// Copyright 2020 Google Inc. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // fixedpoint_wasmsimd.h: optimized WAsm SIMD specializations of the templates // in fixedpoint.h. #ifndef GEMMLOWP_INTERNAL_FIXEDPOINT_WASMSIMD_H_ #define GEMMLOWP_INTERNAL_FIXEDPOINT_WASMSIMD_H_ #include namespace gemmlowp { // WAsm SIMD intrinsics are not typed: there is a single v128_t vector // type that does not distinguish between "int32x4" and "int16x8" use // cases, unlike the NEON equivalents. Because we had initially focused // on int32x4, we did not pay attention and specialized these fixedpoint // templates directly for v128_t hardcoding the int32x4 semantics, // not leaving room for int16x8 semantics. Amending that by adding a separate // data type, int16x8_v128_t, that wraps v128_t while being a separate // type. struct int16x8_v128_t { v128_t v; }; // Keep int16x8_v128_t trivially constructible/destructible and provide // easily optimized helper function. inline int16x8_v128_t to_int16x8_v128_t(v128_t w) { int16x8_v128_t r; r.v = w; return r; } template <> struct FixedPointRawTypeTraits { typedef std::int32_t ScalarRawType; static constexpr int kLanes = 4; }; template <> struct FixedPointRawTypeTraits { typedef std::int16_t ScalarRawType; static constexpr int kLanes = 8; }; template <> inline v128_t BitAnd(v128_t a, v128_t b) { return wasm_v128_and(a, b); } template <> inline int16x8_v128_t BitAnd(int16x8_v128_t a, int16x8_v128_t b) { return to_int16x8_v128_t(wasm_v128_and(a.v, b.v)); } template <> inline v128_t BitOr(v128_t a, v128_t b) { return wasm_v128_or(a, b); } template <> inline int16x8_v128_t BitOr(int16x8_v128_t a, int16x8_v128_t b) { return to_int16x8_v128_t(wasm_v128_or(a.v, b.v)); } template <> inline v128_t BitXor(v128_t a, v128_t b) { return wasm_v128_xor(a, b); } template <> inline int16x8_v128_t BitXor(int16x8_v128_t a, int16x8_v128_t b) { return to_int16x8_v128_t(wasm_v128_xor(a.v, b.v)); } template <> inline v128_t BitNot(v128_t a) { return wasm_v128_not(a); } template <> inline int16x8_v128_t BitNot(int16x8_v128_t a) { return to_int16x8_v128_t(wasm_v128_not(a.v)); } template <> inline v128_t Add(v128_t a, v128_t b) { return wasm_i32x4_add(a, b); } template <> inline int16x8_v128_t Add(int16x8_v128_t a, int16x8_v128_t b) { return to_int16x8_v128_t(wasm_i16x8_add(a.v, b.v)); } template <> inline v128_t Mul(v128_t a, v128_t b) { return wasm_i32x4_mul(a, b); } template <> inline int16x8_v128_t Mul(int16x8_v128_t a, int16x8_v128_t b) { return to_int16x8_v128_t(wasm_i16x8_mul(a.v, b.v)); } template <> inline v128_t Sub(v128_t a, v128_t b) { return wasm_i32x4_sub(a, b); } template <> inline int16x8_v128_t Sub(int16x8_v128_t a, int16x8_v128_t b) { return to_int16x8_v128_t(wasm_i16x8_sub(a.v, b.v)); } template <> inline v128_t Neg(v128_t a) { return wasm_i32x4_neg(a); } template <> inline int16x8_v128_t Neg(int16x8_v128_t a) { return to_int16x8_v128_t(wasm_i16x8_neg(a.v)); } template <> inline v128_t ShiftLeft(v128_t a, int offset) { return wasm_i32x4_shl(a, offset); } template <> inline int16x8_v128_t ShiftLeft(int16x8_v128_t a, int offset) { return to_int16x8_v128_t(wasm_i16x8_shl(a.v, offset)); } template <> inline v128_t ShiftRight(v128_t a, int offset) { return wasm_i32x4_shr(a, offset); } template <> inline int16x8_v128_t ShiftRight(int16x8_v128_t a, int offset) { return to_int16x8_v128_t(wasm_i16x8_shr(a.v, offset)); } template <> inline v128_t SelectUsingMask(v128_t if_mask, v128_t then_val, v128_t else_val) { return wasm_v128_bitselect(then_val, else_val, if_mask); } template <> inline int16x8_v128_t SelectUsingMask(int16x8_v128_t if_mask, int16x8_v128_t then_val, int16x8_v128_t else_val) { return to_int16x8_v128_t( wasm_v128_bitselect(then_val.v, else_val.v, if_mask.v)); } template <> inline v128_t MaskIfEqual(v128_t a, v128_t b) { return wasm_i32x4_eq(a, b); } template <> inline int16x8_v128_t MaskIfEqual(int16x8_v128_t a, int16x8_v128_t b) { return to_int16x8_v128_t(wasm_i16x8_eq(a.v, b.v)); } template <> inline v128_t MaskIfNotEqual(v128_t a, v128_t b) { return wasm_i32x4_ne(a, b); } template <> inline int16x8_v128_t MaskIfNotEqual(int16x8_v128_t a, int16x8_v128_t b) { return to_int16x8_v128_t(wasm_i16x8_ne(a.v, b.v)); } template <> inline v128_t MaskIfZero(v128_t a) { return MaskIfEqual(a, wasm_i32x4_const(0, 0, 0, 0)); } template <> inline int16x8_v128_t MaskIfZero(int16x8_v128_t a) { return MaskIfEqual( a, to_int16x8_v128_t(wasm_i16x8_const(0, 0, 0, 0, 0, 0, 0, 0))); } template <> inline v128_t MaskIfNonZero(v128_t a) { return MaskIfNotEqual(a, wasm_i32x4_const(0, 0, 0, 0)); } template <> inline int16x8_v128_t MaskIfNonZero(int16x8_v128_t a) { return MaskIfNotEqual( a, to_int16x8_v128_t(wasm_i16x8_const(0, 0, 0, 0, 0, 0, 0, 0))); } template <> inline v128_t MaskIfGreaterThan(v128_t a, v128_t b) { return wasm_i32x4_gt(a, b); } template <> inline int16x8_v128_t MaskIfGreaterThan(int16x8_v128_t a, int16x8_v128_t b) { return to_int16x8_v128_t(wasm_i16x8_gt(a.v, b.v)); } template <> inline v128_t MaskIfLessThan(v128_t a, v128_t b) { return wasm_i32x4_lt(a, b); } template <> inline int16x8_v128_t MaskIfLessThan(int16x8_v128_t a, int16x8_v128_t b) { return to_int16x8_v128_t(wasm_i16x8_lt(a.v, b.v)); } template <> inline v128_t MaskIfGreaterThanOrEqual(v128_t a, v128_t b) { return wasm_i32x4_ge(a, b); } template <> inline int16x8_v128_t MaskIfGreaterThanOrEqual(int16x8_v128_t a, int16x8_v128_t b) { return to_int16x8_v128_t(wasm_i16x8_ge(a.v, b.v)); } template <> inline v128_t MaskIfLessThanOrEqual(v128_t a, v128_t b) { return wasm_i32x4_le(a, b); } template <> inline int16x8_v128_t MaskIfLessThanOrEqual(int16x8_v128_t a, int16x8_v128_t b) { return to_int16x8_v128_t(wasm_i16x8_le(a.v, b.v)); } /* Assumptions: - All and Any are used on masks. - masks are all_ones for true lanes, all_zeroes otherwise. Hence, All means all 128bits set, and Any means any bit set. */ template <> inline bool All(v128_t a) { return wasm_i32x4_all_true(a); } template <> inline bool All(int16x8_v128_t a) { return wasm_i16x8_all_true(a.v); } template <> inline bool Any(v128_t a) { return wasm_i32x4_any_true(a); } template <> inline bool Any(int16x8_v128_t a) { return wasm_i16x8_any_true(a.v); } template <> inline v128_t RoundingHalfSum(v128_t a, v128_t b) { // We divide the inputs before the add to avoid the overflow and costly test. const v128_t one = wasm_i32x4_const(1, 1, 1, 1); const v128_t sign_bit_mask = wasm_i32x4_const(0x80000000, 0x80000000, 0x80000000, 0x80000000); const v128_t sum = Add(a, b); const v128_t rounded_half_sum = ShiftRight(Add(sum, one), 1); const v128_t overflow = BitAnd(BitAnd(BitXor(a, rounded_half_sum), BitXor(b, rounded_half_sum)), sign_bit_mask); const v128_t result = BitXor(rounded_half_sum, overflow); return result; } template <> inline int16x8_v128_t RoundingHalfSum(int16x8_v128_t a, int16x8_v128_t b) { // Idea: go to unsigned to use wasm_u16x8_avgr, // borrowed from Intel's arm_neon_sse.h header. const v128_t constant_neg_32768 = wasm_i16x8_const( -32768, -32768, -32768, -32768, -32768, -32768, -32768, -32768); const v128_t a_unsigned = wasm_v128_xor(a.v, constant_neg_32768); const v128_t b_unsigned = wasm_v128_xor(b.v, constant_neg_32768); const v128_t avg_unsigned = wasm_u16x8_avgr(a_unsigned, b_unsigned); const v128_t avg = wasm_v128_xor(avg_unsigned, constant_neg_32768); return to_int16x8_v128_t(avg); } template <> inline v128_t SaturatingRoundingDoublingHighMul(v128_t a, v128_t b) { // TODO: switch to extended multiplication once implemented in the toolchain const v128_t a_sign = wasm_i32x4_shr(a, 31); const v128_t b_sign = wasm_i32x4_shr(b, 31); const v128_t a_ext_lo = wasm_v32x4_shuffle(a, a_sign, 0, 4, 1, 5); const v128_t a_ext_hi = wasm_v32x4_shuffle(a, a_sign, 2, 6, 3, 7); const v128_t b_ext_lo = wasm_v32x4_shuffle(b, b_sign, 0, 4, 1, 5); const v128_t b_ext_hi = wasm_v32x4_shuffle(b, b_sign, 2, 6, 3, 7); const v128_t ab_lo = wasm_i64x2_mul(a_ext_lo, b_ext_lo); const v128_t ab_hi = wasm_i64x2_mul(a_ext_hi, b_ext_hi); const v128_t nudge_2x = wasm_i64x2_const(INT64_C(0x80000000), INT64_C(0x80000000)); const v128_t ab_lo_2x = wasm_i64x2_add(ab_lo, ab_lo); const v128_t ab_hi_2x = wasm_i64x2_add(ab_hi, ab_hi); const v128_t ab_lo_rounded_2x = wasm_i64x2_add(ab_lo_2x, nudge_2x); const v128_t ab_hi_rounded_2x = wasm_i64x2_add(ab_hi_2x, nudge_2x); const v128_t prod = wasm_v32x4_shuffle(ab_lo_rounded_2x, ab_hi_rounded_2x, 1, 3, 5, 7); // Saturation only happen if a == b == INT_MIN, and this is the only case // where prod == INT_MIN (0x80000000) instead of INT_MAX (0x7FFFFFFF). const v128_t min = wasm_i32x4_const(INT32_C(0x80000000), INT32_C(0x80000000), INT32_C(0x80000000), INT32_C(0x80000000)); return wasm_v128_xor(prod, wasm_i32x4_eq(prod, min)); } template <> inline int16x8_v128_t SaturatingRoundingDoublingHighMul(int16x8_v128_t a, int16x8_v128_t b) { #if 0 // TODO: enable if https://github.com/WebAssembly/simd/pull/365 is accepted return to_int16x8_v128_t(__builtin_wasm_q15mulr_saturate_s_i16x8(a.v, b.v)); #else // TODO: switch to extended multiplication once implemented in the toolchain v128_t lo = wasm_i32x4_mul(wasm_i32x4_widen_low_i16x8(a.v), wasm_i32x4_widen_low_i16x8(b.v)); v128_t hi = wasm_i32x4_mul(wasm_i32x4_widen_high_i16x8(a.v), wasm_i32x4_widen_high_i16x8(b.v)); const v128_t inc = wasm_i32x4_const(0x4000, 0x4000, 0x4000, 0x4000); lo = wasm_i32x4_add(lo, inc); hi = wasm_i32x4_add(hi, inc); lo = wasm_i32x4_shr(lo, 15); hi = wasm_i32x4_shr(hi, 15); return to_int16x8_v128_t(wasm_i16x8_narrow_i32x4(lo, hi)); #endif } template <> inline v128_t Dup(std::int32_t x) { return wasm_i32x4_splat(x); } template <> inline int16x8_v128_t Dup(std::int16_t x) { return to_int16x8_v128_t(wasm_i16x8_splat(x)); } // So far this is only needed for int16. template <> inline int16x8_v128_t SaturatingAdd(int16x8_v128_t a, int16x8_v128_t b) { return to_int16x8_v128_t(wasm_i16x8_add_saturate(a.v, b.v)); } } // end namespace gemmlowp #endif // GEMMLOWP_INTERNAL_FIXEDPOINT_WASMSIMD_H_