/* * Copyright (C) 2010 The Guava Authors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.google.common.collect; import com.google.caliper.BeforeExperiment; import com.google.caliper.Benchmark; import com.google.caliper.Param; import com.google.common.base.Function; import java.math.BigInteger; import java.util.Comparator; import java.util.PriorityQueue; import java.util.Queue; import java.util.Random; /** * Benchmarks to compare performance of MinMaxPriorityQueue and PriorityQueue. * * @author Sverre Sundsdal */ public class MinMaxPriorityQueueBenchmark { @Param private ComparatorType comparator; // TODO(kevinb): add 1000000 back when we have the ability to throw // NotApplicableException in the expensive comparator case. @Param({"100", "10000"}) private int size; @Param private HeapType heap; private Queue queue; private final Random random = new Random(); @BeforeExperiment void setUp() { queue = heap.create(comparator.get()); for (int i = 0; i < size; i++) { queue.add(random.nextInt()); } } @Benchmark void pollAndAdd(int reps) { for (int i = 0; i < reps; i++) { // TODO(kevinb): precompute random #s? queue.add(queue.poll() ^ random.nextInt()); } } @Benchmark void populate(int reps) { for (int i = 0; i < reps; i++) { queue.clear(); for (int j = 0; j < size; j++) { // TODO(kevinb): precompute random #s? queue.add(random.nextInt()); } } } /** * Implementation of the InvertedMinMaxPriorityQueue which forwards all calls to a * MinMaxPriorityQueue, except poll, which is forwarded to pollMax. That way we can benchmark * pollMax using the same code that benchmarks poll. */ static final class InvertedMinMaxPriorityQueue extends ForwardingQueue { MinMaxPriorityQueue mmHeap; public InvertedMinMaxPriorityQueue(Comparator comparator) { mmHeap = MinMaxPriorityQueue.orderedBy(comparator).create(); } @Override protected Queue delegate() { return mmHeap; } @Override public T poll() { return mmHeap.pollLast(); } } public enum HeapType { MIN_MAX { @Override public Queue create(Comparator comparator) { return MinMaxPriorityQueue.orderedBy(comparator).create(); } }, PRIORITY_QUEUE { @Override public Queue create(Comparator comparator) { return new PriorityQueue<>(11, comparator); } }, INVERTED_MIN_MAX { @Override public Queue create(Comparator comparator) { return new InvertedMinMaxPriorityQueue<>(comparator); } }; public abstract Queue create(Comparator comparator); } /** * Does a CPU intensive operation on Integer and returns a BigInteger Used to implement an * ordering that spends a lot of cpu. */ static class ExpensiveComputation implements Function { @Override public BigInteger apply(Integer from) { BigInteger v = BigInteger.valueOf(from); // Math.sin is very slow for values outside 4*pi // Need to take absolute value to avoid inverting the value. for (double i = 0; i < 100; i += 20) { v = v.add( v.multiply( BigInteger.valueOf(((Double) Math.abs(Math.sin(i) * 10.0)).longValue()))); } return v; } } public enum ComparatorType { CHEAP { @Override public Comparator get() { return Ordering.natural(); } }, EXPENSIVE { @Override public Comparator get() { return Ordering.natural().onResultOf(new ExpensiveComputation()); } }; public abstract Comparator get(); } }