULL; } NegativeDrawCase::IterateResult NegativeDrawCase::iterate (void) { const GLuint programId = m_ctx->createProgram(m_program); const GLint attrPosLoc = m_ctx->getAttribLocation(programId, "a_position"); const tcu::Vec4 vertexPosData (0, 0, 0, 1); GLuint vaoId = 0; GLuint vertexPosBuf = 0; GLenum errorCode = 0; m_ctx->genVertexArrays(1, &vaoId); m_ctx->bindVertexArray(vaoId); m_ctx->genBuffers(1, &vertexPosBuf); m_ctx->bindBuffer(GL_ARRAY_BUFFER, vertexPosBuf); m_ctx->bufferData(GL_ARRAY_BUFFER, sizeof(tcu::Vec4), vertexPosData.m_data, GL_STATIC_DRAW); m_ctx->vertexAttribPointer(attrPosLoc, 4, GL_FLOAT, GL_FALSE, 0, DE_NULL); m_ctx->enableVertexAttribArray(attrPosLoc); m_ctx->clearColor(0, 0, 0, 1); m_ctx->clear(GL_COLOR_BUFFER_BIT); m_ctx->viewport(0, 0, 1, 1); m_ctx->useProgram(programId); // no errors before glu::checkError(m_ctx->getError(), "", __FILE__, __LINE__); m_ctx->drawArrays(m_inputPrimitives, 0, 1); errorCode = m_ctx->getError(); if (errorCode != GL_INVALID_OPERATION) { m_testCtx.getLog() << tcu::TestLog::Message << "Expected GL_INVALID_OPERATION, got " << glu::getErrorStr(errorCode) << tcu::TestLog::EndMessage; m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "Got wrong error code"); } else { m_testCtx.setTestResult(QP_TEST_RESULT_PASS, "Pass"); } m_ctx->useProgram(0); m_ctx->disableVertexAttribArray(attrPosLoc); m_ctx->deleteBuffers(1, &vertexPosBuf); m_ctx->deleteVertexArrays(1, &vaoId); return STOP; } class OutputCountCase : public GeometryShaderRenderTest { public: OutputCountCase (Context& context, const char* name, const char* desc, const OutputCountPatternSpec&); private: void init (void); void deinit (void); sglr::ShaderProgram& getProgram (void); void genVertexAttribData (void); const int m_primitiveCount; OutputCountShader* m_program; OutputCountPatternSpec m_spec; }; OutputCountCase::OutputCountCase (Context& context, const char* name, const char* desc, const OutputCountPatternSpec& spec) : GeometryShaderRenderTest (context, name, desc, GL_POINTS, GL_TRIANGLE_STRIP, "a_color") , m_primitiveCount ((int)spec.pattern.size()) , m_program (DE_NULL) , m_spec (spec) { } void OutputCountCase::init (void) { // Check requirements and adapt to them { const int componentsPerVertex = 4 + 4; // vec4 pos, vec4 color const int testVertices = *std::max_element(m_spec.pattern.begin(), m_spec.pattern.end()); glw::GLint maxVertices = 0; glw::GLint maxComponents = 0; // check the extension before querying anything if (!glu::contextSupports(m_context.getRenderContext().getType(), glu::ApiType::es(3, 2)) && !m_context.getContextInfo().isExtensionSupported("GL_EXT_geometry_shader")) TCU_THROW(NotSupportedError, "Tests require GL_EXT_geometry_shader extension or higher context version."); m_context.getRenderContext().getFunctions().getIntegerv(GL_MAX_GEOMETRY_OUTPUT_VERTICES, &maxVertices); m_context.getRenderContext().getFunctions().getIntegerv(GL_MAX_GEOMETRY_TOTAL_OUTPUT_COMPONENTS, &maxComponents); m_testCtx.getLog() << tcu::TestLog::Message << "GL_MAX_GEOMETRY_OUTPUT_VERTICES = " << maxVertices << tcu::TestLog::EndMessage; m_testCtx.getLog() << tcu::TestLog::Message << "GL_MAX_GEOMETRY_TOTAL_OUTPUT_COMPONENTS = " << maxComponents << tcu::TestLog::EndMessage; m_testCtx.getLog() << tcu::TestLog::Message << "Components per vertex = " << componentsPerVertex << tcu::TestLog::EndMessage; if (testVertices == -1) { // "max vertices"-case DE_ASSERT((int)m_spec.pattern.size() == 1); m_spec.pattern[0] = de::min(maxVertices, maxComponents / componentsPerVertex); // make sure size is dividable by 2, as OutputShader requires m_spec.pattern[0] = m_spec.pattern[0] & ~0x00000001; if (m_spec.pattern[0] == 0) throw tcu::InternalError("Pattern size is invalid."); } else { // normal case if (testVertices > maxVertices) throw tcu::NotSupportedError(de::toString(testVertices) + " output vertices required."); if (testVertices * componentsPerVertex > maxComponents) throw tcu::NotSupportedError(de::toString(testVertices * componentsPerVertex) + " output components required."); } } // Log what the test tries to do m_testCtx.getLog() << tcu::TestLog::Message << "Rendering " << (int)m_spec.pattern.size() << " row(s).\nOne geometry shader invocation generates one row.\nRow sizes:" << tcu::TestLog::EndMessage; for (int ndx = 0; ndx < (int)m_spec.pattern.size(); ++ndx) m_testCtx.getLog() << tcu::TestLog::Message << "Row " << ndx << ": " << m_spec.pattern[ndx] << " vertices." << tcu::TestLog::EndMessage; // Gen shader DE_ASSERT(!m_program); m_program = new OutputCountShader(m_context.getRenderContext().getType(), m_spec); // Case init GeometryShaderRenderTest::init(); } void OutputCountCase::deinit (void) { if (m_program) { delete m_program; m_program = DE_NULL; } GeometryShaderRenderTest::deinit(); } sglr::ShaderProgram& OutputCountCase::getProgram (void) { return *m_program; } void OutputCountCase::genVertexAttribData (void) { m_vertexPosData.resize(m_primitiveCount); m_vertexAttrData.resize(m_primitiveCount); for (int ndx = 0; ndx < m_primitiveCount; ++ndx) { m_vertexPosData[ndx] = tcu::Vec4(-1.0f, ((float)ndx) / (float)m_primitiveCount * 2.0f - 1.0f, 0.0f, 1.0f); m_vertexAttrData[ndx] = (ndx % 2 == 0) ? tcu::Vec4(1, 1, 1, 1) : tcu::Vec4(1, 0, 0, 1); } m_numDrawVertices = m_primitiveCount; } class BuiltinVariableRenderTest : public GeometryShaderRenderTest { public: BuiltinVariableRenderTest (Context& context, const char* name, const char* desc, BuiltinVariableShader::VariableTest test, int flags = 0); private: void init (void); void deinit (void); sglr::ShaderProgram& getProgram (void); void genVertexAttribData (void); BuiltinVariableShader* m_program; const BuiltinVariableShader::VariableTest m_test; }; BuiltinVariableRenderTest::BuiltinVariableRenderTest (Context& context, const char* name, const char* desc, BuiltinVariableShader::VariableTest test, int flags) : GeometryShaderRenderTest (context, name, desc, GL_POINTS, GL_POINTS, BuiltinVariableShader::getTestAttributeName(test), flags) , m_program (DE_NULL) , m_test (test) { } void BuiltinVariableRenderTest::init (void) { // Requirements if (m_test == BuiltinVariableShader::TEST_POINT_SIZE) { const float requiredPointSize = 5.0f; tcu::Vec2 range = tcu::Vec2(1.0f, 1.0f); if (!glu::contextSupports(m_context.getRenderContext().getType(), glu::ApiType::core(4, 4)) && !m_context.getContextInfo().isExtensionSupported("GL_EXT_geometry_point_size")) TCU_THROW(NotSupportedError, "Tests require GL_EXT_geometry_point_size extension."); m_context.getRenderContext().getFunctions().getFloatv(GL_ALIASED_POINT_SIZE_RANGE, range.getPtr()); if (range.y() < requiredPointSize) throw tcu::NotSupportedError("Test case requires point size " + de::toString(requiredPointSize)); } m_program = new BuiltinVariableShader(m_context.getRenderContext().getType(), m_test); // Shader init GeometryShaderRenderTest::init(); } void BuiltinVariableRenderTest::deinit(void) { if (m_program) { delete m_program; m_program = DE_NULL; } GeometryShaderRenderTest::deinit(); } sglr::ShaderProgram& BuiltinVariableRenderTest::getProgram (void) { return *m_program; } void BuiltinVariableRenderTest::genVertexAttribData (void) { m_vertexPosData.resize(4); m_vertexPosData[0] = tcu::Vec4( 0.5f, 0.0f, 0.0f, 1.0f); m_vertexPosData[1] = tcu::Vec4( 0.0f, 0.5f, 0.0f, 1.0f); m_vertexPosData[2] = tcu::Vec4(-0.7f, -0.1f, 0.0f, 1.0f); m_vertexPosData[3] = tcu::Vec4(-0.1f, -0.7f, 0.0f, 1.0f); m_vertexAttrData.resize(4); m_vertexAttrData[0] = tcu::Vec4(0.0f, 0.0f, 0.0f, 0.0f); m_vertexAttrData[1] = tcu::Vec4(1.0f, 0.0f, 0.0f, 0.0f); m_vertexAttrData[2] = tcu::Vec4(2.0f, 0.0f, 0.0f, 0.0f); m_vertexAttrData[3] = tcu::Vec4(3.0f, 0.0f, 0.0f, 0.0f); // Only used by primitive ID restart test m_indices.resize(4); m_indices[0] = 3; m_indices[1] = 2; m_indices[2] = 0xFFFF; // restart m_indices[3] = 1; m_numDrawVertices = 4; } class LayeredRenderCase : public TestCase { public: enum LayeredRenderTargetType { TARGET_CUBE = 0, TARGET_3D, TARGET_1D_ARRAY, TARGET_2D_ARRAY, TARGET_2D_MS_ARRAY, TARGET_LAST }; enum TestType { TEST_DEFAULT_LAYER, // !< draw to default layer TEST_SINGLE_LAYER, // !< draw to single layer TEST_ALL_LAYERS, // !< draw all layers TEST_DIFFERENT_LAYERS, // !< draw different content to different layers TEST_INVOCATION_PER_LAYER, // !< draw to all layers, one invocation per layer TEST_MULTIPLE_LAYERS_PER_INVOCATION, // !< draw to all layers, multiple invocations write to multiple layers TEST_LAYER_ID, // !< draw to all layers, verify gl_Layer fragment input TEST_LAYER_PROVOKING_VERTEX, // !< draw primitive with vertices in different layers, check which layer it was drawn to TEST_LAST }; LayeredRenderCase (Context& context, const char* name, const char* desc, LayeredRenderTargetType target, TestType test); ~LayeredRenderCase (void); void init (void); void deinit (void); IterateResult iterate (void); private: void initTexture (void); void initFbo (void); void initRenderShader (void); void initSamplerShader (void); std::string genFragmentSource (const glu::ContextType& contextType) const; std::string genGeometrySource (const glu::ContextType& contextType) const; std::string genSamplerFragmentSource (const glu::ContextType& contextType) const; void renderToTexture (void); void sampleTextureLayer (tcu::Surface& dst, int layer); bool verifyLayerContent (const tcu::Surface& layer, int layerNdx); bool verifyImageSingleColoredRow (const tcu::Surface& layer, float rowWidthRatio, const tcu::Vec4& color, bool logging = true); bool verifyEmptyImage (const tcu::Surface& layer, bool logging = true); bool verifyProvokingVertexLayers (const tcu::Surface& layer0, const tcu::Surface& layer1); static int getTargetLayers (LayeredRenderTargetType target); static glw::GLenum getTargetTextureTarget (LayeredRenderTargetType target); static tcu::IVec3 getTargetDimensions (LayeredRenderTargetType target); static tcu::IVec2 getResolveDimensions (LayeredRenderTargetType target); const LayeredRenderTargetType m_target; const TestType m_test; const int m_numLayers; const int m_targetLayer; const tcu::IVec2 m_resolveDimensions; int m_iteration; bool m_allLayersOk; glw::GLuint m_texture; glw::GLuint m_fbo; glu::ShaderProgram* m_renderShader; glu::ShaderProgram* m_samplerShader; glw::GLint m_samplerSamplerLoc; glw::GLint m_samplerLayerLoc; glw::GLenum m_provokingVertex; }; LayeredRenderCase::LayeredRenderCase (Context& context, const char* name, const char* desc, LayeredRenderTargetType target, TestType test) : TestCase (context, name, desc) , m_target (target) , m_test (test) , m_numLayers (getTargetLayers(target)) , m_targetLayer (m_numLayers / 2) , m_resolveDimensions (getResolveDimensions(target)) , m_iteration (0) , m_allLayersOk (true) , m_texture (0) , m_fbo (0) , m_renderShader (DE_NULL) , m_samplerShader (DE_NULL) , m_samplerSamplerLoc (-1) , m_samplerLayerLoc (-1) , m_provokingVertex (0) { } LayeredRenderCase::~LayeredRenderCase (void) { deinit(); } void LayeredRenderCase::init (void) { // Requirements if (!glu::contextSupports(m_context.getRenderContext().getType(), glu::ApiType::es(3, 2)) && !m_context.getContextInfo().isExtensionSupported("GL_EXT_geometry_shader")) TCU_THROW(NotSupportedError, "Tests require GL_EXT_geometry_shader extension or higher context version."); if (m_target == TARGET_2D_MS_ARRAY && !glu::contextSupports(m_context.getRenderContext().getType(), glu::ApiType::es(3, 2)) && !m_context.getContextInfo().isExtensionSupported("GL_OES_texture_storage_multisample_2d_array")) TCU_THROW(NotSupportedError, "Test requires OES_texture_storage_multisample_2d_array extension or higher context version."); if (m_context.getRenderTarget().getWidth() < m_resolveDimensions.x() || m_context.getRenderTarget().getHeight() < m_resolveDimensions.y()) throw tcu::NotSupportedError("Render target size must be at least " + de::toString(m_resolveDimensions.x()) + "x" + de::toString(m_resolveDimensions.y())); // log what the test tries to do if (m_test == TEST_DEFAULT_LAYER) m_testCtx.getLog() << tcu::TestLog::Message << "Rendering to the default layer." << tcu::TestLog::EndMessage; else if (m_test == TEST_SINGLE_LAYER) m_testCtx.getLog() << tcu::TestLog::Message << "Rendering to a single layer." << tcu::TestLog::EndMessage; else if (m_test == TEST_ALL_LAYERS) m_testCtx.getLog() << tcu::TestLog::Message << "Rendering to all layers." << tcu::TestLog::EndMessage; else if (m_test == TEST_DIFFERENT_LAYERS) m_testCtx.getLog() << tcu::TestLog::Message << "Outputting different number of vertices to each layer." << tcu::TestLog::EndMessage; else if (m_test == TEST_INVOCATION_PER_LAYER) m_testCtx.getLog() << tcu::TestLog::Message << "Using a different invocation to output to each layer." << tcu::TestLog::EndMessage; else if (m_test == TEST_MULTIPLE_LAYERS_PER_INVOCATION) m_testCtx.getLog() << tcu::TestLog::Message << "Outputting to each layer from multiple invocations." << tcu::TestLog::EndMessage; else if (m_test == TEST_LAYER_ID) m_testCtx.getLog() << tcu::TestLog::Message << "Using gl_Layer in fragment shader." << tcu::TestLog::EndMessage; else if (m_test == TEST_LAYER_PROVOKING_VERTEX) m_testCtx.getLog() << tcu::TestLog::Message << "Verifying LAYER_PROVOKING_VERTEX." << tcu::TestLog::EndMessage; else DE_ASSERT(false); // init resources initTexture(); initFbo(); initRenderShader(); initSamplerShader(); } void LayeredRenderCase::deinit (void) { if (m_texture) { m_context.getRenderContext().getFunctions().deleteTextures(1, &m_texture); m_texture = 0; } if (m_fbo) { m_context.getRenderContext().getFunctions().deleteFramebuffers(1, &m_fbo); m_fbo = 0; } delete m_renderShader; delete m_samplerShader; m_renderShader = DE_NULL; m_samplerShader = DE_NULL; } LayeredRenderCase::IterateResult LayeredRenderCase::iterate (void) { ++m_iteration; if (m_iteration == 1) { if (m_test == TEST_LAYER_PROVOKING_VERTEX) { // which layer the implementation claims to render to gls::StateQueryUtil::StateQueryMemoryWriteGuard state; m_context.getRenderContext().getFunctions().getIntegerv(GL_LAYER_PROVOKING_VERTEX, &state); GLU_EXPECT_NO_ERROR(m_context.getRenderContext().getFunctions().getError(), "getInteger(GL_LAYER_PROVOKING_VERTEX)"); if (!state.verifyValidity(m_testCtx)) return STOP; m_testCtx.getLog() << tcu::TestLog::Message << "GL_LAYER_PROVOKING_VERTEX = " << glu::getProvokingVertexStr(state) << tcu::TestLog::EndMessage; if (state != GL_FIRST_VERTEX_CONVENTION && state != GL_LAST_VERTEX_CONVENTION && state != GL_UNDEFINED_VERTEX) { m_testCtx.getLog() << tcu::TestLog::Message << "getInteger(GL_LAYER_PROVOKING_VERTEX) returned illegal value. Got " << state << tcu::TestLog::EndMessage; m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "got unexpected provoking vertex value"); return STOP; } m_provokingVertex = (glw::GLenum)state; } // render to texture { const tcu::ScopedLogSection section(m_testCtx.getLog(), "RenderToTexture", "Render to layered texture"); // render to layered texture with the geometry shader renderToTexture(); } return CONTINUE; } else if (m_test == TEST_LAYER_PROVOKING_VERTEX && m_provokingVertex == GL_UNDEFINED_VERTEX) { // Verification requires information from another layers, layers not independent { const tcu::ScopedLogSection section (m_testCtx.getLog(), "VerifyLayers", "Verify layers 0 and 1"); tcu::Surface layer0 (m_resolveDimensions.x(), m_resolveDimensions.y()); tcu::Surface layer1 (m_resolveDimensions.x(), m_resolveDimensions.y()); // sample layer to frame buffer sampleTextureLayer(layer0, 0); sampleTextureLayer(layer1, 1); m_allLayersOk &= verifyProvokingVertexLayers(layer0, layer1); } // Other layers empty for (int layerNdx = 2; layerNdx < m_numLayers; ++layerNdx) { const tcu::ScopedLogSection section (m_testCtx.getLog(), "VerifyLayer", "Verify layer " + de::toString(layerNdx)); tcu::Surface layer (m_resolveDimensions.x(), m_resolveDimensions.y()); // sample layer to frame buffer sampleTextureLayer(layer, layerNdx); // verify m_allLayersOk &= verifyEmptyImage(layer); } } else { // Layers independent const int layerNdx = m_iteration - 2; const tcu::ScopedLogSection section (m_testCtx.getLog(), "VerifyLayer", "Verify layer " + de::toString(layerNdx)); tcu::Surface layer (m_resolveDimensions.x(), m_resolveDimensions.y()); // sample layer to frame buffer sampleTextureLayer(layer, layerNdx); // verify m_allLayersOk &= verifyLayerContent(layer, layerNdx); if (layerNdx < m_numLayers-1) return CONTINUE; } // last iteration if (m_allLayersOk) m_testCtx.setTestResult(QP_TEST_RESULT_PASS, "Pass"); else m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "Detected invalid layer content"); return STOP; } void LayeredRenderCase::initTexture (void) { DE_ASSERT(!m_texture); const glw::Functions& gl = m_context.getRenderContext().getFunctions(); const tcu::IVec3 texSize = getTargetDimensions(m_target); const tcu::TextureFormat texFormat = glu::mapGLInternalFormat(GL_RGBA8); const glu::TransferFormat transferFormat = glu::getTransferFormat(texFormat); gl.genTextures(1, &m_texture); GLU_EXPECT_NO_ERROR(gl.getError(), "gen texture"); switch (m_target) { case TARGET_CUBE: m_testCtx.getLog() << tcu::TestLog::Message << "Creating cubemap texture, size = " << texSize.x() << "x" << texSize.y() << tcu::TestLog::EndMessage; gl.bindTexture(GL_TEXTURE_CUBE_MAP, m_texture); gl.texImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X, 0, GL_RGBA8, texSize.x(), texSize.y(), 0, transferFormat.format, transferFormat.dataType, DE_NULL); gl.texImage2D(GL_TEXTURE_CUBE_MAP_NEGATIVE_X, 0, GL_RGBA8, texSize.x(), texSize.y(), 0, transferFormat.format, transferFormat.dataType, DE_NULL); gl.texImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_Y, 0, GL_RGBA8, texSize.x(), texSize.y(), 0, transferFormat.format, transferFormat.dataType, DE_NULL); gl.texImage2D(GL_TEXTURE_CUBE_MAP_NEGATIVE_Y, 0, GL_RGBA8, texSize.x(), texSize.y(), 0, transferFormat.format, transferFormat.dataType, DE_NULL); gl.texImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_Z, 0, GL_RGBA8, texSize.x(), texSize.y(), 0, transferFormat.format, transferFormat.dataType, DE_NULL); gl.texImage2D(GL_TEXTURE_CUBE_MAP_NEGATIVE_Z, 0, GL_RGBA8, texSize.x(), texSize.y(), 0, transferFormat.format, transferFormat.dataType, DE_NULL); break; case TARGET_3D: m_testCtx.getLog() << tcu::TestLog::Message << "Creating 3d texture, size = " << texSize.x() << "x" << texSize.y() << "x" << texSize.z() << tcu::TestLog::EndMessage; gl.bindTexture(GL_TEXTURE_3D, m_texture); gl.texImage3D(GL_TEXTURE_3D, 0, GL_RGBA8, texSize.x(), texSize.y(), texSize.z(), 0, transferFormat.format, transferFormat.dataType, DE_NULL); break; case TARGET_1D_ARRAY: m_testCtx.getLog() << tcu::TestLog::Message << "Creating 1d texture array, size = " << texSize.x() << ", layers = " << texSize.y() << tcu::TestLog::EndMessage; gl.bindTexture(GL_TEXTURE_1D_ARRAY, m_texture); gl.texImage2D(GL_TEXTURE_1D_ARRAY, 0, GL_RGBA8, texSize.x(), texSize.y(), 0, transferFormat.format, transferFormat.dataType, DE_NULL); break; case TARGET_2D_ARRAY: m_testCtx.getLog() << tcu::TestLog::Message << "Creating 2d texture array, size = " << texSize.x() << "x" << texSize.y() << ", layers = " << texSize.z() << tcu::TestLog::EndMessage; gl.bindTexture(GL_TEXTURE_2D_ARRAY, m_texture); gl.texImage3D(GL_TEXTURE_2D_ARRAY, 0, GL_RGBA8, texSize.x(), texSize.y(), texSize.z(), 0, transferFormat.format, transferFormat.dataType, DE_NULL); break; case TARGET_2D_MS_ARRAY: { const int numSamples = 2; int maxSamples = 0; gl.getIntegerv(GL_MAX_COLOR_TEXTURE_SAMPLES, &maxSamples); m_testCtx.getLog() << tcu::TestLog::Message << "Creating 2d multisample texture array, size = " << texSize.x() << "x" << texSize.y() << ", layers = " << texSize.z() << ", samples = " << numSamples << tcu::TestLog::EndMessage; if (numSamples > maxSamples) throw tcu::NotSupportedError("Test requires " + de::toString(numSamples) + " color texture samples." ); gl.bindTexture(GL_TEXTURE_2D_MULTISAMPLE_ARRAY, m_texture); gl.texStorage3DMultisample(GL_TEXTURE_2D_MULTISAMPLE_ARRAY, numSamples, GL_RGBA8, texSize.x(), texSize.y(), texSize.z(), GL_TRUE); break; } default: DE_ASSERT(DE_FALSE); } GLU_EXPECT_NO_ERROR(gl.getError(), "tex image"); // Multisample textures don't use filters if (getTargetTextureTarget(m_target) != GL_TEXTURE_2D_MULTISAMPLE_ARRAY) { gl.texParameteri(getTargetTextureTarget(m_target), GL_TEXTURE_MAG_FILTER, GL_NEAREST); gl.texParameteri(getTargetTextureTarget(m_target), GL_TEXTURE_MIN_FILTER, GL_NEAREST); gl.texParameteri(getTargetTextureTarget(m_target), GL_TEXTURE_WRAP_S, GL_REPEAT); gl.texParameteri(getTargetTextureTarget(m_target), GL_TEXTURE_WRAP_T, GL_REPEAT); gl.texParameteri(getTargetTextureTarget(m_target), GL_TEXTURE_WRAP_R, GL_REPEAT); GLU_EXPECT_NO_ERROR(gl.getError(), "tex filter"); } } void LayeredRenderCase::initFbo (void) { DE_ASSERT(!m_fbo); const glw::Functions& gl = m_context.getRenderContext().getFunctions(); m_testCtx.getLog() << tcu::TestLog::Message << "Creating FBO" << tcu::TestLog::EndMessage; gl.genFramebuffers(1, &m_fbo); gl.bindFramebuffer(GL_FRAMEBUFFER, m_fbo); gl.framebufferTexture(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, m_texture, 0); gl.bindFramebuffer(GL_FRAMEBUFFER, 0); GLU_EXPECT_NO_ERROR(gl.getError(), "setup fbo"); } void LayeredRenderCase::initRenderShader (void) { const tcu::ScopedLogSection section(m_testCtx.getLog(), "RenderToTextureShader", "Create layered rendering shader program"); static const char* const positionVertex = "${GLSL_VERSION_DECL}\n" "void main (void)\n" "{\n" " gl_Position = vec4(0.0, 0.0, 0.0, 1.0);\n" "}\n"; m_renderShader = new glu::ShaderProgram(m_context.getRenderContext(), glu::ProgramSources() << glu::VertexSource(specializeShader(positionVertex, m_context.getRenderContext().getType())) << glu::FragmentSource(genFragmentSource(m_context.getRenderContext().getType())) << glu::GeometrySource(genGeometrySource(m_context.getRenderContext().getType()))); m_testCtx.getLog() << *m_renderShader; if (!m_renderShader->isOk()) throw tcu::TestError("failed to build render shader"); } void LayeredRenderCase::initSamplerShader (void) { const tcu::ScopedLogSection section(m_testCtx.getLog(), "TextureSamplerShader", "Create shader sampler program"); static const char* const positionVertex = "${GLSL_VERSION_DECL}\n" "in highp vec4 a_position;\n" "void main (void)\n" "{\n" " gl_Position = a_position;\n" "}\n"; m_samplerShader = new glu::ShaderProgram(m_context.getRenderContext(), glu::ProgramSources() << glu::VertexSource(specializeShader(positionVertex, m_context.getRenderContext().getType())) << glu::FragmentSource(genSamplerFragmentSource(m_context.getRenderContext().getType()))); m_testCtx.getLog() << *m_samplerShader; if (!m_samplerShader->isOk()) throw tcu::TestError("failed to build sampler shader"); m_samplerSamplerLoc = m_context.getRenderContext().getFunctions().getUniformLocation(m_samplerShader->getProgram(), "u_sampler"); if (m_samplerSamplerLoc == -1) throw tcu::TestError("u_sampler uniform location = -1"); m_samplerLayerLoc = m_context.getRenderContext().getFunctions().getUniformLocation(m_samplerShader->getProgram(), "u_layer"); if (m_samplerLayerLoc == -1) throw tcu::TestError("u_layer uniform location = -1"); } std::string LayeredRenderCase::genFragmentSource (const glu::ContextType& contextType) const { static const char* const fragmentLayerIdShader = "${GLSL_VERSION_DECL}\n" "${GLSL_EXT_GEOMETRY_SHADER}" "layout(location = 0) out mediump vec4 fragColor;\n" "void main (void)\n" "{\n" " fragColor = vec4(((gl_Layer % 2) == 1) ? 1.0 : 0.5,\n" " (((gl_Layer / 2) % 2) == 1) ? 1.0 : 0.5,\n" " (gl_Layer == 0) ? 1.0 : 0.0,\n" " 1.0);\n" "}\n"; if (m_test != TEST_LAYER_ID) return specializeShader(s_commonShaderSourceFragment, contextType); else return specializeShader(fragmentLayerIdShader, contextType); } std::string LayeredRenderCase::genGeometrySource (const glu::ContextType& contextType) const { // TEST_DIFFERENT_LAYERS: draw 0 quad to first layer, 1 to second, etc. // TEST_ALL_LAYERS: draw 1 quad to all layers // TEST_MULTIPLE_LAYERS_PER_INVOCATION: draw 1 triangle to "current layer" and 1 triangle to another layer // else: draw 1 quad to some single layer const int maxVertices = (m_test == TEST_DIFFERENT_LAYERS) ? ((2 + m_numLayers-1) * m_numLayers) : (m_test == TEST_ALL_LAYERS || m_test == TEST_LAYER_ID) ? (m_numLayers * 4) : (m_test == TEST_MULTIPLE_LAYERS_PER_INVOCATION) ? (6) : (m_test == TEST_LAYER_PROVOKING_VERTEX) ? (6) : (4); std::ostringstream buf; buf << "${GLSL_VERSION_DECL}\n" "${GLSL_EXT_GEOMETRY_SHADER}"; if (m_test == TEST_INVOCATION_PER_LAYER || m_test == TEST_MULTIPLE_LAYERS_PER_INVOCATION) buf << "layout(points, invocations=" << m_numLayers << ") in;\n"; else buf << "layout(points) in;\n"; buf << "layout(triangle_strip, max_vertices = " << maxVertices << ") out;\n" "out highp vec4 v_frag_FragColor;\n" "\n" "void main (void)\n" "{\n"; if (m_test == TEST_DEFAULT_LAYER) { buf << " const highp vec4 white = vec4(1.0, 1.0, 1.0, 1.0);\n\n" " gl_Position = vec4(-1.0, -1.0, 0.0, 1.0);\n" " v_frag_FragColor = white;\n" " EmitVertex();\n\n" " gl_Position = vec4(-1.0, 1.0, 0.0, 1.0);\n" " v_frag_FragColor = white;\n" " EmitVertex();\n\n" " gl_Position = vec4( 0.0, -1.0, 0.0, 1.0);\n" " v_frag_FragColor = white;\n" " EmitVertex();\n\n" " gl_Position = vec4( 0.0, 1.0, 0.0, 1.0);\n" " v_frag_FragColor = white;\n" " EmitVertex();\n"; } else if (m_test == TEST_SINGLE_LAYER) { buf << " const highp vec4 white = vec4(1.0, 1.0, 1.0, 1.0);\n\n" " gl_Position = vec4(-1.0, -1.0, 0.0, 1.0);\n" " gl_Layer = " << m_targetLayer << ";\n" " v_frag_FragColor = white;\n" " EmitVertex();\n\n" " gl_Position = vec4(-1.0, 1.0, 0.0, 1.0);\n" " gl_Layer = " << m_targetLayer << ";\n" " v_frag_FragColor = white;\n" " EmitVertex();\n\n" " gl_Position = vec4( 0.0, -1.0, 0.0, 1.0);\n" " gl_Layer = " << m_targetLayer << ";\n" " v_frag_FragColor = white;\n" " EmitVertex();\n\n" " gl_Position = vec4( 0.0, 1.0, 0.0, 1.0);\n" " gl_Layer = " << m_targetLayer << ";\n" " v_frag_FragColor = white;\n" " EmitVertex();\n"; } else if (m_test == TEST_ALL_LAYERS || m_test == TEST_LAYER_ID) { DE_ASSERT(m_numLayers <= 6); buf << " const highp vec4 white = vec4(1.0, 1.0, 1.0, 1.0);\n" " const highp vec4 red = vec4(1.0, 0.0, 0.0, 1.0);\n" " const highp vec4 green = vec4(0.0, 1.0, 0.0, 1.0);\n" " const highp vec4 blue = vec4(0.0, 0.0, 1.0, 1.0);\n" " const highp vec4 yellow = vec4(1.0, 1.0, 0.0, 1.0);\n" " const highp vec4 magenta = vec4(1.0, 0.0, 1.0, 1.0);\n" " const highp vec4 colors[6] = vec4[6](white, red, green, blue, yellow, magenta);\n\n" " for (mediump int layerNdx = 0; layerNdx < " << m_numLayers << "; ++layerNdx)\n" " {\n" " gl_Position = vec4(-1.0, -1.0, 0.0, 1.0);\n" " gl_Layer = layerNdx;\n" " v_frag_FragColor = colors[layerNdx];\n" " EmitVertex();\n\n" " gl_Position = vec4(-1.0, 1.0, 0.0, 1.0);\n" " gl_Layer = layerNdx;\n" " v_frag_FragColor = colors[layerNdx];\n" " EmitVertex();\n\n" " gl_Position = vec4( 0.0, -1.0, 0.0, 1.0);\n" " gl_Layer = layerNdx;\n" " v_frag_FragColor = colors[layerNdx];\n" " EmitVertex();\n\n" " gl_Position = vec4( 0.0, 1.0, 0.0, 1.0);\n" " gl_Layer = layerNdx;\n" " v_frag_FragColor = colors[layerNdx];\n" " EmitVertex();\n" " EndPrimitive();\n" " }\n"; } else if (m_test == TEST_DIFFERENT_LAYERS) { DE_ASSERT(m_numLayers <= 6); buf << " const highp vec4 white = vec4(1.0, 1.0, 1.0, 1.0);\n\n" " for (mediump int layerNdx = 0; layerNdx < " << m_numLayers << "; ++layerNdx)\n" " {\n" " for (mediump int colNdx = 0; colNdx <= layerNdx; ++colNdx)\n" " {\n" " highp float posX = float(colNdx) / float(" << m_numLayers << ") * 2.0 - 1.0;\n\n" " gl_Position = vec4(posX, 1.0, 0.0, 1.0);\n" " gl_Layer = layerNdx;\n" " v_frag_FragColor = white;\n" " EmitVertex();\n\n" " gl_Position = vec4(posX, -1.0, 0.0, 1.0);\n" " gl_Layer = layerNdx;\n" " v_frag_FragColor = white;\n" " EmitVertex();\n" " }\n" " EndPrimitive();\n" " }\n"; } else if (m_test == TEST_INVOCATION_PER_LAYER) { buf << " const highp vec4 white = vec4(1.0, 1.0, 1.0, 1.0);\n" " const highp vec4 red = vec4(1.0, 0.0, 0.0, 1.0);\n" " const highp vec4 green = vec4(0.0, 1.0, 0.0, 1.0);\n" " const highp vec4 blue = vec4(0.0, 0.0, 1.0, 1.0);\n" " const highp vec4 yellow = vec4(1.0, 1.0, 0.0, 1.0);\n" " const highp vec4 magenta = vec4(1.0, 0.0, 1.0, 1.0);\n" " const highp vec4 colors[6] = vec4[6](white, red, green, blue, yellow, magenta);\n" "\n" " gl_Position = vec4(-1.0, -1.0, 0.0, 1.0);\n" " gl_Layer = gl_InvocationID;\n" " v_frag_FragColor = colors[gl_InvocationID];\n" " EmitVertex();\n\n" " gl_Position = vec4(-1.0, 1.0, 0.0, 1.0);\n" " gl_Layer = gl_InvocationID;\n" " v_frag_FragColor = colors[gl_InvocationID];\n" " EmitVertex();\n\n" " gl_Position = vec4( 0.0, -1.0, 0.0, 1.0);\n" " gl_Layer = gl_InvocationID;\n" " v_frag_FragColor = colors[gl_InvocationID];\n" " EmitVertex();\n\n" " gl_Position = vec4( 0.0, 1.0, 0.0, 1.0);\n" " gl_Layer = gl_InvocationID;\n" " v_frag_FragColor = colors[gl_InvocationID];\n" " EmitVertex();\n" " EndPrimitive();\n"; } else if (m_test == TEST_MULTIPLE_LAYERS_PER_INVOCATION) { buf << " const highp vec4 white = vec4(1.0, 1.0, 1.0, 1.0);\n" "\n" " mediump int layerA = gl_InvocationID;\n" " mediump int layerB = (gl_InvocationID + 1) % " << m_numLayers << ";\n" " highp float aEnd = float(layerA) / float(" << m_numLayers << ") * 2.0 - 1.0;\n" " highp float bEnd = float(layerB) / float(" << m_numLayers << ") * 2.0 - 1.0;\n" "\n" " gl_Position = vec4(-1.0, -1.0, 0.0, 1.0);\n" " gl_Layer = layerA;\n" " v_frag_FragColor = white;\n" " EmitVertex();\n\n" " gl_Position = vec4(-1.0, 1.0, 0.0, 1.0);\n" " gl_Layer = layerA;\n" " v_frag_FragColor = white;\n" " EmitVertex();\n\n" " gl_Position = vec4(aEnd, -1.0, 0.0, 1.0);\n" " gl_Layer = layerA;\n" " v_frag_FragColor = white;\n" " EmitVertex();\n\n" " EndPrimitive();\n" "\n" " gl_Position = vec4(-1.0, 1.0, 0.0, 1.0);\n" " gl_Layer = layerB;\n" " v_frag_FragColor = white;\n" " EmitVertex();\n\n" " gl_Position = vec4(bEnd, 1.0, 0.0, 1.0);\n" " gl_Layer = layerB;\n" " v_frag_FragColor = white;\n" " EmitVertex();\n\n" " gl_Position = vec4(bEnd, -1.0, 0.0, 1.0);\n" " gl_Layer = layerB;\n" " v_frag_FragColor = white;\n" " EmitVertex();\n\n" " EndPrimitive();\n"; } else if (m_test == TEST_LAYER_PROVOKING_VERTEX) { buf << " const highp vec4 white = vec4(1.0, 1.0, 1.0, 1.0);\n\n" " gl_Position = vec4(-1.0, -1.0, 0.0, 1.0);\n" " gl_Layer = 0;\n" " v_frag_FragColor = white;\n" " EmitVertex();\n\n" " gl_Position = vec4(-1.0, 1.0, 0.0, 1.0);\n" " gl_Layer = 1;\n" " v_frag_FragColor = white;\n" " EmitVertex();\n\n" " gl_Position = vec4( 0.0, -1.0, 0.0, 1.0);\n" " gl_Layer = 1;\n" " v_frag_FragColor = white;\n" " EmitVertex();\n\n" " EndPrimitive();\n\n" " gl_Position = vec4(-1.0, 1.0, 0.0, 1.0);\n" " gl_Layer = 0;\n" " v_frag_FragColor = white;\n" " EmitVertex();\n\n" " gl_Position = vec4( 0.0, -1.0, 0.0, 1.0);\n" " gl_Layer = 1;\n" " v_frag_FragColor = white;\n" " EmitVertex();\n\n" " gl_Position = vec4( 0.0, 1.0, 0.0, 1.0);\n" " gl_Layer = 1;\n" " v_frag_FragColor = white;\n" " EmitVertex();\n"; } else DE_ASSERT(DE_FALSE); buf << "}\n"; return specializeShader(buf.str(), contextType); } std::string LayeredRenderCase::genSamplerFragmentSource (const glu::ContextType& contextType) const { std::ostringstream buf; buf << "${GLSL_VERSION_DECL}\n"; if (m_target == TARGET_2D_MS_ARRAY) buf << "${GLSL_OES_TEXTURE_STORAGE_MULTISAMPLE}"; buf << "layout(location = 0) out mediump vec4 fragColor;\n"; switch (m_target) { case TARGET_CUBE: buf << "uniform highp samplerCube u_sampler;\n"; break; case TARGET_3D: buf << "uniform highp sampler3D u_sampler;\n"; break; case TARGET_2D_ARRAY: buf << "uniform highp sampler2DArray u_sampler;\n"; break; case TARGET_1D_ARRAY: buf << "uniform highp sampler1DArray u_sampler;\n"; break; case TARGET_2D_MS_ARRAY: buf << "uniform highp sampler2DMSArray u_sampler;\n"; break; default: DE_ASSERT(DE_FALSE); } buf << "uniform highp int u_layer;\n" "void main (void)\n" "{\n"; switch (m_target) { case TARGET_CUBE: buf << " highp vec2 facepos = 2.0 * gl_FragCoord.xy / vec2(ivec2(" << m_resolveDimensions.x() << ", " << m_resolveDimensions.y() << ")) - vec2(1.0, 1.0);\n" " if (u_layer == 0)\n" " fragColor = textureLod(u_sampler, vec3(1.0, -facepos.y, -facepos.x), 0.0);\n" " else if (u_layer == 1)\n" " fragColor = textureLod(u_sampler, vec3(-1.0, -facepos.y, facepos.x), 0.0);\n" " else if (u_layer == 2)\n" " fragColor = textureLod(u_sampler, vec3(facepos.x, 1.0, facepos.y), 0.0);\n" " else if (u_layer == 3)\n" " fragColor = textureLod(u_sampler, vec3(facepos.x, -1.0, -facepos.y), 0.0);\n" " else if (u_layer == 4)\n" " fragColor = textureLod(u_sampler, vec3(facepos.x, -facepos.y, 1.0), 0.0);\n" " else if (u_layer == 5)\n" " fragColor = textureLod(u_sampler, vec3(-facepos.x, -facepos.y, -1.0), 0.0);\n" " else\n" " fragColor = vec4(1.0, 0.0, 1.0, 1.0);\n"; break; case TARGET_3D: case TARGET_2D_ARRAY: case TARGET_2D_MS_ARRAY: buf << " highp ivec2 screenpos = ivec2(floor(gl_FragCoord.xy));\n" " fragColor = texelFetch(u_sampler, ivec3(screenpos, u_layer), 0);\n"; break; case TARGET_1D_ARRAY: buf << " highp ivec2 screenpos = ivec2(floor(gl_FragCoord.xy));\n" " fragColor = texelFetch(u_sampler, ivec2(screenpos.x, u_layer), 0);\n"; break; default: DE_ASSERT(DE_FALSE); } buf << "}\n"; return specializeShader(buf.str(), contextType); } void LayeredRenderCase::renderToTexture (void) { const tcu::IVec3 texSize = getTargetDimensions(m_target); const glw::Functions& gl = m_context.getRenderContext().getFunctions(); glu::VertexArray vao (m_context.getRenderContext()); m_testCtx.getLog() << tcu::TestLog::Message << "Rendering to texture" << tcu::TestLog::EndMessage; gl.bindFramebuffer(GL_FRAMEBUFFER, m_fbo); gl.clearColor(0.0f, 0.0f, 0.0f, 1.0f); gl.clear(GL_COLOR_BUFFER_BIT); gl.viewport(0, 0, texSize.x(), texSize.y()); gl.clear(GL_COLOR_BUFFER_BIT); gl.bindVertexArray(*vao); gl.useProgram(m_renderShader->getProgram()); gl.drawArrays(GL_POINTS, 0, 1); gl.useProgram(0); gl.bindVertexArray(0); gl.bindFramebuffer(GL_FRAMEBUFFER, 0); GLU_EXPECT_NO_ERROR(gl.getError(), "render"); } void LayeredRenderCase::sampleTextureLayer (tcu::Surface& dst, int layer) { DE_ASSERT(dst.getWidth() == m_resolveDimensions.x()); DE_ASSERT(dst.getHeight() == m_resolveDimensions.y()); static const tcu::Vec4 fullscreenQuad[4] = { tcu::Vec4(-1.0f, -1.0f, 0.0f, 1.0f), tcu::Vec4(-1.0f, 1.0f, 0.0f, 1.0f), tcu::Vec4( 1.0f, -1.0f, 0.0f, 1.0f), tcu::Vec4( 1.0f, 1.0f, 0.0f, 1.0f), }; const glw::Functions& gl = m_context.getRenderContext().getFunctions(); const int positionLoc = gl.getAttribLocation(m_samplerShader->getProgram(), "a_position"); glu::VertexArray vao (m_context.getRenderContext()); glu::Buffer buf (m_context.getRenderContext()); m_testCtx.getLog() << tcu::TestLog::Message << "Sampling from texture layer " << layer << tcu::TestLog::EndMessage; gl.clearColor(0.0f, 0.0f, 0.0f, 1.0f); gl.clear(GL_COLOR_BUFFER_BIT); gl.viewport(0, 0, m_resolveDimensions.x(), m_resolveDimensions.y()); GLU_EXPECT_NO_ERROR(gl.getError(), "clear"); gl.bindBuffer(GL_ARRAY_BUFFER, *buf); gl.bufferData(GL_ARRAY_BUFFER, sizeof(fullscreenQuad), fullscreenQuad, GL_STATIC_DRAW); GLU_EXPECT_NO_ERROR(gl.getError(), "buf"); gl.bindVertexArray(*vao); gl.vertexAttribPointer(positionLoc, 4, GL_FLOAT, GL_FALSE, 0, DE_NULL); gl.enableVertexAttribArray(positionLoc); GLU_EXPECT_NO_ERROR(gl.getError(), "setup attribs"); gl.activeTexture(GL_TEXTURE0); gl.bindTexture(getTargetTextureTarget(m_target), m_texture); GLU_EXPECT_NO_ERROR(gl.getError(), "bind texture"); gl.useProgram(m_samplerShader->getProgram()); gl.uniform1i(m_samplerLayerLoc, layer); gl.uniform1i(m_samplerSamplerLoc, 0); GLU_EXPECT_NO_ERROR(gl.getError(), "setup program"); gl.drawArrays(GL_TRIANGLE_STRIP, 0, 4); GLU_EXPECT_NO_ERROR(gl.getError(), "draw"); gl.useProgram(0); gl.bindVertexArray(0); GLU_EXPECT_NO_ERROR(gl.getError(), "clean"); glu::readPixels(m_context.getRenderContext(), 0, 0, dst.getAccess()); } bool LayeredRenderCase::verifyLayerContent (const tcu::Surface& layer, int layerNdx) { const tcu::Vec4 white = tcu::Vec4(1.0f, 1.0f, 1.0f, 1.0f); const tcu::Vec4 red = tcu::Vec4(1.0f, 0.0f, 0.0f, 1.0f); const tcu::Vec4 green = tcu::Vec4(0.0f, 1.0f, 0.0f, 1.0f); const tcu::Vec4 blue = tcu::Vec4(0.0f, 0.0f, 1.0f, 1.0f); const tcu::Vec4 yellow = tcu::Vec4(1.0f, 1.0f, 0.0f, 1.0f); const tcu::Vec4 magenta = tcu::Vec4(1.0f, 0.0f, 1.0f, 1.0f); const tcu::Vec4 colors[6] = { white, red, green, blue, yellow, magenta }; m_testCtx.getLog() << tcu::TestLog::Message << "Verifying layer contents" << tcu::TestLog::EndMessage; switch (m_test) { case TEST_DEFAULT_LAYER: if (layerNdx == 0) return verifyImageSingleColoredRow(layer, 0.5f, white); else return verifyEmptyImage(layer); case TEST_SINGLE_LAYER: if (layerNdx == m_targetLayer) return verifyImageSingleColoredRow(layer, 0.5f, white); else return verifyEmptyImage(layer); case TEST_ALL_LAYERS: case TEST_INVOCATION_PER_LAYER: return verifyImageSingleColoredRow(layer, 0.5f, colors[layerNdx]); case TEST_DIFFERENT_LAYERS: case TEST_MULTIPLE_LAYERS_PER_INVOCATION: if (layerNdx == 0) return verifyEmptyImage(layer); else return verifyImageSingleColoredRow(layer, (float)layerNdx / (float)m_numLayers, white); case TEST_LAYER_ID: { const tcu::Vec4 layerColor((layerNdx % 2 == 1) ? (1.0f) : (0.5f), ((layerNdx/2) % 2 == 1) ? (1.0f) : (0.5f), (layerNdx == 0) ? (1.0f) : (0.0f), 1.0f); return verifyImageSingleColoredRow(layer, 0.5f, layerColor); } case TEST_LAYER_PROVOKING_VERTEX: if (m_provokingVertex == GL_FIRST_VERTEX_CONVENTION) { if (layerNdx == 0) return verifyImageSingleColoredRow(layer, 0.5f, white); else return verifyEmptyImage(layer); } else if (m_provokingVertex == GL_LAST_VERTEX_CONVENTION) { if (layerNdx == 1) return verifyImageSingleColoredRow(layer, 0.5f, white); else return verifyEmptyImage(layer); } else { DE_ASSERT(false); return false; } default: DE_ASSERT(DE_FALSE); return false; }; } bool LayeredRenderCase::verifyImageSingleColoredRow (const tcu::Surface& layer, float rowWidthRatio, const tcu::Vec4& barColor, bool logging) { DE_ASSERT(rowWidthRatio > 0.0f); const int barLength = (int)(rowWidthRatio * (float)layer.getWidth()); const int barLengthThreshold = 1; tcu::Surface errorMask (layer.getWidth(), layer.getHeight()); bool allPixelsOk = true; if (logging) m_testCtx.getLog() << tcu::TestLog::Message << "Expecting all pixels with distance less or equal to (about) " << barLength << " pixels from left border to be of color " << barColor.swizzle(0,1,2) << "." << tcu::TestLog::EndMessage; tcu::clear(errorMask.getAccess(), tcu::RGBA::green().toIVec()); for (int y = 0; y < layer.getHeight(); ++y) for (int x = 0; x < layer.getWidth(); ++x) { const tcu::RGBA color = layer.getPixel(x, y); const tcu::RGBA refColor = tcu::RGBA(barColor); const int threshold = 8; const bool isBlack = color.getRed() <= threshold || color.getGreen() <= threshold || color.getBlue() <= threshold; const bool isColor = tcu::allEqual(tcu::lessThan(tcu::abs(color.toIVec().swizzle(0, 1, 2) - refColor.toIVec().swizzle(0, 1, 2)), tcu::IVec3(threshold, threshold, threshold)), tcu::BVec3(true, true, true)); bool isOk; if (x <= barLength - barLengthThreshold) isOk = isColor; else if (x >= barLength + barLengthThreshold) isOk = isBlack; else isOk = isColor || isBlack; allPixelsOk &= isOk; if (!isOk) errorMask.setPixel(x, y, tcu::RGBA::red()); } if (allPixelsOk) { if (logging) m_testCtx.getLog() << tcu::TestLog::Message << "Image is valid." << tcu::TestLog::EndMessage << tcu::TestLog::ImageSet("LayerContent", "Layer content") << tcu::TestLog::Image("Layer", "Layer", layer) << tcu::TestLog::EndImageSet; return true; } else { if (logging) m_testCtx.getLog() << tcu::TestLog::Message << "Image verification failed. Got unexpected pixels." << tcu::TestLog::EndMessage << tcu::TestLog::ImageSet("LayerContent", "Layer content") << tcu::TestLog::Image("Layer", "Layer", layer) << tcu::TestLog::Image("ErrorMask", "Errors", errorMask) << tcu::TestLog::EndImageSet; return false; } if (logging) m_testCtx.getLog() << tcu::TestLog::Image("LayerContent", "Layer content", layer); return allPixelsOk; } bool LayeredRenderCase::verifyEmptyImage (const tcu::Surface& layer, bool logging) { // Expect black if (logging) m_testCtx.getLog() << tcu::TestLog::Message << "Expecting empty image" << tcu::TestLog::EndMessage; for (int y = 0; y < layer.getHeight(); ++y) for (int x = 0; x < layer.getWidth(); ++x) { const tcu::RGBA color = layer.getPixel(x, y); const int threshold = 8; const bool isBlack = color.getRed() <= threshold || color.getGreen() <= threshold || color.getBlue() <= threshold; if (!isBlack) { if (logging) m_testCtx.getLog() << tcu::TestLog::Message << "Found (at least) one bad pixel at " << x << "," << y << ". Pixel color is not background color." << tcu::TestLog::EndMessage << tcu::TestLog::ImageSet("LayerContent", "Layer content") << tcu::TestLog::Image("Layer", "Layer", layer) << tcu::TestLog::EndImageSet; return false; } } if (logging) m_testCtx.getLog() << tcu::TestLog::Message << "Image is valid" << tcu::TestLog::EndMessage; return true; } bool LayeredRenderCase::verifyProvokingVertexLayers (const tcu::Surface& layer0, const tcu::Surface& layer1) { const bool layer0Empty = verifyEmptyImage(layer0, false); const bool layer1Empty = verifyEmptyImage(layer1, false); bool error = false; // Both images could contain something if the quad triangles get assigned to different layers m_testCtx.getLog() << tcu::TestLog::Message << "Expecting non-empty layers, or non-empty layer." << tcu::TestLog::EndMessage; if (layer0Empty == true && layer1Empty == true) { m_testCtx.getLog() << tcu::TestLog::Message << "Got empty images." << tcu::TestLog::EndMessage; error = true; } // log images always m_testCtx.getLog() << tcu::TestLog::ImageSet("LayerContent", "Layer content") << tcu::TestLog::Image("Layer", "Layer0", layer0) << tcu::TestLog::Image("Layer", "Layer1", layer1) << tcu::TestLog::EndImageSet; if (error) m_testCtx.getLog() << tcu::TestLog::Message << "Image verification failed." << tcu::TestLog::EndMessage; else m_testCtx.getLog() << tcu::TestLog::Message << "Image is valid." << tcu::TestLog::EndMessage; return !error; } int LayeredRenderCase::getTargetLayers (LayeredRenderTargetType target) { switch (target) { case TARGET_CUBE: return 6; case TARGET_3D: return 4; case TARGET_1D_ARRAY: return 4; case TARGET_2D_ARRAY: return 4; case TARGET_2D_MS_ARRAY: return 2; default: DE_ASSERT(DE_FALSE); return 0; } } glw::GLenum LayeredRenderCase::getTargetTextureTarget (LayeredRenderTargetType target) { switch (target) { case TARGET_CUBE: return GL_TEXTURE_CUBE_MAP; case TARGET_3D: return GL_TEXTURE_3D; case TARGET_1D_ARRAY: return GL_TEXTURE_1D_ARRAY; case TARGET_2D_ARRAY: return GL_TEXTURE_2D_ARRAY; case TARGET_2D_MS_ARRAY: return GL_TEXTURE_2D_MULTISAMPLE_ARRAY; default: DE_ASSERT(DE_FALSE); return 0; } } tcu::IVec3 LayeredRenderCase::getTargetDimensions (LayeredRenderTargetType target) { switch (target) { case TARGET_CUBE: return tcu::IVec3(64, 64, 0); case TARGET_3D: return tcu::IVec3(64, 64, 4); case TARGET_1D_ARRAY: return tcu::IVec3(64, 4, 0); case TARGET_2D_ARRAY: return tcu::IVec3(64, 64, 4); case TARGET_2D_MS_ARRAY: return tcu::IVec3(64, 64, 2); default: DE_ASSERT(DE_FALSE); return tcu::IVec3(0, 0, 0); } } tcu::IVec2 LayeredRenderCase::getResolveDimensions (LayeredRenderTargetType target) { switch (target) { case TARGET_CUBE: return tcu::IVec2(64, 64); case TARGET_3D: return tcu::IVec2(64, 64); case TARGET_1D_ARRAY: return tcu::IVec2(64, 1); case TARGET_2D_ARRAY: return tcu::IVec2(64, 64); case TARGET_2D_MS_ARRAY: return tcu::IVec2(64, 64); default: DE_ASSERT(DE_FALSE); return tcu::IVec2(0, 0); } } class VaryingOutputCountCase : public GeometryShaderRenderTest { public: enum ShaderInstancingMode { MODE_WITHOUT_INSTANCING = 0, MODE_WITH_INSTANCING, MODE_LAST }; VaryingOutputCountCase (Context& context, const char* name, const char* desc, VaryingOutputCountShader::VaryingSource test, ShaderInstancingMode mode); private: void init (void); void deinit (void); void preRender (sglr::Context& ctx, GLuint programID); sglr::ShaderProgram& getProgram (void); void genVertexAttribData (void); void genVertexDataWithoutInstancing (void); void genVertexDataWithInstancing (void); VaryingOutputCountShader* m_program; const VaryingOutputCountShader::VaryingSource m_test; const ShaderInstancingMode m_mode; int m_maxEmitCount; }; VaryingOutputCountCase::VaryingOutputCountCase (Context& context, const char* name, const char* desc, VaryingOutputCountShader::VaryingSource test, ShaderInstancingMode mode) : GeometryShaderRenderTest (context, name, desc, GL_POINTS, GL_TRIANGLE_STRIP, VaryingOutputCountShader::getAttributeName(test)) , m_program (DE_NULL) , m_test (test) , m_mode (mode) , m_maxEmitCount (0) { DE_ASSERT(mode < MODE_LAST); } void VaryingOutputCountCase::init (void) { // Check requirements if (!glu::contextSupports(m_context.getRenderContext().getType(), glu::ApiType::es(3, 2)) && !m_context.getContextInfo().isExtensionSupported("GL_EXT_geometry_shader")) TCU_THROW(NotSupportedError, "Tests require GL_EXT_geometry_shader extension or higher context version."); if (m_test == VaryingOutputCountShader::READ_TEXTURE) { glw::GLint maxTextures = 0; m_context.getRenderContext().getFunctions().getIntegerv(GL_MAX_GEOMETRY_TEXTURE_IMAGE_UNITS, &maxTextures); m_testCtx.getLog() << tcu::TestLog::Message << "GL_MAX_GEOMETRY_TEXTURE_IMAGE_UNITS = " << maxTextures << tcu::TestLog::EndMessage; if (maxTextures < 1) throw tcu::NotSupportedError("Geometry shader texture units required"); } // Get max emit count { const int componentsPerVertex = 4 + 4; // vec4 pos, vec4 color glw::GLint maxVertices = 0; glw::GLint maxComponents = 0; m_context.getRenderContext().getFunctions().getIntegerv(GL_MAX_GEOMETRY_OUTPUT_VERTICES, &maxVertices); m_context.getRenderContext().getFunctions().getIntegerv(GL_MAX_GEOMETRY_TOTAL_OUTPUT_COMPONENTS, &maxComponents); m_testCtx.getLog() << tcu::TestLog::Message << "GL_MAX_GEOMETRY_OUTPUT_VERTICES = " << maxVertices << tcu::TestLog::EndMessage; m_testCtx.getLog() << tcu::TestLog::Message << "GL_MAX_GEOMETRY_TOTAL_OUTPUT_COMPONENTS = " << maxComponents << tcu::TestLog::EndMessage; m_testCtx.getLog() << tcu::TestLog::Message << "Components per vertex = " << componentsPerVertex << tcu::TestLog::EndMessage; if (maxVertices < 256) throw tcu::TestError("MAX_GEOMETRY_OUTPUT_VERTICES was less than minimum required (256)"); if (maxComponents < 1024) throw tcu::TestError("MAX_GEOMETRY_TOTAL_OUTPUT_COMPONENTS was less than minimum required (1024)"); m_maxEmitCount = de::min(maxVertices, maxComponents / componentsPerVertex); } // Log what the test tries to do m_testCtx.getLog() << tcu::TestLog::Message << "Rendering 4 n-gons with n = " << ((VaryingOutputCountShader::EMIT_COUNT_VERTEX_0 == -1) ? (m_maxEmitCount) : (VaryingOutputCountShader::EMIT_COUNT_VERTEX_0)) << ", " << ((VaryingOutputCountShader::EMIT_COUNT_VERTEX_1 == -1) ? (m_maxEmitCount) : (VaryingOutputCountShader::EMIT_COUNT_VERTEX_1)) << ", " << ((VaryingOutputCountShader::EMIT_COUNT_VERTEX_2 == -1) ? (m_maxEmitCount) : (VaryingOutputCountShader::EMIT_COUNT_VERTEX_2)) << ", and " << ((VaryingOutputCountShader::EMIT_COUNT_VERTEX_3 == -1) ? (m_maxEmitCount) : (VaryingOutputCountShader::EMIT_COUNT_VERTEX_3)) << ".\n" << "N is supplied to the geomery shader with " << ((m_test == VaryingOutputCountShader::READ_ATTRIBUTE) ? ("attribute") : (m_test == VaryingOutputCountShader::READ_UNIFORM) ? ("uniform") : ("texture")) << tcu::TestLog::EndMessage; // Gen shader { const bool instanced = (m_mode == MODE_WITH_INSTANCING); DE_ASSERT(!m_program); m_program = new VaryingOutputCountShader(m_context.getRenderContext().getType(), m_test, m_maxEmitCount, instanced); } // Case init GeometryShaderRenderTest::init(); } void VaryingOutputCountCase::deinit (void) { if (m_program) { delete m_program; m_program = DE_NULL; } GeometryShaderRenderTest::deinit(); } void VaryingOutputCountCase::preRender (sglr::Context& ctx, GLuint programID) { if (m_test == VaryingOutputCountShader::READ_UNIFORM) { const int location = ctx.getUniformLocation(programID, "u_emitCount"); const deInt32 emitCount[4] = { 6, 0, m_maxEmitCount, 10 }; if (location == -1) throw tcu::TestError("uniform location of u_emitCount was -1."); ctx.uniform4iv(location, 1, emitCount); } else if (m_test == VaryingOutputCountShader::READ_TEXTURE) { const deUint8 data[4*4] = { 255, 0, 0, 0, 0, 255, 0, 0, 0, 0, 255, 0, 0, 0, 0, 255, }; const int location = ctx.getUniformLocation(programID, "u_sampler"); GLuint texID = 0; if (location == -1) throw tcu::TestError("uniform location of u_sampler was -1."); ctx.uniform1i(location, 0); // \note we don't need to explicitly delete the texture, the sglr context will delete it ctx.genTextures(1, &texID); ctx.bindTexture(GL_TEXTURE_2D, texID); ctx.texImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, 4, 1, 0, GL_RGBA, GL_UNSIGNED_BYTE, data); ctx.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); ctx.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); } } sglr::ShaderProgram& VaryingOutputCountCase::getProgram (void) { return *m_program; } void VaryingOutputCountCase::genVertexAttribData (void) { if (m_mode == MODE_WITHOUT_INSTANCING) genVertexDataWithoutInstancing(); else if (m_mode == MODE_WITH_INSTANCING) genVertexDataWithInstancing(); else DE_ASSERT(false); } void VaryingOutputCountCase::genVertexDataWithoutInstancing (void) { m_numDrawVertices = 4; m_vertexPosData.resize(4); m_vertexAttrData.resize(4); m_vertexPosData[0] = tcu::Vec4( 0.5f, 0.0f, 0.0f, 1.0f); m_vertexPosData[1] = tcu::Vec4( 0.0f, 0.5f, 0.0f, 1.0f); m_vertexPosData[2] = tcu::Vec4(-0.7f, -0.1f, 0.0f, 1.0f); m_vertexPosData[3] = tcu::Vec4(-0.1f, -0.7f, 0.0f, 1.0f); if (m_test == VaryingOutputCountShader::READ_ATTRIBUTE) { m_vertexAttrData[0] = tcu::Vec4(((VaryingOutputCountShader::EMIT_COUNT_VERTEX_0 == -1) ? ((float)m_maxEmitCount) : ((float)VaryingOutputCountShader::EMIT_COUNT_VERTEX_0)), 0.0f, 0.0f, 0.0f); m_vertexAttrData[1] = tcu::Vec4(((VaryingOutputCountShader::EMIT_COUNT_VERTEX_1 == -1) ? ((float)m_maxEmitCount) : ((float)VaryingOutputCountShader::EMIT_COUNT_VERTEX_1)), 0.0f, 0.0f, 0.0f); m_vertexAttrData[2] = tcu::Vec4(((VaryingOutputCountShader::EMIT_COUNT_VERTEX_2 == -1) ? ((float)m_maxEmitCount) : ((float)VaryingOutputCountShader::EMIT_COUNT_VERTEX_2)), 0.0f, 0.0f, 0.0f); m_vertexAttrData[3] = tcu::Vec4(((VaryingOutputCountShader::EMIT_COUNT_VERTEX_3 == -1) ? ((float)m_maxEmitCount) : ((float)VaryingOutputCountShader::EMIT_COUNT_VERTEX_3)), 0.0f, 0.0f, 0.0f); } else { m_vertexAttrData[0] = tcu::Vec4(0.0f, 0.0f, 0.0f, 0.0f); m_vertexAttrData[1] = tcu::Vec4(1.0f, 0.0f, 0.0f, 0.0f); m_vertexAttrData[2] = tcu::Vec4(2.0f, 0.0f, 0.0f, 0.0f); m_vertexAttrData[3] = tcu::Vec4(3.0f, 0.0f, 0.0f, 0.0f); } } void VaryingOutputCountCase::genVertexDataWithInstancing (void) { m_numDrawVertices = 1; m_vertexPosData.resize(1); m_vertexAttrData.resize(1); m_vertexPosData[0] = tcu::Vec4(0.0f, 0.0f, 0.0f, 1.0f); if (m_test == VaryingOutputCountShader::READ_ATTRIBUTE) { const int emitCounts[] = { (VaryingOutputCountShader::EMIT_COUNT_VERTEX_0 == -1) ? (m_maxEmitCount) : (VaryingOutputCountShader::EMIT_COUNT_VERTEX_0), (VaryingOutputCountShader::EMIT_COUNT_VERTEX_1 == -1) ? (m_maxEmitCount) : (VaryingOutputCountShader::EMIT_COUNT_VERTEX_1), (VaryingOutputCountShader::EMIT_COUNT_VERTEX_2 == -1) ? (m_maxEmitCount) : (VaryingOutputCountShader::EMIT_COUNT_VERTEX_2), (VaryingOutputCountShader::EMIT_COUNT_VERTEX_3 == -1) ? (m_maxEmitCount) : (VaryingOutputCountShader::EMIT_COUNT_VERTEX_3), }; m_vertexAttrData[0] = tcu::Vec4((float)emitCounts[0], (float)emitCounts[1], (float)emitCounts[2], (float)emitCounts[3]); } else { // not used m_vertexAttrData[0] = tcu::Vec4(0.0f, 0.0f, 0.0f, 0.0f); } } class GeometryProgramQueryCase : public TestCase { public: struct ProgramCase { const char* description; const char* header; int value; }; GeometryProgramQueryCase (Context& context, const char* name, const char* description, glw::GLenum target); void init (void); IterateResult iterate (void); private: void expectProgramValue (deUint32 program, int value); void expectQueryError (deUint32 program); const glw::GLenum m_target; protected: std::vector m_cases; }; GeometryProgramQueryCase::GeometryProgramQueryCase (Context& context, const char* name, const char* description, glw::GLenum target) : TestCase (context, name, description) , m_target (target) { } void GeometryProgramQueryCase::init (void) { if (!(m_context.getContextInfo().isExtensionSupported("GL_EXT_geometry_shader") || glu::contextSupports(m_context.getRenderContext().getType(), glu::ApiType::es(3, 2)))) TCU_THROW(NotSupportedError, "Tests require GL_EXT_geometry_shader extension or higher context version."); } GeometryProgramQueryCase::IterateResult GeometryProgramQueryCase::iterate (void) { const bool supportsES32 = glu::contextSupports(m_context.getRenderContext().getType(), glu::ApiType::es(3, 2)); const std::string vertexSource = std::string(glu::getGLSLVersionDeclaration(glu::getContextTypeGLSLVersion(m_context.getRenderContext().getType()))) + "\n" "void main ()\n" "{\n" " gl_Position = vec4(0.0, 0.0, 0.0, 0.0);\n" "}\n"; const std::string fragmentSource = std::string(glu::getGLSLVersionDeclaration(glu::getContextTypeGLSLVersion(m_context.getRenderContext().getType()))) + "\n" "layout(location = 0) out mediump vec4 fragColor;\n" "void main ()\n" "{\n" " fragColor = vec4(0.0, 0.0, 0.0, 0.0);\n" "}\n"; static const char* s_geometryBody ="void main ()\n" "{\n" " gl_Position = vec4(0.0, 0.0, 0.0, 0.0);\n" " EmitVertex();\n" "}\n"; m_testCtx.setTestResult(QP_TEST_RESULT_PASS, "Pass"); // default cases for (int ndx = 0; ndx < (int)m_cases.size(); ++ndx) { const tcu::ScopedLogSection section (m_testCtx.getLog(), "Case", m_cases[ndx].description); const std::string geometrySource = m_cases[ndx].header + std::string(s_geometryBody); const glu::ShaderProgram program (m_context.getRenderContext(), glu::ProgramSources() << glu::VertexSource(vertexSource) << glu::FragmentSource(fragmentSource) << glu::GeometrySource(specializeShader(geometrySource, m_context.getRenderContext().getType()))); m_testCtx.getLog() << program; expectProgramValue(program.getProgram(), m_cases[ndx].value); } // no geometry shader -case (INVALID OP) { const tcu::ScopedLogSection section (m_testCtx.getLog(), "NoGeometryShader", "No geometry shader"); const glu::ShaderProgram program (m_context.getRenderContext(), glu::ProgramSources() << glu::VertexSource(vertexSource) << glu::FragmentSource(fragmentSource)); m_testCtx.getLog() << program; expectQueryError(program.getProgram()); } // not linked -case (INVALID OP) { const tcu::ScopedLogSection section (m_testCtx.getLog(), "NotLinkedProgram", "Shader program not linked"); const std::string geometrySource = std::string(glu::getGLSLVersionDeclaration(glu::getContextTypeGLSLVersion(m_context.getRenderContext().getType()))) + "\n" + std::string(supportsES32 ? "" : "#extension GL_EXT_geometry_shader : require\n") + "layout (triangles) in;\n" "layout (points, max_vertices = 3) out;\n" + std::string(s_geometryBody); const char* const vtxSourcePtr = vertexSource.c_str(); const char* const fragSourcePtr = fragmentSource.c_str(); const char* const geomSourcePtr = geometrySource.c_str(); glu::Shader vertexShader (m_context.getRenderContext(), glu::SHADERTYPE_VERTEX); glu::Shader fragmentShader (m_context.getRenderContext(), glu::SHADERTYPE_FRAGMENT); glu::Shader geometryShader (m_context.getRenderContext(), glu::SHADERTYPE_GEOMETRY); glu::Program program (m_context.getRenderContext()); vertexShader.setSources(1, &vtxSourcePtr, DE_NULL); fragmentShader.setSources(1, &fragSourcePtr, DE_NULL); geometryShader.setSources(1, &geomSourcePtr, DE_NULL); vertexShader.compile(); fragmentShader.compile(); geometryShader.compile(); if (!vertexShader.getCompileStatus() || !fragmentShader.getCompileStatus() || !geometryShader.getCompileStatus()) throw tcu::TestError("Failed to compile shader"); program.attachShader(vertexShader.getShader()); program.attachShader(fragmentShader.getShader()); program.attachShader(geometryShader.getShader()); m_testCtx.getLog() << tcu::TestLog::Message << "Creating a program with geometry shader, but not linking it" << tcu::TestLog::EndMessage; expectQueryError(program.getProgram()); } return STOP; } void GeometryProgramQueryCase::expectProgramValue (deUint32 program, int value) { const glw::Functions& gl = m_context.getRenderContext().getFunctions(); gls::StateQueryUtil::StateQueryMemoryWriteGuard state; gl.getProgramiv(program, m_target, &state); GLU_EXPECT_NO_ERROR(gl.getError(), "getProgramiv"); m_testCtx.getLog() << tcu::TestLog::Message << glu::getProgramParamStr(m_target) << " = " << state << tcu::TestLog::EndMessage; if (state != value) { m_testCtx.getLog() << tcu::TestLog::Message << "// ERROR: Expected " << value << ", got " << state << tcu::TestLog::EndMessage; // don't overwrite error if (m_testCtx.getTestResult() == QP_TEST_RESULT_PASS) m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "got invalid value"); } } void GeometryProgramQueryCase::expectQueryError (deUint32 program) { const glw::Functions& gl = m_context.getRenderContext().getFunctions(); glw::GLint dummy; glw::GLenum errorCode; m_testCtx.getLog() << tcu::TestLog::Message << "Querying " << glu::getProgramParamStr(m_target) << ", expecting INVALID_OPERATION" << tcu::TestLog::EndMessage; gl.getProgramiv(program, m_target, &dummy); errorCode = gl.getError(); if (errorCode != GL_INVALID_OPERATION) { m_testCtx.getLog() << tcu::TestLog::Message << "// ERROR: Expected INVALID_OPERATION, got " << glu::getErrorStr(errorCode) << tcu::TestLog::EndMessage; // don't overwrite error if (m_testCtx.getTestResult() == QP_TEST_RESULT_PASS) m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "got unexpected error code"); } } class GeometryShaderInvocationsQueryCase : public GeometryProgramQueryCase { public: GeometryShaderInvocationsQueryCase(Context& context, const char* name, const char* description); }; GeometryShaderInvocationsQueryCase::GeometryShaderInvocationsQueryCase(Context& context, const char* name, const char* description) : GeometryProgramQueryCase(context, name, description, GL_GEOMETRY_SHADER_INVOCATIONS) { // 2 normal cases m_cases.resize(2); m_cases[0].description = "Default value"; m_cases[0].header = "${GLSL_VERSION_DECL}\n${GLSL_EXT_GEOMETRY_SHADER}layout (triangles) in;\nlayout (points, max_vertices = 3) out;\n"; m_cases[0].value = 1; m_cases[1].description = "Value declared"; m_cases[1].header = "${GLSL_VERSION_DECL}\n${GLSL_EXT_GEOMETRY_SHADER}layout (triangles, invocations=2) in;\nlayout (points, max_vertices = 3) out;\n"; m_cases[1].value = 2; } class GeometryShaderVerticesQueryCase : public GeometryProgramQueryCase { public: GeometryShaderVerticesQueryCase(Context& context, const char* name, const char* description); }; GeometryShaderVerticesQueryCase::GeometryShaderVerticesQueryCase (Context& context, const char* name, const char* description) : GeometryProgramQueryCase(context, name, description, GL_GEOMETRY_LINKED_VERTICES_OUT_EXT) { m_cases.resize(1); m_cases[0].description = "max_vertices = 1"; m_cases[0].header = "${GLSL_VERSION_DECL}\n${GLSL_EXT_GEOMETRY_SHADER}layout (triangles) in;\nlayout (points, max_vertices = 1) out;\n"; m_cases[0].value = 1; } class GeometryShaderInputQueryCase : public GeometryProgramQueryCase { public: GeometryShaderInputQueryCase(Context& context, const char* name, const char* description); }; GeometryShaderInputQueryCase::GeometryShaderInputQueryCase(Context& context, const char* name, const char* description) : GeometryProgramQueryCase(context, name, description, GL_GEOMETRY_LINKED_INPUT_TYPE_EXT) { m_cases.resize(3); m_cases[0].description = "Triangles"; m_cases[0].header = "${GLSL_VERSION_DECL}\n${GLSL_EXT_GEOMETRY_SHADER}layout (triangles) in;\nlayout (points, max_vertices = 3) out;\n"; m_cases[0].value = GL_TRIANGLES; m_cases[1].description = "Lines"; m_cases[1].header = "${GLSL_VERSION_DECL}\n${GLSL_EXT_GEOMETRY_SHADER}layout (lines) in;\nlayout (points, max_vertices = 3) out;\n"; m_cases[1].value = GL_LINES; m_cases[2].description = "Points"; m_cases[2].header = "${GLSL_VERSION_DECL}\n${GLSL_EXT_GEOMETRY_SHADER}layout (points) in;\nlayout (points, max_vertices = 3) out;\n"; m_cases[2].value = GL_POINTS; } class GeometryShaderOutputQueryCase : public GeometryProgramQueryCase { public: GeometryShaderOutputQueryCase(Context& context, const char* name, const char* description); }; GeometryShaderOutputQueryCase::GeometryShaderOutputQueryCase(Context& context, const char* name, const char* description) : GeometryProgramQueryCase(context, name, description, GL_GEOMETRY_LINKED_OUTPUT_TYPE_EXT) { m_cases.resize(3); m_cases[0].description = "Triangle strip"; m_cases[0].header = "${GLSL_VERSION_DECL}\n${GLSL_EXT_GEOMETRY_SHADER}layout (triangles) in;\nlayout (triangle_strip, max_vertices = 3) out;\n"; m_cases[0].value = GL_TRIANGLE_STRIP; m_cases[1].description = "Lines"; m_cases[1].header = "${GLSL_VERSION_DECL}\n${GLSL_EXT_GEOMETRY_SHADER}layout (triangles) in;\nlayout (line_strip, max_vertices = 3) out;\n"; m_cases[1].value = GL_LINE_STRIP; m_cases[2].description = "Points"; m_cases[2].header = "${GLSL_VERSION_DECL}\n${GLSL_EXT_GEOMETRY_SHADER}layout (triangles) in;\nlayout (points, max_vertices = 3) out;\n"; m_cases[2].value = GL_POINTS; } class ImplementationLimitCase : public TestCase { public: ImplementationLimitCase (Context& context, const char* name, const char* description, glw::GLenum target, int minValue); void init (void); IterateResult iterate (void); const glw::GLenum m_target; const int m_minValue; }; ImplementationLimitCase::ImplementationLimitCase (Context& context, const char* name, const char* description, glw::GLenum target, int minValue) : TestCase (context, name, description) , m_target (target) , m_minValue (minValue) { } void ImplementationLimitCase::init (void) { if (!glu::contextSupports(m_context.getRenderContext().getType(), glu::ApiType::es(3, 2)) && !m_context.getContextInfo().isExtensionSupported("GL_EXT_geometry_shader")) TCU_THROW(NotSupportedError, "Tests require GL_EXT_geometry_shader extension or higher context version."); } ImplementationLimitCase::IterateResult ImplementationLimitCase::iterate (void) { glu::CallLogWrapper gl (m_context.getRenderContext().getFunctions(), m_testCtx.getLog()); tcu::ResultCollector result (m_testCtx.getLog(), " // ERROR: "); gl.enableLogging(true); verifyStateIntegerMin(result, gl, m_target, m_minValue, QUERY_INTEGER); { const tcu::ScopedLogSection section(m_testCtx.getLog(), "Types", "Alternative queries"); verifyStateIntegerMin(result, gl, m_target, m_minValue, QUERY_BOOLEAN); verifyStateIntegerMin(result, gl, m_target, m_minValue, QUERY_INTEGER64); verifyStateIntegerMin(result, gl, m_target, m_minValue, QUERY_FLOAT); } result.setTestContextResult(m_testCtx); return STOP; } class LayerProvokingVertexQueryCase : public TestCase { public: LayerProvokingVertexQueryCase (Context& context, const char* name, const char* description); void init (void); IterateResult iterate (void); }; LayerProvokingVertexQueryCase::LayerProvokingVertexQueryCase (Context& context, const char* name, const char* description) : TestCase(context, name, description) { } void LayerProvokingVertexQueryCase::init (void) { if (!glu::contextSupports(m_context.getRenderContext().getType(), glu::ApiType::es(3, 2)) && !m_context.getContextInfo().isExtensionSupported("GL_EXT_geometry_shader")) TCU_THROW(NotSupportedError, "Tests require GL_EXT_geometry_shader extension or higher context version."); } LayerProvokingVertexQueryCase::IterateResult LayerProvokingVertexQueryCase::iterate (void) { glu::CallLogWrapper gl (m_context.getRenderContext().getFunctions(), m_testCtx.getLog()); tcu::ResultCollector result (m_testCtx.getLog(), " // ERROR: "); QueriedState state; gl.enableLogging(true); queryState(result, gl, QUERY_INTEGER, GL_LAYER_PROVOKING_VERTEX, state); if (!state.isUndefined()) { m_testCtx.getLog() << tcu::TestLog::Message << "LAYER_PROVOKING_VERTEX = " << glu::getProvokingVertexStr(state.getIntAccess()) << tcu::TestLog::EndMessage; if (state.getIntAccess() != GL_FIRST_VERTEX_CONVENTION && state.getIntAccess() != GL_LAST_VERTEX_CONVENTION && state.getIntAccess() != GL_UNDEFINED_VERTEX) { m_testCtx.getLog() << tcu::TestLog::Message << "getInteger(GL_LAYER_PROVOKING_VERTEX) returned illegal value. Got " << state.getIntAccess() << "\n" << "Expected any of {FIRST_VERTEX_CONVENTION, LAST_VERTEX_CONVENTION, UNDEFINED_VERTEX}." << tcu::TestLog::EndMessage; result.fail("got unexpected provoking vertex value"); } { const tcu::ScopedLogSection section(m_testCtx.getLog(), "Types", "Alternative queries"); verifyStateInteger(result, gl, GL_LAYER_PROVOKING_VERTEX, state.getIntAccess(), QUERY_BOOLEAN); verifyStateInteger(result, gl, GL_LAYER_PROVOKING_VERTEX, state.getIntAccess(), QUERY_INTEGER64); verifyStateInteger(result, gl, GL_LAYER_PROVOKING_VERTEX, state.getIntAccess(), QUERY_FLOAT); } } result.setTestContextResult(m_testCtx); return STOP; } class GeometryInvocationCase : public GeometryShaderRenderTest { public: enum OutputCase { CASE_FIXED_OUTPUT_COUNTS = 0, CASE_DIFFERENT_OUTPUT_COUNTS, CASE_LAST }; GeometryInvocationCase (Context& context, const char* name, const char* description, int numInvocations, OutputCase testCase); ~GeometryInvocationCase (void); void init (void); void deinit (void); private: sglr::ShaderProgram& getProgram (void); void genVertexAttribData (void); static InvocationCountShader::OutputCase mapToShaderCaseType (OutputCase testCase); const OutputCase m_testCase; int m_numInvocations; InvocationCountShader* m_program; }; GeometryInvocationCase::GeometryInvocationCase (Context& context, const char* name, const char* description, int numInvocations, OutputCase testCase) : GeometryShaderRenderTest (context, name, description, GL_POINTS, GL_TRIANGLE_STRIP, "a_color") , m_testCase (testCase) , m_numInvocations (numInvocations) , m_program (DE_NULL) { DE_ASSERT(m_testCase < CASE_LAST); } GeometryInvocationCase::~GeometryInvocationCase (void) { deinit(); } void GeometryInvocationCase::init (void) { const glw::Functions& gl = m_context.getRenderContext().getFunctions(); int maxGeometryShaderInvocations = 0; int maxComponents = 0; // requirements if (!glu::contextSupports(m_context.getRenderContext().getType(), glu::ApiType::es(3, 2)) && !m_context.getContextInfo().isExtensionSupported("GL_EXT_geometry_shader")) TCU_THROW(NotSupportedError, "Tests require GL_EXT_geometry_shader extension or higher context version."); gl.getIntegerv(GL_MAX_GEOMETRY_SHADER_INVOCATIONS, &maxGeometryShaderInvocations); GLU_EXPECT_NO_ERROR(gl.getError(), "getIntegerv(GL_MAX_GEOMETRY_SHADER_INVOCATIONS)"); gl.getIntegerv(GL_MAX_GEOMETRY_TOTAL_OUTPUT_COMPONENTS, &maxComponents); GLU_EXPECT_NO_ERROR(gl.getError(), "getIntegerv(GL_MAX_GEOMETRY_TOTAL_OUTPUT_COMPONENTS)"); m_testCtx.getLog() << tcu::TestLog::Message << "GL_MAX_GEOMETRY_SHADER_INVOCATIONS = " << maxGeometryShaderInvocations << tcu::TestLog::EndMessage; // set target num invocations if (m_numInvocations == -1) m_numInvocations = maxGeometryShaderInvocations; else if (maxGeometryShaderInvocations < m_numInvocations) throw tcu::NotSupportedError("Test requires larger GL_MAX_GEOMETRY_SHADER_INVOCATIONS"); if (m_testCase == CASE_DIFFERENT_OUTPUT_COUNTS) { const int maxEmitCount = m_numInvocations + 2; const int numComponents = 8; // pos + color if (maxEmitCount * numComponents > maxComponents) throw tcu::NotSupportedError("Test requires larger GL_MAX_GEOMETRY_TOTAL_OUTPUT_COMPONENTS"); } // Log what the test tries to do if (m_testCase == CASE_FIXED_OUTPUT_COUNTS) { m_testCtx.getLog() << tcu::TestLog::Message << "Rendering triangles in a partial circle formation with a geometry shader. Each triangle is generated by a separate invocation.\n" << "Drawing 2 points, each generating " << m_numInvocations << " triangles." << tcu::TestLog::EndMessage; } else if (m_testCase == CASE_DIFFERENT_OUTPUT_COUNTS) { m_testCtx.getLog() << tcu::TestLog::Message << "Rendering n-gons in a partial circle formation with a geometry shader. Each n-gon is generated by a separate invocation.\n" << "Drawing 2 points, each generating " << m_numInvocations << " n-gons." << tcu::TestLog::EndMessage; } else DE_ASSERT(false); // resources m_program = new InvocationCountShader(m_context.getRenderContext().getType(), m_numInvocations, mapToShaderCaseType(m_testCase)); GeometryShaderRenderTest::init(); } void GeometryInvocationCase::deinit (void) { if (m_program) { delete m_program; m_program = DE_NULL; } GeometryShaderRenderTest::deinit(); } sglr::ShaderProgram& GeometryInvocationCase::getProgram (void) { return *m_program; } void GeometryInvocationCase::genVertexAttribData (void) { m_vertexPosData.resize(2); m_vertexPosData[0] = tcu::Vec4(0.0f,-0.3f, 0.0f, 1.0f); m_vertexPosData[1] = tcu::Vec4(0.2f, 0.3f, 0.0f, 1.0f); m_vertexAttrData.resize(2); m_vertexAttrData[0] = tcu::Vec4(1.0f, 1.0f, 1.0f, 1.0f); m_vertexAttrData[1] = tcu::Vec4(0.8f, 0.8f, 0.8f, 1.0f); m_numDrawVertices = 2; } InvocationCountShader::OutputCase GeometryInvocationCase::mapToShaderCaseType (OutputCase testCase) { switch (testCase) { case CASE_FIXED_OUTPUT_COUNTS: return InvocationCountShader::CASE_FIXED_OUTPUT_COUNTS; case CASE_DIFFERENT_OUTPUT_COUNTS: return InvocationCountShader::CASE_DIFFERENT_OUTPUT_COUNTS; default: DE_ASSERT(false); return InvocationCountShader::CASE_LAST; } } class DrawInstancedGeometryInstancedCase : public GeometryShaderRenderTest { public: DrawInstancedGeometryInstancedCase (Context& context, const char* name, const char* description, int numInstances, int numInvocations); ~DrawInstancedGeometryInstancedCase (void); private: void init (void); void deinit (void); sglr::ShaderProgram& getProgram (void); void genVertexAttribData (void); const int m_numInstances; const int m_numInvocations; InstancedExpansionShader* m_program; }; DrawInstancedGeometryInstancedCase::DrawInstancedGeometryInstancedCase (Context& context, const char* name, const char* description, int numInstances, int numInvocations) : GeometryShaderRenderTest (context, name, description, GL_POINTS, GL_TRIANGLE_STRIP, "a_offset", FLAG_DRAW_INSTANCED) , m_numInstances (numInstances) , m_numInvocations (numInvocations) , m_program (DE_NULL) { } DrawInstancedGeometryInstancedCase::~DrawInstancedGeometryInstancedCase (void) { } void DrawInstancedGeometryInstancedCase::init (void) { m_program = new InstancedExpansionShader(m_context.getRenderContext().getType(), m_numInvocations); m_testCtx.getLog() << tcu::TestLog::Message << "Rendering a single point with " << m_numInstances << " instances. " << "Each geometry shader is invoked " << m_numInvocations << " times for each primitive. " << tcu::TestLog::EndMessage; GeometryShaderRenderTest::init(); } void DrawInstancedGeometryInstancedCase::deinit(void) { if (m_program) { delete m_program; m_program = DE_NULL; } GeometryShaderRenderTest::deinit(); } sglr::ShaderProgram& DrawInstancedGeometryInstancedCase::getProgram (void) { return *m_program; } void DrawInstancedGeometryInstancedCase::genVertexAttribData (void) { m_numDrawVertices = 1; m_numDrawInstances = m_numInstances; m_vertexAttrDivisor = 1; m_vertexPosData.resize(1); m_vertexAttrData.resize(8); m_vertexPosData[0] = tcu::Vec4( 0.0f, 0.0f, 0.0f, 1.0f); m_vertexAttrData[0] = tcu::Vec4( 0.5f, 0.0f, 0.0f, 0.0f); m_vertexAttrData[1] = tcu::Vec4( 0.0f, 0.5f, 0.0f, 0.0f); m_vertexAttrData[2] = tcu::Vec4(-0.7f, -0.1f, 0.0f, 0.0f); m_vertexAttrData[3] = tcu::Vec4(-0.1f, -0.7f, 0.0f, 0.0f); m_vertexAttrData[4] = tcu::Vec4(-0.8f, -0.7f, 0.0f, 0.0f); m_vertexAttrData[5] = tcu::Vec4(-0.9f, 0.6f, 0.0f, 0.0f); m_vertexAttrData[6] = tcu::Vec4(-0.8f, 0.3f, 0.0f, 0.0f); m_vertexAttrData[7] = tcu::Vec4(-0.1f, 0.1f, 0.0f, 0.0f); DE_ASSERT(m_numInstances <= (int)m_vertexAttrData.size()); } class GeometryProgramLimitCase : public TestCase { public: GeometryProgramLimitCase (Context& context, const char* name, const char* description, glw::GLenum apiName, const std::string& glslName, int limit); private: void init (void); IterateResult iterate (void); const glw::GLenum m_apiName; const std::string m_glslName; const int m_limit; }; GeometryProgramLimitCase::GeometryProgramLimitCase (Context& context, const char* name, const char* description, glw::GLenum apiName, const std::string& glslName, int limit) : TestCase (context, name, description) , m_apiName (apiName) , m_glslName (glslName) , m_limit (limit) { } void GeometryProgramLimitCase::init (void) { if (!glu::contextSupports(m_context.getRenderContext().getType(), glu::ApiType::es(3, 2)) && !m_context.getContextInfo().isExtensionSupported("GL_EXT_geometry_shader")) TCU_THROW(NotSupportedError, "Tests require GL_EXT_geometry_shader extension or higher context version."); } GeometryProgramLimitCase::IterateResult GeometryProgramLimitCase::iterate (void) { tcu::ResultCollector result (m_testCtx.getLog(), " // ERROR: "); int limit; // query limit { gls::StateQueryUtil::StateQueryMemoryWriteGuard state; glu::CallLogWrapper gl (m_context.getRenderContext().getFunctions(), m_testCtx.getLog()); gl.enableLogging(true); gl.glGetIntegerv(m_apiName, &state); GLU_EXPECT_NO_ERROR(gl.glGetError(), "getIntegerv()"); m_testCtx.getLog() << tcu::TestLog::Message << glu::getGettableStateStr(m_apiName) << " = " << state << tcu::TestLog::EndMessage; if (!state.verifyValidity(result)) { result.setTestContextResult(m_testCtx); return STOP; } if (state < m_limit) { result.fail("Minimum value = " + de::toString(m_limit) + ", got " + de::toString(state.get())); result.setTestContextResult(m_testCtx); return STOP; } limit = state; // verify other getters { const tcu::ScopedLogSection section(m_testCtx.getLog(), "Types", "Alternative queries"); verifyStateInteger(result, gl, m_apiName, limit, QUERY_BOOLEAN); verifyStateInteger(result, gl, m_apiName, limit, QUERY_INTEGER64); verifyStateInteger(result, gl, m_apiName, limit, QUERY_FLOAT); } } // verify limit is the same in GLSL { static const char* const vertexSource = "${GLSL_VERSION_DECL}\n" "void main ()\n" "{\n" " gl_Position = vec4(0.0, 0.0, 0.0, 0.0);\n" "}\n"; static const char* const fragmentSource = "${GLSL_VERSION_DECL}\n" "layout(location = 0) out mediump vec4 fragColor;\n" "void main ()\n" "{\n" " fragColor = vec4(0.0, 0.0, 0.0, 0.0);\n" "}\n"; const std::string geometrySource = "${GLSL_VERSION_DECL}\n" "${GLSL_EXT_GEOMETRY_SHADER}" "layout(points) in;\n" "layout(points, max_vertices = 1) out;\n" "void main ()\n" "{\n" " // Building the shader will fail if the constant value is not the expected\n" " const mediump int cArraySize = (gl_" + m_glslName + " == " + de::toString(limit) + ") ? (1) : (-1);\n" " float[cArraySize] fArray;\n" " fArray[0] = 0.0f;\n" " gl_Position = vec4(0.0, 0.0, 0.0, fArray[0]);\n" " EmitVertex();\n" "}\n"; const de::UniquePtr program(new glu::ShaderProgram(m_context.getRenderContext(), glu::ProgramSources() << glu::VertexSource(specializeShader(vertexSource, m_context.getRenderContext().getType())) << glu::FragmentSource(specializeShader(fragmentSource, m_context.getRenderContext().getType())) << glu::GeometrySource(specializeShader(geometrySource, m_context.getRenderContext().getType())))); m_testCtx.getLog() << tcu::TestLog::Message << "Building a test shader to verify GLSL constant " << m_glslName << " value." << tcu::TestLog::EndMessage; m_testCtx.getLog() << *program; if (!program->isOk()) { // compile failed, assume static assert failed result.fail("Shader build failed"); result.setTestContextResult(m_testCtx); return STOP; } m_testCtx.getLog() << tcu::TestLog::Message << "Build ok" << tcu::TestLog::EndMessage; } result.setTestContextResult(m_testCtx); return STOP; } class PrimitivesGeneratedQueryCase : public TestCase { public: enum QueryTest { TEST_NO_GEOMETRY = 0, TEST_NO_AMPLIFICATION, TEST_AMPLIFICATION, TEST_PARTIAL_PRIMITIVES, TEST_INSTANCED, TEST_LAST }; PrimitivesGeneratedQueryCase (Context& context, const char* name, const char* description, QueryTest test); ~PrimitivesGeneratedQueryCase (void); private: void init (void); void deinit (void); IterateResult iterate (void); glu::ShaderProgram* genProgram (void); const QueryTest m_test; glu::ShaderProgram* m_program; }; PrimitivesGeneratedQueryCase::PrimitivesGeneratedQueryCase (Context& context, const char* name, const char* description, QueryTest test) : TestCase (context, name, description) , m_test (test) , m_program (DE_NULL) { DE_ASSERT(m_test < TEST_LAST); } PrimitivesGeneratedQueryCase::~PrimitivesGeneratedQueryCase (void) { deinit(); } void PrimitivesGeneratedQueryCase::init (void) { // requirements if (!glu::contextSupports(m_context.getRenderContext().getType(), glu::ApiType::es(3, 2)) && !m_context.getContextInfo().isExtensionSupported("GL_EXT_geometry_shader")) TCU_THROW(NotSupportedError, "Tests require GL_EXT_geometry_shader extension or higher context version."); // log what test tries to do if (m_test == TEST_NO_GEOMETRY) m_testCtx.getLog() << tcu::TestLog::Message << "Querying PRIMITIVES_GENERATED while rendering without a geometry shader." << tcu::TestLog::EndMessage; else if (m_test == TEST_NO_AMPLIFICATION) m_testCtx.getLog() << tcu::TestLog::Message << "Querying PRIMITIVES_GENERATED while rendering with a non-amplifying geometry shader." << tcu::TestLog::EndMessage; else if (m_test == TEST_AMPLIFICATION) m_testCtx.getLog() << tcu::TestLog::Message << "Querying PRIMITIVES_GENERATED while rendering with a (3x) amplifying geometry shader." << tcu::TestLog::EndMessage; else if (m_test == TEST_PARTIAL_PRIMITIVES) m_testCtx.getLog() << tcu::TestLog::Message << "Querying PRIMITIVES_GENERATED while rendering with a geometry shader that emits also partial primitives." << tcu::TestLog::EndMessage; else if (m_test == TEST_INSTANCED) m_testCtx.getLog() << tcu::TestLog::Message << "Querying PRIMITIVES_GENERATED while rendering with a instanced geometry shader." << tcu::TestLog::EndMessage; else DE_ASSERT(false); // resources m_program = genProgram(); m_testCtx.getLog() << *m_program; if (!m_program->isOk()) throw tcu::TestError("could not build program"); } void PrimitivesGeneratedQueryCase::deinit (void) { delete m_program; m_program = DE_NULL; } PrimitivesGeneratedQueryCase::IterateResult PrimitivesGeneratedQueryCase::iterate (void) { glw::GLuint primitivesGenerated = 0xDEBADBAD; m_testCtx.getLog() << tcu::TestLog::Message << "Drawing 8 points, setting a_one for each to value (1.0, 1.0, 1.0, 1.0)" << tcu::TestLog::EndMessage; { static const tcu::Vec4 vertexData[8*2] = { tcu::Vec4(0.0f, 0.0f, 0.0f, 1.0f), tcu::Vec4(1.0f, 1.0f, 1.0f, 1.0f), tcu::Vec4(0.1f, 0.0f, 0.0f, 1.0f), tcu::Vec4(1.0f, 1.0f, 1.0f, 1.0f), tcu::Vec4(0.2f, 0.0f, 0.0f, 1.0f), tcu::Vec4(1.0f, 1.0f, 1.0f, 1.0f), tcu::Vec4(0.3f, 0.0f, 0.0f, 1.0f), tcu::Vec4(1.0f, 1.0f, 1.0f, 1.0f), tcu::Vec4(0.4f, 0.0f, 0.0f, 1.0f), tcu::Vec4(1.0f, 1.0f, 1.0f, 1.0f), tcu::Vec4(0.5f, 0.0f, 0.0f, 1.0f), tcu::Vec4(1.0f, 1.0f, 1.0f, 1.0f), tcu::Vec4(0.6f, 0.0f, 0.0f, 1.0f), tcu::Vec4(1.0f, 1.0f, 1.0f, 1.0f), tcu::Vec4(0.7f, 0.0f, 0.0f, 1.0f), tcu::Vec4(1.0f, 1.0f, 1.0f, 1.0f), }; const glw::Functions& gl = m_context.getRenderContext().getFunctions(); const glu::VertexArray vao (m_context.getRenderContext()); const glu::Buffer buffer (m_context.getRenderContext()); const glu::Query query (m_context.getRenderContext()); const int positionLocation = gl.getAttribLocation(m_program->getProgram(), "a_position"); const int oneLocation = gl.getAttribLocation(m_program->getProgram(), "a_one"); gl.bindVertexArray(*vao); gl.bindBuffer(GL_ARRAY_BUFFER, *buffer); gl.bufferData(GL_ARRAY_BUFFER, (int)sizeof(vertexData), vertexData, GL_STATIC_DRAW); gl.vertexAttribPointer(positionLocation, 4, GL_FLOAT, GL_FALSE, 2 * (int)sizeof(tcu::Vec4), DE_NULL); gl.enableVertexAttribArray(positionLocation); if (oneLocation != -1) { gl.vertexAttribPointer(oneLocation, 4, GL_FLOAT, GL_FALSE, 2 * (int)sizeof(tcu::Vec4), glu::BufferOffsetAsPointer(1 * sizeof(tcu::Vec4))); gl.enableVertexAttribArray(oneLocation); } gl.useProgram(m_program->getProgram()); GLU_EXPECT_NO_ERROR(gl.getError(), "setup render"); gl.beginQuery(GL_PRIMITIVES_GENERATED, *query); gl.drawArrays(GL_POINTS, 0, 8); gl.endQuery(GL_PRIMITIVES_GENERATED); GLU_EXPECT_NO_ERROR(gl.getError(), "render and query"); gl.getQueryObjectuiv(*query, GL_QUERY_RESULT, &primitivesGenerated); GLU_EXPECT_NO_ERROR(gl.getError(), "get query result"); } m_testCtx.getLog() << tcu::TestLog::Message << "GL_PRIMITIVES_GENERATED = " << primitivesGenerated << tcu::TestLog::EndMessage; { const deUint32 expectedGenerated = (m_test == TEST_AMPLIFICATION) ? (3*8) : (m_test == TEST_INSTANCED) ? (8*(3+1)) : (8); if (expectedGenerated == primitivesGenerated) m_testCtx.setTestResult(QP_TEST_RESULT_PASS, "Pass"); else { m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "got wrong result for GL_PRIMITIVES_GENERATED"); m_testCtx.getLog() << tcu::TestLog::Message << "Got unexpected result for GL_PRIMITIVES_GENERATED. Expected " << expectedGenerated << ", got " << primitivesGenerated << tcu::TestLog::EndMessage; } } return STOP; } glu::ShaderProgram* PrimitivesGeneratedQueryCase::genProgram (void) { static const char* const vertexSource = "${GLSL_VERSION_DECL}\n" "in highp vec4 a_position;\n" "in highp vec4 a_one;\n" "out highp vec4 v_one;\n" "void main (void)\n" "{\n" " gl_Position = a_position;\n" " v_one = a_one;\n" "}\n"; static const char* const fragmentSource = "${GLSL_VERSION_DECL}\n" "layout(location = 0) out mediump vec4 fragColor;\n" "void main (void)\n" "{\n" " fragColor = vec4(1.0, 1.0, 1.0, 1.0);\n" "}\n"; std::ostringstream geometrySource; glu::ProgramSources sources; if (m_test != TEST_NO_GEOMETRY) { geometrySource << "${GLSL_VERSION_DECL}\n" "${GLSL_EXT_GEOMETRY_SHADER}" "layout(points" << ((m_test == TEST_INSTANCED) ? (", invocations = 3") : ("")) << ") in;\n" "layout(triangle_strip, max_vertices = 7) out;\n" "in highp vec4 v_one[];\n" "void main (void)\n" "{\n" " // always taken\n" " if (v_one[0].x != 0.0)\n" " {\n" " gl_Position = gl_in[0].gl_Position + vec4(0.0, 0.1, 0.0, 0.0);\n" " EmitVertex();\n" " gl_Position = gl_in[0].gl_Position + vec4(0.1, 0.0, 0.0, 0.0);\n" " EmitVertex();\n" " gl_Position = gl_in[0].gl_Position - vec4(0.1, 0.0, 0.0, 0.0);\n" " EmitVertex();\n" " EndPrimitive();\n" " }\n"; if (m_test == TEST_AMPLIFICATION) { geometrySource << "\n" " // always taken\n" " if (v_one[0].y != 0.0)\n" " {\n" " gl_Position = gl_in[0].gl_Position + vec4(0.0, 0.1, 0.0, 0.0);\n" " EmitVertex();\n" " gl_Position = gl_in[0].gl_Position + vec4(0.1, 0.0, 0.0, 0.0);\n" " EmitVertex();\n" " gl_Position = gl_in[0].gl_Position - vec4(0.0, 0.1, 0.0, 0.0);\n" " EmitVertex();\n" " gl_Position = gl_in[0].gl_Position - vec4(0.1, 0.0, 0.0, 0.0);\n" " EmitVertex();\n" " }\n"; } else if (m_test == TEST_PARTIAL_PRIMITIVES) { geometrySource << "\n" " // always taken\n" " if (v_one[0].y != 0.0)\n" " {\n" " gl_Position = gl_in[0].gl_Position + vec4(0.0, 0.1, 0.0, 0.0);\n" " EmitVertex();\n" " gl_Position = gl_in[0].gl_Position + vec4(0.1, 0.0, 0.0, 0.0);\n" " EmitVertex();\n" "\n" " // never taken\n" " if (v_one[0].z < 0.0)\n" " {\n" " gl_Position = gl_in[0].gl_Position - vec4(0.1, 0.0, 0.0, 0.0);\n" " EmitVertex();\n" " }\n" " }\n"; } else if (m_test == TEST_INSTANCED) { geometrySource << "\n" " // taken once\n" " if (v_one[0].y > float(gl_InvocationID) + 0.5)\n" " {\n" " gl_Position = gl_in[0].gl_Position + vec4(0.0, 0.1, 0.0, 0.0);\n" " EmitVertex();\n" " gl_Position = gl_in[0].gl_Position + vec4(0.1, 0.0, 0.0, 0.0);\n" " EmitVertex();\n" " gl_Position = gl_in[0].gl_Position - vec4(0.1, 0.0, 0.0, 0.0);\n" " EmitVertex();\n" " }\n"; } geometrySource << "}\n"; } sources << glu::VertexSource(specializeShader(vertexSource, m_context.getRenderContext().getType())); sources << glu::FragmentSource(specializeShader(fragmentSource, m_context.getRenderContext().getType())); if (!geometrySource.str().empty()) sources << glu::GeometrySource(specializeShader(geometrySource.str(), m_context.getRenderContext().getType())); return new glu::ShaderProgram(m_context.getRenderContext(), sources); } class PrimitivesGeneratedQueryObjectQueryCase : public TestCase { public: PrimitivesGeneratedQueryObjectQueryCase (Context& context, const char* name, const char* description); void init (void); IterateResult iterate (void); }; PrimitivesGeneratedQueryObjectQueryCase::PrimitivesGeneratedQueryObjectQueryCase (Context& context, const char* name, const char* description) : TestCase(context, name, description) { } void PrimitivesGeneratedQueryObjectQueryCase::init (void) { if (!glu::contextSupports(m_context.getRenderContext().getType(), glu::ApiType::es(3, 2)) && !m_context.getContextInfo().isExtensionSupported("GL_EXT_geometry_shader")) TCU_THROW(NotSupportedError, "Tests require GL_EXT_geometry_shader extension or higher context version."); } PrimitivesGeneratedQueryObjectQueryCase::IterateResult PrimitivesGeneratedQueryObjectQueryCase::iterate (void) { glu::CallLogWrapper gl (m_context.getRenderContext().getFunctions(), m_testCtx.getLog()); tcu::ResultCollector result (m_testCtx.getLog(), " // ERROR: "); gl.enableLogging(true); { glw::GLuint query = 0; verifyStateQueryInteger(result, gl, GL_PRIMITIVES_GENERATED, GL_CURRENT_QUERY, 0, QUERY_QUERY); gl.glGenQueries(1, &query); GLS_COLLECT_GL_ERROR(result, gl.glGetError(), "glGenQueries"); gl.glBeginQuery(GL_PRIMITIVES_GENERATED, query); GLS_COLLECT_GL_ERROR(result, gl.glGetError(), "beginQuery"); verifyStateQueryInteger(result, gl, GL_PRIMITIVES_GENERATED, GL_CURRENT_QUERY, (int)query, QUERY_QUERY); gl.glEndQuery(GL_PRIMITIVES_GENERATED); GLS_COLLECT_GL_ERROR(result, gl.glGetError(), "endQuery"); } result.setTestContextResult(m_testCtx); return STOP; } class GeometryShaderFeartureTestCase : public TestCase { public: GeometryShaderFeartureTestCase (Context& context, const char* name, const char* description); void init (void); }; GeometryShaderFeartureTestCase::GeometryShaderFeartureTestCase (Context& context, const char* name, const char* description) : TestCase(context, name, description) { } void GeometryShaderFeartureTestCase::init (void) { if (!glu::contextSupports(m_context.getRenderContext().getType(), glu::ApiType::es(3, 2)) && !m_context.getContextInfo().isExtensionSupported("GL_EXT_geometry_shader")) TCU_THROW(NotSupportedError, "Tests require GL_EXT_geometry_shader extension or higher context version."); } class FramebufferDefaultLayersCase : public GeometryShaderFeartureTestCase { public: FramebufferDefaultLayersCase (Context& context, const char* name, const char* description); IterateResult iterate (void); }; FramebufferDefaultLayersCase::FramebufferDefaultLayersCase (Context& context, const char* name, const char* description) : GeometryShaderFeartureTestCase(context, name, description) { } FramebufferDefaultLayersCase::IterateResult FramebufferDefaultLayersCase::iterate (void) { glu::CallLogWrapper gl(m_context.getRenderContext().getFunctions(), m_testCtx.getLog()); gl.enableLogging(true); m_testCtx.setTestResult(QP_TEST_RESULT_PASS, "Pass"); { const tcu::ScopedLogSection section (m_testCtx.getLog(), "Default", "Default value"); const glu::Framebuffer fbo (m_context.getRenderContext()); glw::GLint defaultLayers = -1; gl.glBindFramebuffer(GL_DRAW_FRAMEBUFFER, *fbo); gl.glGetFramebufferParameteriv(GL_DRAW_FRAMEBUFFER, GL_FRAMEBUFFER_DEFAULT_LAYERS, &defaultLayers); GLU_EXPECT_NO_ERROR(gl.glGetError(), "getFramebufferParameteriv"); m_testCtx.getLog() << tcu::TestLog::Message << "GL_FRAMEBUFFER_DEFAULT_LAYERS = " << defaultLayers << tcu::TestLog::EndMessage; if (defaultLayers != 0) { m_testCtx.getLog() << tcu::TestLog::Message << "Error, expected 0, got " << defaultLayers << tcu::TestLog::EndMessage; m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "invalid layer count"); } } { const tcu::ScopedLogSection section (m_testCtx.getLog(), "SetTo12", "Set default layers to 12"); const glu::Framebuffer fbo (m_context.getRenderContext()); glw::GLint defaultLayers = -1; gl.glBindFramebuffer(GL_DRAW_FRAMEBUFFER, *fbo); gl.glFramebufferParameteri(GL_DRAW_FRAMEBUFFER, GL_FRAMEBUFFER_DEFAULT_LAYERS, 12); gl.glGetFramebufferParameteriv(GL_DRAW_FRAMEBUFFER, GL_FRAMEBUFFER_DEFAULT_LAYERS, &defaultLayers); GLU_EXPECT_NO_ERROR(gl.glGetError(), "getFramebufferParameteriv"); m_testCtx.getLog() << tcu::TestLog::Message << "GL_FRAMEBUFFER_DEFAULT_LAYERS = " << defaultLayers << tcu::TestLog::EndMessage; if (defaultLayers != 12) { m_testCtx.getLog() << tcu::TestLog::Message << "Error, expected 12, got " << defaultLayers << tcu::TestLog::EndMessage; m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "invalid layer count"); } } return STOP; } class FramebufferAttachmentLayeredCase : public GeometryShaderFeartureTestCase { public: FramebufferAttachmentLayeredCase (Context& context, const char* name, const char* description); IterateResult iterate (void); }; FramebufferAttachmentLayeredCase::FramebufferAttachmentLayeredCase (Context& context, const char* name, const char* description) : GeometryShaderFeartureTestCase(context, name, description) { } FramebufferAttachmentLayeredCase::IterateResult FramebufferAttachmentLayeredCase::iterate (void) { enum CaseType { TEXTURE_3D, TEXTURE_2D_ARRAY, TEXTURE_CUBE, TEXTURE_2D_MS_ARRAY, TEXTURE_3D_LAYER, TEXTURE_2D_ARRAY_LAYER, }; static const struct TextureType { const char* name; const char* description; bool layered; CaseType type; } textureTypes[] = { { "3D", "3D texture", true, TEXTURE_3D }, { "2DArray", "2D array", true, TEXTURE_2D_ARRAY }, { "Cube", "Cube map", true, TEXTURE_CUBE }, { "2DMSArray", "2D multisample array", true, TEXTURE_2D_MS_ARRAY }, { "3DLayer", "3D texture layer ", false, TEXTURE_3D_LAYER }, { "2DArrayLayer", "2D array layer ", false, TEXTURE_2D_ARRAY_LAYER }, }; glu::CallLogWrapper gl(m_context.getRenderContext().getFunctions(), m_testCtx.getLog()); gl.enableLogging(true); m_testCtx.setTestResult(QP_TEST_RESULT_PASS, "Pass"); for (int ndx = 0; ndx < DE_LENGTH_OF_ARRAY(textureTypes); ++ndx) { const tcu::ScopedLogSection section (m_testCtx.getLog(), textureTypes[ndx].name, textureTypes[ndx].description); const glu::Framebuffer fbo (m_context.getRenderContext()); const glu::Texture texture (m_context.getRenderContext()); glw::GLint layered = -1; gl.glBindFramebuffer(GL_DRAW_FRAMEBUFFER, *fbo); if (textureTypes[ndx].type == TEXTURE_3D || textureTypes[ndx].type == TEXTURE_3D_LAYER) { gl.glBindTexture(GL_TEXTURE_3D, *texture); gl.glTexImage3D(GL_TEXTURE_3D, 0, GL_RGBA8, 32, 32, 32, 0, GL_RGBA, GL_UNSIGNED_BYTE, DE_NULL); gl.glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); gl.glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); if (textureTypes[ndx].type == TEXTURE_3D) gl.glFramebufferTexture(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, *texture, 0); else gl.glFramebufferTextureLayer(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, *texture, 0, 2); } else if (textureTypes[ndx].type == TEXTURE_2D_ARRAY || textureTypes[ndx].type == TEXTURE_2D_ARRAY_LAYER) { gl.glBindTexture(GL_TEXTURE_2D_ARRAY, *texture); gl.glTexImage3D(GL_TEXTURE_2D_ARRAY, 0, GL_RGBA8, 32, 32, 32, 0, GL_RGBA, GL_UNSIGNED_BYTE, DE_NULL); gl.glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_MAG_FILTER, GL_NEAREST); gl.glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_MIN_FILTER, GL_NEAREST); if (textureTypes[ndx].type == TEXTURE_2D_ARRAY) gl.glFramebufferTexture(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, *texture, 0); else gl.glFramebufferTextureLayer(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, *texture, 0, 3); } else if (textureTypes[ndx].type == TEXTURE_CUBE) { gl.glBindTexture(GL_TEXTURE_CUBE_MAP, *texture); for (int face = 0; face < 6; ++face) gl.glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + face, 0, GL_RGBA8, 32, 32, 0, GL_RGBA, GL_UNSIGNED_BYTE, DE_NULL); gl.glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_NEAREST); gl.glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_NEAREST); gl.glFramebufferTexture(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, *texture, 0); } else if (textureTypes[ndx].type == TEXTURE_2D_MS_ARRAY) { // check extension if (!glu::contextSupports(m_context.getRenderContext().getType(), glu::ApiType::es(3, 2)) && !m_context.getContextInfo().isExtensionSupported("GL_OES_texture_storage_multisample_2d_array")) { m_testCtx.getLog() << tcu::TestLog::Message << "Context is not equal or greather than 3.2 and GL_OES_texture_storage_multisample_2d_array not supported, skipping." << tcu::TestLog::EndMessage; continue; } gl.glBindTexture(GL_TEXTURE_2D_MULTISAMPLE_ARRAY, *texture); gl.glTexStorage3DMultisample(GL_TEXTURE_2D_MULTISAMPLE_ARRAY, 1, GL_RGBA8, 32, 32, 32, GL_FALSE); gl.glFramebufferTexture(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, *texture, 0); } GLU_EXPECT_NO_ERROR(gl.glGetError(), "setup attachment"); gl.glGetFramebufferAttachmentParameteriv(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_FRAMEBUFFER_ATTACHMENT_LAYERED, &layered); GLU_EXPECT_NO_ERROR(gl.glGetError(), "getFramebufferParameteriv"); m_testCtx.getLog() << tcu::TestLog::Message << "GL_FRAMEBUFFER_ATTACHMENT_LAYERED = " << glu::getBooleanStr(layered) << tcu::TestLog::EndMessage; if (layered != GL_TRUE && layered != GL_FALSE) { m_testCtx.getLog() << tcu::TestLog::Message << "Error, expected boolean, got " << layered << tcu::TestLog::EndMessage; m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "invalid boolean"); } else if ((layered == GL_TRUE) != textureTypes[ndx].layered) { m_testCtx.getLog() << tcu::TestLog::Message << "Error, expected " << ((textureTypes[ndx].layered) ? ("GL_TRUE") : ("GL_FALSE")) << ", got " << glu::getBooleanStr(layered) << tcu::TestLog::EndMessage; m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "invalid layer count"); } } return STOP; } class FramebufferIncompleteLayereTargetsCase : public GeometryShaderFeartureTestCase { public: FramebufferIncompleteLayereTargetsCase (Context& context, const char* name, const char* description); IterateResult iterate (void); }; FramebufferIncompleteLayereTargetsCase::FramebufferIncompleteLayereTargetsCase (Context& context, const char* name, const char* description) : GeometryShaderFeartureTestCase(context, name, description) { } FramebufferIncompleteLayereTargetsCase::IterateResult FramebufferIncompleteLayereTargetsCase::iterate (void) { glu::CallLogWrapper gl(m_context.getRenderContext().getFunctions(), m_testCtx.getLog()); gl.enableLogging(true); m_testCtx.setTestResult(QP_TEST_RESULT_PASS, "Pass"); { const tcu::ScopedLogSection section (m_testCtx.getLog(), "LayerAndNonLayer", "Layered and non-layered"); const glu::Framebuffer fbo (m_context.getRenderContext()); const glu::Texture texture0 (m_context.getRenderContext()); const glu::Texture texture1 (m_context.getRenderContext()); glw::GLint fboStatus; gl.glBindTexture(GL_TEXTURE_2D_ARRAY, *texture0); gl.glTexImage3D(GL_TEXTURE_2D_ARRAY, 0, GL_RGBA8, 32, 32, 32, 0, GL_RGBA, GL_UNSIGNED_BYTE, DE_NULL); gl.glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_MAG_FILTER, GL_NEAREST); gl.glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_MIN_FILTER, GL_NEAREST); gl.glBindTexture(GL_TEXTURE_2D_ARRAY, *texture1); gl.glTexImage3D(GL_TEXTURE_2D_ARRAY, 0, GL_RGBA8, 32, 32, 32, 0, GL_RGBA, GL_UNSIGNED_BYTE, DE_NULL); gl.glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_MAG_FILTER, GL_NEAREST); gl.glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_MIN_FILTER, GL_NEAREST); gl.glBindFramebuffer(GL_DRAW_FRAMEBUFFER, *fbo); gl.glFramebufferTexture(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, *texture0, 0); gl.glFramebufferTextureLayer(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT1, *texture1, 0, 0); GLU_EXPECT_NO_ERROR(gl.glGetError(), "setup fbo"); fboStatus = gl.glCheckFramebufferStatus(GL_DRAW_FRAMEBUFFER); m_testCtx.getLog() << tcu::TestLog::Message << "Framebuffer status: " << glu::getFramebufferStatusStr(fboStatus) << tcu::TestLog::EndMessage; if (fboStatus != GL_FRAMEBUFFER_INCOMPLETE_LAYER_TARGETS) { m_testCtx.getLog() << tcu::TestLog::Message << "Error, expected GL_FRAMEBUFFER_INCOMPLETE_LAYER_TARGETS, got " << glu::getFramebufferStatusStr(fboStatus) << tcu::TestLog::EndMessage; m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "invalid layer count"); } } { const tcu::ScopedLogSection section (m_testCtx.getLog(), "DifferentTarget", "Different target"); const glu::Framebuffer fbo (m_context.getRenderContext()); const glu::Texture texture0 (m_context.getRenderContext()); const glu::Texture texture1 (m_context.getRenderContext()); glw::GLint fboStatus; gl.glBindTexture(GL_TEXTURE_2D_ARRAY, *texture0); gl.glTexImage3D(GL_TEXTURE_2D_ARRAY, 0, GL_RGBA8, 32, 32, 32, 0, GL_RGBA, GL_UNSIGNED_BYTE, DE_NULL); gl.glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_MAG_FILTER, GL_NEAREST); gl.glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_MIN_FILTER, GL_NEAREST); gl.glBindTexture(GL_TEXTURE_3D, *texture1); gl.glTexImage3D(GL_TEXTURE_3D, 0, GL_RGBA8, 32, 32, 32, 0, GL_RGBA, GL_UNSIGNED_BYTE, DE_NULL); gl.glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); gl.glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); gl.glBindFramebuffer(GL_DRAW_FRAMEBUFFER, *fbo); gl.glFramebufferTexture(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, *texture0, 0); gl.glFramebufferTexture(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT1, *texture1, 0); GLU_EXPECT_NO_ERROR(gl.glGetError(), "setup fbo"); fboStatus = gl.glCheckFramebufferStatus(GL_DRAW_FRAMEBUFFER); m_testCtx.getLog() << tcu::TestLog::Message << "Framebuffer status: " << glu::getFramebufferStatusStr(fboStatus) << tcu::TestLog::EndMessage; if (fboStatus != GL_FRAMEBUFFER_INCOMPLETE_LAYER_TARGETS) { m_testCtx.getLog() << tcu::TestLog::Message << "Error, expected GL_FRAMEBUFFER_INCOMPLETE_LAYER_TARGETS, got " << glu::getFramebufferStatusStr(fboStatus) << tcu::TestLog::EndMessage; m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "invalid layer count"); } } return STOP; } class ReferencedByGeometryShaderCase : public GeometryShaderFeartureTestCase { public: ReferencedByGeometryShaderCase (Context& context, const char* name, const char* description); IterateResult iterate (void); }; ReferencedByGeometryShaderCase::ReferencedByGeometryShaderCase (Context& context, const char* name, const char* description) : GeometryShaderFeartureTestCase(context, name, description) { } ReferencedByGeometryShaderCase::IterateResult ReferencedByGeometryShaderCase::iterate (void) { m_testCtx.setTestResult(QP_TEST_RESULT_PASS, "Pass"); { static const char* const vertexSource = "${GLSL_VERSION_DECL}\n" "uniform highp vec4 u_position;\n" "void main (void)\n" "{\n" " gl_Position = u_position;\n" "}\n"; static const char* const fragmentSource = "${GLSL_VERSION_DECL}\n" "layout(location = 0) out mediump vec4 fragColor;\n" "void main (void)\n" "{\n" " fragColor = vec4(1.0, 1.0, 1.0, 1.0);\n" "}\n"; static const char* const geometrySource = "${GLSL_VERSION_DECL}\n" "${GLSL_EXT_GEOMETRY_SHADER}" "layout(points) in;\n" "layout(points, max_vertices=1) out;\n" "uniform highp vec4 u_offset;\n" "void main (void)\n" "{\n" " gl_Position = gl_in[0].gl_Position + u_offset;\n" " EmitVertex();\n" "}\n"; const glu::ShaderProgram program(m_context.getRenderContext(), glu::ProgramSources() << glu::VertexSource(specializeShader(vertexSource, m_context.getRenderContext().getType())) << glu::FragmentSource(specializeShader(fragmentSource, m_context.getRenderContext().getType())) << glu::GeometrySource(specializeShader(geometrySource, m_context.getRenderContext().getType()))); m_testCtx.getLog() << program; { const tcu::ScopedLogSection section (m_testCtx.getLog(), "UnreferencedUniform", "Unreferenced uniform u_position"); glu::CallLogWrapper gl (m_context.getRenderContext().getFunctions(), m_testCtx.getLog()); const deUint32 props[1] = { GL_REFERENCED_BY_GEOMETRY_SHADER }; deUint32 resourcePos; glw::GLsizei length = 0; glw::GLint referenced = 0; gl.enableLogging(true); resourcePos = gl.glGetProgramResourceIndex(program.getProgram(), GL_UNIFORM, "u_position"); m_testCtx.getLog() << tcu::TestLog::Message << "u_position resource index: " << resourcePos << tcu::TestLog::EndMessage; gl.glGetProgramResourceiv(program.getProgram(), GL_UNIFORM, resourcePos, 1, props, 1, &length, &referenced); m_testCtx.getLog() << tcu::TestLog::Message << "Query GL_REFERENCED_BY_GEOMETRY_SHADER, got " << length << " value(s), value[0] = " << glu::getBooleanStr(referenced) << tcu::TestLog::EndMessage; GLU_EXPECT_NO_ERROR(gl.glGetError(), "query resource"); if (length == 0 || referenced != GL_FALSE) { m_testCtx.getLog() << tcu::TestLog::Message << "Error, expected GL_FALSE." << tcu::TestLog::EndMessage; m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "got unexpected value"); } } { const tcu::ScopedLogSection section (m_testCtx.getLog(), "ReferencedUniform", "Referenced uniform u_offset"); glu::CallLogWrapper gl (m_context.getRenderContext().getFunctions(), m_testCtx.getLog()); const deUint32 props[1] = { GL_REFERENCED_BY_GEOMETRY_SHADER }; deUint32 resourcePos; glw::GLsizei length = 0; glw::GLint referenced = 0; gl.enableLogging(true); resourcePos = gl.glGetProgramResourceIndex(program.getProgram(), GL_UNIFORM, "u_offset"); m_testCtx.getLog() << tcu::TestLog::Message << "u_offset resource index: " << resourcePos << tcu::TestLog::EndMessage; gl.glGetProgramResourceiv(program.getProgram(), GL_UNIFORM, resourcePos, 1, props, 1, &length, &referenced); m_testCtx.getLog() << tcu::TestLog::Message << "Query GL_REFERENCED_BY_GEOMETRY_SHADER, got " << length << " value(s), value[0] = " << glu::getBooleanStr(referenced) << tcu::TestLog::EndMessage; GLU_EXPECT_NO_ERROR(gl.glGetError(), "query resource"); if (length == 0 || referenced != GL_TRUE) { m_testCtx.getLog() << tcu::TestLog::Message << "Error, expected GL_TRUE." << tcu::TestLog::EndMessage; m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "got unexpected value"); } } } return STOP; } class CombinedGeometryUniformLimitCase : public GeometryShaderFeartureTestCase { public: CombinedGeometryUniformLimitCase (Context& context, const char* name, const char* desc); private: IterateResult iterate (void); }; CombinedGeometryUniformLimitCase::CombinedGeometryUniformLimitCase (Context& context, const char* name, const char* desc) : GeometryShaderFeartureTestCase(context, name, desc) { } CombinedGeometryUniformLimitCase::IterateResult CombinedGeometryUniformLimitCase::iterate (void) { glu::CallLogWrapper gl (m_context.getRenderContext().getFunctions(), m_testCtx.getLog()); tcu::ResultCollector result (m_testCtx.getLog(), " // ERROR: "); gl.enableLogging(true); m_testCtx.getLog() << tcu::TestLog::Message << "The minimum value of MAX_COMBINED_GEOMETRY_UNIFORM_COMPONENTS is MAX_GEOMETRY_UNIFORM_BLOCKS x MAX_UNIFORM_BLOCK_SIZE / 4 + MAX_GEOMETRY_UNIFORM_COMPONENTS" << tcu::TestLog::EndMessage; StateQueryMemoryWriteGuard maxUniformBlocks; gl.glGetIntegerv(GL_MAX_GEOMETRY_UNIFORM_BLOCKS, &maxUniformBlocks); GLS_COLLECT_GL_ERROR(result, gl.glGetError(), "glGetIntegerv"); StateQueryMemoryWriteGuard maxUniformBlockSize; gl.glGetIntegerv(GL_MAX_UNIFORM_BLOCK_SIZE, &maxUniformBlockSize); GLS_COLLECT_GL_ERROR(result, gl.glGetError(), "glGetIntegerv"); StateQueryMemoryWriteGuard maxUniformComponents; gl.glGetIntegerv(GL_MAX_GEOMETRY_UNIFORM_COMPONENTS, &maxUniformComponents); GLS_COLLECT_GL_ERROR(result, gl.glGetError(), "glGetIntegerv"); if (maxUniformBlocks.verifyValidity(result) && maxUniformBlockSize.verifyValidity(result) && maxUniformComponents.verifyValidity(result)) { const int limit = ((int)maxUniformBlocks) * ((int)maxUniformBlockSize) / 4 + (int)maxUniformComponents; verifyStateIntegerMin(result, gl, GL_MAX_COMBINED_GEOMETRY_UNIFORM_COMPONENTS, limit, QUERY_INTEGER); { const tcu::ScopedLogSection section(m_testCtx.getLog(), "Types", "Alternative queries"); verifyStateIntegerMin(result, gl, GL_MAX_COMBINED_GEOMETRY_UNIFORM_COMPONENTS, limit, QUERY_BOOLEAN); verifyStateIntegerMin(result, gl, GL_MAX_COMBINED_GEOMETRY_UNIFORM_COMPONENTS, limit, QUERY_INTEGER64); verifyStateIntegerMin(result, gl, GL_MAX_COMBINED_GEOMETRY_UNIFORM_COMPONENTS, limit, QUERY_FLOAT); } } result.setTestContextResult(m_testCtx); return STOP; } class VertexFeedbackCase : public TestCase { public: enum DrawMethod { METHOD_DRAW_ARRAYS = 0, METHOD_DRAW_ARRAYS_INSTANCED, METHOD_DRAW_ARRAYS_INDIRECT, METHOD_DRAW_ELEMENTS, METHOD_DRAW_ELEMENTS_INSTANCED, METHOD_DRAW_ELEMENTS_INDIRECT, METHOD_LAST }; enum PrimitiveType { PRIMITIVE_LINE_LOOP = 0, PRIMITIVE_LINE_STRIP, PRIMITIVE_TRIANGLE_STRIP, PRIMITIVE_TRIANGLE_FAN, PRIMITIVE_POINTS, PRIMITIVE_LAST }; VertexFeedbackCase (Context& context, const char* name, const char* description, DrawMethod method, PrimitiveType output); ~VertexFeedbackCase (void); private: void init (void); void deinit (void); IterateResult iterate (void); glu::ShaderProgram* genProgram (void); deUint32 getOutputPrimitive (void); deUint32 getBasePrimitive (void); const DrawMethod m_method; const PrimitiveType m_output; deUint32 m_elementBuf; deUint32 m_arrayBuf; deUint32 m_offsetBuf; deUint32 m_feedbackBuf; deUint32 m_indirectBuffer; glu::ShaderProgram* m_program; glu::VertexArray* m_vao; }; VertexFeedbackCase::VertexFeedbackCase (Context& context, const char* name, const char* description, DrawMethod method, PrimitiveType output) : TestCase (context, name, description) , m_method (method) , m_output (output) , m_elementBuf (0) , m_arrayBuf (0) , m_offsetBuf (0) , m_feedbackBuf (0) , m_indirectBuffer (0) , m_program (DE_NULL) , m_vao (DE_NULL) { DE_ASSERT(method < METHOD_LAST); DE_ASSERT(output < PRIMITIVE_LAST); } VertexFeedbackCase::~VertexFeedbackCase (void) { deinit(); } void VertexFeedbackCase::init (void) { // requirements if (!glu::contextSupports(m_context.getRenderContext().getType(), glu::ApiType::es(3, 2)) && !m_context.getContextInfo().isExtensionSupported("GL_EXT_geometry_shader")) TCU_THROW(NotSupportedError, "Tests require GL_EXT_geometry_shader extension or higher context version."); // log what test tries to do m_testCtx.getLog() << tcu::TestLog::Message << "Testing GL_EXT_geometry_shader transform feedback relaxations.\n" << "Capturing vertex shader varying, no geometry shader. Invoke with:" << tcu::TestLog::EndMessage; switch (m_method) { case METHOD_DRAW_ARRAYS: m_testCtx.getLog() << tcu::TestLog::Message << "Draw method: drawArrays" << tcu::TestLog::EndMessage; break; case METHOD_DRAW_ARRAYS_INSTANCED: m_testCtx.getLog() << tcu::TestLog::Message << "Draw method: drawArraysInstanced" << tcu::TestLog::EndMessage; break; case METHOD_DRAW_ARRAYS_INDIRECT: m_testCtx.getLog() << tcu::TestLog::Message << "Draw method: drawArraysIndirect" << tcu::TestLog::EndMessage; break; case METHOD_DRAW_ELEMENTS: m_testCtx.getLog() << tcu::TestLog::Message << "Draw method: drawElements" << tcu::TestLog::EndMessage; break; case METHOD_DRAW_ELEMENTS_INSTANCED: m_testCtx.getLog() << tcu::TestLog::Message << "Draw method: drawElementsInstanced" << tcu::TestLog::EndMessage; break; case METHOD_DRAW_ELEMENTS_INDIRECT: m_testCtx.getLog() << tcu::TestLog::Message << "Draw method: drawElementsIndirect" << tcu::TestLog::EndMessage; break; default: DE_ASSERT(false); } switch (m_output) { case PRIMITIVE_LINE_LOOP: m_testCtx.getLog() << tcu::TestLog::Message << "Draw primitive: line loop" << tcu::TestLog::EndMessage; break; case PRIMITIVE_LINE_STRIP: m_testCtx.getLog() << tcu::TestLog::Message << "Draw primitive: line strip" << tcu::TestLog::EndMessage; break; case PRIMITIVE_TRIANGLE_STRIP: m_testCtx.getLog() << tcu::TestLog::Message << "Draw primitive: triangle strip" << tcu::TestLog::EndMessage; break; case PRIMITIVE_TRIANGLE_FAN: m_testCtx.getLog() << tcu::TestLog::Message << "Draw primitive: triangle fan" << tcu::TestLog::EndMessage; break; case PRIMITIVE_POINTS: m_testCtx.getLog() << tcu::TestLog::Message << "Draw primitive: points" << tcu::TestLog::EndMessage; break; default: DE_ASSERT(false); } // resources { static const deUint16 elementData[] = { 0, 1, 2, 3, }; static const tcu::Vec4 arrayData[] = { tcu::Vec4(0.0f, 0.0f, 0.0f, 0.0f), tcu::Vec4(1.0f, 0.0f, 0.0f, 0.0f), tcu::Vec4(2.0f, 0.0f, 0.0f, 0.0f), tcu::Vec4(3.0f, 0.0f, 0.0f, 0.0f), }; static const tcu::Vec4 offsetData[] = { tcu::Vec4(0.0f, 0.0f, 0.0f, 0.0f), tcu::Vec4(0.0f, 0.0f, 0.0f, 0.0f), tcu::Vec4(0.0f, 0.0f, 0.0f, 0.0f), tcu::Vec4(0.0f, 0.0f, 0.0f, 0.0f), }; const glw::Functions& gl = m_context.getRenderContext().getFunctions(); const int feedbackSize = 8 * (int)sizeof(float[4]); m_vao = new glu::VertexArray(m_context.getRenderContext()); gl.bindVertexArray(**m_vao); GLU_EXPECT_NO_ERROR(gl.getError(), "set up vao"); gl.genBuffers(1, &m_elementBuf); gl.bindBuffer(GL_ELEMENT_ARRAY_BUFFER, m_elementBuf); gl.bufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(elementData), &elementData[0], GL_STATIC_DRAW); GLU_EXPECT_NO_ERROR(gl.getError(), "gen buf"); gl.genBuffers(1, &m_arrayBuf); gl.bindBuffer(GL_ARRAY_BUFFER, m_arrayBuf); gl.bufferData(GL_ARRAY_BUFFER, sizeof(arrayData), &arrayData[0], GL_STATIC_DRAW); GLU_EXPECT_NO_ERROR(gl.getError(), "gen buf"); gl.genBuffers(1, &m_offsetBuf); gl.bindBuffer(GL_ARRAY_BUFFER, m_offsetBuf); gl.bufferData(GL_ARRAY_BUFFER, sizeof(offsetData), &offsetData[0], GL_STATIC_DRAW); GLU_EXPECT_NO_ERROR(gl.getError(), "gen buf"); gl.genBuffers(1, &m_feedbackBuf); gl.bindBuffer(GL_TRANSFORM_FEEDBACK_BUFFER, m_feedbackBuf); gl.bufferData(GL_TRANSFORM_FEEDBACK_BUFFER, feedbackSize, DE_NULL, GL_DYNAMIC_COPY); GLU_EXPECT_NO_ERROR(gl.getError(), "gen buf"); m_program = genProgram(); if (!m_program->isOk()) { m_testCtx.getLog() << *m_program; throw tcu::TestError("could not build program"); } } } void VertexFeedbackCase::deinit (void) { if (m_elementBuf) { m_context.getRenderContext().getFunctions().deleteBuffers(1, &m_elementBuf); m_elementBuf = 0; } if (m_arrayBuf) { m_context.getRenderContext().getFunctions().deleteBuffers(1, &m_arrayBuf); m_arrayBuf = 0; } if (m_offsetBuf) { m_context.getRenderContext().getFunctions().deleteBuffers(1, &m_offsetBuf); m_offsetBuf = 0; } if (m_feedbackBuf) { m_context.getRenderContext().getFunctions().deleteBuffers(1, &m_feedbackBuf); m_feedbackBuf = 0; } if (m_indirectBuffer) { m_context.getRenderContext().getFunctions().deleteBuffers(1, &m_indirectBuffer); m_indirectBuffer = 0; } delete m_program; m_program = DE_NULL; delete m_vao; m_vao = DE_NULL; } VertexFeedbackCase::IterateResult VertexFeedbackCase::iterate (void) { const glw::Functions& gl = m_context.getRenderContext().getFunctions(); const deUint32 outputPrimitive = getOutputPrimitive(); const deUint32 basePrimitive = getBasePrimitive(); const int posLocation = gl.getAttribLocation(m_program->getProgram(), "a_position"); const int offsetLocation = gl.getAttribLocation(m_program->getProgram(), "a_offset"); if (posLocation == -1) throw tcu::TestError("a_position location was -1"); if (offsetLocation == -1) throw tcu::TestError("a_offset location was -1"); gl.useProgram(m_program->getProgram()); gl.bindBuffer(GL_ARRAY_BUFFER, m_arrayBuf); gl.vertexAttribPointer(posLocation, 4, GL_FLOAT, GL_FALSE, 0, DE_NULL); gl.enableVertexAttribArray(posLocation); gl.bindBuffer(GL_ARRAY_BUFFER, m_offsetBuf); gl.vertexAttribPointer(offsetLocation, 4, GL_FLOAT, GL_FALSE, 0, DE_NULL); gl.enableVertexAttribArray(offsetLocation); gl.bindBufferBase(GL_TRANSFORM_FEEDBACK_BUFFER, 0, m_feedbackBuf); GLU_EXPECT_NO_ERROR(gl.getError(), "bind buffer base"); m_testCtx.getLog() << tcu::TestLog::Message << "Calling BeginTransformFeedback(" << glu::getPrimitiveTypeStr(basePrimitive) << ")" << tcu::TestLog::EndMessage; gl.beginTransformFeedback(basePrimitive); GLU_EXPECT_NO_ERROR(gl.getError(), "beginTransformFeedback"); switch (m_method) { case METHOD_DRAW_ARRAYS: { m_testCtx.getLog() << tcu::TestLog::Message << "Calling DrawArrays(" << glu::getPrimitiveTypeStr(outputPrimitive) << ", ...)" << tcu::TestLog::EndMessage; gl.drawArrays(outputPrimitive, 0, 4); break; } case METHOD_DRAW_ARRAYS_INSTANCED: { m_testCtx.getLog() << tcu::TestLog::Message << "Calling DrawArraysInstanced(" << glu::getPrimitiveTypeStr(outputPrimitive) << ", ...)" << tcu::TestLog::EndMessage; gl.vertexAttribDivisor(offsetLocation, 2); gl.drawArraysInstanced(outputPrimitive, 0, 3, 2); break; } case METHOD_DRAW_ELEMENTS: { m_testCtx.getLog() << tcu::TestLog::Message << "Calling DrawElements(" << glu::getPrimitiveTypeStr(outputPrimitive) << ", ...)" << tcu::TestLog::EndMessage; gl.drawElements(outputPrimitive, 4, GL_UNSIGNED_SHORT, DE_NULL); break; } case METHOD_DRAW_ELEMENTS_INSTANCED: { m_testCtx.getLog() << tcu::TestLog::Message << "Calling DrawElementsInstanced(" << glu::getPrimitiveTypeStr(outputPrimitive) << ", ...)" << tcu::TestLog::EndMessage; gl.drawElementsInstanced(outputPrimitive, 3, GL_UNSIGNED_SHORT, DE_NULL, 2); break; } case METHOD_DRAW_ARRAYS_INDIRECT: { struct DrawArraysIndirectCommand { deUint32 count; deUint32 instanceCount; deUint32 first; deUint32 reservedMustBeZero; } params; DE_STATIC_ASSERT(sizeof(DrawArraysIndirectCommand) == sizeof(deUint32[4])); params.count = 4; params.instanceCount = 1; params.first = 0; params.reservedMustBeZero = 0; gl.genBuffers(1, &m_indirectBuffer); gl.bindBuffer(GL_DRAW_INDIRECT_BUFFER, m_indirectBuffer); gl.bufferData(GL_DRAW_INDIRECT_BUFFER, sizeof(params), ¶ms, GL_STATIC_DRAW); m_testCtx.getLog() << tcu::TestLog::Message << "Calling DrawElementsIndirect(" << glu::getPrimitiveTypeStr(outputPrimitive) << ", ...)" << tcu::TestLog::EndMessage; gl.drawArraysIndirect(outputPrimitive, DE_NULL); break; } case METHOD_DRAW_ELEMENTS_INDIRECT: { struct DrawElementsIndirectCommand { deUint32 count; deUint32 instanceCount; deUint32 firstIndex; deInt32 baseVertex; deUint32 reservedMustBeZero; } params; DE_STATIC_ASSERT(sizeof(DrawElementsIndirectCommand) == sizeof(deUint32[5])); params.count = 4; params.instanceCount = 1; params.firstIndex = 0; params.baseVertex = 0; params.reservedMustBeZero = 0; gl.genBuffers(1, &m_indirectBuffer); gl.bindBuffer(GL_DRAW_INDIRECT_BUFFER, m_indirectBuffer); gl.bufferData(GL_DRAW_INDIRECT_BUFFER, sizeof(params), ¶ms, GL_STATIC_DRAW); m_testCtx.getLog() << tcu::TestLog::Message << "Calling DrawElementsIndirect(" << glu::getPrimitiveTypeStr(outputPrimitive) << ", ...)" << tcu::TestLog::EndMessage; gl.drawElementsIndirect(outputPrimitive, GL_UNSIGNED_SHORT, DE_NULL); break; } default: DE_ASSERT(false); } GLU_EXPECT_NO_ERROR(gl.getError(), "draw"); gl.endTransformFeedback(); GLU_EXPECT_NO_ERROR(gl.getError(), "endTransformFeedback"); m_testCtx.getLog() << tcu::TestLog::Message << "No errors." << tcu::TestLog::EndMessage; m_testCtx.setTestResult(QP_TEST_RESULT_PASS, "Pass"); return STOP; } glu::ShaderProgram* VertexFeedbackCase::genProgram (void) { static const char* const vertexSource = "${GLSL_VERSION_DECL}\n" "in highp vec4 a_position;\n" "in highp vec4 a_offset;\n" "out highp vec4 tf_value;\n" "void main (void)\n" "{\n" " gl_Position = a_position;\n" " tf_value = a_position + a_offset;\n" "}\n"; static const char* const fragmentSource = "${GLSL_VERSION_DECL}\n" "layout(location = 0) out mediump vec4 fragColor;\n" "void main (void)\n" "{\n" " fragColor = vec4(1.0);\n" "}\n"; return new glu::ShaderProgram(m_context.getRenderContext(), glu::ProgramSources() << glu::VertexSource(specializeShader(vertexSource, m_context.getRenderContext().getType())) << glu::FragmentSource(specializeShader(fragmentSource, m_context.getRenderContext().getType())) << glu::TransformFeedbackVarying("tf_value") << glu::TransformFeedbackMode(GL_INTERLEAVED_ATTRIBS)); } deUint32 VertexFeedbackCase::getOutputPrimitive (void) { switch(m_output) { case PRIMITIVE_LINE_LOOP: return GL_LINE_LOOP; case PRIMITIVE_LINE_STRIP: return GL_LINE_STRIP; case PRIMITIVE_TRIANGLE_STRIP: return GL_TRIANGLE_STRIP; case PRIMITIVE_TRIANGLE_FAN: return GL_TRIANGLE_FAN; case PRIMITIVE_POINTS: return GL_POINTS; default: DE_ASSERT(false); return 0; } } deUint32 VertexFeedbackCase::getBasePrimitive (void) { switch(m_output) { case PRIMITIVE_LINE_LOOP: return GL_LINES; case PRIMITIVE_LINE_STRIP: return GL_LINES; case PRIMITIVE_TRIANGLE_STRIP: return GL_TRIANGLES; case PRIMITIVE_TRIANGLE_FAN: return GL_TRIANGLES; case PRIMITIVE_POINTS: return GL_POINTS; default: DE_ASSERT(false); return 0; } } class VertexFeedbackOverflowCase : public TestCase { public: enum Method { METHOD_DRAW_ARRAYS = 0, METHOD_DRAW_ELEMENTS, }; VertexFeedbackOverflowCase (Context& context, const char* name, const char* description, Method method); ~VertexFeedbackOverflowCase (void); private: void init (void); void deinit (void); IterateResult iterate (void); glu::ShaderProgram* genProgram (void); const Method m_method; deUint32 m_elementBuf; deUint32 m_arrayBuf; deUint32 m_feedbackBuf; glu::ShaderProgram* m_program; glu::VertexArray* m_vao; }; VertexFeedbackOverflowCase::VertexFeedbackOverflowCase (Context& context, const char* name, const char* description, Method method) : TestCase (context, name, description) , m_method (method) , m_elementBuf (0) , m_arrayBuf (0) , m_feedbackBuf (0) , m_program (DE_NULL) , m_vao (DE_NULL) { } VertexFeedbackOverflowCase::~VertexFeedbackOverflowCase (void) { deinit(); } void VertexFeedbackOverflowCase::init (void) { // requirements if (!glu::contextSupports(m_context.getRenderContext().getType(), glu::ApiType::es(3, 2)) && !m_context.getContextInfo().isExtensionSupported("GL_EXT_geometry_shader")) TCU_THROW(NotSupportedError, "Tests require GL_EXT_geometry_shader extension or higher context version."); // log what test tries to do m_testCtx.getLog() << tcu::TestLog::Message << "Testing GL_EXT_geometry_shader transform feedback overflow behavior.\n" << "Capturing vertex shader varying, rendering 2 triangles. Allocating feedback buffer for 5 vertices." << tcu::TestLog::EndMessage; // resources { static const deUint16 elementData[] = { 0, 1, 2, 0, 1, 2, }; static const tcu::Vec4 arrayData[] = { tcu::Vec4(1.0f, 1.0f, 1.0f, 1.0f), tcu::Vec4(1.0f, 1.0f, 1.0f, 1.0f), tcu::Vec4(1.0f, 1.0f, 1.0f, 1.0f), tcu::Vec4(1.0f, 1.0f, 1.0f, 1.0f), }; const glw::Functions& gl = m_context.getRenderContext().getFunctions(); m_vao = new glu::VertexArray(m_context.getRenderContext()); gl.bindVertexArray(**m_vao); GLU_EXPECT_NO_ERROR(gl.getError(), "set up vao"); if (m_method == METHOD_DRAW_ELEMENTS) { gl.genBuffers(1, &m_elementBuf); gl.bindBuffer(GL_ELEMENT_ARRAY_BUFFER, m_elementBuf); gl.bufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(elementData), &elementData[0], GL_STATIC_DRAW); GLU_EXPECT_NO_ERROR(gl.getError(), "gen buf"); } gl.genBuffers(1, &m_arrayBuf); gl.bindBuffer(GL_ARRAY_BUFFER, m_arrayBuf); gl.bufferData(GL_ARRAY_BUFFER, sizeof(arrayData), &arrayData[0], GL_STATIC_DRAW); GLU_EXPECT_NO_ERROR(gl.getError(), "gen buf"); { const int feedbackCount = 5 * 4; // 5x vec4 const std::vector initialBufferContents (feedbackCount, -1.0f); m_testCtx.getLog() << tcu::TestLog::Message << "Filling feeback buffer with dummy value (-1.0)." << tcu::TestLog::EndMessage; gl.genBuffers(1, &m_feedbackBuf); gl.bindBuffer(GL_TRANSFORM_FEEDBACK_BUFFER, m_feedbackBuf); gl.bufferData(GL_TRANSFORM_FEEDBACK_BUFFER, (int)(sizeof(float) * initialBufferContents.size()), &initialBufferContents[0], GL_DYNAMIC_COPY); GLU_EXPECT_NO_ERROR(gl.getError(), "gen buf"); } m_program = genProgram(); if (!m_program->isOk()) { m_testCtx.getLog() << *m_program; throw tcu::TestError("could not build program"); } } } void VertexFeedbackOverflowCase::deinit (void) { if (m_elementBuf) { m_context.getRenderContext().getFunctions().deleteBuffers(1, &m_elementBuf); m_elementBuf = 0; } if (m_arrayBuf) { m_context.getRenderContext().getFunctions().deleteBuffers(1, &m_arrayBuf); m_arrayBuf = 0; } if (m_feedbackBuf) { m_context.getRenderContext().getFunctions().deleteBuffers(1, &m_feedbackBuf); m_feedbackBuf = 0; } delete m_program; m_program = DE_NULL; delete m_vao; m_vao = DE_NULL; } VertexFeedbackOverflowCase::IterateResult VertexFeedbackOverflowCase::iterate (void) { const glw::Functions& gl = m_context.getRenderContext().getFunctions(); const int posLocation = gl.getAttribLocation(m_program->getProgram(), "a_position"); if (posLocation == -1) throw tcu::TestError("a_position location was -1"); gl.useProgram(m_program->getProgram()); gl.bindBuffer(GL_ARRAY_BUFFER, m_arrayBuf); gl.vertexAttribPointer(posLocation, 4, GL_FLOAT, GL_FALSE, 0, DE_NULL); gl.enableVertexAttribArray(posLocation); if (m_method == METHOD_DRAW_ELEMENTS) { gl.bindBuffer(GL_ELEMENT_ARRAY_BUFFER, m_elementBuf); GLU_EXPECT_NO_ERROR(gl.getError(), "bind buffers"); } gl.bindBufferBase(GL_TRANSFORM_FEEDBACK_BUFFER, 0, m_feedbackBuf); GLU_EXPECT_NO_ERROR(gl.getError(), "bind buffer base"); m_testCtx.getLog() << tcu::TestLog::Message << "Capturing 2 triangles." << tcu::TestLog::EndMessage; gl.beginTransformFeedback(GL_TRIANGLES); if (m_method == METHOD_DRAW_ELEMENTS) gl.drawElements(GL_TRIANGLES, 6, GL_UNSIGNED_SHORT, DE_NULL); else if (m_method == METHOD_DRAW_ARRAYS) gl.drawArrays(GL_TRIANGLE_STRIP, 0, 4); else DE_ASSERT(false); gl.endTransformFeedback(); GLU_EXPECT_NO_ERROR(gl.getError(), "capture"); m_testCtx.getLog() << tcu::TestLog::Message << "Verifying final triangle was not partially written to the feedback buffer." << tcu::TestLog::EndMessage; { const void* ptr = gl.mapBufferRange(GL_TRANSFORM_FEEDBACK_BUFFER, 0, sizeof(float[4]) * 5, GL_MAP_READ_BIT); std::vector feedback; bool error = false; GLU_EXPECT_NO_ERROR(gl.getError(), "mapBufferRange"); if (!ptr) throw tcu::TestError("mapBufferRange returned null"); feedback.resize(5*4); deMemcpy(&feedback[0], ptr, sizeof(float[4]) * 5); if (gl.unmapBuffer(GL_TRANSFORM_FEEDBACK_BUFFER) != GL_TRUE) throw tcu::TestError("unmapBuffer returned false"); // Verify vertices 0 - 2 for (int vertex = 0; vertex < 3; ++vertex) { for (int component = 0; component < 4; ++component) { if (feedback[vertex*4 + component] != 1.0f) { m_testCtx.getLog() << tcu::TestLog::Message << "Feedback buffer vertex " << vertex << ", component " << component << ": unexpected value, expected 1.0, got " << feedback[vertex*4 + component] << tcu::TestLog::EndMessage; error = true; } } } // Verify vertices 3 - 4 for (int vertex = 3; vertex < 5; ++vertex) { for (int component = 0; component < 4; ++component) { if (feedback[vertex*4 + component] != -1.0f) { m_testCtx.getLog() << tcu::TestLog::Message << "Feedback buffer vertex " << vertex << ", component " << component << ": unexpected value, expected -1.0, got " << feedback[vertex*4 + component] << tcu::TestLog::EndMessage; error = true; } } } if (error) m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "Feedback result validation failed"); else m_testCtx.setTestResult(QP_TEST_RESULT_PASS, "Pass"); } return STOP; } glu::ShaderProgram* VertexFeedbackOverflowCase::genProgram (void) { static const char* const vertexSource = "${GLSL_VERSION_DECL}\n" "in highp vec4 a_position;\n" "void main (void)\n" "{\n" " gl_Position = a_position;\n" "}\n"; static const char* const fragmentSource = "${GLSL_VERSION_DECL}\n" "layout(location = 0) out mediump vec4 fragColor;\n" "void main (void)\n" "{\n" " fragColor = vec4(1.0);\n" "}\n"; return new glu::ShaderProgram(m_context.getRenderContext(), glu::ProgramSources() << glu::VertexSource(specializeShader(vertexSource, m_context.getRenderContext().getType())) << glu::FragmentSource(specializeShader(fragmentSource, m_context.getRenderContext().getType())) << glu::TransformFeedbackVarying("gl_Position") << glu::TransformFeedbackMode(GL_INTERLEAVED_ATTRIBS)); } } // anonymous GeometryShaderTests::GeometryShaderTests (Context& context) : TestCaseGroup(context, "geometry_shading", "Geometry shader tests") { } GeometryShaderTests::~GeometryShaderTests (void) { } void GeometryShaderTests::init (void) { struct PrimitiveTestSpec { deUint32 primitiveType; const char* name; deUint32 outputType; }; struct EmitTestSpec { deUint32 outputType; int emitCountA; //!< primitive A emit count int endCountA; //!< primitive A end count int emitCountB; //!< int endCountB; //!< const char* name; }; static const struct LayeredTarget { LayeredRenderCase::LayeredRenderTargetType target; const char* name; const char* desc; } layerTargets[] = { { LayeredRenderCase::TARGET_CUBE, "cubemap", "cubemap" }, { LayeredRenderCase::TARGET_3D, "3d", "3D texture" }, { LayeredRenderCase::TARGET_2D_ARRAY, "2d_array", "2D array texture" }, { LayeredRenderCase::TARGET_2D_MS_ARRAY, "2d_multisample_array", "2D multisample array texture" }, }; tcu::TestCaseGroup* const queryGroup = new tcu::TestCaseGroup(m_testCtx, "query", "Query tests."); tcu::TestCaseGroup* const basicGroup = new tcu::TestCaseGroup(m_testCtx, "basic", "Basic tests."); tcu::TestCaseGroup* const inputPrimitiveGroup = new tcu::TestCaseGroup(m_testCtx, "input", "Different input primitives."); tcu::TestCaseGroup* const conversionPrimitiveGroup = new tcu::TestCaseGroup(m_testCtx, "conversion", "Different input and output primitives."); tcu::TestCaseGroup* const emitGroup = new tcu::TestCaseGroup(m_testCtx, "emit", "Different emit counts."); tcu::TestCaseGroup* const varyingGroup = new tcu::TestCaseGroup(m_testCtx, "varying", "Test varyings."); tcu::TestCaseGroup* const layeredGroup = new tcu::TestCaseGroup(m_testCtx, "layered", "Layered rendering."); tcu::TestCaseGroup* const instancedGroup = new tcu::TestCaseGroup(m_testCtx, "instanced", "Instanced rendering."); tcu::TestCaseGroup* const negativeGroup = new tcu::TestCaseGroup(m_testCtx, "negative", "Negative tests."); tcu::TestCaseGroup* const feedbackGroup = new tcu::TestCaseGroup(m_testCtx, "vertex_transform_feedback", "Transform feedback."); this->addChild(queryGroup); this->addChild(basicGroup); this->addChild(inputPrimitiveGroup); this->addChild(conversionPrimitiveGroup); this->addChild(emitGroup); this->addChild(varyingGroup); this->addChild(layeredGroup); this->addChild(instancedGroup); this->addChild(negativeGroup); this->addChild(feedbackGroup); // query test { // limits with a corresponding glsl constant queryGroup->addChild(new GeometryProgramLimitCase(m_context, "max_geometry_input_components", "", GL_MAX_GEOMETRY_INPUT_COMPONENTS, "MaxGeometryInputComponents", 64)); queryGroup->addChild(new GeometryProgramLimitCase(m_context, "max_geometry_output_components", "", GL_MAX_GEOMETRY_OUTPUT_COMPONENTS, "MaxGeometryOutputComponents", 64)); queryGroup->addChild(new GeometryProgramLimitCase(m_context, "max_geometry_image_uniforms", "", GL_MAX_GEOMETRY_IMAGE_UNIFORMS, "MaxGeometryImageUniforms", 0)); queryGroup->addChild(new GeometryProgramLimitCase(m_context, "max_geometry_texture_image_units", "", GL_MAX_GEOMETRY_TEXTURE_IMAGE_UNITS, "MaxGeometryTextureImageUnits", 16)); queryGroup->addChild(new GeometryProgramLimitCase(m_context, "max_geometry_output_vertices", "", GL_MAX_GEOMETRY_OUTPUT_VERTICES, "MaxGeometryOutputVertices", 256)); queryGroup->addChild(new GeometryProgramLimitCase(m_context, "max_geometry_total_output_components", "", GL_MAX_GEOMETRY_TOTAL_OUTPUT_COMPONENTS, "MaxGeometryTotalOutputComponents", 1024)); queryGroup->addChild(new GeometryProgramLimitCase(m_context, "max_geometry_uniform_components", "", GL_MAX_GEOMETRY_UNIFORM_COMPONENTS, "MaxGeometryUniformComponents", 1024)); queryGroup->addChild(new GeometryProgramLimitCase(m_context, "max_geometry_atomic_counters", "", GL_MAX_GEOMETRY_ATOMIC_COUNTERS, "MaxGeometryAtomicCounters", 0)); queryGroup->addChild(new GeometryProgramLimitCase(m_context, "max_geometry_atomic_counter_buffers", "", GL_MAX_GEOMETRY_ATOMIC_COUNTER_BUFFERS, "MaxGeometryAtomicCounterBuffers", 0)); // program queries queryGroup->addChild(new GeometryShaderVerticesQueryCase (m_context, "geometry_linked_vertices_out", "GL_GEOMETRY_LINKED_VERTICES_OUT")); queryGroup->addChild(new GeometryShaderInputQueryCase (m_context, "geometry_linked_input_type", "GL_GEOMETRY_LINKED_INPUT_TYPE")); queryGroup->addChild(new GeometryShaderOutputQueryCase (m_context, "geometry_linked_output_type", "GL_GEOMETRY_LINKED_OUTPUT_TYPE")); queryGroup->addChild(new GeometryShaderInvocationsQueryCase (m_context, "geometry_shader_invocations", "GL_GEOMETRY_SHADER_INVOCATIONS")); // limits queryGroup->addChild(new ImplementationLimitCase(m_context, "max_geometry_shader_invocations", "", GL_MAX_GEOMETRY_SHADER_INVOCATIONS, 32)); queryGroup->addChild(new ImplementationLimitCase(m_context, "max_geometry_uniform_blocks", "", GL_MAX_GEOMETRY_UNIFORM_BLOCKS, 12)); queryGroup->addChild(new ImplementationLimitCase(m_context, "max_geometry_shader_storage_blocks", "", GL_MAX_GEOMETRY_SHADER_STORAGE_BLOCKS, 0)); // layer_provoking_vertex_ext queryGroup->addChild(new LayerProvokingVertexQueryCase(m_context, "layer_provoking_vertex", "GL_LAYER_PROVOKING_VERTEX")); // primitives_generated queryGroup->addChild(new PrimitivesGeneratedQueryCase(m_context, "primitives_generated_no_geometry", "PRIMITIVES_GENERATED query with no geometry shader", PrimitivesGeneratedQueryCase::TEST_NO_GEOMETRY)); queryGroup->addChild(new PrimitivesGeneratedQueryCase(m_context, "primitives_generated_no_amplification", "PRIMITIVES_GENERATED query with non amplifying geometry shader", PrimitivesGeneratedQueryCase::TEST_NO_AMPLIFICATION)); queryGroup->addChild(new PrimitivesGeneratedQueryCase(m_context, "primitives_generated_amplification", "PRIMITIVES_GENERATED query with amplifying geometry shader", PrimitivesGeneratedQueryCase::TEST_AMPLIFICATION)); queryGroup->addChild(new PrimitivesGeneratedQueryCase(m_context, "primitives_generated_partial_primitives", "PRIMITIVES_GENERATED query with geometry shader emitting partial primitives", PrimitivesGeneratedQueryCase::TEST_PARTIAL_PRIMITIVES)); queryGroup->addChild(new PrimitivesGeneratedQueryCase(m_context, "primitives_generated_instanced", "PRIMITIVES_GENERATED query with instanced geometry shader", PrimitivesGeneratedQueryCase::TEST_INSTANCED)); queryGroup->addChild(new PrimitivesGeneratedQueryObjectQueryCase(m_context, "primitives_generated", "Query bound PRIMITIVES_GENERATED query")); // fbo queryGroup->addChild(new ImplementationLimitCase (m_context, "max_framebuffer_layers", "", GL_MAX_FRAMEBUFFER_LAYERS, 256)); queryGroup->addChild(new FramebufferDefaultLayersCase (m_context, "framebuffer_default_layers", "")); queryGroup->addChild(new FramebufferAttachmentLayeredCase (m_context, "framebuffer_attachment_layered", "")); queryGroup->addChild(new FramebufferIncompleteLayereTargetsCase (m_context, "framebuffer_incomplete_layer_targets", "")); // resource query queryGroup->addChild(new ReferencedByGeometryShaderCase (m_context, "referenced_by_geometry_shader", "")); // combined limits queryGroup->addChild(new CombinedGeometryUniformLimitCase (m_context, "max_combined_geometry_uniform_components", "MAX_COMBINED_GEOMETRY_UNIFORM_COMPONENTS")); } // basic tests { basicGroup->addChild(new OutputCountCase (m_context, "output_10", "Output 10 vertices", OutputCountPatternSpec(10))); basicGroup->addChild(new OutputCountCase (m_context, "output_128", "Output 128 vertices", OutputCountPatternSpec(128))); basicGroup->addChild(new OutputCountCase (m_context, "output_256", "Output 256 vertices", OutputCountPatternSpec(256))); basicGroup->addChild(new OutputCountCase (m_context, "output_max", "Output max vertices", OutputCountPatternSpec(-1))); basicGroup->addChild(new OutputCountCase (m_context, "output_10_and_100", "Output 10 and 100 vertices in two invocations", OutputCountPatternSpec(10, 100))); basicGroup->addChild(new OutputCountCase (m_context, "output_100_and_10", "Output 100 and 10 vertices in two invocations", OutputCountPatternSpec(100, 10))); basicGroup->addChild(new OutputCountCase (m_context, "output_0_and_128", "Output 0 and 128 vertices in two invocations", OutputCountPatternSpec(0, 128))); basicGroup->addChild(new OutputCountCase (m_context, "output_128_and_0", "Output 128 and 0 vertices in two invocations", OutputCountPatternSpec(128, 0))); basicGroup->addChild(new VaryingOutputCountCase (m_context, "output_vary_by_attribute", "Output varying number of vertices", VaryingOutputCountShader::READ_ATTRIBUTE, VaryingOutputCountCase::MODE_WITHOUT_INSTANCING)); basicGroup->addChild(new VaryingOutputCountCase (m_context, "output_vary_by_uniform", "Output varying number of vertices", VaryingOutputCountShader::READ_UNIFORM, VaryingOutputCountCase::MODE_WITHOUT_INSTANCING)); basicGroup->addChild(new VaryingOutputCountCase (m_context, "output_vary_by_texture", "Output varying number of vertices", VaryingOutputCountShader::READ_TEXTURE, VaryingOutputCountCase::MODE_WITHOUT_INSTANCING)); basicGroup->addChild(new BuiltinVariableRenderTest (m_context, "point_size", "test gl_PointSize", BuiltinVariableShader::TEST_POINT_SIZE)); basicGroup->addChild(new BuiltinVariableRenderTest (m_context, "primitive_id_in", "test gl_PrimitiveIDIn", BuiltinVariableShader::TEST_PRIMITIVE_ID_IN)); basicGroup->addChild(new BuiltinVariableRenderTest (m_context, "primitive_id_in_restarted","test gl_PrimitiveIDIn with primitive restart", BuiltinVariableShader::TEST_PRIMITIVE_ID_IN, GeometryShaderRenderTest::FLAG_USE_RESTART_INDEX | GeometryShaderRenderTest::FLAG_USE_INDICES)); basicGroup->addChild(new BuiltinVariableRenderTest (m_context, "primitive_id", "test gl_PrimitiveID", BuiltinVariableShader::TEST_PRIMITIVE_ID)); } // input primitives { static const PrimitiveTestSpec inputPrimitives[] = { { GL_POINTS, "points", GL_POINTS }, { GL_LINES, "lines", GL_LINE_STRIP }, { GL_LINE_LOOP, "line_loop", GL_LINE_STRIP }, { GL_LINE_STRIP, "line_strip", GL_LINE_STRIP }, { GL_TRIANGLES, "triangles", GL_TRIANGLE_STRIP }, { GL_TRIANGLE_STRIP, "triangle_strip", GL_TRIANGLE_STRIP }, { GL_TRIANGLE_FAN, "triangle_fan", GL_TRIANGLE_STRIP }, { GL_LINES_ADJACENCY, "lines_adjacency", GL_LINE_STRIP }, { GL_LINE_STRIP_ADJACENCY, "line_strip_adjacency", GL_LINE_STRIP }, { GL_TRIANGLES_ADJACENCY, "triangles_adjacency", GL_TRIANGLE_STRIP } }; tcu::TestCaseGroup* const basicPrimitiveGroup = new tcu::TestCaseGroup(m_testCtx, "basic_primitive", "Different input and output primitives."); tcu::TestCaseGroup* const triStripAdjacencyGroup = new tcu::TestCaseGroup(m_testCtx, "triangle_strip_adjacency", "Different triangle_strip_adjacency vertex counts."); // more basic types for (int ndx = 0; ndx < DE_LENGTH_OF_ARRAY(inputPrimitives); ++ndx) basicPrimitiveGroup->addChild(new GeometryExpanderRenderTest(m_context, inputPrimitives[ndx].name, inputPrimitives[ndx].name, inputPrimitives[ndx].primitiveType, inputPrimitives[ndx].outputType)); // triangle strip adjacency with different vtx counts for (int vtxCount = 0; vtxCount <= 12; ++vtxCount) { const std::string name = "vertex_count_" + de::toString(vtxCount); const std::string desc = "Vertex count is " + de::toString(vtxCount); triStripAdjacencyGroup->addChild(new TriangleStripAdjacencyVertexCountTest(m_context, name.c_str(), desc.c_str(), vtxCount)); } inputPrimitiveGroup->addChild(basicPrimitiveGroup); inputPrimitiveGroup->addChild(triStripAdjacencyGroup); } // different type conversions { static const PrimitiveTestSpec conversionPrimitives[] = { { GL_TRIANGLES, "triangles_to_points", GL_POINTS }, { GL_LINES, "lines_to_points", GL_POINTS }, { GL_POINTS, "points_to_lines", GL_LINE_STRIP }, { GL_TRIANGLES, "triangles_to_lines", GL_LINE_STRIP }, { GL_POINTS, "points_to_triangles", GL_TRIANGLE_STRIP }, { GL_LINES, "lines_to_triangles", GL_TRIANGLE_STRIP } }; for (int ndx = 0; ndx < DE_LENGTH_OF_ARRAY(conversionPrimitives); ++ndx) conversionPrimitiveGroup->addChild(new GeometryExpanderRenderTest(m_context, conversionPrimitives[ndx].name, conversionPrimitives[ndx].name, conversionPrimitives[ndx].primitiveType, conversionPrimitives[ndx].outputType)); } // emit different amounts { static const EmitTestSpec emitTests[] = { { GL_POINTS, 0, 0, 0, 0, "points" }, { GL_POINTS, 0, 1, 0, 0, "points" }, { GL_POINTS, 1, 1, 0, 0, "points" }, { GL_POINTS, 0, 2, 0, 0, "points" }, { GL_POINTS, 1, 2, 0, 0, "points" }, { GL_LINE_STRIP, 0, 0, 0, 0, "line_strip" }, { GL_LINE_STRIP, 0, 1, 0, 0, "line_strip" }, { GL_LINE_STRIP, 1, 1, 0, 0, "line_strip" }, { GL_LINE_STRIP, 2, 1, 0, 0, "line_strip" }, { GL_LINE_STRIP, 0, 2, 0, 0, "line_strip" }, { GL_LINE_STRIP, 1, 2, 0, 0, "line_strip" }, { GL_LINE_STRIP, 2, 2, 0, 0, "line_strip" }, { GL_LINE_STRIP, 2, 2, 2, 0, "line_strip" }, { GL_TRIANGLE_STRIP, 0, 0, 0, 0, "triangle_strip" }, { GL_TRIANGLE_STRIP, 0, 1, 0, 0, "triangle_strip" }, { GL_TRIANGLE_STRIP, 1, 1, 0, 0, "triangle_strip" }, { GL_TRIANGLE_STRIP, 2, 1, 0, 0, "triangle_strip" }, { GL_TRIANGLE_STRIP, 3, 1, 0, 0, "triangle_strip" }, { GL_TRIANGLE_STRIP, 0, 2, 0, 0, "triangle_strip" }, { GL_TRIANGLE_STRIP, 1, 2, 0, 0, "triangle_strip" }, { GL_TRIANGLE_STRIP, 2, 2, 0, 0, "triangle_strip" }, { GL_TRIANGLE_STRIP, 3, 2, 0, 0, "triangle_strip" }, { GL_TRIANGLE_STRIP, 3, 2, 3, 0, "triangle_strip" }, }; for (int ndx = 0; ndx < DE_LENGTH_OF_ARRAY(emitTests); ++ndx) { std::string name = std::string(emitTests[ndx].name) + "_emit_" + de::toString(emitTests[ndx].emitCountA) + "_end_" + de::toString(emitTests[ndx].endCountA); std::string desc = std::string(emitTests[ndx].name) + " output, emit " + de::toString(emitTests[ndx].emitCountA) + " vertices, call EndPrimitive " + de::toString(emitTests[ndx].endCountA) + " times"; if (emitTests[ndx].emitCountB) { name += "_emit_" + de::toString(emitTests[ndx].emitCountB) + "_end_" + de::toString(emitTests[ndx].endCountB); desc += ", emit " + de::toString(emitTests[ndx].emitCountB) + " vertices, call EndPrimitive " + de::toString(emitTests[ndx].endCountB) + " times"; } emitGroup->addChild(new EmitTest(m_context, name.c_str(), desc.c_str(), emitTests[ndx].emitCountA, emitTests[ndx].endCountA, emitTests[ndx].emitCountB, emitTests[ndx].endCountB, emitTests[ndx].outputType)); } } // varying { struct VaryingTestSpec { int vertexOutputs; int geometryOutputs; const char* name; const char* desc; }; static const VaryingTestSpec varyingTests[] = { { -1, 1, "vertex_no_op_geometry_out_1", "vertex_no_op_geometry_out_1" }, { 0, 1, "vertex_out_0_geometry_out_1", "vertex_out_0_geometry_out_1" }, { 0, 2, "vertex_out_0_geometry_out_2", "vertex_out_0_geometry_out_2" }, { 1, 0, "vertex_out_1_geometry_out_0", "vertex_out_1_geometry_out_0" }, { 1, 2, "vertex_out_1_geometry_out_2", "vertex_out_1_geometry_out_2" }, }; for (int ndx = 0; ndx < DE_LENGTH_OF_ARRAY(varyingTests); ++ndx) varyingGroup->addChild(new VaryingTest(m_context, varyingTests[ndx].name, varyingTests[ndx].desc, varyingTests[ndx].vertexOutputs, varyingTests[ndx].geometryOutputs)); } // layered { static const struct TestType { LayeredRenderCase::TestType test; const char* testPrefix; const char* descPrefix; } tests[] = { { LayeredRenderCase::TEST_DEFAULT_LAYER, "render_with_default_layer_", "Render to all layers of " }, { LayeredRenderCase::TEST_SINGLE_LAYER, "render_to_one_", "Render to one layer of " }, { LayeredRenderCase::TEST_ALL_LAYERS, "render_to_all_", "Render to all layers of " }, { LayeredRenderCase::TEST_DIFFERENT_LAYERS, "render_different_to_", "Render different data to different layers" }, { LayeredRenderCase::TEST_LAYER_ID, "fragment_layer_", "Read gl_Layer in fragment shader" }, { LayeredRenderCase::TEST_LAYER_PROVOKING_VERTEX, "layer_provoking_vertex_", "Verify LAYER_PROVOKING_VERTEX" }, }; for (int testNdx = 0; testNdx < DE_LENGTH_OF_ARRAY(tests); ++testNdx) for (int targetNdx = 0; targetNdx < DE_LENGTH_OF_ARRAY(layerTargets); ++targetNdx) { const std::string name = std::string(tests[testNdx].testPrefix) + layerTargets[targetNdx].name; const std::string desc = std::string(tests[testNdx].descPrefix) + layerTargets[targetNdx].desc; layeredGroup->addChild(new LayeredRenderCase(m_context, name.c_str(), desc.c_str(), layerTargets[targetNdx].target, tests[testNdx].test)); } } // instanced { static const struct InvocationCase { const char* name; int numInvocations; } invocationCases[] = { { "1", 1 }, { "2", 2 }, { "8", 8 }, { "32", 32 }, { "max", -1 }, }; static const int numDrawInstances[] = { 2, 4, 8 }; static const int numDrawInvocations[] = { 2, 8 }; // same amount of content to all invocations for (int ndx = 0; ndx < DE_LENGTH_OF_ARRAY(invocationCases); ++ndx) instancedGroup->addChild(new GeometryInvocationCase(m_context, (std::string("geometry_") + invocationCases[ndx].name + "_invocations").c_str(), (std::string("Geometry shader with ") + invocationCases[ndx].name + " invocation(s)").c_str(), invocationCases[ndx].numInvocations, GeometryInvocationCase::CASE_FIXED_OUTPUT_COUNTS)); // different amount of content to each invocation for (int ndx = 0; ndx < DE_LENGTH_OF_ARRAY(invocationCases); ++ndx) if (invocationCases[ndx].numInvocations != 1) instancedGroup->addChild(new GeometryInvocationCase(m_context, (std::string("geometry_output_different_") + invocationCases[ndx].name + "_invocations").c_str(), "Geometry shader invocation(s) with different emit counts", invocationCases[ndx].numInvocations, GeometryInvocationCase::CASE_DIFFERENT_OUTPUT_COUNTS)); // invocation per layer for (int targetNdx = 0; targetNdx < DE_LENGTH_OF_ARRAY(layerTargets); ++targetNdx) { const std::string name = std::string("invocation_per_layer_") + layerTargets[targetNdx].name; const std::string desc = std::string("Render to multiple layers with multiple invocations, one invocation per layer, target ") + layerTargets[targetNdx].desc; instancedGroup->addChild(new LayeredRenderCase(m_context, name.c_str(), desc.c_str(), layerTargets[targetNdx].target, LayeredRenderCase::TEST_INVOCATION_PER_LAYER)); } // multiple layers per invocation for (int targetNdx = 0; targetNdx < DE_LENGTH_OF_ARRAY(layerTargets); ++targetNdx) { const std::string name = std::string("multiple_layers_per_invocation_") + layerTargets[targetNdx].name; const std::string desc = std::string("Render to multiple layers with multiple invocations, multiple layers per invocation, target ") + layerTargets[targetNdx].desc; instancedGroup->addChild(new LayeredRenderCase(m_context, name.c_str(), desc.c_str(), layerTargets[targetNdx].target, LayeredRenderCase::TEST_MULTIPLE_LAYERS_PER_INVOCATION)); } // different invocation output counts depending on {uniform, attrib, texture} instancedGroup->addChild(new VaryingOutputCountCase(m_context, "invocation_output_vary_by_attribute", "Output varying number of vertices", VaryingOutputCountShader::READ_ATTRIBUTE, VaryingOutputCountCase::MODE_WITH_INSTANCING)); instancedGroup->addChild(new VaryingOutputCountCase(m_context, "invocation_output_vary_by_uniform", "Output varying number of vertices", VaryingOutputCountShader::READ_UNIFORM, VaryingOutputCountCase::MODE_WITH_INSTANCING)); instancedGroup->addChild(new VaryingOutputCountCase(m_context, "invocation_output_vary_by_texture", "Output varying number of vertices", VaryingOutputCountShader::READ_TEXTURE, VaryingOutputCountCase::MODE_WITH_INSTANCING)); // with drawInstanced for (int instanceNdx = 0; instanceNdx < DE_LENGTH_OF_ARRAY(numDrawInstances); ++instanceNdx) for (int invocationNdx = 0; invocationNdx < DE_LENGTH_OF_ARRAY(numDrawInvocations); ++invocationNdx) { const std::string name = std::string("draw_") + de::toString(numDrawInstances[instanceNdx]) + "_instances_geometry_" + de::toString(numDrawInvocations[invocationNdx]) + "_invocations"; const std::string desc = std::string("Draw ") + de::toString(numDrawInstances[instanceNdx]) + " instances, with " + de::toString(numDrawInvocations[invocationNdx]) + " geometry shader invocations."; instancedGroup->addChild(new DrawInstancedGeometryInstancedCase(m_context, name.c_str(), desc.c_str(), numDrawInstances[instanceNdx], numDrawInvocations[invocationNdx])); } } // negative (wrong types) { struct PrimitiveToInputTypeConversion { GLenum inputType; GLenum primitiveType; }; static const PrimitiveToInputTypeConversion legalConversions[] = { { GL_POINTS, GL_POINTS }, { GL_LINES, GL_LINES }, { GL_LINES, GL_LINE_LOOP }, { GL_LINES, GL_LINE_STRIP }, { GL_LINES_ADJACENCY, GL_LINES_ADJACENCY }, { GL_LINES_ADJACENCY, GL_LINE_STRIP_ADJACENCY }, { GL_TRIANGLES, GL_TRIANGLES }, { GL_TRIANGLES, GL_TRIANGLE_STRIP }, { GL_TRIANGLES, GL_TRIANGLE_FAN }, { GL_TRIANGLES_ADJACENCY, GL_TRIANGLES_ADJACENCY }, { GL_TRIANGLES_ADJACENCY, GL_TRIANGLE_STRIP_ADJACENCY }, }; static const GLenum inputTypes[] = { GL_POINTS, GL_LINES, GL_LINES_ADJACENCY, GL_TRIANGLES, GL_TRIANGLES_ADJACENCY }; static const GLenum primitiveTypes[] = { GL_POINTS, GL_LINES, GL_LINE_LOOP, GL_LINE_STRIP, GL_LINES_ADJACENCY, GL_LINE_STRIP_ADJACENCY, GL_TRIANGLES, GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN, GL_TRIANGLES_ADJACENCY, GL_TRIANGLE_STRIP_ADJACENCY }; for (int inputTypeNdx = 0; inputTypeNdx < DE_LENGTH_OF_ARRAY(inputTypes); ++inputTypeNdx) for (int primitiveTypeNdx = 0; primitiveTypeNdx < DE_LENGTH_OF_ARRAY(primitiveTypes); ++primitiveTypeNdx) { const GLenum inputType = inputTypes[inputTypeNdx]; const GLenum primitiveType = primitiveTypes[primitiveTypeNdx]; const std::string name = std::string("type_") + inputTypeToGLString(sglr::rr_util::mapGLGeometryShaderInputType(inputType)) + "_primitive_" + primitiveTypeToString(primitiveType); const std::string desc = std::string("Shader input type ") + inputTypeToGLString(sglr::rr_util::mapGLGeometryShaderInputType(inputType)) + ", draw primitive type " + primitiveTypeToString(primitiveType); bool isLegal = false; for (int legalNdx = 0; legalNdx < DE_LENGTH_OF_ARRAY(legalConversions); ++legalNdx) if (legalConversions[legalNdx].inputType == inputType && legalConversions[legalNdx].primitiveType == primitiveType) isLegal = true; // only illegal if (!isLegal) negativeGroup->addChild(new NegativeDrawCase(m_context, name.c_str(), desc.c_str(), inputType, primitiveType)); } } // vertex transform feedback { feedbackGroup->addChild(new VertexFeedbackCase(m_context, "capture_vertex_line_loop", "Capture line loop lines", VertexFeedbackCase::METHOD_DRAW_ARRAYS, VertexFeedbackCase::PRIMITIVE_LINE_LOOP)); feedbackGroup->addChild(new VertexFeedbackCase(m_context, "capture_vertex_line_strip", "Capture line strip lines", VertexFeedbackCase::METHOD_DRAW_ARRAYS, VertexFeedbackCase::PRIMITIVE_LINE_STRIP)); feedbackGroup->addChild(new VertexFeedbackCase(m_context, "capture_vertex_triangle_strip", "Capture triangle strip triangles", VertexFeedbackCase::METHOD_DRAW_ARRAYS, VertexFeedbackCase::PRIMITIVE_TRIANGLE_STRIP)); feedbackGroup->addChild(new VertexFeedbackCase(m_context, "capture_vertex_triangle_fan", "Capture triangle fan triangles", VertexFeedbackCase::METHOD_DRAW_ARRAYS, VertexFeedbackCase::PRIMITIVE_TRIANGLE_FAN)); feedbackGroup->addChild(new VertexFeedbackCase(m_context, "capture_vertex_draw_arrays", "Capture primitives generated with drawArrays", VertexFeedbackCase::METHOD_DRAW_ARRAYS, VertexFeedbackCase::PRIMITIVE_POINTS)); feedbackGroup->addChild(new VertexFeedbackCase(m_context, "capture_vertex_draw_arrays_instanced", "Capture primitives generated with drawArraysInstanced", VertexFeedbackCase::METHOD_DRAW_ARRAYS_INSTANCED, VertexFeedbackCase::PRIMITIVE_POINTS)); feedbackGroup->addChild(new VertexFeedbackCase(m_context, "capture_vertex_draw_arrays_indirect", "Capture primitives generated with drawArraysIndirect", VertexFeedbackCase::METHOD_DRAW_ARRAYS_INDIRECT, VertexFeedbackCase::PRIMITIVE_POINTS)); feedbackGroup->addChild(new VertexFeedbackCase(m_context, "capture_vertex_draw_elements", "Capture primitives generated with drawElements", VertexFeedbackCase::METHOD_DRAW_ELEMENTS, VertexFeedbackCase::PRIMITIVE_POINTS)); feedbackGroup->addChild(new VertexFeedbackCase(m_context, "capture_vertex_draw_elements_instanced", "Capture primitives generated with drawElementsInstanced", VertexFeedbackCase::METHOD_DRAW_ELEMENTS_INSTANCED, VertexFeedbackCase::PRIMITIVE_POINTS)); feedbackGroup->addChild(new VertexFeedbackCase(m_context, "capture_vertex_draw_elements_indirect", "Capture primitives generated with drawElementsIndirect", VertexFeedbackCase::METHOD_DRAW_ELEMENTS_INDIRECT, VertexFeedbackCase::PRIMITIVE_POINTS)); feedbackGroup->addChild(new VertexFeedbackOverflowCase(m_context, "capture_vertex_draw_arrays_overflow_single_buffer", "Capture triangles to too small a buffer", VertexFeedbackOverflowCase::METHOD_DRAW_ARRAYS)); feedbackGroup->addChild(new VertexFeedbackOverflowCase(m_context, "capture_vertex_draw_elements_overflow_single_buffer", "Capture triangles to too small a buffer", VertexFeedbackOverflowCase::METHOD_DRAW_ELEMENTS)); } } } // Functional } // gles31 } // deqp