// // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // fixedpoint_avx.h: optimized avx specializations of the templates // in fixedpoint.h. #ifndef GEMMLOWP_INTERNAL_FIXEDPOINT_AVX_H_ #define GEMMLOWP_INTERNAL_FIXEDPOINT_AVX_H_ #include #include "fixedpoint.h" #include "fixedpoint_sse.h" namespace gemmlowp { struct int16x16_m256i { __m256i v; }; // Keep int16x16_m256i trivially constructible/destructible and provide // easily optimized helper function. inline int16x16_m256i to_int16x16_m256i(__m256i w) { int16x16_m256i r; r.v = w; return r; } template <> struct FixedPointRawTypeTraits<__m256i> { typedef std::int32_t ScalarRawType; // TODO: This can actually support up to 8 lanes, so we should either // change to 8 or create int32x8_m256i struct to handle that case. static const int kLanes = 4; }; template <> struct FixedPointRawTypeTraits { typedef std::int16_t ScalarRawType; static const int kLanes = 16; }; template <> inline __m256i BitAnd(__m256i a, __m256i b) { return _mm256_and_si256(a, b); } template <> inline int16x16_m256i BitAnd(int16x16_m256i a, int16x16_m256i b) { return to_int16x16_m256i(_mm256_and_si256(a.v, b.v)); } template <> inline __m256i BitOr(__m256i a, __m256i b) { return _mm256_or_si256(a, b); } template <> inline int16x16_m256i BitOr(int16x16_m256i a, int16x16_m256i b) { return to_int16x16_m256i(_mm256_or_si256(a.v, b.v)); } template <> inline __m256i BitXor(__m256i a, __m256i b) { return _mm256_xor_si256(a, b); } template <> inline int16x16_m256i BitXor(int16x16_m256i a, int16x16_m256i b) { return to_int16x16_m256i(_mm256_xor_si256(a.v, b.v)); } template <> inline __m256i BitNot(__m256i a) { return _mm256_andnot_si256(a, _mm256_set1_epi32(-1)); } template <> inline int16x16_m256i BitNot(int16x16_m256i a) { return to_int16x16_m256i(_mm256_andnot_si256(a.v, _mm256_set1_epi16(-1))); } template <> inline __m256i Add(__m256i a, __m256i b) { return _mm256_add_epi32(a, b); } template <> inline int16x16_m256i Add(int16x16_m256i a, int16x16_m256i b) { return to_int16x16_m256i(_mm256_add_epi16(a.v, b.v)); } template <> inline __m256i Mul(__m256i a, __m256i b) { return _mm256_mullo_epi32(a, b); } template <> inline int16x16_m256i Mul(int16x16_m256i a, int16x16_m256i b) { return to_int16x16_m256i(_mm256_mullo_epi16(a.v, b.v)); } template <> inline __m256i Sub(__m256i a, __m256i b) { return _mm256_sub_epi32(a, b); } template <> inline int16x16_m256i Sub(int16x16_m256i a, int16x16_m256i b) { return to_int16x16_m256i(_mm256_sub_epi16(a.v, b.v)); } template <> inline __m256i Neg(__m256i a) { return _mm256_sign_epi32(a, _mm256_set1_epi32(-1)); } template <> inline int16x16_m256i Neg(int16x16_m256i a) { return to_int16x16_m256i(_mm256_sign_epi16(a.v, _mm256_set1_epi16(-1))); } template <> inline __m256i ShiftLeft(__m256i a, int offset) { return _mm256_slli_epi32(a, offset); } template <> inline int16x16_m256i ShiftLeft(int16x16_m256i a, int offset) { return to_int16x16_m256i(_mm256_slli_epi16(a.v, offset)); } template <> inline __m256i ShiftRight(__m256i a, int offset) { return _mm256_srai_epi32(a, offset); } template <> inline int16x16_m256i ShiftRight(int16x16_m256i a, int offset) { return to_int16x16_m256i(_mm256_srai_epi16(a.v, offset)); } template <> inline __m256i SelectUsingMask(__m256i if_mask, __m256i then_val, __m256i else_val) { return _mm256_castps_si256(_mm256_blendv_ps(_mm256_castsi256_ps(else_val), _mm256_castsi256_ps(then_val), _mm256_castsi256_ps(if_mask))); } template <> inline int16x16_m256i SelectUsingMask(int16x16_m256i if_mask, int16x16_m256i then_val, int16x16_m256i else_val) { // Borrowed from Intel's arm_neon_sse.h header. return to_int16x16_m256i( _mm256_or_si256(_mm256_and_si256(if_mask.v, then_val.v), _mm256_andnot_si256(if_mask.v, else_val.v))); } template <> inline __m256i MaskIfEqual(__m256i a, __m256i b) { return _mm256_cmpeq_epi32(a, b); } template <> inline int16x16_m256i MaskIfEqual(int16x16_m256i a, int16x16_m256i b) { return to_int16x16_m256i(_mm256_cmpeq_epi16(a.v, b.v)); } template <> inline __m256i MaskIfNotEqual(__m256i a, __m256i b) { return BitNot(MaskIfEqual(a, b)); } template <> inline int16x16_m256i MaskIfNotEqual(int16x16_m256i a, int16x16_m256i b) { return BitNot(MaskIfEqual(a, b)); } template <> inline __m256i MaskIfZero(__m256i a) { return MaskIfEqual(a, _mm256_set1_epi32(0)); } template <> inline int16x16_m256i MaskIfZero(int16x16_m256i a) { return MaskIfEqual(a, to_int16x16_m256i(_mm256_set1_epi16(0))); } template <> inline __m256i MaskIfNonZero(__m256i a) { return MaskIfNotEqual(a, _mm256_set1_epi32(0)); } template <> inline int16x16_m256i MaskIfNonZero(int16x16_m256i a) { return MaskIfNotEqual(a, to_int16x16_m256i(_mm256_set1_epi16(0))); } template <> inline __m256i MaskIfGreaterThan(__m256i a, __m256i b) { return _mm256_cmpgt_epi32(a, b); } template <> inline int16x16_m256i MaskIfGreaterThan(int16x16_m256i a, int16x16_m256i b) { return to_int16x16_m256i(_mm256_cmpgt_epi16(a.v, b.v)); } template <> inline __m256i MaskIfLessThan(__m256i a, __m256i b) { return _mm256_cmpgt_epi32(b, a); } template <> inline int16x16_m256i MaskIfLessThan(int16x16_m256i a, int16x16_m256i b) { return to_int16x16_m256i(_mm256_cmpgt_epi16(b.v, a.v)); } template <> inline __m256i MaskIfGreaterThanOrEqual(__m256i a, __m256i b) { return BitNot(MaskIfLessThan(a, b)); } template <> inline int16x16_m256i MaskIfGreaterThanOrEqual(int16x16_m256i a, int16x16_m256i b) { return BitNot(MaskIfLessThan(a, b)); } template <> inline __m256i MaskIfLessThanOrEqual(__m256i a, __m256i b) { return BitNot(MaskIfGreaterThan(a, b)); } template <> inline int16x16_m256i MaskIfLessThanOrEqual(int16x16_m256i a, int16x16_m256i b) { return BitNot(MaskIfGreaterThan(a, b)); } /* Assumptions: - All and Any are used on masks. - masks are all_ones for true lanes, all_zeroes otherwise. Hence, All means all 128bits set, and Any means any bit set. */ template <> inline bool All(__m256i a) { return _mm256_testc_si256(a, a); } template <> inline bool All(int16x16_m256i a) { return _mm256_testc_si256(a.v, a.v); } template <> inline bool Any(__m256i a) { return BitNot(_mm256_testz_si256(a, a)); } template <> inline bool Any(int16x16_m256i a) { return BitNot(_mm256_testz_si256(a.v, a.v)); } template <> inline __m256i RoundingHalfSum(__m256i a, __m256i b) { /* __m256i round_bit_mask, a_over_2, b_over_2, round_bit, sum; */ /* We divide the inputs before the add to avoid the overflow and costly test */ /* of checking if an overflow occured on signed add */ /* round_bit_mask = _mm_set1_epi32(1); */ /* a_over_2 = _mm_srai_epi32(a, 1); */ /* b_over_2 = _mm_srai_epi32(b, 1); */ /* sum = Add(a_over_2, b_over_2); */ /* round_bit = _mm_sign_epi32(BitAnd(BitOr(a,b), round_bit_mask), sum); */ /* return Add(sum, round_bit); */ /* Other possibility detecting overflow and xor the sign if an overflow * happened*/ __m256i one, sign_bit_mask, sum, rounded_half_sum, overflow, result; one = _mm256_set1_epi32(1); sign_bit_mask = _mm256_set1_epi32(0x80000000); sum = Add(a, b); rounded_half_sum = _mm256_srai_epi32(Add(sum, one), 1); overflow = BitAnd(BitAnd(BitXor(a, rounded_half_sum), BitXor(b, rounded_half_sum)), sign_bit_mask); result = BitXor(rounded_half_sum, overflow); return result; } template <> inline int16x16_m256i RoundingHalfSum(int16x16_m256i a, int16x16_m256i b) { // Borrowed from Intel's arm_neon_sse.h header. __m256i constant_neg_32768 = _mm256_set1_epi16(-32768); __m256i a_unsigned = _mm256_sub_epi16(a.v, constant_neg_32768); __m256i b_unsigned = _mm256_sub_epi16(b.v, constant_neg_32768); __m256i avg_unsigned = _mm256_avg_epu16(a_unsigned, b_unsigned); __m256i avg = _mm256_add_epi16(avg_unsigned, constant_neg_32768); return to_int16x16_m256i(avg); } template <> inline __m256i SaturatingRoundingDoublingHighMul(__m256i a, __m256i b) { __m256i min, saturation_mask, a0_a2, a1_a3, b0_b2, b1_b3; __m256i a0b0_a2b2, a1b1_a3b3, a0b0_a2b2_rounded, a1b1_a3b3_rounded; __m256i a0b0_a2b2_rounded_2x, a1b1_a3b3_rounded_2x, result; __m256i nudge; // saturation only happen if a == b == INT_MIN min = _mm256_set1_epi32(std::numeric_limits::min()); saturation_mask = BitAnd(MaskIfEqual(a, b), MaskIfEqual(a, min)); // a = a0 | a1 | a2 | a3 // b = b0 | b1 | b2 | b3 a0_a2 = a; a1_a3 = _mm256_srli_si256(a, 4); b0_b2 = b; b1_b3 = _mm256_srli_si256(b, 4); a0b0_a2b2 = _mm256_mul_epi32(a0_a2, b0_b2); a1b1_a3b3 = _mm256_mul_epi32(a1_a3, b1_b3); // do the rounding and take into account that it will be doubled nudge = _mm256_set1_epi64x(1 << 30); a0b0_a2b2_rounded = _mm256_add_epi64(a0b0_a2b2, nudge); a1b1_a3b3_rounded = _mm256_add_epi64(a1b1_a3b3, nudge); // do the doubling a0b0_a2b2_rounded_2x = _mm256_slli_epi64(a0b0_a2b2_rounded, 1); a1b1_a3b3_rounded_2x = _mm256_slli_epi64(a1b1_a3b3_rounded, 1); // get the high part of the products result = _mm256_blend_epi16(_mm256_srli_si256(a0b0_a2b2_rounded_2x, 4), a1b1_a3b3_rounded_2x, 0xcc); // saturate those which overflowed return SelectUsingMask(saturation_mask, min, result); } template <> inline int16x16_m256i SaturatingRoundingDoublingHighMul(int16x16_m256i a, int16x16_m256i b) { // Use _mm256_mulhrs_epi16 then saturate with a bit-operation, // borrowed from Intel's arm_neon_sse.h header. __m256i result_unsaturated = _mm256_mulhrs_epi16(a.v, b.v); __m256i saturation_mask = _mm256_cmpeq_epi16(result_unsaturated, _mm256_set1_epi16(0x8000)); __m256i result = _mm256_xor_si256(result_unsaturated, saturation_mask); return to_int16x16_m256i(result); } template <> inline __m256i Dup<__m256i>(std::int32_t x) { return _mm256_set1_epi32(x); } template <> inline int16x16_m256i Dup(std::int16_t x) { return to_int16x16_m256i(_mm256_set1_epi16(x)); } // So far this is only needed for int16. template <> inline int16x16_m256i SaturatingAdd(int16x16_m256i a, int16x16_m256i b) { return to_int16x16_m256i(_mm256_adds_epi16(a.v, b.v)); } } // end namespace gemmlowp #endif // GEMMLOWP_INTERNAL_FIXEDPOINT_AVX_H_